
Page 1

This paper should be referenced as:

Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “An Object Addressing Mechanism
for Statically Typed Languages with Multiple Inheritance”. In Proc. OOPSLA'89, New Orleans
(1989).

Page 2

An Object Addressing Mechanism for Statically Typed
Languages with Multiple Inheritance

Connor R.C.H., Dearle A, Morrison R. & Brown A.L.

Department of Computational Science
University of St Andrews

North Haugh
St Andrews

Fife
Scotland

KY16 9SS

richard%uk.ac.st-and.cs@ukc
al%uk.ac.st-and.cs@ukc

ron%uk.ac.st-and.cs@ukc
ab%uk.ac.st-and.cs@ukc

+44 334 76161 x8121

Abstract

In this paper we are concerned with addressing techniques for statically typed languages with

multiple inheritance. The addressing techniques are responsible for the efficient implementation

of record field selection. In object-oriented languages, this record selection is equivalent to the

access of methods. Thus, the efficiency of these techniques greatly affects the overall

performance of an object-oriented language. We will demonstrate that addresses, in such

systems, cannot always be calculated statically and show how symbol tables have been used as

address maps at run time. The essence of the paper is a new addressing technique that can

statically calculate either the address of a field or the address of the address of the field. This

technique is powerful enough to support an efficient implementation of multiple inheritance with

implicit subtyping as described by Cardelli.

Keywords

addressing
multiple inheritance
static type checking
implicit subtyping

Page 3

1 Introduction

Cardelli [car84] has given a semantics for multiple inheritance in statically typed languages with

structural type equivalence. A type is a subtype of another if all operations allowed on the

second type are also allowed on the first. In this paper we will concentrate on the record

constructor, since we are concerned with addressing for field access on records; this is

equivalent to method selection in object-oriented languages. Record types may have a subtype

relation placed on them according to the selection operations defined on them. For example, we

may define the types:

type thing is (age : int)
type animal is (age : int, food : string)
type leggedAnimal is (age : int, food : string, noOfLegs : int)

In this example, animal is a subtype of thing and leggedAnimal is a subtype of animal and thing.

Cardelli defines a record type τ to be a subtype (written ≤) of type τ' if τ has all the fields of τ',

possibly some more, and that the common fields of τ and τ' are in the ≤ relation. Multiple

inheritance occurs when τ may be a subtype of two or more unrelated types.

Instances of objects of type leggedAnimal may be created by using the constructor function

leggedAnimal as follows:

let aLeggedAnimal = leggedAnimal(3, "marmalade", 32)

A field of the record may be selected to obtain its age as follows:

aLeggedAnimal.age

Thus the selector age may be considered to be a function with the following type definition:

age: leggedAnimal -> int

However, this function may also be used to find the age of an animal or a thing. In general, a

function which operates on an object of some type τ' may safely operate on an object of type τ

provided that τ ≤ τ'. The age function may be written as:

let age = proc[t ≤ thing](a : t -> int) ; a.age

This definition says that the function age may take as a parameter any object which is a subtype

of thing and return an integer. Functions such as age exhibit bounded universal quantification

which Cardelli shows to be equivalent to inclusion polymorphism and inheritance.

Page 4

In this paper, we investigate techniques for addressing fields of records in languages with static

type checking, multiple inheritance and structural type equivalence. We will show that, in such

systems, field addresses cannot always be calculated statically. To overcome this, symbol tables

may be used as address maps at run time to perform the correct address translation. Here we

describe a new addressing technique that can calculate either the address of a field or the address

of the address of the field statically. This technique is powerful enough to support the

implementation of multiple inheritance with implicit subtyping as described by Cardelli.

As this paper is about implementation, the syntax of the programming examples is not carefully

explained. No particular language has been used, but the constructs used have been chosen to

make the meaning clear.

2 Implementation of Subtypes

Consider a function such as age defined above. This function may operate on an instance of any

type which is a subtype of the type thing. In practice, this means that the age function must be

able to determine the position of the age field in the record. This may be achieved in two ways:

either the age field must be stored at the same offset in all instances of subtypes of thing; or some

mechanism must be provided so that the location of the age field may be calculated. We will

return to the second possibility later in the paper and for the moment only consider the first

possibility.

