
This paper should be referenced as:

Connor, R.C.H., McNally, D.J. & Morrison, R. “Subtyping and Assignment in Database
Programming Languages”. In Proc. 3rd International Workshop on Database Programming
Languages, Nafplion, Greece (1991).

2

Subtyping and Assignment in Database Programming
Languages

Richard Connor David McNally Ronald Morrison

Department of Mathematical and Computational Sciences
University of St Andrews

North Haugh
St Andrews

Scotland
KY16 9SS.

{richard,djm,ron}@cs.st-andrews.ac.uk

Abstract

Our focus of interest is in the integration of programming languages and database management
systems. In particular, the integration of type systems and data models is considered. One tension
in this integration occurs when a type system with subtype inheritance is combined with a data
model which contains mutable values.

A description of some well-known problems in such systems is given. This is followed by a
classification of possible trade-offs between the safety of static checking, normally required by
type systems, and the flexibility of dynamic checking, normally found in data models. At each
stage in the classification decreasing static safety is traded for an increasing class of correct
programs which may be written. The purpose of this classification is to allow a DBPL designer to
understand the implications of any particular type system with both subtyping and mutable
values.

1 Introduction
Type systems provide two important facilities within programming languages - data

modelling and protection [AM85a]. The type system allows the programmer to partition the
universe of discourse of the application into well defined sets of entities that may then be
manipulated in a consistent manner. The user models the application in terms of these sets of
entities which are the value sets of the types. Thus with regard to modelling, the type system
provides a facility close to that of a data model in a database management system. Indeed, a
major motivation in developing more and more sophisticated type systems for database
programming languages is to integrate the separate traditional activities of type systems and
data models [AM86].

It is with regard to protection that type systems and data models differ most. Traditionally it
is expected that consistent use of a type system may be checked by a static scan of the program
text. This has a number of advantages including discovering errors earlier and, by eliminating
run time checks, making programs execute more efficiently. There are very few languages,
however, that adhere strictly to static type checking and often dynamic type checks at certain
points in the computation, such as the input of values and the projection of unions, are used to
maintain the otherwise static invariants.

Data models are strongly typed in that the use of the entities in the models must adhere to
the rules of the data model. However, the manipulation of the model is usually such that the
use of the entities may only be checked dynamically.

Dynamic type checking has been provided for explicitly in the strongly and mostly
statically typed languages Amber [Car85], with type dynamic, and Napier88 with type any
[MBC88]. For persistence the device of dynamic type checking has been used to verify the

3

type consistency of the late binding of persistent data to programs [ABC83, ABM88]. This
allows all the separately prepared units of persistent data to be statically checked but their
composition to be verified dynamically. This mixture of static and dynamic checking has been
found to provide a good balance between static safety and dynamic flexibility [AM85b].

When integrating type systems and data models a spectrum of type checking regimes needs
to be considered. Different parts of the spectrum yield a different modelling potential as well as
a different balance between the safety of static checking as required by type systems and the
flexibility of dynamic checking as required by data models. Henceforth in this paper, the
traditional notions of type systems and data models will be considered to be part of a larger
database type system for checking constraints on the use of data. It is noted that the similarity
between a schema and a type in a database programming language has already been observed
[AM86].

The integration of type systems and data models in DBPLs is considered in the context of
systems that support subtyping and mutable values. There are some well-known problems with
this. A spectrum of possible trade-offs between static safety and flexibility, while always
preserving strong typing, is proposed. At each stage in this spectrum decreasing static safety is
traded for an increasing class of correct programs which may be written. The classification will
allow the DBPL designer to understand the type checking implications of a particular type
system with subtypes and mutable values.

1.1 Subtyping in DBPLs
Cardelli [Car84] has proposed a semantics for subtyping in which a type is a subtype of

another if the operations allowed on the second type are also allowed on the first. This subtype
relation defines a partial ordering of the types, which may therefore be described in terms of a
lattice. For simplicity only record types will be considered in order to concentrate on the
interaction between subtyping and mutable values. It is noted that Cardelli has also given a
semantics for subrange, variant and function subtyping.

A record type τ is defined to be a subtype (written ≤) of type τ' if τ has all the fields of τ',
possibly some more, and that the common fields of τ and τ' are in the ≤ relation. These ideas
will be introduced by example. The syntax that is introduced is deliberately verbose in an
attempt to free the discussion from considerations of type inference and any particular type
equivalence and inheritance rules. For example, all the program segments are valid for both
name and structural type equivalence, and for explicity and implicit inheritance. The
declarations

type address is [place : string]
type thing is [name : string]
type person is thing with [addr : address]

define three record types address, thing and person. The type address is a record, denoted
by the square brackets, with one field called place of type string. The type thing is a record
with one field called name of type string. The type person is also a record but has two fields,
one from thing called name of type string, and the other called addr of type address. The
subtyping rule states that person is a subtype of thing. The type person is defined here as an
extension of type thing, with an added field addr of type address. The with construct also
allows field names to be redefined in the extended type by subtypes of the named field in the
supertype. To create a value of type thing the following might be used.

let lorry : thing := thing [name := "lorry"]
declares the identifier lorry of type thing to be a record value of type thing with one field

called name with the string value "lorry". The square brackets and the type name delimit the
record constructor. The order of the field declarations is not important but all fields must be
specified. A person may be similarly created. For example

let jack : person := person [name := "Jack", addr := address [place := "Kilconquhar"]]
The primary intuition behind subtyping, called the principle of substitutability [WZ88], is

that a value of a subtype can be substituted anywhere a value of a supertype is expected. Thus a
procedure written for things should work for persons. For example

let thingName : thing → string := proc (it : thing) : string ; it.name

4

declares a procedure called thingName which takes as a parameter a value it of type thing
and returns a string which is the name field of it. The type of the procedure is denoted as thing
→ string. It is expected that this procedure will work equally well for things and all its
subtypes. The calls

thingName (lorry)
thingName (jack)

are both legal and return the name of the respective record values.
The major advantage of subtyping is that it introduces a form of polymorphism, called

inclusion polymorphism [CW85], into the language. In the DBPL context inclusion
polymorphism can be used for the partial specification of modules and to aid some problems of
system evolution [ACO85]. With inclusion polymorphism it is sufficient for a program to
specify only the attributes of persistent modules required by that program for the checking to be
legal. Other attributes which are of no relevance to the program need not be specified. By
utilising this partial specification, systems may be evolved while maintaining the ability of old
programs to operate on new data. In certain circumstances this avoids large scale rewriting of
systems to accommodate minor changes in data format.

1.2 Substitutability and Identity
As will be seen in the next section it is in the presence of store semantics that the intuition

behind the use of subtyping becomes particularly problematical. We contend, however, that a
store semantics is essential to DBPLs to allow the sharing of objects. This introduces the
notion of identity [KC86] in that two values are not just equal but are the same instance of the
value. The concept of identity is central to object-oriented programming which utilises
subtyping as its method of constructing inheritance hierarchies.

In database programming languages substitution occurs where actual parameters are
substituted for formal parameters in procedure calls, and in assignment statements. Our
particular focus of attention in this paper is where substitution preserves identity. The
underlying relationship between assignment and identity is that for a and b, after a := b then a
and b are identical. Similarly for procedure applications, if ap is an actual parameter that is
substituted for the formal parameter fp in procedure f then immediately after the call f (ap), ap
will be identical to fp.

The alternative to such store semantics is copy semantics. Both may be required in a
programming language but we contend that copy semantics alone will not meet all the
requirements of database programming languages.

