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Abstract

Any system that models a real world application has to evolve to be consistent
with its changing domain. Dealing with evolution in an effective manner is
particularly important for those systems that may store large amounts of data
such as databases and persistent languages. In persistent programming systems,
one of the important issues in dealing with evolution is the specification of code
that will continue to work in a type safe way despite changes to type definitions.

Polymorphism is one mechanism which allows code to work over many types.
Inclusion polymorphism is often said to be a model of type evolution. However,
observing type changes in persistent systems has shown that types most
commonly exhibit additive evolution. Even though inclusion captures this
pattern in the case of record types, it does not always do so for other type
constructors. The confusion of subtyping, inheritance and evolution often leads
to unsound or at best, dynamically typed systems. Existing solutions to this
problem do not completely address the requirements of type evolution in
persistent systems.

The aim of this thesis is to develop a form of polymorphism that is suitable for
modelling additive evolution in persistent systems. The proposed strategy is to
study patterns of evolution for the most generally used type constructors in
persistent languages and to define a new relation, called extension, which
models these patterns. This relation is defined independent of any existing
relations used for dealing with evolution. A programming language mechanism
is then devised to provide polymorphism over this relation. The polymorphism
thus defined is called extension polymorphism.

This thesis presents work involving the design and definition of extension
polymorphism and an implementation of a type checker for this polymorphism.
A proof of soundness for a type system which supports extension polymorphism
is also presented.
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1 Introduction
1.1 Persistent Evolution

Systems that fail to evolve will atrophy and eventually die. The cost of failing to
evolve can be gauged by the resources being invested in interfacing with legacy
systems. Databases are systems which store potentially large amounts of data
that model real world entities. This data may be used for computations by
application programs which model real world operations. Database schemata or
meta-data organise the data into logically related groups. Since the real world
being modelled is constantly changing, the data and its uses also change. These
changes are reflected in the database in the form of changes to data, application
programs and schemata. The focus of this thesis is the evolution of database
schemata.

Schema evolution [SZ87, Cla92, Rod92, MCC+93, Cla94, Odb94, Rod95,
MM96] can be additive, subtractive or descriptive. Additive evolution models
more semantic knowledge than was previously available. Subtractive evolution
models less semantic knowledge than before while descriptive evolution models
the same knowledge in a different manner. Changing the schemata of a database
while maintaining the consistency of the data and programs belonging to them
with the semantics of change has proved to be a difficult problem [Zdo86,
Cla92, MCC+93, Odb94].

As explained in [AM95], database programming languages have unified data
models and type systems and some approximate equivalences can be recognised,
as shown in Figure 1.1 below.

Databases Programming Language
data model type system
schema type expression
database variable
database extent value

Figure 1.1 : Equivalences between Databases and Programming Languages

Thus, the core concepts in both databases and programming languages serve
similar purposes as illustrated in the table. Data models and type systems,
schemata and type expressions, databases and variables and database extent and
values model equivalent features in their respective domains.



In contrast to databases, type evolution in programming languages does not
normally cause a major problem as there is no extant data described by the type.
In the case of programming languages data only exists during the execution of a
program.

Persistent programming languages [ABC+83, Coc83, AM86, AMP86, AM95,
MBC+96b] seek to eliminate the distinction between database systems and
traditional programming languages by providing a single system that deals with
both the storage and the manipulation of data. With persistent languages, as in
the case of databases, when types evolve to reflect changes in the application
domain, both programs that use them and the data that belong to them are
affected by the changes. Thus the issue of evolution of types in persistent
systems is important since it can potentially concern both large amounts of
valuable data and a variety of types which may evolve in various ways.

One solution to this problem is to make use of a mechanism that will allow the
same programs to keep working in a type safe manner despite changes to types.
That is the subject of this thesis.

1.2 Polymorphism

Polymorphism [Str67, Mil78, CW85] is one mechanism which provides
programs with the ability to work over changing types. A polymorphic type
system is one in which values and variables can have more than one type. This
can be contrasted with the more traditional monomorphic systems in which each
value belongs to at most one type.