Making the address for age be the same for all instances of subtypes of thing may be easily

achieved by placing all the fields of subtypes of thing after fields common to both thing and the

subtypes of thing. For example, consider the following object definitions:

let aThing = thing(3)
let anAnimal = animal(3, "grass")
let aLeggedAnimal = leggedAnimal(3, "grass", 4)

These definitions may be implemented as in Figure 2.1.

Page 5

3 "grass" 4
age food noOfLegs

3
age

3 "grass"
age food

fields
common

to
subtypes
of thing

fields
common

to
subtypes
of animal

fields
common

to
subtypes of

leggedAnimal

Figure 2.1 Scheme for Single Subtype Inheritance

Notice that in each of the instances, the fields of subtypes are always in the same position.

Therefore in a field selection the location of that field is always known statically. For example,

X.food

can be compiled as the second field of X. This scheme is very efficient and highly successful in

implementing languages with single subtype inheritance [GR83,str86]. However, the technique

is impractical for multiple inheritance with implicit subtyping.

Consider the following set of type definitions:

type thing is (age : int)
type animal is (age : int, food : string)
type leggedThing is (age : int, noOfLegs : int)
type leggedAnimal is (age : int, food : string, noOfLegs : int)

and the object declarations:

let fish = animal(2, "coral")
let myDesk = leggedThing(3, 4)
let Al = leggedAnimal(29, "curry", 2)

If these objects are implemented in the manner described above the objects shown in Figure 2.2

will be created.

Page 6

29 "curry" 2
age food

3
age

4
noOfLegs

fields
common

to
subtypes
of thing

2 "coral"
age food

noOfLegs

fields
common

to
subtypes
of animal

fields
common

to
subtypes of

leggedAnimal

Figure 2.2 A Multiple Inheritance Scheme

From the diagram it is immediately obvious that allocating fixed address slots to fields will leave

gaps, and therefore waste space, in the records. For example, in the above, for myDesk to have

its noOfLegs field in the correct place it has to leave a gap for the non-existent food field. This

method is not viable as, for any type, there exist an infinite number of subtypes. This yields

gaps of unbounded size in the objects. In practice, the size in any system is bounded by the

number of concrete types, but this may be very large for long lived persistent systems [ABC83].

More importantly, if a new subtype is added to a system existing data must be restructured if it is

to be compatible.

A variation of the scheme shown in Figure 2.1 has been proposed and implemented to support

multiple inheritance with explicit subtyping in C++ [str87]. In this extension to C++, the order

in which the components of a type are declared (inherited) determines the final order of the

fields. Since the fields of a particular type occur as a single contiguous unit, the fields of each

component supertype also occur as a single contiguous unit. This permits pointer arithmetic to be

used to cast a pointer explicitly from a subtype to one of its component supertypes. The

technique relies on an explicit field ordering enforced by the explicit multiple inheritance

hierarchy. It is impractical for multiple inheritance with implicit subtyping: if new subtypes are

Page 7

introduced the field addressing must be recalculated, involving recompilation of all the

components and restructuring of any persistent data.

2 .1 Implementing Multiple Inheritance using Address Maps

In the single inheritance scheme discussed above, all field addressing is in the form of an offset

from the base of the object. The scheme may be extended to work with multiple inheritance and

implicit subtyping by using an indirection through an address map. The address map, which

may be located at the start of every object, contains offsets for the fields belonging to that

particular subtype. For example, the declaration

let Al = leggedAnimal(29, "curry", 2)

yields an object called Al . This object must have an address map containing the start positions of

the fields age, food, and noOfLegs, as in Figure 2.3. Creating an object entails creating the

address map as well as the fields of the record.

29 "curry" 2
age food noOfLegs

"age""food""noOfLegs"

Figure 2.3 An Object with its own Address Map

For record selection, if X has a type ≤ animal then

X.food

can be compiled as the food field of X. This is resolved, at run time, by looking up the string

"food" in the address map to yield the correct field offset.

An immediate optimisation of this technique is to have only one copy of the address map for

every type of record, as in Figure 2.4. The record itself contains a pointer to the map. This

arrangement may also have some advantages in identifying pointers for garbage collection.

