
This paper should be referenced as:

Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R. “The
Persistent Abstract Machine”. In Persistent Object Systems, Rosenberg, J. &
Koch, D.M. (ed), Springer-Verlag (1990) pp 353-366.

The Persistent Abstract Machine

R.Connor, A.Brown, R.Carrick, A.Dearle, & R.Morrison

Department of Computational Science, University of St Andrews,

North Haugh, St Andrews, Scotland KY16 9SS

Abstract

The Persistent Abstract Machine is an integral part of a layered architecture model to
support the Napier language. It interfaces cleanly with a persistent store, and allows
persistence to be implemented without difficulty in a high-level language. The heap
based storage mechanism of the Persistent Abstract Machine is designed to support the
block retention nature of the Napier language. This allows the implementation of first
class procedures and modules in programming languages with the minimum of effort.
A primitive type system within the machine contains just enough information to allow
machine instructions which behave differently according to the dynamic type of their
operands. This type system, in conjunction with the block retention architecture, may
be used to great effect to provide a fast implementation of polymorphic procedures,
abstract data types, inheritance and bounded universal quantification.

1. Introduction

In recent years, research into persistent programming systems has led to the design of
sophisticated database programming languages such as Galileo[1], PS-algol[2], and
Napier[3]. These languages provide a wide range of abstraction facilities such as
abstract data types, polymorphism and first class procedures that are integrated within a
single persistent store. The development of these systems has required the design of a
variety of new implementation techniques. For example, the development of the Napier
system necessitated the design of reusable compiler componentry[4], an intermediate
language[5], an abstract machine[6] and a persistent object store, all of which are
integrated into a highly modular layered architecture[7]. Here we present the objectives
and solutions which comprise the design of the Persistent Abstract Machine.

Distribution

Concurrency User Transactions

Persistent Object Store

PAIL
Abstract Machine

Figure 1. The major architecture components.

The Persistent Abstract Machine is primarily designed to support the Napier
programming language. It is closely based on the PS-algol abstract machine[8], which
in turn evolved from the S-algol abstract machine[9]. Due to the modularity of its
design and implementation, it may be used to support any language with no more than
the following features: persistence, polymorphism, subtype inheritance, first class
procedures, abstract data types and block structure. Other features, such as object-
oriented programming in the Smalltalk style[10] and lazy evaluation, may be modelled
at a higher level using the same support mechanisms as first class procedures[11,12].
This covers most algorithmic, object-oriented and applicative programming languages
currently in use. The machine can thus be said to be multi-paradigm.

The Napier system is designed so that implementors wishing to use the abstract
machine may compile to an intermediate level architecture, consisting of abstract syntax
trees. A code generator is available to compile to the abstract machine level. This
persistent architecture intermediate language, PAIL[10], supports all of the abstraction
listed above, and is sufficiently high-level to ease the burden of compiler writing.
Furthermore, it is possible to check at this level that correct (i.e. consistent) PAIL
code has been generated, and so output from an untrusted compiler cannot cause a

malfunction in the abstract machine. This assures that the persistent store may not be
corrupted by the generation of illegal instruction sequences, removing the onus of
segmentation protection from the store.

The design of the Persistent Abstract Machine is directly attributable to the Napier
language. The major points fall into two sections:

1. The machine is an integral part of an entire layered architecture; in
particular, it interfaces cleanly with the persistent store, and allows an
elegant implementation of persistence in a high-level language. As another
consequence of persistence, the machine exists in a single heap-based
storage architecture. This architecture directly gives a method of
implementing block retention, for almost no extra cost. This allows the
implementation of first class procedures and modules in programming
languages with the minimum of effort.

2. A primitive two-level type system within the machine contains enough
information to allow machine instructions whose behaviour depends on the
dynamic type of their operands. It has a fast and efficient integer encoding.
In conjunction with the block retention architecture, the type system is used
to great effect to provide a fast implementation of polymorphic procedures,
abstract data types, and bounded universal quantification.