1.3 Problems with Subtyping
For the moment some problems introduced by subtyping are considered, without any

mention of solutions already known. The discussion starts with the most general case by
considering a language whose rule for inclusion polymorphism is the principle of
substitutability and where the concept of mutability is not reflected in the type system.

Cardelli [Car84] has shown that the intuition behind subtyping starts to go wrong even
without store semantics. Consider for example

let thingId : thing → thing := proc (it : thing) : thing ; it
thingId (jack) ! is of type thing

In the above a type widening operation has taken place during the dynamic substitution in
the procedure call thingId (jack). That is, the type of the result, thing, is a wider type or
supertype of person. Cardelli originally called this a type checking anomaly. It has also been
referred to as a lack of closure in the type system [ADG89].

The same effect occurs with assignment. For example
let secondJack : thing := jack

declares secondJack to be of type thing and assigns jack to it. The substitution is valid but a
loss of type information, due to the type widening, has occurred since secondJack is of type
thing and not of type person.

The problem of mutable values is more important. Liskov and Jones [JL78], Albano
[Alb83] and Wegner and Zdonik [WZ88] have independently discovered in different contexts a
more serious loss of type information which may lead to a program failure in a strongly typed

5

language. Consider the example in Figure 1, where an assignment made to a location later
causes a dereference operation to fail.

type address is [place : string]
type thing is [name : string]
type person is thing with [addr : address]

type car is [model : string ; colour : string]
type employee is person with [employeeNo : int ; vehicle : car]

let changeCar : employee → void := proc (e : employee) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

type Jaguar is car with [extraFuelTanks : int]
type director is employee with [vehicle : Jaguar]

let ronald : director := director [
name := "Ronald",
addr := address [place := "St Andrews"],
employeeNo := 1,
vehicle := Jaguar [model := "Etype", colour := "red", extraFuelTanks := 1]]

changeCar (ronald)
let f : int := ronald.vehicle.extraFuelTanks ! will cause an error since the

! extraFuelTanks field no longer
exists

Figure 1 Problems with subtyping

In Figure 1 the type Jaguar is a subtype of car and the inclusion of thing and person is
extended by director and employee. The procedure changeCar takes an employee as a
parameter and updates the vehicle field with a value of type car. The call changeCar (ronald) is
legal since director is a subtype of employee. The effect of calling the procedure is to update the
vehicle field of ronald. After the call the program has lost the ability to execute the field
selection ronald.vehicle.extraFuelTanks correctly since the extraFuelTanks field of the record
no longer exists. Statically all the individual actions appear to be type safe; however, the
program is clearly in some sense incorrect.

The problem just described occurs because the application of the principle of
substitutability may not be statically checked for correctness in the language of the example.
This is because it is possible to create many different type views over the same updatable
location. Some of these views reflect less attributes of the location than others. If an update is
specified from a less general view then the new value may have less attributes than expected
from a different viewpoint. Thus the update to e.vehicle looks sensible within the context of
procedure changeCar. However it is actually a violation of the principle of substitutability as it
substitutes one value with a value of one of its supertypes. That is, ronald.vehicle is updated
with a value of type car which is a supertype of Jaguar.

The program in Figure 1 is clearly in error. The possibilities are that any one of the
assignment, the field selection, or the call of the procedure is incorrect. The parameter
substitution on the call would appear to be correct since a subtype has been substituted for a
supertype. It would at first appear that the assignment causes the problem. However the
program does not go wrong until the record field selection ronald.vehicle.extraFuelTanks is
executed.

If the field selection were not executed then the program may terminate correctly, which
may lead to the conclusion that it is the selection which is in error. Figure 2 illustrates that in
such a system values of unrelated types may be assigned to one another without error, thus
defeating the purposes of the type system.

6

type empty is []
type emptyContainer is [it : empty]

let itSwap : emptyContainer,emptyContainer → void :=
proc (A, B : emptyContainer) : void
begin

let temp : empty := A.it
A.it := B.it
B.it := temp

end

type directorContainer is emptyContainer with [it : director]
type JaguarContainer is emptyContainer with [it : Jaguar]

let thisDirector : directorContainer := directorContainer [it := ronald]
let thisJaguar : JaguarContainer :=

JaguarContainer [it := Jaguar [model := "Etype",
colour := "red", extraFuelTanks := 1]]

itSwap (thisDirector, thisJaguar)
thisDirector.it.vehicle

Figure 2 Swapping types

At the end of the execution of the program segment in Figure 2 thisDirector.it has a value
of type Jaguar and thisJaguar.it has a value of type director. Again the static typing appears
correct, but unrelated types have been assigned to one another and all static type information
has been lost. This problem is compounded in languages with a persistent store since over time
the user can have very little confidence that the static type information associated with values in
the store is in any way accurate.

It should also be pointed out that the problem is nothing to do with either scoping or
procedure call, as the example of Figure 3 shows. As the type of anEmployee is employee,
although the value is really of type director the assignment to the vehicle field appears statically
to be correct.

let anEmployee : employee := employee [
name := "Richard",
addr := address [place := "Tentsmuir"],
employeeNo := 2,
vehicle := car [model := "model T Ford", colour := "green"]]

let ronald : director := director [
name := "Ronald",
addr := address [place := "St Andrews"],
employeeNo := 1,
vehicle := Jaguar [model := "Etype", colour := "red", extraFuelTanks := 1]]

anEmployee := ronald
anEmployee.vehicle := car [model := "model T Ford", colour := "blue"]]

let f : int := ronald.vehicle.extraFuelTanks ! will cause an error since the
! extraFuelTanks field no longer

exists

Figure 3 No scoping or procedure calls

In the worst case using such a system, any two values whose types share an upper bound
in the type lattice may be viewed as each other. In general a system may retain no meaningful

7

static type information unless some restriction is made on either the subtyping rules or the
assignment rules.

2 Categorising the solutions
The problem described in Section 1 is manifested as a conflict between two apparently

independent intuitions. The first of these is type accuracy; that is, any static type description
associated with a value is an accurate description of that value's attributes. This implies that the
operations allowed in a computation must be restricted to guarantee the static assertions of type,
but does not necessarily imply totally static type checking. Type accuracy is often referred to as
soundness in the context of static type systems. The second intuition, the principle of
substitutability, always allows subtype values to be used in substitution operations where
supertype values are specified. As will be seen these intuitions are in fact interdependent and
must be considered together.

In addition to the assumption that substitution preserves identity, three other assumptions
have been made about the language used for the examples in the previous section, and the
combination of these was shown to break the conditions of type accuracy. The assumptions
were:

• the principle of substitutability itself: a value with more "functionality" may be
always used in place of one with less,

• that the description of a value's functionality, i.e. its type, does not necessarily
include information about whether its components are mutable or not, and

• that an assignment operation may always be statically determined to be safe.
Each assumption is derived from qualities that may reasonably be desired, the second and

third from a language which features mutability and the first from one which features
subtyping. It has been shown above that these desiderata are not mutually tenable. It will be
shown, however, that type accuracy may be enforced whilst retaining any two of the three, so
long as sufficient a restriction is placed on the remaining one.

Zdonik and Maier [ZM90] in a similar treatment of object-oriented languages list similar
mutually untenable conditions. They describe one further condition, however, the presence of
predicate subtyping, and furthermore state that a system with any three of their four conditions
is safe. This difference is attributable to some subtle assumptions made about the object-
oriented model, notably that assignment to fields within a value is performed only by an
encapsulated procedure declared at the same scope level as the data.