Page 8

29 "curry" 2
age food noOfLegs

mouse Al

"age"
"food"
"noOfLegs" 2

1

0

Address map for type
leggedAnimal

2 "cheese" 4
age food noOfLegs

Figure 2.4 Sharing the Address Map

The string address maps will normally use a hashing function for lookup. They provide a very

general solution for languages that allow the substitution of a subtype by a supertype [WZ88]

and use structural equivalence as the type equivalence rule. The technique will also work for

dynamically typed systems which are not discussed here.

A final advantage of the technique is that strings match across compilation units which means

that there is no need for a centralised dictionary of field addresses. Each compilation unit can

contain its own address map and still work consistently with independently prepared data. In

object-oriented database systems [CL88,BBB88], and distributed systems, this aspect is a major

consideration.

2 .2 Variants of String Address Maps

An improvement in the efficiency of the address maps would be gained if they could be keyed by

integer instead of string. To do this the compiler can keep a central dictionary of field names to

which it can statically allocate a unique integer key to each field. Thus

X.food

can be translated, at compile time, to key (food) field of X. This key, which is an integer, can

be used at run time to search the address map.

The drawback of this method is that it requires a centralised dictionary for field keys. In an

object oriented database system, or a distributed system, these keys may become large and the

Page 9

dictionary holding the keys may constitute a bottleneck in the system. However, the technique

may be suitable for systems which use name equivalence as their type equivalence rule, since the

above problems are already present in such systems.

A further variation is found in the ObServer system [SZ86]. This is an object oriented database

with name equivalence and explicit subtyping. That is, a type is a subtype of another only if it is

declared to be so in the database schema. Consider the following schema:

type thing is (age : int)
type limbedThing is thing with (arms,legs : int)
type sightedLimbedThing is limbedThing with (eyes : int)

In the above, the fields may be grouped as: (age, (arms,legs), eyes). Thus the address map

need only contain key/entries for these groups. The above schema may be used to create an

object of type sightedLimbedThing by

let Ron = sightedLimbedThing(42,2,2,2)

Each set of common fields may be allocated an address ‘slot’. Within the slot (arms,legs), the

field offsets of arms and legs can be calculated statically. (Figure 2.5)

slot(0) slot(1) slot(2)

42
age

2
legs

2
arms

2
eyesRon

key (age) key(arms,legs) key(eyes)

1 2 4

1

2

4

Figure 2.5 Fixed Slots for Subtypes

There are two advantages to this scheme. First, slots may be placed on different volumes, or

distributed, an important consideration for large databases. Second, the addresses within the

subtypes may be calculated statically. The disadvantage is that it works only for name

Page 10

equivalence with explicit subtyping, and may run into severe reorganisational overheads if the

schema is edited to alter the subtype hierarchy.

We will now describe an implementation technique which uses an integer mapping for languages

with structural type equivalence. Section 3 describes an implementation for languages which do

not allow substitutability: that is, it is possible to tell statically the precise type of an object except

where it is abstracted over explicitly by use of bounded universal quantification. Section 4

extends this implementation to allow for full substitutability.

3 Bounded Universal Quantification without Substitutability

If we consider the example of multiple inheritance given above, it is clear that there is an implicit

function noOfLegs with which we may wish to find the number of legs belonging to either a

table or a dog, or indeed any object which is a subtype of leggedThing. Perhaps we wish to

write a procedure which tests whether an object with legs is stable. Such a procedure could look

like this:

let fallsOver = proc[t ≤ leggedThing](x : t -> bool)
x.noOfLegs < 2

and could be used as:

let unsafe = fallsOver(myDesk)
let drunk = fallsOver(Al)

To determine the correct address fields, we propose a solution which uses information that is

statically available at the call of such a procedure. In the above examples, at each procedure call

the type of the operand is known statically, and the field offsets can be calculated. Calculating

this information statically saves most of the cost of the associative lookup required with the

lookup table solution.

Since the type of the procedure being called is known statically, it is possible to tell which fields

of the operand object may be required during the execution of the procedure. For example, the

procedure fallsOver is restricted to an operand of type leggedThing, and so only the noOfLegs

and age fields may be required, no matter how many other fields the operand may contain.

Page 11

Notice that it is only the type of the procedure which is required; if procedures are first-class

values they may still be freely assigned.