Polymorphism preserves static typing while providing more flexibility and
expressive power than is possible in a monomorphic type system with static
typing. A piece of code exhibiting polymorphism can operate over a number of
types provided they conform to some common structure. The structure required
depends on the kind of polymorphism in use.

Parametric polymorphism [Mil78, CW85] and inclusion polymorphism [Car84,
CW85, CL90] are two widely used kinds of polymorphism. Parametric
polymorphism uses type parameters to provide the common structure whilst
inclusion polymorphism makes use of a hierarchy provided by a subtyping
relation and a programming language algebra to support it. Inclusion
polymorphism in particular is often used to capture type evolution.



1.3 The History of Type Evolution

Traditionally record types have been the most commonly used database type
structures. When record types evolve in database systems, it is usually by the
addition of new fields or a similar change to one or more of the field types.
Cardelli’'s subtyping relation [Car84] completely captures this form of additive
evolution in records and is used in the rest of the thesis as the basis for inclusion
polymorphism.

In object oriented programming languages [DT88], there are two ways of
creating a new class from an existing class : addition of new fields and over-
riding or redefining existing ones. Inheritance is one mechanism which supports
such code reuse. The evolution of a subclass from a superclass is similar to the
evolution of record types in databases. In order to ensure type safety, the type of
a field that is inherited by a subclass is required to be in the subtyping relation
with the type of its counterpart in the superclass. Due to this property, the
meanings of inheritance, evolution and subtyping have often been confused and
the terms are used interchangeably.

However it is not always desirable for subtyping and subclassing to coincide
when method types are taken into consideration. A binary method of an object
of type o is a function that has at least one argument of type o. It is binary since
it acts over at least two objects of the same type: the argument and the object
itself. When methods with one or more parameters are inherited by a subclass
they may be specialised to take and return values of smaller types. But the
subtyping rule for functions is contravariant on the argument type i.e. it requires
the argument type of a subtype to be greater than that of the supertype. Thus
subtyping fails to capture the specialisation often needed by inheritance of
method types. Despite this incompatibility, the existence of a subtyping relation
is often claimed between a superclass and its subclasses where it is not the case.
In these contexts, the subtyping relation is forced to capture a situation it is not
intended to model. This leads to unsound or, at best, dynamically type checked
systems.

Despite these concerns, covariant subtyping, where the argument type of a
function subtype is smaller than that of the supertype, is used in some object
oriented systems as it is more intuitive and expressive in this context. Eiffel
[Mey92] and Q [Zic89, Deu90, LRV90, Deu91l, Zic91] use this technique to
create more specialised classes. The designers of these systems claim that the



use of covariance for the inheritance of binary methods has not, in practice,
caused many problems regarding type safety.

In [Cas95], Castagna explains that covariance and contravariance are two
distinct and independent mechanisms which need not be mutually exclusive.
Contravariance is used by subtyping relations to allow substitution whereas
covariance is a specialisation mechanism which permits substitution in some
particular cases. In order to increase expressiveness, both can be integrated in a
type-safe manner.

In recent years, a new concept called matching [Bru95, BCC+95, AC96, Bru96]
has been introduced to deal with the problem of inheriting binary methods in
object oriented systems. In this a matching relation between classes is defined
and a subclass which matches its superclass can safely inherit and use its binary
methods.

1.4 Motivation

The motivation for the work behind this thesis is to develop a mechanism for
dealing with additive type evolution in persistent systems independently from
any existing solutions. In particular, it is necessary to remove any ambiguity
between inheritance and subtyping in the context of evolution. Even though
matching is a useful solution to the problem of inheritance of binary methods, it
is only applicable to object types in object oriented programming and does not
deal with other type constructors or paradigms.

The aim of this work is to develop a more general mechanism that captures type
evolution in most generally used type constructors. The proposed strategy for
developing this mechanism is to study patterns of type evolution for different
type constructors in persistent systems and to define a new relation, called
extension without reference to any other existing ones, to model the most
common patterns. A programming language mechanism is then devised to
support polymorphism over this relation.