To maintain type accuracy, the system must prevent any dangerous update from occurring.
Modifications which are sufficient to preserve the overall type accuracy of the system may be
made in any of the following categories:

• substitution context limitation:

limit the contexts in which substitution using inclusion may occur,

• substitution mutability limitation:

model mutability within the type system, and restrict type inclusion in some
appropriate manner, or

• substitution dynamic failure:

check the validity of substitution dynamically, and accept that a failure may
occur at the time of update.

The danger of making such restrictions is that they may appear arbitrary to a programmer,
and therefore complicate the task of understanding a programming language. However,
restrictions in all of the above categories have been made for other reasons within various
languages and systems. Examples in each category are:

• bounded universal quantification is a mechanism which allows substitution by
inclusion only in certain well-defined contexts,

• the type system of ML (and many other languages) models mutability, in order to
delimit referential transparency within programs, and

8

• many database systems impose dynamically checked integrity constraints, which
may cause a system to fail as a result of update.

A description of a number of restrictions, each of which preserves type accuracy, is now
given. All possible mechanisms are not described but all of the serious contenders for use in a
database programming language are believed to be included. They are introduced starting with
the system with most static type information and ending with the least. As would be expected,
the flexibility of each system increases, and static safety decreases, as less static constraints are
imposed. That is, where the ability to express more type correct computations increases the
possibility of static detection of errors decreases.

In order to justify the correctness of each proposed system, a little formalism is first
introduced to allow an accurate description of the restrictions imposed in each case.

2.1 A little formalism
As the problem described is restricted to values with mutable components, the denotational

semantic model of locations as described by Strachey [Str67] is adopted. For each location,
notation is introduced to describe a number of associated types.

The first type of interest is the type with which the location is originally created. In strongly
typed languages every value is created in a type environment which statically asserts a type for
any new location, and this is known as the creation type. For example, after the declaration:

let jack : person := person [name := "Jack", addr := address [place := "Kilconquhar"]]
the creation type of jack is person, and the creation type of the location denoted by

jack.addr is address.
For any location denoted by i, written loc (i), the type attributed to it at the time of its

creation will be denoted as
Tcreation (loc (i))

Thus Tcreation (loc (jack)) is person.
Also of interest is the minimum type within the lattice of the value referred to by a location.

In a system with inclusion polymorphism, where values may have more than one type, the
interest is in the most specific type which accurately describes the attributes of the value. For
example, after the declaration

let secondJack : thing := jack
then Tcreation (loc (secondJack)) is thing, and the r-value minimum type of secondJack is

person. The r-value minimum type of a location varies dynamically. In this case it may be
statically determined only because the value jack is manifest and not because of its type.

For any location i, the r-value minimum type will be denoted as
Tr-value (loc (i))

Thus in the above Tr-value (loc (secondJack)) is person.
During the execution of a program, a number of different views may be formed over a

location. This is the case wherever it is possible to denote the same location by a number of
different access paths; that is, when an alias for a location is created. In a system with
subtyping, these views may be of different types, thus forming a set of view types with which
each location is viewed at any one time. For example, during the execution of the changeCar
procedure in Figure 1, the location denoted by e.vehicle for that particular invocation has the
view set

{car, Jaguar}
For any location i and view j, the type of the view will be denoted as

Tview (j) (loc (i))
Since there may be more than one view of the location, the views form a view set for

location i. For n views, this is denoted by
{Tview (j) (loc (i)), j ← 1..n}

From the context of its creation each location has an associated type lattice which describe
the possible sets of its r-value and view types, as shown in Figure 4.

9

Creation type

Possible view types

Possible r-value types

Figure 4 A type lattice for each location

The most general condition for the preservation of type accuracy within a system is that,
for any location, the r-value minimum type is a subtype of all of the type views. This is defined
as the type accuracy invariant:

∀i .∀j .Tr-value (loc (i)) ≤ Tview (j) (loc (i))
This invariant may be used as a post-condition for any substitution operation to preserve

type accuracy. As will be seen later in certain circumstances the preservation of this invariant
can be checked statically while in others it must be checked dynamically. In either case the
static type descriptions are accurate.

For any location, the evaluation of a substitution operation may affect either the r-value
minimum type or the set of view types, according to whether the location is on the left or right
hand side of the substitution operator. The intuition behind the principle of substitutability is
that the r-value minimum type may be any subtype of the creation type, and that every member
of the set of view types may be any supertype of the creation type. This may be represented by
the following inequality:

∀i .∀j .Tr-value (loc (i)) ≤ Tcreation (loc (i)) ≤ Tview (j) (loc (i))
Again this invariant may be used as a post-condition for substitution operation. It is of

interest in that it implies the conditions for type accuracy within a system.
The type accuracy invariant was not preserved in the erroneous examples shown in Figures

1 and 2. In both cases this was due to an assignment to a location after which the r-value
minimum type was no longer a subtype of all the view types. If, in Figure 1, the location of the
vehicle field of the director object is denoted by X then Tcreation (loc (X)) is Jaguar. Tview
(ronald.vehicle) (loc (X)) is also of type Jaguar and Tview (e.vehicle) (loc (X)) is of type car.
After the assignment Tr-value (loc (X)) is also of type car and is now a supertype of one of the
views. Thus the substitution violated the invariant.

∀ i .∀ j .Tr-value (loc (X)) ≤ Tview (ronald.vehicle) (loc (X))
This was not statically detected as the assignment was specified in the context of one of the

view types. It may be seen that the principle of substitutability itself is not incorrect; merely the
intuition that the correctness of its application is statically checkable.

In the rest of the paper, the discussion is of how the three categories of restriction
mentioned earlier may be imposed within a programming system so that type accuracy is
always preserved. In each case the formalism will be used to give a justification that the method
preserves the type accuracy invariant.

2.2 Discussion of mechanisms
The following three sections include discussion of six different mechanisms by which type

safety may be guaranteed. These fall into the three categories given in Section 2. For each
mechanism, the following treatment is given:

1. A description of the language model

2. How the failure shown in Figure 1 is captured

3. Use of formalism to show how the general invariant is preserved

10

4. A brief discussion of the model, in terms of expressibility and static safety
The following example from a database schema is used throughout.
Consider a database which models company employees. Each employee is allocated a car

from the company pool, and this allocation may be changed from time to time. Company
directors, however, are always given Jaguars. Jaguars have more attributes than ordinary cars.
This is described by the schema fragment in Figure 5.

type address is [place : string]
type thing is [name : string]
type person is thing with [addr : address]
type car is [model : string ; colour : string]
type Jaguar is car with [extraFuelTanks : int]
type employee is person with [employeeNo : int ; vehicle : car]
type director is employee with [vehicle : Jaguar]

Figure 5 The company schema

The following have been identified as desirable features to model within such a database
system:

1. a collection of all Jaguars

2. a collection of all directors

3. a collection of all cars (including Jaguars)

4 a collection of all employees (including directors) who will never change their cars

5. a collection of all employees (including directors)

6. a procedure which gives any employee's number

7. a procedure which swaps the vehicles of either two directors or two non-directors

8. a procedure which allocates a new car to a non-director (using the collection of all
employees)

9. a procedure which allocates a suitable new car to any employee (including
directors)

10. a procedure which demotes a director, and allocates a new vehicle which is not a
Jaguar

11. a procedure which allocates a Jaguar to an employee who is then made a director

3 Substitution context limitation
This section describes in detail a single mechanism where the context in which subtype

inclusion is allowed is restricted to preserve type accuracy. The mechanism shown restricts
inclusion to only those places where it is explicitly denoted by the use of bounded universal
quantification. In any other context type descriptions are exact. Bounded universal
quantification may be fully statically checked and works by preventing the creation of
supertype views over any component values.