2. A Heap Based Storage Architecture

One of the most notable features of the abstract machine is that it is built entirely upon a
heap-based storage architecture. Although the machine was primarily designed to
support a block-structured language, for which a stack implementation might be the
obvious choice, the heap-based architecture was considered advantageous for the
following reasons:

1. Only one storage mechanism is required, easing implementation and system
evolution.

2. There is only one possible way of exhausting the store. In a persistent system this
is an essential requirement, since applications should only run out of store when the
persistent store is exhausted, and not merely when one of the storage mechanisms runs
out. Although this could be modelled in an environment with more than one storage
mechanism, it would be expensive in terms of implementation and evolution.

3. The Napier language supports first-class procedures with free variables. To achieve
the desired semantics, the locations of these variables may have to be preserved after
their names are out of scope, which would not happen conveniently in a conventional
stack-based system.

Stacks are still used conceptually, and each stack frame is modelled as an individual
data object. Stack frames represent the piece of stack required to implement each block
or procedure execution of the source language. The size of each frame can be
determined statically, which leads to an efficient use of the available working space.

There is a trade-off with this implementation of stacks. As the stack frames are heap
objects, the persistent heap has a right to treat them like any other object. This means
that all addresses used in machine instructions must be two-part addresses, consisting
of a frame address and an offset within the frame. Thus the abstract machine may not
assume an absolute address for any stack location, with a consequent loss of speed.
This is considered to be a relatively minor disadvantage when contrasted with the gains
of such a flexible architecture.

The rest of this section describes the format used for all heap objects both used and
created by the machine. In particular, the layout of a stack frame object is shown, and
the procedure entry and exit mechanisms explained. An example is given of how these
frames are used to model block retention.

2.1. Uniform representation of heap objects

The persistent heap upon which the abstract machine is built is designed to use a single
object format, no matter the purpose of the object. All objects have the following
format:

word 0 header
word 1 the size of the object in words
word 2..m the pointer fields
word m+1..n the scalar fields

where the header contains the following:

bits 8-31 the number of pointer fields in the object
bit 7 special purpose for use by abstract machine
bits 0-6 reserved for implementation experiments

This is very different from the PS-algol abstract machine, in which different types of
object had information placed in their headers to allow the utility programs such as
garbage collectors and object managers to discover the layout of the object. This
coupled together the abstract machine, the compiler, the garbage collector, and the
persistent object manager, making it impossible to change one without the others. The
beauty of the new implementation is that the persistent store and its utility programs
may be constructed completely independently from each other. This makes
maintenance and change very much simpler, and allows for much freer experimentation
with separate modules.

The format allows an object manager to know how to find the pointers in any object
without requiring any knowledge about what the object may be used for. This allows it
to follow store addresses at its own discretion. There are many reasons why this is
desirable, not least that the store may now be responsible for its own garbage
collection. It may, for example, be able to do this incrementally while there are no
programs running. Other possibilities include distribution management, coherent object
cacheing, and clustering.

This strict format calls for a small amount of extra work in the implementation and
operation of the abstract machine, due to the constraint that all pointers in an object are
contained in a contiguous block at the start of the object. This is not always a natural

arrangement, and may cause some complication in the machine. The advantages of the
arrangement, however, greatly outweigh the disadvantages.

2.2. Stack frames

Stack frames, along with all other objects used by the machine, are thus restricted to the
format described above. To achieve this, they are laid out as follows:

word 2 a pointer to the type descriptor for this frame, it includes a symbol
table for this frame (TYPE)

word 3 the dynamic link (D LINK)
word 4 a pointer to the code vector for the frame's procedure (C VEC)
word 5 the static link for the frame's procedure (S LINK)
word 6 a pointer to the pail currently being executed (C PAIL)
word 7..l the display for the frame's procedure (DISPLAY)
word l+1..m the pointer stack
word m+1..n the main stack
word n+1 the lexical level
word n+2 the return address for the frame's procedure (RA), an offset (in

bytes) from the start of the procedure's code vector
word n+3 the saved offset (in words) of the LMSP from the LFB (MSP)

D
I
S
P
L
A
Y

L
L

R
A

M
S
P

Pointer

Stack

Main

Stack

D

L
I
N
K

C

V
E
C

S

L
I
N
K

C

P
A
I
L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

Figure 2. Stack frame layout.