The work presented in this thesis is an attempt at developing a formal model of
this relation and an implementation of a type checker for the salient features of
the relation and the polymorphism mechanism.



1.5 Outline of Thesis

This thesis consists of eleven chapters. Chapters 2 to 7 provide the basis for the
new work and discuss the background topics and related work. Chapter 8
presents the new relation and the polymorphism mechanisms over it. A
language supporting extension polymorphism, called Ext, is formally defined
and its soundness is proved in Chapter 9. An implementation of a type checker
for the features given in Chapters 8 and 9 and related issues are discussed in
Chapter 10. The following sections give brief descriptions of the contents of
each of these chapters. The conclusions from the work are presented in Chapter
11.

1.5.1 Fundamentals

A core language called Base is introduced in Chapters 2, 3 and 4 as a basis for
the work. The type system of Base supports base types such as integers and
boolean and the most common type constructors used in programming languages
such as records, variants, functions and locations. It does not support any form
of polymorphism. A formal definition of Base and a proof of soundness of its
type system is given. Base is extended further as necessary in later chapters to
illustrate relevant concepts and to incorporate new features.

1.5.2 Background

Chapter 5 presents the background to the main work of the thesis. A detailed
discussion of polymorphism, type checking and object oriented programming is
given.

The main concepts behind polymorphism and its uses are explained in detail in
section 5.1. The main function of a type checker is to match the expected type
of an expression with its actual type to ensure type safety. It determines, for
example, whether a function has been supplied with the right type of actual
parameter and whether a location has been assigned the right type of expression.
For a complete piece of code to be correctly typed, every expression and
statement in it must be correctly typed. Examples of type checking are given
and the properties of type checkers are discussed.

Object oriented programming has emerged as one of most popular paradigms in
recent years. In an object oriented system the real world is modelled by objects.
Objects can be considered to be instances of abstract data types encapsulating



both state and behaviour. Section 5.3 explains the most important concepts used
by object oriented programming.

1.5.3 Schema Evolution

Databases contain data that are logically grouped into schemata. Changes that
have to be made to the schemata in a database in order to reflect changes in the
application domain are known as schema evolution. Chapter 6 presents an
overview of the context and kinds of schema evolution and the problems caused
by it. The strategy adopted by the @atabase system to deal with schema
evolution at the data level is also described.

1.5.4 Related Work

There have been various solutions proposed to overcome the problem of type
evolution. Chapter 7 describes two of these that are of most relevance to this
thesis. Eiffel makes use of covariant subtyping to deal with the inheritance of
binary methods in subclassing. A dynamic check is used to ensure type safety.

The concept of matching has been recently introduced to capture the type safe
inheritance of binary methods in object oriented languages. TooL [GM95,
GM96] and PolyTOIL [BSG95] are two languages which have incorporated
matching in their type systems. Chapter 7 also gives an overview of these type
systems and describes how matching is used to guarantee type safety in
inheritance. A brief account of the techniques used by some other languages is
also presented.

1.5.5 Extension Polymorphism

The aim of the work behind this thesis is to develop a means of capturing the
most common patterns of type evolution in persistent systems. A new relation,
calledextension which models additive evolution over records, variants,
functions and locations, is introduced. A bounded quantification mechanism is
then developed over this relation to provide polymorphism. Chapter 8 explains
the design and development of these features in detail.

Extension polymorphism is incorporated into the experimental language Base.
The resulting language Ext and its semantics are formally defined in Chapter 9.
A proof of soundness for the type system of Ext is also presented.



1.5.6 A Type Checker for Extension Polymorphism

A type checker for the extension relation and the polymorphism mechanism
presented in Chapter 8 is implemented in S-algol [Mor79, CM82] and tested.
Chapter 10 explains the implementation strategy, type representations and the
type checking issues involved in the process.



2 The Base Language

We introduce a core language, Base, which will be used as the basis for
introducing parametric, inclusion and extension polymorphism. The type
system of Base incorporates some of the most common types found in
programming languages and is intended to be our experimental base. Base, as
described here, contains no mechanism to provide polymorphism. The language
will be extended in Chapter 5 to provide parametric and inclusion polymorphism
and in Chapter 8 for extension polymorphism.

