This paper should be referenced as:

Connor, R.C.H., Cutts, Q.1., Kirby, G.N.C., Moore, V.S. & Morrison, R. “Unifying
Interaction with Persistent Data and Program”. In Interfacesto Database Systems,
Sawyer, P. (ed), Springer-Verlag, Proc. 2nd International Workshop on User
Interfaces to Databases, Ambleside, Cumbria, 1994 (1995) pp 197-212.

Unifying I nteraction with Persistent Data and
Program

R.C.H. Connor, Q.. Cutts, G.N.C. Kirby,
V.S. Moore and R. Morrison

Division of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY 16 9SS, Scotland

Abstract

Visual interaction with object-oriented databases, such as that provided
by generic object browsing systems, has proved to be a convenient and
natural way for database users to address informal queries over the
contents of a database. Our particular field of interest is browsing and
editing in persistent and database programming languages where proce-
dures are treated as data values, with the consequence that executable
code may exist in the same persistent environment as the other data that
it manipulates. Such systems include object-oriented database systems,
where the objects’ method code is an intrinsic part of the object database
itself.

A new style of browsing isintroduced which allows a browser/editor
to subsume all the activities normally connected with writing queries
and other programs against the database. It therefore provides the only
interface to the database that programmers and users require to under -
stand. Thisis achieved partly by unifying the concepts of source and
executable code within a system. This unification relies upon the
paradigm of hyper-programming, in which programs may contain direct
links to database values embedded in their source representations.

1 Overview

This paper is about a new style of browser/editor which alows programmers and
users to interact directly with the database, by allowing database accesses to be
performed by user gesture. Browsing a database in this style is a well-established
technique; the contribution here is an extension of this browsing style which allows
the programs which operate over the data to be traversed and manipulated in the
same manner as other database values.

Our field of interest isin persistent and database programming languages where
procedures are treated as data values, with the consequence that executable code
may exist in the same persistent environment as the other data that it manipulates.
Such systems include object-oriented database systems, where the objects’ method
codeisan intrinsic part of the object database itself.

The major conceptual difference between procedures and methods, that of late
binding to object instances, is unimportant in the context of this discussion. The
binding issues which will be discussed, notably those of closure formation, areiden-
tical in the different paradigmatic contexts of object-oriented databases and other
persistent and database programming languages. The examplesin the paper will be
given in the context of a procedural database programming language (in fact
Napier88 [1]), but the concepts extend to any database system in which the code is
conceptually resident in the object store.

2 I ntroduction

Visual interaction with object-oriented databases, such as that provided by generic
object browsing systems [2-8], has proved to be a convenient and natural way for
database users to address informal queries over the contents of a database. The
users of such tools can browse freely around the data structures and values of a
database, avoiding the necessity to write down algebraic expressions to perform the
equivalent accesses. Where appropriate it is also possible to perform updates or
invoke more complex methods over the objects depicted on the screen. Such tools
are greatly preferred to a traditional query-based approach for simple queries and
updates to object-oriented databases.

The advantages of this style of access are comparable to the advantages of a
modern iconic operating system interface over a traditional command-line based
approach. In addition, however, amore general programming algebrais required so
that more complex and longer-running queries may be handled. This rather frustrat-
ingly gives rise to two quite separate mechanisms for manipulating the same values
within a system, with the choice of mechanism being somewhat arbitrary for tasksin
the middle ground between trivial and complex.

Here we describe a new browser/editor that is being developed for the Napier88
system [9]. The significance of this new browser isthat it includes three very strong
unifying concepts, the combination of which makes the browser the only mechanism
which is required for interaction with the database system. The three important
unifying concepts are:

1. Dataof any type supported by the system may be browsed and edited in a
uniform manner. Thisincludes a uniform treatment of procedure closures; a
drawback of previous browsers is that they could not adequately handle
procedures.

2. Source code is treated not as a fundamental building block within the
programming system, but instead as a transient text-based view of any value.
The source does not have a conceptual permanent existence within the
system, but is apparently generated from any value that may be browsed.
Compilation and linking still occur within the system, but are presented to
the programmer simply as areification of the transient source.