Notice that the frame has a separate scalar (main) stack and pointer stack. This was a
decision that was first made in the S-algol abstract machine, and continued into the PS-
algol machine. Since a garbage collection could strike at any time in these machines, it
was necessary to be able to find the pointer roots which were still required. The pointer
stack naturally contains such pointers. Garbage collection using this format is the most
efficient possible without resorting to a tagged architecture.

It is interesting that these separate stacks would in any case be enforced by the universal
object format. This is because the object format itself is essentially designed by the
same guiding principles as the previous machines' stack layouts.

2.3. Procedure entry and exit

Procedure entry consists of the following stages:

1. Load the closure
2. Evaluate the parameters
3. Apply the procedure

As a new context is entered, the code pointer and main stack top registers must first be
saved. These are saved in the current frame, in the return address and main stack
pointer locations. The pointer stack top does not need to be saved, as this may be
calculated from the number of pointer fields in the frame's header on return.

The closure of the new procedure consists of the new static link and the new code
vector. The locations of these items on the current pointer stack are known statically.
A new object is created to act as the new procedure frame, the required size being found
from the code vector. The local main stack pointer register is also set according to
information found here.

The pointer stack may now be evaluated to the start of the new procedure's working
stack. The new dynamic link is the old frame's address, the code vector and static link
have already been accessed, and the PAIL pointer is found in the code vector. The old
display is then copied to the new frame, and updated by pushing the new static link on
top of it. The old lexical level is incremented and copied to the appropriate place.

The evaluated parameters may now be copied from the old stack frame to the top of the
new stacks. The saved main stack pointer, and the number of pointers in the old frame,
are adjusted to remove the parameters and the closure of the procedure being applied
from the old frame's stacks. Now all that is necessary is to set the local frame base
register to point to the new frame, and set the code pointer to the start of the abstract
machine code in the current code vector, and the new procedure may start to execute.

The inclusion of both the dynamic link, which allows the dynamic call chain to be
followed, and a pointer to the PAIL code from which the current code vector was
generated, allows a great deal of debugging support, with a very small penalty in terms
of execution speed.

2.4. The Block Retention Mechanism

The architecture described so far using individual stack frame objects and two-level
addressing provides all the support necessary for a block retention scheme. This is
required to support first class procedures which are allowed to have free variables,
which may be shared between more than one procedure. Many languages have module
constructs with essentially the same semantics. A simple example of this in Napier is:

let counter =
begin

let a := 0

proc(-> int)
begin

a := a + 1
a

end
end

The location "counter" is associated with the value of the following block, which is the
procedure literal of type proc(-> int). The code of this procedure first increments the
location "a", and then returns "a" as the value of the block. The important point to
notice is that the procedure literal value is in scope for longer than the free variable
which it encapsulates.

In a traditional stack-based implementation of a block-structured language, the location
used for the variable "a" would be free for re-use after the end of the block which
contains the procedure. This does not work in this context, as the location may be
subsequently used. Note too that it is the location itself, rather than a copy of its
contained value, which is important. It is possible for two different procedures to use
the same free variable, and so they must access the same location for the correct
semantics to be preserved.

D
I
S
P
L
A
Y

Pointer

Stack

L
L

R
A

M
S
P

Main

Stack

D

L
I
N
K

C

V
E
C

S

L
I

N
K

C

P
A
I

L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

L
L

R
A

M
S
P

Pointer
Stack

Main
Stack

D

L
I

N
K

C

V
E
C

S

L
I
N
K

C

P
A
I
L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

D
I
S
P
L
A
Y

"a"

Code for procedure

Frame for outer level

Frame for block

Figure 3. Just before the block exit.