There are other possible mechanisms which achieve type accuracy by a restriction of where
subtyping may be employed, such as a rule which allows subtyping only over locations which
may never be aliased. Such a system is employed in the record subtyping of Modula-3
[CDG88], where it is achieved by the combination of a non-recursive subtype relation and the
implicit evaluation of locations to r-values.

Also of interest in this context is a type system described by Ohori et al [BO91], which
achieves the power of subtyping by the introduction of bounded union types into an exactly
typed system. Values may be explicitly injected into and projected from appropriate union
types, with the bounds on the unions describing some minimum properties of their behaviour.

11

Although the system is described in the absence of update, its exact typing is a sufficient
restriction to preserve the accuracy of static type restrictions.

3.1 Bounded Universal Quantification
Bounded universal quantification is considered in isolation for the sake of clarity, although

it may normally be expected to be used in conjunction with another form of subtyping or along
with bounded existential quantification. The exclusive use of bounded universal quantification
as a subtyping mechanism restricts subtyping to those cases where an explicit type quantifier is
declared to stand for a type with at least a given set of properties. Quantified procedures may be
written to operate over values with the desired properties and the correct application of these
procedures may be statically determined from their calls. As all type quantification is explicit,
values of one type may never be viewed as a different type. Bounded universal quantification
may also be used in conjunction with any of the other forms of subtyping described in this
paper.

The notation used here to describe bounded universal quantification is adapted from
[CW85], and is introduced by way of an example:

type t is ...

let a := proc [s ≤ t] (x, y : s) : s ; ...
This code describes a procedure a which takes two arguments x and y of the same type,

and returns a result also of the same type. This type is explicitly abstracted over and is denoted
by s within the procedure. The type represented by the quantifier s is bounded by the type
named as t; that is, the type s is a subtype of t. Thus any values of type s have at least all of the
properties associated with type t, although they are not type compatible with values of type t.

Bounded universal quantification is often seen as a mechanism by which information loss
may be avoided within a more general subtyping system. For example, instead of

let thingId : thing → thing := proc (it : thing) : thing ; it
which caused a type information loss problem when applied to any proper subtype of

thing, an equivalent quantified procedure could be written:
let thingId := proc [t ≤ thing] (it : t) : t ; it

This procedure may be called with parameters of different types, for example
let x := thingId [person] (jack)
let y := thingId [director] (ronald)

and the type of the result is the same as the argument. This is because the use of the
identifier t within the procedure description statically asserts the parameter and result type to be
the same type, which may be any subtype of thing. At a call of this procedure, the type of the
result may therefore be deduced as the same as that of the parameter, although this type may be
different for each invocation of the procedure. The type of the procedure body must statically
be deduced not as any subtype of thing, but in particular the same type as the parameter it.

Implicit quantifiers may appear in a system with only bounded universal quantification. For
example, consider the example in Figure 6.

let x := proc [t ≤ employee] (p : t)
begin

. . .
let CAR := p.vehicle
. . .

end

x [person] (jack)
x [director] (ronald)

Figure 6 An implicit quantifier

Within the body of the procedure, the type of CAR is not known. All that may be
determined statically is that the type of CAR is some subtype of car. This is not type compatible

12

with any other value except those derived from a dereference of a value of type t. The type of
CAR is some implicit quantifier type such as "s such that s ≤ car".

In a type system where the subtype rule describes a single lattice, and therefore any two
types have a common lower bound, then bounded quantification alone may have limited
expressive power. Such systems typically have a single value of type ∀t.t whose type is a
subtype of any other type. In such a system, the procedure

let thingName := proc [t ≤ thing] (it : t) : string ; it.name
is not type correct. This is because the value of it.name is of an implicit quantifier type "s

such that s ≤ string", and there is no static information to show that it.name is not of type ∀t.t
rather than string.

There is no obligation for the subtype relation to describe a single lattice rather than a
number of discrete ones, where a separate lattice describes subtyping over each type
constructor over which the subtype relation is defined. This allows more bounded universally
quantified procedures to be written. If subtyping is defined only over record types, for
instance, then the type of any implicit quantifier which is not a record type may be deduced.
The implicit quantifier "s such that s ≤ string" would describe only the type string as this
type has no other subtypes. In such a system the above thingName procedure is type correct.
3.1.1 Failure capture

It can be seen that an attempt to write the procedure changeCar whose call resulted in error
before will fail in a system with only bounded universal quantification:

let changeCar := proc [t ≤ employee] (e : t) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

This is because the type of e.vehicle is an implicit quantifier type, "s such that s ≤ car", and
as such is not type compatible with a value of type car. Thus the procedure is not type correct.

To allow a procedure which assigns correctly to such a location the ability to declare related
quantifiers is required, so that the implicit quantifier may be made explicit. For example

let changeCar := proc [s ≤ car, t ≤ [vehicle : s]] (emp : t ; Car : s) ; emp.vehicle := Car
describes a procedure with two related quantifiers. The first, s, is stated to be a subtype of

car, and the second, t, is stated to be a subtype of any record type which includes a field
vehicle of type s. In this way it is determined statically that the assignment is correct, as
otherwise a call of the procedure would fail. For example, the call

changeCar [Jaguar, director] (ronald, newJaguar)
is allowed, but

changeCar [car, director] (ronald, newFord)
is disallowed statically when the type of the call is checked, as values of type director do

not have a vehicle field of type car.
Relationships between quantifiers may also be used to further refine the type of procedure

arguments in other ways. Consider for example the following procedure:
let breed := proc [t ≤ animal,

t1 ≤ t with [gender : male],
t2 ≤ t with [gender : female]] (father : t1 ; mother : t2) : t ...

of which the call
breed [dog, maleDog, femaleDog] (Gnasher,Fifi)

will produce a dog (Gnipper?) if you have read the Beano [DCT91]. The subject of
bounded quantifier relationships in general is an interesting research topic but outside the scope
of this paper, and is discussed further in [CM91].
3.1.2 Formalism

Allowing only bounded universal quantification preserves the system invariant described as
it prevents any supertype viewing over locations. As there is no way of constructing different
type views of a location, all views of the same location from different contexts are the same
type:

∀ i.∀ j.Tcreation (loc (i)) = Tview (j) (loc (i))

13

Neither is it possible to assign a subtype to a location, and so all r-values have the same
type as their locations:

∀i.Tr-value (loc (i)) = Tcreation (loc (i))
Together these give the following, which trivially satisfies the type accuracy invariant:

∀ i.∀ j.Tr-value (loc (i)) = Tview (j) (loc (i))

3.1.3 Modelling ability
The modelling power of bounded universal quantification alone is less than other subtyping

mechanisms. In the employee/vehicle database, it is unable to model collections of all cars or all
employees. However, it is able to model the simpler procedures which require subtyping, and
it does not require mutability to be reflected in the type system.

There exists a large class of procedures however where related quantifiers exist, such as a
procedure which will supply any employee with an appropriate car, where both the employee
and the car are passed as parameters. Bounded universal quantification alone allows the
accurate description of such procedures. As bounded universal quantification is generally
orthogonal to other forms of subtyping it may be used in conjunction with another system to
allow this class of procedure.

4 Substitution mutability limitation
The second category of solution to ensure type accuracy depends upon restricting the

subtyping relation. Such restrictions prevent update to locations which are viewed over. To
achieve this it is necessary for mutability to be modelled within the type system. Some new
syntax is first introduced to denote mutability within types.