3. Asafurther consequence of the generic treatment of procedure values and
source code, the artificial distinction between source and executable values

within a running system is completely removed. If arun-time error occurs,
for example, the actual value of the procedure in which it occurred may be
displayed by the browser. The source will still be available for necessary
purposes such as correction and adaptation; however the source will not
exist as a separate entity accessible in isolation from the executable value.

The major difference between this and other browsers is therefore in the uniform
treatment of the executable and source code forms of procedures, and hence
programs. Furthermore, as will be seen, the manipulation of code made possible by
the unification strategy is sufficiently general to subsume the usual process of
program editing, compilation and linking which is normally associated with the
manipulation of code bodies within a system. This means that the browser/editor is
the only interfacing tool required to perform queries of any complexity against the
database, or to introduce new data and program to it.

The unification of the source and executable code within a system is not possible
with a conventional source representation. Section 3 explains the basic problems,
and highlights a new style of source representation, that of hyper-programming, as a
way of solving them. Section 4 then introduces the main concepts of the new-look
browser/editor.

3 Unifying Sour ce and Executable Forms

This section examines the essential problem with the uniform visualisation of
persistent source and executable code representations; namely, that many different
executable forms may share the same source representation. It is shown how the
paradigm of hyper-programming, where direct links to values may exist as part of
the source code, may be used to create a one-to-one mapping between source and
executable, with the direct consequence that the concepts may be merged in the
programmers’ view of the system.

3.1 Codeand Closure Representations

There is normally a clear distinction in persistent systems which support first-class
procedures between the concept of procedure code, and the concept of closure; it is
this distinction which traditionally makes the unification of source and executable
values impossible. The concept of closure represents the executable version of
code; it isformed by a pair consisting of the procedure code and the environment in
which this code is to be evaluated. Thus the difference between code and closure
can be summed up as the meaning of any free variables in the code at the time the
procedure value is instantiated.

For a procedure without free variables, the environment is not significant and
there is no conceptual difference between code and closure except for the fact that
one form is regarded as source and the other as executable. The system’s compiler
performs a mapping from one form to the other; it is quite possible to construct a
reverse mapping from executable to source. Thisistruein any system, and indeed
many systems do keep such reverse mappings for debugging purposes. If all proce-

dures within a system have the property of containing no free variables, then this
mapping is one-to-one; that is, no two different executable forms map to the same
source form. Thisisadirect conseguence of the executable semantics being wholly
captured by the procedure code. If al the code in the system may be defined in
terms of such source-executable pairs, then the conceptual unification of source and
executable may be achieved with an appropriate user interface design.

However, most procedures in database systems do contain free variables. Thus
in general the conceptua division of the code and closures into pairs cannot take
place, as many different executable procedures, each with its own different seman-
tics, may derive from the same source description. It istherefore not possible at the
interface level to unify the concepts of code and closure. Thisisillustrated in Figure
1

Figure 1: Oneto many mapping of code to closure

This problem may be overcome, however, by the use of a new paradigm for
program source descriptions. This paradigm is known as hyper-programming [10],
and is described in the next section. The original motivation for the design of the
hyper-programming paradigm was to ease the task of source code construction; we
show here how it can be further used to derive a one-to-one mapping between
source and executable forms, and thus lay the foundation for their conceptual unifi -
cation within a persistent programming system.

3.2 Persistent Hyper-Programming

Traditionally programs are represented as linear sequences of text. Where a
program reguires access to an external object during its execution, it must contain a
textual description of how that object may be located. At some stage during the
software process the description is resolved to establish a link to the object itself.
Commonly this occurs during linking for code objects and during execution for data
objects, and the environment in which the resolution takes place varies accordingly.