The mechanism described above already performs block retention correctly with no
further adjustment. When the main block is entered during execution, a new stack
frame is created. The appropriate location in this frame is initialised with the integer
value zero. A procedure is then pushed onto the pointer stack, consisting of the correct
code vector and the environment, which points to the local frame. The situation is now
as depicted in Figure 3.

The procedure value of this block is returned to the calling frame in the usual way.
This consists of copying the procedure closure from the pointer stack of the block's
frame onto the frame of the enclosing scope. The pointer stack of the block's frame is
then retracted to remove the procedure value. This leads to the desired situation in
Figure 4., where the variable "a" has been encapsulated in the value of the closure. The
compiled code for the procedure contains the offset of "a" within the environment, and
the location has been correctly preserved.

D
I
S
P
L
A
Y

Pointer

Stack

L
L

R
A

M
S
P

Main

Stack

D

L
I
N
K

C

V
E
C

S

L
I
N
K

C

P
A
I
L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

L
L

R
A

M
S
P

Pointer
Stack

Main
Stack

D

L
I
N
K

C

V
E
C

S

L
I
N
K

C

P
A
I
L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

D
I
S
P
L
A
Y

"a"

Code for procedure

Frame for outer level

Frame for block

Figure 4. After the block exit.

At compilation time when the code for the procedure is produced there is enough
information to know the offset of the location "a" within its frame, and this is planted
statically in the procedure's code. If the location is within an outer block, the address
of the relevant frame can not be known. What is known, however, is the location
within the environment frame which contains the address of the desired frame. This is
one of the locations in the display, depending on the lexical level at which the free
variable is to be found.

As frames are heap objects just like any other, and not distinguished by the object
management system, frames which do not contain any encapsulated locations may be
garbage collected in the usual way. This will not happen to frames which contain
required locations, as they are pointed to by the encapsulating procedure.

A potential hazard of this system is that other values in the kept frame will also not be
subject to garbage collection, as it is not known which of the values within a frame are
required. In fact, a great deal of optimisation is possible here and it is unusual for
objects which are not required to be kept.

3. A low-level type system

A major design decision was made to have non-uniform representation of different
types of objects in the machine. Some systems, particularly those which support
polymorphism and other type abstractions, have a uniform representation in which
every object is wrapped in a pointer to a heap object[13]. This allows type abstraction
to be implemented easily, but has a drawback in efficiency. The Napier system has a
number of different representations for objects on the machine's stacks, including some
which have part of their value on either stack. This causes problems with stack
balancing and object addressing, solutions to which are presented below.

The abstract machine has its own type system, albeit a very low-level and unenforced
system. It is a two-level system, one level describing object layout and the other
including some semantic knowledge of the object. Most of the abstract machine
instructions are typed, although no attempt is made to ensure that the operand is of the
correct type ; the type acts in effect as a parameter to the instruction.

Many language constructs involve operations where the type of the operands is not
known statically. As equality is defined over all types in Napier, but is defined
differently according to the type of its operands, it is necessary to perform a dynamic
type lookup wherever the operand type is not known statically. This happens in the
case of variants, polymorphic quantified types, and witnesses to abstract data types. A
further need occurs when statically unknown types are assigned into or dereferenced
from other data objects, when it is necessary to find the dynamic type to calculate the
correct size and addressing information.

Both levels of the type system are finite, and contain only a small number of different
types. The first level of the type system contains information as to the location and size
of the instruction's operand. The machine supports six different types of objects,
which are:

Operand shape Instruction prefix

single word, main stack w
double word, main stack dw
single word, pointer stack p
double word, pointer stack dp
one word on each stack wp
two words on each stack dwdp

The instructions which are typed in this manner are those instructions which need to
know only the shape of the object upon which they operate. These are instructions
such as stack load, assignment, duplicate, and retract. The machine operations need to
know nothing about the semantic nature of the objects in these locations.