The information may be encapsulated without altering the run-time support for the language

being implemented, so long as this includes support for higher-order functions

[AM85,BCC88,CBC89]. When the quantified procedure is compiled, it is compiled as two

nested procedures, with the field offsets being parameters to the outer procedure and appearing

as free variables within the inner procedure. The inner procedure, corresponding to the

quantified one, is returned as the result of the outer. In the example,

let fallsOver = proc[t ≤ leggedThing](x : t -> bool)
x.noOfLegs < 2

it is known that whatever the type of the parameter, only the fields age and noOfLegs may be

accessed. It is therefore compiled as if it were:

let fallsOver_wrapper = proc(age_offset,noOfLegs_offset : int -> proc(? -> bool))
proc(x : ? -> bool)

x(noOfLegs_offset) < 2

At the point in the program where the procedure is called, the compiler can plant the integer

values required as parameters to the wrapper procedure as literal values in the code stream, and

no dynamic lookup is required. This is possible since the compiler may statically determine

which offsets are required and the precise type of the operand. Thus:

fallsOver(myDesk)
fallsOver(Al)

is compiled as

(fallsOver_wrapper(1,2)) (myDesk)
(fallsOver_wrapper(1,3)) (Al)

and so when the noOfLegs field is accessed in the procedure, the second field of myDesk and

the third field of Al will be looked up as required.

The type of the operand is not always known statically, but because of the generality of the

solution no extra work is required for these cases. In the example

let atConference = proc[t ≤ leggedAnimal](x : t -> bool)
x.food = "curry" and fallsOver(x)

Page 12

the type of the x, supplied to the fallsOver procedure as a parameter, is not known statically as it

has already been abstracted over. It is clear, however, that x is a subtype of leggedThing and as

such may be used as the operand of fallsOver. The compiler does not know statically the offsets

it requires to pass to the fallsOver wrapper procedure, but it does know where they can be

found, as they must be a subset of the offsets provided by the atConference wrapper procedure.

The procedure then compiles as if it were:

let atConference_wrapper = proc(age_offset,food_offset,noOfLegs_offset -> proc(? -> bool))
proc(x : ? -> bool)

x(food_offset) = "curry" and
(fallsOver_wrapper(age_offset,noOfLegs_offset)) (x)

and the correct values are introduced for the required offsets.

This technique of compiling higher-order functions has even greater advantage if the field

lookups are performed many times with operands of the same type. When this happens the

wrapper procedure is called only once, and once the free variables are in place no more work is

needed to provide the correct offsets for use within the procedure. The following procedure

incurs a slightly greater fixed cost, but has no penalty in proportion to the size of the array, when

compared to the same procedure declared for only one of the allowed types.

let allFallOver = proc[t ≤ leggedThing](a : array of t -> bool)
begin

let res := true
for i = 1 to max do

if a[i].noOfLegs ≥ 2 do res := false
res

end

If a procedure is going to be used many times with the same type of operand, the same efficiency

can be achieved, by only calling the wrapper procedure once and using the returned value for all

other instances of the call. Some programming languages provide syntax which would allow a

programmer to specify this, by allowing explicit specialisation of a quantified procedure. Thus

for example it may be possible to write,

let leggedAnimalFallsOver = fallsOver[leggedAnimal]

If this is allowed, then a quantified procedure which is called many times with the same type of

operand may be written like this by the programmer, and the specialisation need only be

Page 13

performed once. It may be possible for a compiler to perform sufficient static analysis to notice

when this may be advantageous.

4 Implementation of Substitutability

The above scheme relies upon the fact that the compiler knows the precise type of the object

supplied as a parameter to a procedure application. If substitutability is allowed, this is no

longer the case. We now extend the above solution to allow for this.

Substitutability allows a location of a particular type to have a value of any subtype assigned to

it. For example, if a location is declared with a value of type thing assigned to it, then it may be

updated with a value of type animal, as animal is a subtype of thing. The location continues to

have type thing: the operation not only updates but also throws away type information, as the

object may no longer be used as an animal but only as a thing from its new reference. For

example:

let a := thing(129)
let b := animal(23,"petrol")
a := b
let d = a.age

is allowable, although

let e = a.food

is not. This is because the food field of the animal object can not be accessed through the

location a, as this location is of type thing. Notice that it may still be accessed from the location

b, as may the age field. The two locations have a different type view of the same object.