The discussion of mutability will be restricted to locations which are contained within other
data objects, such as fields of a record. In previous examples, record type definitions have
included an implicit assumption that all locations described are mutable; now structure fields
may be declared as either updatable locations or constant values. The reserved words loc and
val are now included in the type descriptors to indicate this. Thus for example,

type address is [place : val string]
type person is thing with [addr : loc address]

describes two types address and person as before, but now the place field of address is
declared to be a non-mutable value, whereas the addr field of person is declared to be a mutable
location.

Mutability is modelled in a number of languages which do not include any concept of
subtyping. For example, the language ML [Mil83] is mainly applicative in flavour, but also
includes mutable locations. The mutability of such locations is explicit within the type system.
In ML it is possible to preserve referential transparency associated with purely applicative
languages for program segments which do not use any mutable types.

The two mechanisms described in this section are already in use in languages with
subtyping. Galileo [ACO85] disallows subtyping over any mutable values, in the way
described in section 4.1, and Quest [Car89] allows a mutable location to be modelled as a
subtype of a non-mutable value as described in section 4.2.

4.1 No subtyping over locations
A first approach to restricting the subtyping rule in a way which preserves type safety is to

allow subtyping only over values which are not mutable. Only trivial subtyping is allowed over
locations, expressed by the rule:

loc T ≤ loc S iff T ≤ S and S ≤ T
That is, mutable locations of types S and T are type compatible if and only if S and T are

the same type. Such a rule is used in the type system of the language Galileo.
4.1.1 Failure capture

Any potentially dangerous update to a location is detectable and disallowed by a static scan
of the program in this system. The program fragment

14

type employee is person with [employeeNo : val int ; vehicle : loc car]
type director is employee with [vehicle : loc Jaguar]

let changeCar : val employee → void := proc (e : val employee) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

is allowed, but the call
changeCar (ronald)

is not allowed, as director is not defined as a subtype of employee due to its variable
location vehicle.
4.1.2 Formalism

As there is no subtyping over mutable locations in this system, static typechecking ensures
that no supertype views are created over such locations:

∀ i.∀ j.Tview (j) (loc (i)) = Tcreation (loc (i))
This implies that all views of a location have the same type:

∀ i.∀ j.∀k.Tview (j) (loc (i)) = Tview (k) (loc (i))
For any view of a location, the subtyping rules do allow any subtype of a particular view

type to be assigned. After an assignment to any location i from any context j, the following
holds:

Tr-value (loc (i)) ≤ Tview (j) (loc (i))
which, as all view types are the same, gives the type accuracy invariant:

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))

4.1.3 Modelling ability
This system is able to model heterogeneous collections, such as the collection of all cars

including Jaguars. It cannot, however, model the collection of all employees including
directors, because the vehicle field of employee is mutable and is a supertype of the vehicle
field of director, causing the two types to be unrelated in the subtype lattice.
4.1.4 Miscellaneous

The inability to create even non-updatable views over locations seems over-restrictive in
terms of polymorphism. For example, if two types are declared as

type thing1 is [name : val string]
type thing2 is [name : loc string]

then it is not possible to write a single procedure which will extract the name field of values
of either type, as, for example

let nameOf : val thing1 → string := proc (x : val thing1) : string ; x.name

nameOf (thing2 [name := "peter"])
is not type correct. The next section shows a system which allows such polymorphism,

although some further problems are introduced.

4.2 Only non-mutable views allowed
The above system may be extended without losing its statically determinable safety by

allowing a mutable value to be a subtype of a non-mutable value but no other subtyping over
mutable values. Thus the rule for subtyping over locations still stands:

loc T ≤ loc S iff T ≤ S and S ≤ T
but a new rule is also introduced, which states

loc T ≤ T
for any type T.
In practical terms this means that a location may be viewed as any of its supertypes, as long

as the ability to update this location is relinquished. Where the location is of an updatable type it
is known statically that this type is the same as the type with which the location was created.

15

Thus an update to a location may only occur using a value which is a subtype of the creation
type. Such a rule occurs in the type system of the language Quest.
4.2.1 Failure capture

Failure capture in this system is identical to that in the previous section. Once again, the
program fragment

type employee is person with [employeeNo : val int ; vehicle : loc car]
type director is employee with [vehicle : loc Jaguar]

let changeCar : val employee → void := proc (e : val employee) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

is allowed, but the call
changeCar (ronald)

is not allowed, as director is not defined as a subtype of employee due to its variable
location of type car. If type employee is specified as having a non-mutable vehicle field then the
call would be allowed as loc Jaguar is a subtype of val car. In this case the procedure itself
would of course be disallowed as it now specifies an update to a location which is not specified
as mutable.
4.2.2 Formalism

In this system it is possible to create views with different types over a mutable location. In
the absence of assignment, the static typechecking ensures that all views created are supertypes
of the creation type:

∀ i.∀ j.Tcreation (loc (i)) ≤ Tview (j) (loc (i))
However, views may only be created when the ability to update a location is relinquished

and so updates may only occur with subtypes of the location's creation type:

∀i.Tr-value (loc (i)) ≤ Tcreation (loc (i))
which, in conjunction with the previous inequality, gives the required invariant:

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))

4.2.3 Modelling ability
The restrictions of introducing mutability into the type system are clearly lessened by this

additional subtyping rule since mutable values may be viewed as non-mutable. This means that
the impact of type incompatibility between such values is lessened; for example, the thingName
function above may be applied to values with either mutable or non-mutable name fields, as the
function does not attempt to update the field and so may view it as a non-mutable value. In
terms of data modelling, a collection of values some of which have mutable components and
some of which do not may be formed, but the collection must be of the type with the non-
mutable components.

As an example from the employee/vehicle database, it is possible to form a collection to
model all company employees including directors; however, this may only be achieved by
relinquishing the right to update the vehicle field of an employee from the context of this
collection.
4.2.4 Miscellaneous

One point that should be mentioned is that the argument for including mutability in the type
system to allow the demarcation of referential transparency has now been lost. This occurs
where a value which is viewed as non-mutable is updated from a different context. Consider
the example in Figure 7.

16

type X is [x : val int]
type Y is [x : loc int]

let Y1 : Y := Y [x := 3]

let changeConstant : val X → bool := proc (a : val X) : bool
begin

let A := a.x
Y1.x := 4
A = a.x

end

let Z = changeConstant (Y1) ! evaluates to false

Figure 7 Changing apparently non-mutable values

In Figure 7, the value a.x within procedure changeConstant is regarded as non-mutable.
However by using its global identifier it can be updated by another view. Mutability is now
only modelled by the type system so far as "known to be mutable" or "no information about
mutability" for each component value.

The safety of static assignment checking will appeal in particular to a programming
language designer. A database system designer, however, will be less worried about checking
such constraints dynamically, as many other integrity constraints in databases are not statically
checkable, but may be more concerned about the associated loss of flexibility.

5 Dynamic Assignment Checking
The final category of solutions contains those in which the preservation of type accuracy is

ensured by dynamically checking the validity of updates. The models in this category allow
more expressibility than those in the statically checkable categories. They have two main
drawbacks: it is necessary to define failure semantics for assignment and the execution cost of
the dynamic check may be significant. Three mechanisms in this category are shown with
varying degrees of expressibility, static safety and execution cost.

Database management systems traditionally rely more upon dynamic constraint checking
than programming languages. Such constraints are often finer-grained than static type
constraints and in some sense are intended to govern the acceptable dynamic behaviour of the
system. The ability to check all such constraints statically is beyond the ability of current type
checkers and theorem provers.

The parallel between a traditional database integrity model and a programming language
type system may be extended to encompass the problems of subtyping and update. For
example, the subtype relation between employees and directors would be partly modelled in a
traditional database by an integrity constraint which states that an employee who is also a
director must have a vehicle which is also a Jaguar. This constraint would normally be
implemented as a precondition check on an assignment to the vehicle field of such a value. In
such a system the erroneous program in Figure 1 would be halted at the assignment due to the
violation of this constraint.