The other, slightly higher level, system is required when the operation does depend on
the semantics of the operand. These are all the operations which involve comparison of
two objects, in which case the shape of the object is not sufficient. The machine
supports different types with the same object formats. An example of this is structures
and strings: they both consist of a single pointer, but equality is defined by identity on
structures and by character equality on strings. The types supported are:

High-level type(s) Instruction suffix Equality semantics

integer,boolean,
pixel,file .ib word equality
real .r double word equality
string . s heap object equality
structure,vector,image,
abstract data type .p identity (pointer equality)
procedure .pr identity (code and closure)
variant .var described later
polymorphic .poly described later

These are the seven different classes of equivalence defined by the abstract machine.

It would be possible to do a certain amount of static checking on abstract machine code
to ensure that this type system is not broken, which could perhaps be useful if an
untrusted compiler was producing abstract machine code. However, incorrect store
instructions, such as addressing off the end of an object, could not be statically checked
from abstract machine code. This is the main danger in allowing untrusted compilers to
access the abstract machine at this level. As there is only one persistent store for all
users, it is essential that untrusted machine code is not used.

3.1. Machine type representations

As these types are used dynamically by the abstract machine, it is necessary to represent
them in the most speed-efficient manner possible, so that the machine may procure the
required information in the shortest possible time. At various points during the running

of the abstract machine, these dynamic type representations are interrogated for the
following information:

Total size of object
Size of object on pointer stack
Size of object on main stack

For this reason, integer representations for the types are chosen in such a way that this
information may be calculated by fast arithmetic calculations from the representation.
This is done by taking a binary representation of an integer, and splitting it into three
fields:

Most significant bits: Pointer stack size
Middle bits: Further information
Least significant bits: Main stack size

This means that the main stack size can be found by masking, and the pointer stack size
can be found by shifting right. The total object size is calculated by adding these
together. An alternative strategy would be to keep the total size, and calculate either the
main or pointer stack size when required. However, the total size is required only for
structure and vector creation, whereas the individual stack sizes are required for
procedure application, which is expected to be the more common operation. The
further information bits are needed to differentiate between objects of the same physical
size with different semantics, like strings and other pointers.

There are no objects with more than two words on either stack, and only one further bit
is necessary to differentiate between strings and the other single pointer types. This
means that the types may be encoded in five bits thus:

Machine type Binary representation Decimal representation

Single word 00001 1
Double word 00010 2
Single pointer 01000 8
Double pointer 10000 16
String 01100 12
Variant 01001 9

3.2 Implementation of variants

Variants are language-level objects which have the semantics of a single labeled location
which can be used, according to the label, to store an object of one of a number of
different types. An example in Napier is:

rec type intList is variant(node : structure(hd : int ; tl : intList) ;
tip : null)

This describes the type of a location which, if it is a list node will be of the described
structure type, and if it is the end of the list will be of unit type. These are the
semantics of variants as described in [14].

The information needed to represent a variant location in the Napier machine is: the
value currently in the location; a representation of the label associated with the branch of
the variant which the value is in; and a representation of the abstract machine type of the
value. As the machine type is constant for each branch of the variant, it is possible to
encode the branch label and the type in a single integer value. This is known as the
variant tag. A variant may now be implemented by a compound object consisting of
one pointer and one scalar word. The pointer represents the value, and the scalar word
is the tag.

The value is represented in different ways depending on its type. If it is a single pointer
type, that is structure, vector, string, or abstract data type, then the value itself is used
as the pointer value. If it is any other type, then it is wrapped in a structure. The
reason for this is that most values used in variant locations are expected to be single
pointer types, and this non-general solution is an optimisation based on this. It is
because of the different equality semantics that the object's machine type is required to
be stored with the tag; projection requires only a test for the correct label representation,
and if this does not fail then the type of the value is known statically.