In such systems programs are typically constructed and stored in some long-term
storage facility, such as afile system, separate from the run-time environment which
disappears at the end of each program execution. By contrast, in persistent systems,
programs may be constructed and stored in the same environment as that in which
they are executed. This means that objects accessed by a program may already be
available at the time the program is composed. In thiscaseit is possible for alink to
an object to be directly included in the program, replacing the traditional textual
description. A program containing both text and links to objects is called a hyper-
program.

Figure 2 shows a schematic view of a hyper-program. The links embedded in it
are represented by some kind of non-textual token to alow them to be distinguished
from the surrounding text. The first link is to a first class procedure value which
when called writes a prompt to the user. The program then calls another procedure
to read in a name, and then finds an address corresponding to the name. Thisis
done by calling a procedure lookup to look up the address in a table package linked
into the hyper-program. The address is then written out. Note that code objects
(readString, writeString and lookup) are treated in exactly the same way as data
objects (the table).

persistent store

- procedure
readString
hyper-source /

("enter me: ")
o)
pr | et name :(12)/()

I
i
V‘s | et address =()(() nane) i

("address|is: ")

b(addr ess
 J

A
@ tatgzg names data
procedure an resses 4. cture

Figure 2: A hyper-program

The original motivation behind the hyper-programming paradigm was to allow
programmers to incorporate uses of external data and procedures by user gesture,
rather than by algebraic expression, when the external data was already present at
composition time. The mechanism necessary to achieve this is composition time
binding.

Non-textual tokens, referred to as hyper-links, are used within programs to
denote composition time bindings. This enhanced source representation gives away
of representing non-local information in the source of a procedure; this non-local
information can only be represented in textual source by the use of free variables
which are resolved with respect to an evaluation environment. In Figure 2, the code
contains no free variables, as all normal variable uses are superseded by hyper-links.
This gives rise to the observation that the meaning of this program is independent of
an evaluation environment, and is captured directly in the hyper-source.

By a simple extension of the hyper-programming paradigm it is possible to
describe a hyper-source representation for any executable procedure. The concept
of composition time binding is slightly widened to one of binding all free variables
at closure formation time; these variables may be represented by hyper-links in
exactly the same way. An example of a procedure with a free variable is shown in
Figure 3. Each time the outer procedure counterGen is called, it creates a new
integer variable a and returns a new procedure operating on a. The action of the
procedure returned is to increment the variable and return its new value. All the
procedures generated by counterGen share the same code. Their closures differ,
however, since the name a is bound to a different location in their respective
environments.

let counterGen = proc(— proc(— int))

begin
let a:=0
proc(— int)
begin
a=a+l
a
end
end

let myCounter = counterGen()
let vall = myCounter()
let val2 = myCounter()

let anotherCounter = counterGen()
let val3 = anotherCounter()

Figure 3: Freevariable binding

The procedure myCounter in Figure 3, whose meaning depends critically upon its
evaluation context, may be represented by the hyper-source shown in Figure 4.

persistent store

proc(->int)

begi n

C:=(Q{ . .
| ocation

| a
| |
| |

end -/~ location of this
instantiation of a

—_—_— e e e e e e o e . —— — — —— = ——— = ——— —

Figure 4: Corresponding hyper-source

Thus hyper-source may be used to give a source representation for any arbitrary
procedure, with the property that its semantics is independent of its evaluation envi-
ronment. Thisis quite simply achieved by representing the necessary parts of the
traditional evaluation environment within the source itself, by means of hyper-links.
Notice for example that successive evaluations of the procedure counterGen will
result in different hyper-source representations, as although the textual code is the
same the hyper-links are different, reflecting the different semantics. The use of
hyper-source is thus able to achieve the desired one-to-one mapping between proce-
dure source and executable forms, asillustrated in Figure 5. This clears the way to
the presentation of a unified visualisation of the two representations to the
programmer, leaving concepts such as compilation and linking to be matters of
system efficiency rather than system building essentials.

closurel -~ ~
A
l/ N
. environment1) |
\ /
AN 7
~ 7
- - hyper-code T~
closure2 - RN .
I/ . \
\ environment 2)
\ /
N 7/
~N 7
_ -~ hyper-code Tt __ -
closure3 ,~ S

Figure 5: One-to-one mapping of hyper-codeto closure

4

The Generic Browser

Values are displayed differently by the browser according to their particular type
constructor. The following concepts however are upheld across all type construc-

tors:

Component values and locations are displayed in a uniform manner, with
identical operations available. Hyper-links within procedures are deemed to
be component values; thus an integer field in a structure (record) appearsin
a manner identical to an integer hyper-link within a procedure representa-
tion.