In a well defined data model, it may be that the integrity constraints are sufficiently fine-
grained to prevent the execution of any program which causes a violation of type accuracy. In
this case, no further type system restriction is necessary as the execution of any operation
which violates type accuracy will cause the program to be terminated. However, except in
those cases where the preservation of type accuracy may be guaranteed by an analysis of the set
of integrity constraints, a dynamic constraint which enforces type accuracy is also necessary.

The most straightforward model of dynamic checking is a check that the right hand side of
an assignment statement is a subtype of the creation type of the location being assigned to. This
corresponds to a dynamic check of the correct application of the principle of substitutability but
may be expensive to implement. This method is shown in section 5.2. However, there are two
other useful possibilities, which are also described here. Section 5.1 describes a view equality
check which is more restrictive but allows a more efficient dynamic check. The other

17

mechanism, described in section 5.3, is a dynamic view set check, which allows the maximum
possible flexibility that maintains type accuracy within a system.

With the introduction of dynamic checking on assignment, the static typechecking rules for
assignment must also be reconsidered. Systems which are entirely statically checked
necessarily include a rule that on an assignment

<e1> := <e2>
where <e1> and <e2> denote locations i and j respectively, then

Tview (e2) (loc (j)) ≤ Tview (e1) (loc (i))
Although necessary to preserve type accuracy in the static systems shown, a dynamic

check on assignment precludes the necessity for this static restriction. Nevertheless a
programming language designer may wish to retain it in conjunction with a dynamically
checked system as it increases the static safety of a program. Once again, however, greater
flexibility may be achieved if the static restriction is removed. The systems described in
Sections 5.1 to 5.3 assume that this static constraint is imposed and systems with no static
constraints on assignment are considered in Section 5.4.

5.1 View equality check
This mechanism is similar to that described in Section 4.2, in that update is allowed only

from views of locations which have the same type as the creation type. The difference is that
with this mechanism mutability is not modelled within the type system. This allows a more
flexible data model but in general it is not possible to determine statically every place where a
dangerous update may occur.

When an assignment is specified in such a system there is an implicit assumption that the
type view of the location being assigned to is the same as the creation type of the location. Thus
in the procedure

let changeCar : employee → void := proc (e : employee) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

the assignment operation implicitly includes an assertion that the creation type of the
location denoted by e.vehicle is precisely car. The assertion is made from the fact that e is
defined as type employee and that the vehicle field of employee is of type car. The static type
system only restricts the actual parameter value substituted for e.vehicle to have a creation type
which could be any subtype of car. A dynamic test is performed before the assignment and if
the creation type of the location within the value denoted by e is not of precisely car then the
program will fail at this point.

It should be noticed that the right hand side of the assignment statement could be any
subtype of car. This use of subtyping may be checked statically.
5.1.1 Failure capture

Some incorrect programs can only be detected dynamically in this system. In the
changeCar example, the procedure is statically allowable. It is also statically allowable to call
the procedure with an actual parameter of any subtype of employee. Any such value contains a
mutable location vehicle which may be any subtype of car. However, the assignment statement
carries the assertion that e.vehicle, when evaluated, will provide a location with a creation type
of precisely car. This will cause a dynamic failure when the procedure is called with the value
ronald of type director, whose vehicle field has a creation type of Jaguar.

Recall that in Figure 1 the test could be performed at the procedure call rather than at the
assignment. This is not in general the case since the location e is type compatible with any other
value of a subtype of employee and could have been assigned a different value before the
assignment to the vehicle field is executed.
5.1.2 Formalism

In formal terms, this dynamic check ensures that whenever an update occurs to a location i
from a view j then

Tview (j) (loc (i)) = Tcreation (loc (i))
The static typechecking performed by the system simultaneously ensures that after any

assignment from the same view j
Tr-value (loc (i)) ≤ Tview (j) (loc (i))

18

and so, after any assignment to a location i
Tr-value (loc (i)) ≤ Tcreation (loc (i))

The static subtyping rules also ensure that only supertype views of a location may be
constructed:

∀ i.∀ j.Tcreation (loc (i)) ≤ Tview (j) (loc (i))
The combination of these inequalities gives the required invariant in the presence of

assignment:

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))
as required.

5.1.3 Modelling ability
The modelling power of this system is greater than any of the purely static systems. In

terms of the example requirements over the employee/vehicle database the view equality test
allows the modelling of a collection of all employees. This is not possible in any of the
statically checkable systems since the type of a director's vehicle is a subtype of the other
employees' vehicles. Once this collection has been established an employee who is not a
director may have the vehicle field updated, but any attempt to update a director's vehicle when
the director is viewed as a member of this collection will fail as the view type is different from
the creation type. Notice that this update will fail even if the value assigned is a subtype of
Jaguar.
5.1.4 Miscellaneous

The dynamic model described here is slightly more restrictive than other dynamic models.
An advantage of this dynamic test, however, is that it may be relatively efficient. This is
because in general it requires a type equivalence test rather than a subtype test. In many cases
this equivalence test may be highly optimised [CBC90]. This is very much in contrast with the
more general dynamic test described in the next section where potentially a full structural
subtype test may be necessary.

5.2 General subtype check
This technique is a mechanism which implements the principle of substitutability without

any restriction. That is, an instance of a subtype may be substituted anywhere that an instance
of a supertype is expected. Otherwise a dynamic assignment failure occurs. In terms of our
nomenclature this means that an assignment will always succeed whenever a location's creation
type is a supertype of the value being assigned. This implies that a full subtype check may be
necessary whenever an assignment is executed.
5.2.1 Failure capture

Once again the changeCar procedure is statically allowable as is the call with a value of type
director. The procedure

let changeCar : employee → void := proc (e : employee) : void
e.vehicle := car [model := "model T Ford", colour := "black"]

here carries an implicit assumption that the creation type of the location e.vehicle is any
supertype of the type car. Unlike the system described in 5.1 the implicit type assertion
associated with the assignment is based upon the type view of the value on the right hand side
of the assignment rather than that of the location on the left hand side. During the execution of
the procedure with a parameter of type director the test will reveal that the creation type of the
e.vehicle location is Jaguar, which is not a supertype of car, and so a failure will occur on the
assignment.
5.2.2 Formalism

In formal terms the dynamic check ensures that whenever an update occurs to a location i
from a view j then

Tr-value (loc (i)) ≤ Tcreation (loc (i))
The static subtyping rules also ensure that only supertype views of a location may be

constructed:

∀ i.∀ j.Tcreation (loc (i)) ≤ Tview (j) (loc (i))

19

The combination of these inequalities gives the required invariant in the presence of
assignment:

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))
as required.

5.2.3 Modelling ability
This system allows the full range of subtype modelling as described by the principle of

substitutability. All but the last of the desired operations described in Section 2.2 over the
employee/car database may be described. In particular, the important class of operations
disallowed by the view equality check may now be performed. An example from this database
would be a procedure which took a collection of employees and a collection of cars and
updated the cars belonging to a selection of the employees. In a database there would be an
integrity constraint to ensure that directors would only be assigned Jaguars and there would be
sufficient semantic information in the records of both the employees and the cars to ensure that
an incorrect update did not occur. This would also guarantee the preservation of type security
even though the types are not distinguished within this context.
5.2.4 Miscellaneous

In general this mechanism requires a full subtype check to be carried out whenever a
location within a value is assigned to. The cost of this within a database system has not yet
been investigated in detail but it could be severe. However, it may be possible to elide checks
where the database integrity constraints provide sufficient semantic information.