The scalar tag consists of an integer which contains both the label and the type of the
object. The labels are encoded in the first twenty-four bits of the word, and the type in
the last eight bits. For each variant type, the type-checker allocates integers for each
branch of the variant in a consistent manner, so that the label will match the same in
other structurally equivalent types. Projection is done by integer equality, as the type
will always match if the label does.

The equality tests are performed by first doing an integer equality on the tag. If this
fails, then the equality fails immediately. If it succeeds, then the appropriate bits are
read from the tag to get the machine type of the value. This is enough information to
know how to find the value, and what equality test to do on it.

3.3. Implementation of type abstraction

The support of language constructs which allow the manipulation of objects whose type
is not known statically causes new problems with implementation. By static analysis, it
is no longer possible to tell:

1. Which stack, and how many words, such an object needs.
2. Where to locate a field of a structure type object.
3. How to perform an equality operation on two such objects.

The Persistent Abstract Machine has polymorphic variants of all instructions whose
operation depends upon which of the types is being manipulated. Stack balancing is
performed by allocating two words to each stack whenever an object of statically
unknown type is pushed onto a stack, thus making sure that there is enough room for it
whatever its dynamic type is. This allows stack addressing to be performed statically
even when the sizes of objects are non-uniform. If this strategy is used, then many
instructions have polymorphic forms which do not need to know the dynamic type, as
they simply operate on the relevant two words of each stack. This gives the idea that

polymorphic object manipulation is a closed system, with the dynamic type only being
needed when an object is entering or leaving the system.

For the operations which do need to know the dynamic type of the object, the
information must be in a place where it may be dynamically found and interpreted.
This is arranged by placing the machine type representation on the main stack of an
artificially constructed frame on the static chain.

This is implementationally equivalent to either a quantified procedure being wrapped in
a generating procedure, or an abstract use clause being wrapped in an extra block. The
new outer level blocks have the necessary integer declarations - one for each type
parameter. The compiler has enough information to know what or where the correct
integer values are. It may be known statically, when a universally quantified procedure
is specialised by a concrete type; its address is known if a quantified procedure is
specialised by another parameter type; and it is information which is held as part of the
structure of an abstract data type. The compiler now knows statically an address where
the information necessary for the rest of the polymorphic machine instructions may be
found.

For example, the polymorphic Napier procedure

let id = proc[t](x : t -> t) ; x

would be compiled as if it were

let id = proc(t : int -> proc(? -> ?))
begin

proc(x : ? -> ?) ; x
end

where the question marks may stand for any type, and the value of the integer
parameter depends on the type. As this information is planted by the compiler it may be
done safely ; all the type checking is still done statically and safely.

When the quantified procedure is specialised, the compiler plants code to call this
generator procedure.

id[int]

will be effectively compiled to

id(00001)

and so cause a call of the procedure, with the result being the value

proc(x : int -> int) ; x

and the machine type tag for integer planted in a known place in the static chain. When
the compiler needs to know the machine type of an object for a polymorphic operation,
it knows where it may be found.

For the implementation of abstract types, the same technique is used. The structure
which contains the fields of an abstract type has extra fields which contain the concrete
machine type corresponding to each witness type. This information can be planted on
creation of the object. When an object of an abstract type is used, the compiler plants
code to take this information out and place it in the outer block which is created.

3.4. Implementation of subtype inheritance

The same implementation technique may be used to implement bounded universal
quantification when subtype inheritance is used over structure types[15]. For example,
in the procedure

let noOfDoors = proc[c <: car](x : c -> int)
x(doors)

! (this syntax means that the procedure is
! universally quantified over any subtype of car)

it is not known statically where the doors field will be found in the structure x.
However, the information which is missing may be planted statically by the compiler in
a suitable place, on the procedure call. A generator procedure will be created in the
same way as for a universally quantified procedure, only the parameters to this
procedure when it is called, at the time of specialisation, will be the offsets of each of
the fields which belong to the known supertype over which the procedure is declared.
So if

type car is structure(doors : int ; fuel : string)

then the noOfDoors procedure will compile to something equivalent to

let noOfDoors = proc(doorsOffset,fuelOffset : int -> proc(<: car -> int))
begin

proc(x <: car -> int) ; x(doors)
end

where the compiler has enough information to know where to find the offset.