Type constructors which represent abstractions over the type system are
dealt with uniformly; thus a value typed as a variant which is actually a
structure is displayed as a structure, with appropriate annotation to show the
type widening. Thus types corresponding to value constructors, such as
structure and vector, are distinguished from those representing type system
abstraction, such as variants and abstract data types.

Source code may be generated for any value displayed in the browser. If the
value is a procedure, then the source “generated” will correspond to the
programmer’ s original description of the procedure. However source will be
generated automatically for any other value also, which may or may not
correspond to its original derivation. The source presented is hyper-source.

« Operations on source include textual editing and “reification”, which corre-
sponds roughly to compilation and evaluation. If the source isincorrect this
results in an error; otherwise the resulting value is displayed as an anony -
mous value in the browser. Source representations may also be stored in
some other environment if required.

4.1 General Browser Interface

In general, values are displayed in the browser in one of two formats, called maxi
and mini. The mini representation is roughly equivalent to an iconic view of the
value, with the maxi representation showing the full details of its construction. A
maxi view will typically contain representations of its component values depicted as
minis. A useful parallel may be drawn with the Macintosh operating system, where
the windows displayed correspond to a type constructor representing a heteroge-
neous set, and the icons in these windows correspond to the mini representations of
the values contained in the set.

Different styles of windows are also required, one for each data type in the lan-
guage corresponding to a value constructor; as already mentioned, this includes
procedures. These constructors in general contain their component iconsin arather
more rigid framework than that of a heterogeneous set, but the basic principles are
the same. The browser also supports the kind of user gesture associated with this
interface, such as copying and moving values, and the expansion of a mini or icon
representation into its own maxi or window level representation.

Another concept which is modelled at this level is that of alocation, along with
destructive update. Data types which support locations, such as structures, vectors
and procedures, display the mini representations within a bounding box which
represents the location. Destructive update is modelled by dropping another value
within this box; thiswill only succeed if the new value has an appropriate type.

The last general concept in the browser is that of generating source. This may be
done with either a maxi or mini representation; the effect is to produce a new
window which contains editable hyper-source. Source may be edited and evaluated;
its evaluation (if successful) resultsin a new anonymous val ue being depicted within
the browser. The source produced from a value has the property that, when evalu-
ated, the resulting value is equal to the original in every respect except for identity.
Thus for any scalar value v, evaluate(source(v)) = v, whereas for objects with
store semantics this is not the case where the equality operator is interpreted as
identity. The source generated is not a part of the conceptual value space of the
browser, but is treated as atransient entity as depicted in Figure 6.

persistent store

transient source representations

generate source

persistent value —_—T

reify
persistent value ¢

Figure 6: Persistent values and transient source

The source generated for a value is calculated only to the first level; that is, any
component values—those displayed as mini representations within a maxi view—
are represented as hyper-links within the source. Thus there is a very close corre-
spondence between mini views and hyper-links, and in fact it may be reasonable in
the future to merge the concepts. They are kept distinct at present to emphasise the
separation between the transient source forms and the concrete maxi views of
procedure values.

4.2 Browsing Valuesand Locations

421 Mini Representations

An example of amini representation for an integer value is shown in Figure 7. There
are two partsto the representation: the type and value areas. The type areaindicates
the base type or constructor; for constructors the user can double-click on the type
areato pop up a more detailed representation of the type. In general the type infor-
mation is displayed by means of an icon; this may be user-defined in the case of
user-defined types. Our examples, however, show simple strings rather than icons
for the sake of readability. Double-clicking on the value area, known as inspecting
the value, shows more detail by replacing the mini representation with a maxi repre-
sentation.

tyoe —»| int «—Vvalue
double-click to double-click to
get more info get maxi view

Figure 7: Mini representation

Mutable locations are shown by surrounding the mini representation with a box as
shown in Figure 8:

10

int ||

Figure 8: Mini representation of a mutable location

A new value may be assigned to the location by dragging the appropriate mini or
maxi onto the box. The update succeeds only if the new value has a compatible
type.