5.3 Dynamic view check
The last mechanism is the most general which preserves type accuracy. All of the systems

considered so far have preserved not only the invariant

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))
but also the slightly more restrictive invariant

∀i.∀j.Tr-value (loc (i)) ≤ Tcreation (loc (i)) ≤ Tview (j) (loc(i))
It is possible for the most specific view of a location to become a supertype of its creation

type and if this occurs it may be possible for an update to occur with a supertype of the creation
type without compromising type safety.

As an example, consider the program in Figure 8. This is similar to the incorrect program
presented earlier, except for the update which occurs within the sackMD procedure.

In this program there is no breach of type accuracy. This is due to the fact that, when the
update to formerMD.vehicle occurs, there exists no context in which the location denoted by
formerMD.vehicle is viewed as a subtype of car.

20

type address is [place : string]
type thing is [name : string]
type person is thing with [addr : address]

type car is [model : string ; colour : string]
type Jaguar is car with [extraFuelTanks : int]
type employee is person with [employeeNo : int ; vehicle : car]
type director is employee with [vehicle : Jaguar]

let MD : director := director [
name := "Ronald",
addr := address [place := "St Andrews"],
employeeNo := 1,
vehicle := Jaguar [model := "Etype",

colour := "red", extraFuelTanks := 1]]

let friend : employee := MD !MD viewed as an employee

let sackMD : employee → void := proc (formerMD : employee) : void
begin

MD := director [
name := "Richard",
addr := address [place := "Tentsmuir"],
employeeNo := 2,
vehicle := Jaguar [model := "Dtype",

colour := "blue", extraFuelTanks := 3]]

formerMD.vehicle := car [model := "model T Ford", colour := "red"]
end

sackMD (MD)
let three : int := MD.vehicle.extraFuelTanks ! no error
let ford : string := friend.vehicle.model ! still allowed

Figure 8 Use of a dynamically calculated view set

5.3.1 Failure capture
At the point of execution of the erroneous assignment in Figure 1, the type accuracy

invariant becomes violated and the program would be terminated.
5.3.2 Formalism

The formal correctness of this system is trivial: the type accuracy invariant,

∀ i.∀ j.Tr-value (loc (i)) ≤ Tview (j) (loc (i))
is used as a post-condition for any store update operations, and therefore any program

which would cause the invariant to be violated will not be allowed to continue in its execution.
5.3.3 Modelling ability

A system such as this is able to model those cases within databases where entities possess
different sets of attributes over time. For example, a person may become a student at some
point in their life, at which point they possess an attribute of matriculation number. After they
graduate they lose this attribute. This may be modelled by subtyping, by viewing the entity
from a context where the extra attributes are no longer visible and by removing all access from
any contexts where the more specialised view is available.

As an example in the employee/vehicle database model, imagine that a director resigns from
the board of the company but continues to be employed. This may be modelled simply by
removing the value corresponding to the director from the collection of directors, but by
leaving the same value within the collection modelling all employees. After this has been done,
no access to the extra fields modelled for a director is possible.

21

This kind of attribute loss may be modelled in any of the systems described which rely
upon dynamic checking, but may not be modelled by any of the fully statically checked ones as
the general collection of employees may not be modelled. There is a further problem however
with the other dynamic models. It should now be possible for the ex-director to be assigned a
vehicle which is not a Jaguar, and as the creation type of the ex-director's vehicle field is
Jaguar, then an update with any other type of car will not be allowed. With this model, as
employee is the most specific type with which the ex-director may be viewed, the update will
succeed.
5.3.4 Miscellaneous

In general, the problems of implementing such a system are significant. Once again,
however, it is possible that dynamic type testing may be avoided by the static assertion of
integrity constraints in which case such a system may become more feasible.

5.4 No static constraint on assignment
So far only systems which include a static constraint on assignment have been considered.

This constraint is that is the view type of the right hand side must be a subtype of the view type
of the left hand side. As this static constraint applies only to the view type there may be cases
where type accuracy is preserved when this constraint is not.

let jack : person := person [name := "Jack", addr := address [place :=
"Kilconquhar"]]

let MD : director := director [
name := "Ronald",
addr := address [place := "St Andrews"],
employeeNo := 1,
vehicle := Jaguar [model := "Etype",

colour := "red", extraFuelTanks := 1]]

jack := director [
name := "Jack",
addr := address [place := "Kilconquhar"],
employeeNo := 2,
vehicle := Jaguar [model := "Etype",

colour := "red", extraFuelTanks := 1]]

MD := jack

Figure 9 No static constraint on assignment

As a simple example, consider the program in Figure 9. The example performs a super to
subtype assignment but still the system preserves type accuracy. In the final assignment
statement, the view type of the right hand side is person, and that of the left hand side is
director. In this case, however, the assignment is sensible and there is no loss of type accuracy:
the assignment would succeed at the dynamic checks described in both Section 5.2 and 5.3.
Notice that the dynamic check described in Section 5.1 relies upon the static subtype restriction
and is therefore not applicable in this context.

In systems with explicit inheritance, it only makes sense to allow the assignment statically
where the types on either side are related within the inheritance lattice. The language Modula-3
[CDG88] uses this rule for its classes, where subtyping is explicit.
5.4.1 Modelling ability

The failure capture and formalism for systems with no static constraints are the same as for
the corresponding systems with static constraints. However, these systems have the extra
ability to model update of a location with a value which is known to be appropriate, even if the
view types of the location and the value are not in the subtype relation. An example of this has
already been shown in Figure 9.

22

One possibility of particular interest with this system is that it may allow a value to be
viewed as a more specific type than that with which it was created, but without losing its
identity. In the employee/director database, it would be possible for a value to be created as an
employee, then to have a Jaguar assigned to the vehicle field, and then subsequently to be
placed in the collection of directors. The identity of the original value would not be changed
during this sequence of operations.
5.4.2 Miscellaneous

In general, it is possible for any substitution operation to be performed without the loss of
type accuracy whenever the view types of the two sides share a common lower bound in the
type lattice. If the lack of restriction is applied orthogonally to a programming language, then
some rather strange procedures, such as that shown in Figure 10, are valid. In Figure 10 the
with construct is used to conjoin the type definitions of bird and fish. This procedure will
work correctly when applied to any animal which has both gills and wings. Although this
example requires dynamic checking, notice that as type accuracy is still preserved, it is still
possible to write procedures which are statically guaranteed to succeed; only substitutions of
supertypes or unrelated types imply any dynamic checking.

type fish is [gills : real]
type bird is [wings : int]

let silly : bird → fish := proc (birdAsFish : bird) : fish ; birdAsFish

type flyingFish is fish with bird
let oswald : flyingFish := flyingFish [gills := 2.3 ; wings := 3]

let os : fish := silly (oswald)

Figure 10 No static constraint on substitution

6 Conclusions
To maintain type accuracy, a system with both subtyping and assignment must prevent any

dangerous update from occurring. Restrictions sufficient to preserve the type safety of such a
system may be made in any of the following categories:

• substitution context limitation:

limit the contexts in which substitution using inclusion may occur,

• substitution mutability limitation:

model mutability within the type system, and restrict type compatibility in
some appropriate manner, or

• substitution dynamic failure:

accept that there may be a dynamic failure at time of update.
A number of possible mechanisms have been shown in each of these categories, none of

which appear to be arbitrary, and all of which may be satisfactorily explained to a programmer.
This classification should aid the designers of database programming languages in choosing a
suitable mechanism to allow subtyping and mutability to coexist without compromising the
overall safety of the system. What is clear is that the combination of subtyping and mutability
should be approached with extreme caution.