For the moment, Base does not support recursion at the type level which means
that no type can be defined in terms of itself. This restriction is introduced to
simplify the definition since it is known that recursion yields non-trivial
anomalies. [Ghe93b] shows that the addition of recursion to Systesnniét
conservative. Conservativity is a property which ensures that any extension to a
system preserves existing relations in the system. Thus, when recursion is added
to F, it is possible to create a type lattice in which previously unrelated types
are in the subtyping relation. In the absence of recursion such complications in
the prototype language are avoided and various forms of polymorphism can be
considered. Section 11.4 incorporates a discussion on the addition of recursion
to the language.

A definition of the syntax of Base is presented in sections 2.1 to 2.6 and the
typing rules for all the syntactic constructs in Base are given in section 2.7.
Chapter 3 describes the semantics of Base and a proof of soundness of its type
system is presented in Chapter 4.

2.1 Programs
The set of programs that can be constructed in Base can be defined as :
P:=D; E

where D is a set of declarations and E is a set of expressions in the language.
Thus a program in Base is a set of expressions preceded by a set of declarations.
D and E are defined formally in later sections.

2.2 Types

The set of types in Base, ranged over by T, is given by the following syntax :



T:=int | bool |unit |decl | {I¢:T,..., h:T} | [l:T,..., h:T]|

fun(T-T) |loc(T) |any |t

where
Type Interpretation

int integers

bool boolean values

unit trivial type

decl sets of bindings consisting of identifiers and their

meanings

{11:T1,...,h:Th} [labelled cartesian cross products or records;
l, . . ., }, are distinct labels

[l1:T1,...,h:Tm] |labelled disjoint sums or variants;
l, . . ., |y are distinct labels

fun(Ty - To) functions and procedures

loc(T) locations of type T

any infinite union

t type identifier

Figure 2.1 : Types in the Base Language

The base types provided are integers, booleans and two trivial upteand

decl which contain no elementsunit is the type of expressions that do not
evaluate to a value of any other type aieklis the type of declarations.
Records provide a means for collecting fields of different types into one
structure. Variants offer the choice of any one of a predefined collection of
fields of different types. Functions take a value of the argument type and return
a value of the result type. Mutability is explicitly modelled in this type system
and hence the type constructoc. Any value in the value space of Base can be
an element of the infinite union tyay. While the rest of the types correspond

to values in the value spaaeclis used to type declarationsit is the type of

void constructs in Base, and variants amy provide abstractions over types.
Types can also be type identifiers introduced by type declarations explained in
the next section.



2.3 Declarations
The set of possible declarations in the base language can be defined by

D:= typetisT |letx=E | D;D

where
Syntax Interpretation
typetis T binds the type identifier t to the type expression T
let x =E binds the identifier x to the expression E
D;D sequences declarations

Figure 2.2 : Declarations

Thus, Base allows type and identifier declarations and the sequencing of any of
these declarations.

2.4 Expressions

The set of expressions in the base language is given by the following syntax :

Eix= n| b | E+E | E-E | ~E prEE | EandE | E=E |
{li=E,....,d=E} | EI |
[li:E]:T | projectEasXontol: Tin EelseE |
fun(x: T- T)E | E(E) | x |
"E | BE=E | @E |
inject(E, T) | project EasXonto Tin EelseE |

if EthenEelseE | E;E | beginD ; Eend

10



where

Syntax Interpretation
n integer literal
b boolean literal
Ei+ B sum of two integer expressions
Ei-BE difference between two integer expressions
~E boolean negation
E;ior E» logical or
E; and E; logical and
E.=B test of equality
{l1=E,...,h=E} record constructor
E.l field selection from a record
[i:E]:T variant constructor

project EasX ontol: Tin
E; elseEy

projection from a variant onto a label w
projected value bound to X in the expressian

E

fun(x:T1 - T2 )E

function expression

Ei(E) function application

X identifier

"E location that contains E
Ei=E assignment

@E value contained in location E
inject( E, T) injection intoany

project EasX onto Tin E;
elsek,

projection from a value o&ny with projected
value bound to X in the expression E

if Ethen E; elseE;

conditional

= =

sequence of expressions

beginD ; Eend

block definition

Figure 2.3 : Base Language Expressions

The atomic expressions andb stand for literals of base typ&st andbool
respectively. Integers have the operators for addition and subtraetaond-,
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defined over them. Booleans have the logm) or andand operators defined
over them. In addition to these, both integers and booleans have an equality
operation.