The user may select either the location or the value which it currently contains by
clicking on the appropriate part of the representation. Thisis necessary for opera-
tions such as assigning the value to some other location or including a link to the
location or value into source code. These operations will be described shortly.

422 Maxi Representations

Maxi representations of values show more information than minis and may them-
selves contain mini representations. Figure 9 shows both the mini representation of
a structure value, and the corresponding maxi representation obtained by double-
clicking on the value area of the mini. The maxi representation may be converted
back to the mini by double-clicking on the title bar.

a structure b

o I int ||
stooet[J] = 1y, Ceal 1
e | Cee

Figure 9: Mini and maxi representations of a structure

This shows a structure (record) with mutable fields a and ¢, and a constant field b.
The form of a particular maxi representation depends on the type constructor
involved, but the unifying theme is that all components are represented by minis
within the maxi representation.

Scalar values have no internal structure; their maxi representations display the
value itself in a convenient format, usually textual. An example of an integer value
isshown in Figure 10:

Figure 10: Maxi representation of an integer

11

Figure 11 shows some other examples of maxi representations, for an image, a
procedure and avector. The procedure representation shows a procedure generated
by acall of counterGen in Figure 3. Each free variable is treated as a component in
the same way as a structure field or vector location, and is represented by an embed-
ded mini. Mutable locations can be updated by dragging new values over the box.

image

P
(=) procedure
Eroc(-> int)
egin
| int || == [_int ||
int ||
end

Figure 11: Maxi representations of an image, procedur e and vector
4.3 Ingpecting Maxi Components
A component of a maxi representation may be inspected by double-clicking on the

corresponding embedded mini representation. |f the mini is of a scalar type this
results in the mini being expanded into a maxi in place, within the containing maxi.

12

For other values the maxi is displayed as a separate window and alink is drawn to it
from the parent maxi. This approach reflects the treatment of equality in Napier88,
in which two scalar values of the same type are equal iff they are bitwise identical,
whereas two non-scalars are equal iff they have the same identity.

Figure 12 shows an example of the maxi representation of a structure and the
expanded representation of one of itsfields.

2 structure L
int ||
N structure . @

p [real [
g1 [Lint]|

o |G 1
£2 | real ||
£3 || struct] |

Figure 12: Inspecting a component of a maxi
44 TypeAbstraction

Several of the Napier88 types and type constructors involve abstraction over the
type of avalue. These are any (an infinite union), variants (labelled disjoint sums)
and abstract data types. The browser displays such values by annotating the mini
and maxi representations with extra type information. Figure 13 shows an example
of the representations of an instance of the following variant type:

rectypelistisvariant(cons: structure(hd: int ;tl :list) ; tip: null)

The main part of each representation shows the value itself in the normal way.
Attached to the edge is an annotation describing the type abstraction through which
the value is currently viewed. The example shows an instance of the cons branch,
indicated in the maxi representation by emboldening that branch name. The user
can double-click on the annotation title bar to obtain a detailed description of the
type. It isalso possible to select the value either as an instance of the variant type,
or as an instance of the branch structure type, depending on which part of the repre-
sentation is clicked on.

13

variant 3 structure b

cons
tip hd int
£ ariant l | variant| struct] |
maxi mini

Figure 13: Annotated variant representations

A similar approach is used to display both anys and abstypes. In the first case the
annotation simply indicates that the value is injected into any. For abstypes the
annotation indicates that some types are abstracted over—the witness types—and
the user operations on fields dependent on such types are appropriately limited.