Figure 11 sums up the modelling ability of each mechanism considered, according to the
schema fragment shown in Figure 5. A tick in a column means that the mechanism is able to
model features as follows:

1. a collection of all Jaguars
2. a collection of all directors
3. a collection of all cars (including Jaguars)

23

4 a collection of all employees (including directors) who will never change their cars
5. a collection of all employees (including directors)
6. a procedure which gives any employee's number
7. a procedure which swaps the vehicles of either two directors or two non-directors
8. a procedure which allocates a new car to a non-director (using the collection of all

employees)
9. a procedure which allocates a suitable new car to any employee (including

directors)
10. a procedure which demotes a director, and allocates a new vehicle which is not a

Jaguar
11. a procedure which allocates a Jaguar to an employee who is then made a director

1 2 3 4 5 6 7 8 9 10 11
Bounded universal quantification ✓ ✓ ✓ ✓

No subtyping over locations ✓ ✓ ✓

Non-mutable views allowed ✓ ✓ ✓ ✓ ✓

Dynamic view equality check ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic general subtype check ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic view set check ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No static constraint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 11 Summary of mechanisms

7 Acknowledgements
The work was supported by SERC Grant GR/F 28571 and ESPRIT II Basic Research

Action 3070 - FIDE. We would also like to thank the following for careful proofreading and
many constructive comments: Quintin Cutts and Graham Kirby at the University of St
Andrews, and Tony Hosking, Tim Sheard and David Stemple at the University of
Massachusetts at Amherst.

References
[ABC83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"An Approach to Persistent Programming". Computer Journal 26, 4 (November
1983), 360-365.

[ABM88] Atkinson, M.P., Buneman, O.P. & Morrison, R. "Binding and Type Checking in
Database Programming Languages", Computer Journal. 31, 2 (1988), 99-109.

[ACO85] Albano, A., Cardelli, L. & Orsini, R. "Galileo : A Strongly Typed Conceptual
Language". ACM TODS 10,2 (June 1985), 230-260.

[ADG89] Albano, A., Dearle, A., Ghelli, G., Marlin, C., Morrison, R., Orsini, R &
Stemple, D. "A Framework for Comparing Type Systems for Database
Programming Languages". 2nd International Workshop on Database Programming
Languages, Oregon (1989). in Database Programming Languages. (Eds.
R.Hull, R.Morrison & D.Stemple). Morgan Kaufmann Publishers Inc., Palo Alto,
Ca, USA, 170-178.

[Alb83] Albano, A. "Type Hierarchies and Semantic Data Models" ACM SIGPLAN 83:
Symposium on Programming Language Issues in Software Systems (San
Francisco, 1983) 178-186.

24

[AM85a] Atkinson, M.P. & Morrison, R. "Types, bindings and parameters in a persistent
environment". Proc of the Appin Workshop on Data Types and Persistence,
Universities of Glasgow and St Andrews, PPRR-16, (August 1985),1-25. In
Data Types and Persistence (Eds Atkinson, Buneman & Morrison) Springer-
Verlag. (1988), 3-20.

[AM85b] Atkinson, M.P. & Morrison, R. "Procedures as persistent data objects". ACM
TOPLAS 7, 4 (October 1985), 539-559.

[AM86] Atkinson, M.P. & Morrison, R. "Integrated Persistent Programming Systems".
19th International Conference on System Sciences, Hawaii, U.S.A., (January
1986), 842-854.

[BO91] Buneman, O.P. & Ohori, A. "A Type System that Reconciles Classes and
Extents". Proc 3rd International Workshop on Database Programming Languages,
Nafplion, Greece (August 1991) 175-186.

[Car84] Cardelli, L. "A semantics of multiple inheritance". In Lecture Notes in
Computer Science. 173, 51-67. Springer-Verlag (1984).

[Car85] Cardelli, L. Amber. Tech. Report AT&T, Bell Labs., Murray Hill, U.S.A. (1985).

[Car89] Cardelli, L. Typeful Programming. DEC SRC Report 45, May 1989.

[CBC90] Connor, R.C.H., Brown, A.L., Cutts, Q.I., Dearle, A., Morrison, R. &
Rosenberg, J. "Type Equivalence Checking in Persistent Object Stores". 4th
International Workshop on Persistent Object Systems, Martha's Vineyard, USA.
(1990), 151-164.

[CDG88] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B. & Nelson, G.
"The Modula-3 Report". DEC SRC Report 31, (August 1988).

[CM91] Connor, R.C.H. & Morrison, R. "Subtyping without Tears". Submitted for
publication.

[CW85] Cardelli, L. & Wegner, P. "On understanding types, data abstraction and
polymorphism". ACM.Computing Surveys 17, 4 (December 1985), 471-523.

[DCT91] Thomson, D.C. "Dennis the Menace and Gnasher" The Beano, 34, 7 (June 1991)
1-2.

[JL78] Jones, A.K. & Liskov, B. "A language extension for expressing constraints on
data access". CACM 21, 5 (1978), pp. 358-367.

[KC86] Khoshaftan, S. & Copeland, G.C. "Object Identity". Conference on Object-
Oriented Programming Systems, Languages and Applications, Portland, Oregon
(September 1986), 406-416.

[MBC88] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. The Napier88
Reference Manual. PPRR-77-89, Universities of St Andrews and Glasgow
(1989).

[Mil83] R. Milner "A Proposal for Standard ML". University of Edinburgh CSR-157-83
(1983).

[Str67] Strachey, C. "Fundamental concepts in programming languages". Oxford
University, Oxford (1967).

[WZ88] Wegner P. & Zdonik S.B. "Inheritance as an Incremental Modification Mechanism
or What Like Is and Isn't Like". In Proceedings ECOOP '88 – European
conference on Object-Oriented programming, Lecture Notes in Computer
Science 322, Oslo, Norway, (August 1988) 55-77.

[ZM90] Zdonik, S.B. & Maier, D. Readings in Object-Oriented Database Systems
Morgan-Kaufmann (1990).

	Citation
	Title
	Abstract
	1 Introduction
	1.1 Subtyping in DBPLs
	1.2 Substitutability and Identity
	1.3 Problems with Subtyping

	2 Categorising the solutions
	2.1 A little formalism
	2.2 Discussion of mechanisms

	3 Substitution context limitation
	3.1 Bounded Universal Quantification
	3.1.1 Failure capture
	3.1.2 Formalism
	3.1.3 Modelling ability

	4 Substitution mutability limitation
	4.1 No subtyping over locations
	4.1.1 Failure capture
	4.1.2 Formalism
	4.1.3 Modelling ability
	4.1.4 Miscellaneous

	4.2 Only non-mutable views allowed
	4.2.1 Failure capture
	4.2.2 Formalism
	4.2.3 Modelling ability
	4.2.4 Miscellaneous

	5 Dynamic Assignment Checking
	5.1 View equality check
	5.1.1 Failure capture
	5.1.2 Formalism
	5.1.3 Modelling ability
	5.1.4 Miscellaneous

	5.2 General subtype check
	5.2.1 Failure capture
	5.2.2 Formalism
	5.2.3 Modelling ability
	5.2.4 Miscellaneous

	5.3 Dynamic view check
	5.3.1 Failure capture
	5.3.2 Formalism
	5.3.3 Modelling ability
	5.3.4 Miscellaneous

	5.4 No static constraint on assignment
	5.4.1 Modelling ability
	5.4.2 Miscellaneous

	6 Conclusions
	7 Acknowledgements
	References