When the function is specialised, as in

let fordDoors = noOfDoors[Ford]

the compiler plants the offsets necessary to access the fields "doors" and "fuel" in an
object of type Ford.

4. Conclusions

The major aspects of the Persistent Abstract Machine design have been described. The
abstract machine is an integral part of an entire layered architecture, which may be used
from any level downwards by a user. It has been shown how the abstract machine
interfaces cleanly with the persistent store, and allows persistence to be
straightforwardly implemented in a high-level language .

The heap-based storage architecture of the machine supports a method of block
retention for almost no extra cost. This allows the implementation of first class
procedures and modules in programming languages with the minimum of effort.

A primitive type system contains just enough information to allow machine instructions
which behave differently according to the dynamic type of the operands. This type
system has a fast and efficient integer encoding.

Finally, this type system in conjunction with the block retention architecture may be
used to great effect to provide a fast implementation of polymorphic procedures,
abstract data types, and bounded universal quantification.

5. References

1. A. Albano, L.Cardelli and R. Orsini
Galileo : a strongly typed interactive conceptual language.
ACM Transactions on Database Systems 10(2), 230-260 (1985).

2. PS-algol Reference Manual, 4th Edition.
Universities of Glasgow and St Andrews PPRR-12-87, 1987

3. R. Morrison, A. Brown, R. Carrick, R. Connor & A. Dearle
The Napier Language Reference Manual
University of St Andrews, 1988

4. A. Dearle
Constructing Compilers in a Persistent Environment
2nd International Workshop on Persistent Object Stores, Appin, August 1987

5. A. Dearle
A Persistent Architecture Intermediate Language
Universities of Glasgow & St Andrews PPRR-35-87, 1987

6. A. Brown, R. Carrick, R. Connor, A. Dearle & R. Morrison
The Persistent Abstract Machine
Universities of Glasgow & St Andrews PPRR-59-88, 1988

7. A. Brown
A Distributed Stable Store
2nd International Workshop on Persistent Object Stores, Appin, August 1987

8. PS-algol Abstract Machine Manual
Universities of Glasgow & St Andrews PPRR-11-85, 1985

9. P. Bailey, P. Maritz & R. Morrison
The S-algol Abstract Machine
University of ST Andrews CS-80-2, 1980

10. A. Goldberg & D. Robson
Smalltalk-80. The Language and its Implementation
Addison-Wesley, 1983

11. M. Atkinson & R. Morrison
Procedures as Persistent Data Objects
ACM TOPLAS 7(4) October 1985 539-559

12. D. McNally, A. Davie & A. Dearle
A Scheme for Compiling Lazy Functional Languages
University of St Andrews, Staple/StA/88/4, 1988

13. L. Cardelli
Compiling a Functional Language
Proc. 1984 LISP and Functional Programming Conference
Austin, Texas August 1984

14. L. Cardelli
A Semantics of Multiple Inheritence
Proc. International Symposium on the Semantics of Data Types,
Sophia-Antipolis, France, June 1984

15. L. Cardelli & P. Wegner
On understanding types, data abstraction and polymorphism
ACM Computing Surveys 17, 4 (December 1985), 471-523.

	Citation
	Title
	Abstract
	1. Introduction
	2. A Heap Based Storage Architecture
	2.1. Uniform representation of heap objects
	2.2. Stack frames
	2.3. Procedure entry and exit
	2.4. The Block Retention Mechanism

	3. A low-level type system
	3.1. Machine type representations
	3.2 Implementation of variants
	3.3. Implementation of type abstraction
	3.4. Implementation of subtype inheritance

	4. Conclusions
	5. References