4.5 Hyper-Sour ce Oper ations

The user may request the system to generate hyper-source for a selected value. This
hyper-source may then be edited, involving both normal text editing and insertion of
links to values and locations. Insertion of alink is achieved by selecting the appro-
priate mini or maxi representation and then pressing a link button. This inserts a
link to the value directly into the source code. Once edited the source code may be
reified to give a value which is displayed as a mini or maxi by the browser.
Reification involves compilation of the source and execution of the resulting code.
These actions, however, are hidden from the user.

Figure 14 shows an example of the hyper-source code generated for a structure
value. Components of the structure are shown as embedded links.

struct(a := [struct] | ; b := [vector]]}

Figure 14: Hyper-sour ce generated for a structure

If source is generated for avalue and then reified again without editing, the result is
aone-level copy of the original value. Thus the new value has a new identity but
any components are shared with the original. It is also possible to selectively copy
to any required depth by further generating, in place, source for embedded links.
Figure 15 shows how the source in the previous example can be further expanded by
selecting only the structure representation and generating source for it. The embed-
ded link is replaced by the corresponding source which may in turn contain further
links.

14

struct(a := [struct[] ; b := [vector] |)

'

struct(a := struct{ theEnv =) 35 b :=[vector]])
Figure 15: Selective source generation

5 Conclusions

A generic browsing methodology suitable for use with object-oriented and proce-
dure-oriented database programming languages has been described. The new
contribution of this methodology is that the browser traverses data and code in an
orthogonal manner, giving a fully general interface to the database which can
subsume the normal code construction mechanisms. The interface to the browser is
fully generic; the main unifying features are as follows:

e Data of any type are supported in a uniform manner, including procedure
closures.

e Source code is treated not as a fundamental building block within the
programming system, but instead as a transient text-based view of any value.

e The artificia distinction between source and executable values within a
running system is completely removed, as a conseguence of using the hyper-
source code representation.

The main concepts of the new browser are fully applicable to any database
programming language system which treats code as data. Examples have been
given in the language Napier88, and are taken from a browser which has been
largely implemented. The Napier88 hyper-programming system, complete with
window manager, in-store compiler, hyper-program editor and an earlier browser is
available from the authors.

15

Refer ences

1.*

4.*

8.*

10>

Morrison R, Brown AL, Connor RCH et a. The Napier88 Reference Manual (Release
2.0). University of St Andrews Report CS/94/8, 1994

Goldberg A, Robson D. Smalltalk-80: The Language and its Implementation. Addison
Wesley, Reading, Massachusetts, 1983

O'Brien PD, Halbert DC, Kilian MF. The Trellis Programming Environment. In; Proc.
International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA'87), Orlando, Florida, 1987, pp 91-102

Dearle A, Brown AL. Safe Browsing in a Strongly Typed Persistent Environment.
Comp. J. 1988; 31,6:540-544

The LOOKS User's Manual. Altair , 1989

Bretl B, Otis A, Penney J et al. The GemStone Data Management System. In: W. Kim
and F. Lochovsky (ed) Object-Oriented Concepts, Applications, and Databases.
Morgan-Kaufman, 1989

Cooper RL. On The Utilisation of Persistent Programming Environments. Ph.D.
thesis, University of Glasgow, 1990

Kirby GNC, Dearle A. An Adaptive Graphical Browser for Napier88. University of St
Andrews Report CS/90/16, 1990

Moore VS. A Hyper-Code Browsing System. University of St Andrews, 1994

Kirby GNC, Connor RCH, Cutts QI, Dearle A, Farkas AM, Morrison R. Persistent
Hyper-Programs. In: A. Albano and R. Morrison (ed) Persistent Object Systems, Proc.
5th International Workshop on Persistent Object Systems, San Miniato, Italy.
Springer-Verlag, 1992, pp 86-106

*Available viaftp from
ftp-fide.dcs. st-andrews. ac. uk/ pub/ per si st ence. papers

or via WMV from
http://wavfide. dcs. st-andrews. ac. uk: 8080/ Publ i cati ons. ht m

16