It is now no longer possible for the compiler to determine statically where to find the named

fields of an object stored in a particular location, as this location may be updated with an object

whose real type the compiler may not even know about at the time of compilation. Once again,

addressing information must be planted.

It is obvious, however, that the solution already given must extend to this. The semantics of this

assignment are similar to the replacement of the formal parameter of a quantified function by the

actual parameter, with the corresponding type widening that occurs. This technique works by

Page 14

allocating space with the formal parameter location where the addressing information required

may be accessed; similar space may be allocated instead with each record type location.

A straightforward way to achieve this is to implement a record type location with a double

pointer, instead of a single one. Thus, we have one pointer which references the original record

object, and another which points to an address map for the fields. This may appear superficially

similar to a more conventional address map solution, but the following points should be noted:

• The address map is not a conceptual part of the object, but is associated semantically

object may be viewed through a number of different address maps. (Figure 4.1)

• The map contains only the addresses within the object which may be accessed

through that location, and has no information about any other fields which may be in

the object. (Figure 4.1)

• The same map may be shared by many different locations, not necessarily restricted

to locations of the same type. (For example, Figure 4.3)

29 "curry" 2
age food noOfLegs

location of reference
to an object of
type animal

location of reference
to an object of
type leggedThing

1 2

1 3

leggedThing address map

animal address map

Figure 4.1 Location Address Maps

Use of the address map is as follows. The compiler statically calculates the field offset as if it

were dealing with an object of the known supertype. If it knows that the object is of precisely

Page 15

this type, then this value is used to index the object directly. Otherwise, the calculated offset is

used instead to index into the local address map for the object, which will contain the correct

address of the required field. The penalty for a dereference is thus at most a single indirection.

When records are assigned, it is normally necessary only to perform a straightforward

assignment of both the pointer to the record and the pointer to the current address map. This is

not expected to incur any penalty on most machine architectures, which already support double

word assignment.

More work is required only when the assignment involves the loss of type information, as

happens when a subclass is assigned to a location of a superclass type. Where this occurs in a

program is statically detectable. When it does happen, a new address map is constructed. This

must map the indexes calculated for the supertype into the values contained in the appropriate

positions in the subtype's address map, and may be constructed by performing the first level

indirection for each field accessible by the supertype. The code to construct this mapping may

then be generated statically.

Let us consider the following example:

let a = proc(lThing : leggedThing ; lAnimal : leggedAnimal)
begin

.

.
lThing := lAnimal
.
.

end

Here the location lThing of type leggedThing has had an object of type leggedAnimal assigned to

it; this is legal as far as the type rules are concerned, since leggedAnimal is a subtype of

leggedThing. After the assignment, the location lThing must have an address map which

correctly maps the fields age and noOfLegs to the appropriate addresses in the new object.

Notice that in general it is not known statically that the object referenced by lAnimal does not

have other fields which are not accessed from the location lAnimal, since it could itself be any

supertype of leggedAnimal.

Page 16

Where no optimisation is possible, as in this case, the new address map for lThing must be

created dynamically. The size of the map is known, as it only need contain addresses for the

fields which may be accessed from the new location, in this case age and noOfLegs. The

address map objects however must be created dynamically, as a new one is required every time

the piece of code is executed.

Code is planted by the compiler to first construct a new address map object of the required size.

Then, for each field in the type being assigned to, in this case age and noOfLegs, two offsets are

calculated by the compiler: let us call them X, the calculated offset into an object of the type

being assigned to, and Y, the calculated offset into an object of the type being assigned. Code is

then planted to copy the contents of the Yth location in the old address map into the Xth location

in the new one. When this has been done for all the addressable fields, the new address map is

complete. An example of this is shown in Figure 4.2.

1 5

190
age

lAnimal

1 3 5

true
tail

"male"
sex

"beans"
food

2
noOfLegs

Newly created address map

lThing

location of age offset (Y(age))

location of noOfLegs offset
 (Y(noOfLegs))

X(age) X(noOfLegs)

Values copied to
new address map

Figure 4.2 The Mechanics of Assignment

Page 17

If the precise type of the assigned value is known statically, then this process may be factored

out and the address map may be constructed by the compiler rather than during execution.

Notice that as these maps are immutable, they are required at most once per static assignment,

rather than dynamically, and also that they may be shared between objects of different types.

The mechanisms described above for creating and calling bounded universally quantified

procedures remain the same. As values within these procedures may still be assigned to

supertypes, all addressing must be done using the same indirection techniques. The same

technique of compiling ‘wrapping’ procedures is still required to act as temporary storage from

which to build new address maps for the quantified parameters: as type widening is occurring,

they cannot be simply assigned.

An optimisation of this technique may be obtained by realising that when a record is originally

created, the address map required is normally a simple isomorphism: that is the ith address will

contain the value i. There need therefore be only one of these maps for the entire system, so

long as it is at least the length of the largest record. On initialisation, every object location shares

this single isomorphic map. Assignment and construction of new address maps may then take

place in the manner described.

29 "curry" 2
age food noOfLegs

location of reference
to an object of
type animal

location of reference
to an object of
type leggedAnimal

1 2 3 4 5 ..

9 "marmalade"
age food

Figure 4.3 A Single Shared Address Map for Object Creation

Page 18

This optimisation is most important to the efficient working of the scheme, as it means that an

object creation never involves the creation of a new address map. Notice also that this is not a

constraint for a distributed system: although only one of these maps is necessary, any number

may be used to suit the implementation of the system.

Another important optimisation is when, on assignment, the fields of the supertype object are

identical to those at the start of the subtype object. If this is the case, the original address map

may be assigned, as it will still work correctly. This will always be true in languages with

explicit single inheritance schemes.

5 Comparisons

In this section we will consider the various merits of the schemes discussed in this paper,

namely the ‘traditional’ string symbol table address maps scheme and our addressing

mechanism. When we examine the differences between these mechanisms we must consider the

costs in four areas: space overhead, assignment, object creation, and indexing.

In both schemes the space needed to store a reference to the address map is the same – namely

the space required by one pointer. However, using the ‘traditional’ mechanism the pointer is

associated with the object instances. In our scheme the pointer to the addressing information is

associated with the locations at which object references are stored. We assert that in most cases

the number of object instances and the number of locations storing object references will be of

the same order of magnitude.

However, the ‘traditional’ address map scheme requires the names of the fields to be stored in

the address map. This may involve the construction of a simple table with low space overhead or

an elaborate hash table. Using our scheme the names are no longer necessary with consequent

space savings.

A very much smaller number of address maps is required in a system using our scheme. In

particular, objects which are not assigned to a location occupied by a supertype never need have

additional address maps created for them.

Page 19

Therefore space is gained in our scheme due to a more compact address mapping scheme and the

ability not to manufacture address maps in the general case. There may be some space lost due

to extra references associated with objects.

The traditional object address map scheme has no additional cost associated with assignment.

The time cost of the scheme described in this paper depends on the kind of assignment being

performed. Usually assignments will be of an object of some type being assigned to a location of

exactly the same type. If this is the case, the only additional cost is of an extra word assignment.

The assignment of two contiguous words is not expected to be significantly more costly than the

assignment of a single word. When a subtype is assigned to a location of a supertype, the

operation depends on whether the type of the object to be assigned is known statically or not. If

it is, then the new address map required may be created statically and the extra dynamic cost is a

single pointer update. If it is not, then the map must be built dynamically, and the cost is one

dereference and integer assignment for each field in the supertype.

In both schemes discussed the additional cost associated with object creation is low. Using the

‘traditional’ technique the address map would normally be created at the time of establishment of

the type or class of the object. In our scheme the address map objects are not required upon

creation, as a single system-wide map may be used until such time as a subtype assignment

occurs.

The new addressing mechanism described in this paper has been optimised for indexing

performance. By indexing we mean indexing objects to retrieve values, assigning values to

locations within objects and method selection in ‘traditional’ object-oriented languages. In the

worst case we have a single level of indirection for an index, and in the best case we have a

statically planted offset.

The traditional address mapping mechanism uses a hash table to look up names in the address

map. Even using a very efficient hashing mechanism such as that used by the Eiffel language

implementation [mey85], the speed of an indirect address can never be equaled. Even if a very

high hash hit rate is achieved there is still an associated cost with performing the hashing

Page 20

function in addition to the index. The technique described also allows for non-uniform field

sizes and for the reorganisation of field order.

All of the examples given in this paper describe what we call first order multiple inheritance, and

the records shown contain only simple objects. It should be noted that this was done for ease of

description only, and that the technique is sufficiently general to work for any order of multiple

inheritance with implicit subtyping.

6 Conclusion

We have discussed an addressing mechanism which we believe in many ways to be superior to

the traditional methods used to implement addressing in object oriented languages. Whether this

scheme is more efficient than the traditional methods depends on how the system under

consideration is used. We have therefore shown where the trade-offs lie and leave the

implementor to decide whether this scheme is suitable for the language or system under

consideration.

7 Acknowledgements

We would like to acknowledge discussions on this matter with Stanley B. Zdonik of Brown

University, and Tony Davie and Dave McNally of St Andrews University. We would also like

to thank Jim Coplien of Bell Laboratories for his comments on the first version of this paper.

Page 21

8 References

[ABC83] Atkinson M.P. Bailey P.J., Chisholm K.J., Cockshott W.P. & Morrison R.

"An Approach to Persistent Programming". The Computer Journal, Vol 26, No 4

(December 1983) pp 360-365.

[AM85] Atkinson M.P & Morrison R. "Procedures as Persistent Data Objects", ACM

ToPLaS, Vol 7, No 4 (October 1985) pp 539-559.

[BBB88] Bancilhon F., Barbedette G., Benzaken V., Delobel C., Gamerman S., Lecluse C.,

Pfeffer P., Richard P. & Valez F. "The Design and Implementation of O2, an Object

Oriented Database System". Proc. 2nd International Workshop on Object-Oriented

Database Systems, West Germany. In Lecture Notes in Computer Science, 334.

Springer-Verlag (September 1988) pp. 1-22.

[BCC88] Brown A.L., Connor R.C.H., Carrick R., Dearle A. & Morrison R. "The Persistent

Abstract Machine Version 4.0". Universities of St Andrews and Glasgow PPRR-59

(1988).

[car84] Cardelli L. "A Semantics of Multiple Inheritance", In Semantics of Data Types,

Lecture Notes in Computer Science 173, Springer-Verlag (1984) pp 51-67.

[CBC89] Connor R.C.H., Brown, A.L., Carrick R., Dearle A. & Morrison R. "The

Persistent Abstract Machine". Proc. 3rd International Workshop on Persistent

Object Systems, Newcastle, Australia. (January 1989) pp 80-95.

[CL88] Connors T. & Lyngbaek P. "Providing Uniform Access to Heterogenous

Information Bases". Proc. 2nd International Workshop on Object-Oriented Database

Systems, West Germany. In Lecture Notes in Computer Science, 334. Springer-

Verlag, pp. 162-173 (September 1988).

[GR83] Goldberg A. & Robson D. Smalltalk-80: The Language and its Implementation,

Addison Wesley (1983).

Page 22

[mey85] Meyer B. Object-Oriented Software Construction, Prentice Hall (1988).

[str86] Stroustrup B. The C++ Programming Language, Addison Wesley (1986).

[str87] Stroustrup B. "Multiple Inheritance for C++", EUUG - European Unix Systems

User Group Newsletter, Volume 7 (1987).

[SZ86] Skarra A. & Zdonik S.B. "An Object Server for an Object-Oriented Database

System", Proc. International Workshop on Object-Oriented Database Systems,

Pacific Grove California (September 1986) pp 196-204.

[WZ88] Wegner P. & Zdonik S.B. "Inheritance as an Incremental Modification Mechanism

or What Like Is and Isn't Like", In Proceedings ECOOP '88 – European conference

on Object-Oriented programming, Lecture Notes in Computer Science 322, Oslo,

Norway, (August 1988) pp 55-77.

	Citation
	Title
	Abstract
	1 Introduction
	2 Implementation of Subtypes
	2. 1 Implementing Multiple Inheritance using Address Maps
	2. 2 Variants of String Address Maps

	3 Bounded Universal Quantification without Substitutability
	4 Implementation of Substitutability
	5 Comparisons
	6 Conclusion
	7 Acknowledgements
	8 References