Record expressions are constructed by associating an expression with each field
of the record. A dot operator is provided to dereference a record field.

A variant expression can be constructed by associating an expression with the
chosen field and specifying the variant type. This type information is necessary
to identify the exact type to which the variant expression belongs since many
variants may have the same labels. The project clause is provided to dereference
the current value of a variant. This operation projects the value onto the label
specified. If the projection is successful then the result of the operation is the
expression following then keyword. The identifier specified following tlaes
keyword will have the value of the variant and the type T associated with it
within this expression. If the label does not match the variant theelgdbe
expression is chosen and the identifier will have the value and the type of the
variant.

A function value is created by specifying the formal parameter, argument and
result types and the expression for the function body. A function can be applied
by supplying it with an actual parameter within round brackets.

Locations have three operations defined over them. ~Toygerator creates a
location containing the expression following it. The infix assignment operator
takes a location value and an expression and assigns the latter to the former. The
value contained in a location can be dereferenced b@@tbperator.

A value of typeany can be created by performing an inject operation on an
expression along with its type. The projection operation angis very similar

to the one for variants. In this case, the value is projected onto the type
specified.

The infix ; operator allows the specification of a sequence of expressions just as
it is used for sequencing declarations. The keywbetgn andend mark the
beginning and end of a block definition. Tiiehen elseclause provides the
means to specify two way choices. If the boolean expression E is true then the
result of the whole conditional expression isdiherwise it is k.

12



2.5 Abbreviations

The following abbreviations in notation are introduced:

Abbreviation Stands for Explanation
{litTi} goom [{12:Te, ..., h:Ta} |arecord type containing fields |
to I, with corresponding types,; T
to Tp
{1 T}t {... k:Tg, ...} a record type containing at least

the field k with type Tk

{li=B} =1 n|{11=E ..., h=Ey}|arecord expression containing
fields |y to I, with expressions £
to E, associated with them

[iiTilg=em|[l2: T, ... bh:Tm] |a variant type containing branches
I1 to |, with corresponding types
[l Tk]? [ kT, -] a variant type containing at least

the branchy with type Tk

Figure 2.4 : Abbreviations

2.6 Naming Conventions

The conventions specified below are adopted for naming different constructs in
Base in the sections to follow.

* expression variables belong to the set{x,y, z }
» type variables belong to the set{ s, t,u, v}
* types belongtotheset{S, T,U,V}

2.7 Typing Rules

The concept of environments is introduced to determine the types of the
constructs in Base. In the following typing rules for programs, declarations and
expressions, environments are lists of bindingsdenotes the environments
where identifiers are bound to their types ( x : T ) anstands for the

13



environments in which type identifiers are bound to type expressions (t=T).
A1::b::As is used to represent a list A which contains a binding b. A++B is used
to denote the concatenation of two lists of bindings A and B. Baildr are
global environments and support block structure. The notatiois used to
represent the identifier i contained in environment

The functiontypeDecltakes a list of bindings between type identifiers and type
expressions and adds them to the environmenSimilarly, functionidDecl

takes a list of bindings between identifiers and types as its arguments and
updates the environmentwith the new bindings. Bindings are represented as
pairs and the notation < x, T > is used to denote a pair value consisting of x and
T. (by, ..., R)is alist containing bindings; lto by,.

The typing rules make use of a 3gpewhich is a set of strings defined by T in
section 2.2. If a type S can be generated by this definition then S is a member of

Type ThusTypeis a set of all well-formed types in Base. Similarly all
expressions e and & the type rules belong to the set of all well-formed

expressiong=xpressiondefined by E in section 2.4.

In the following type rules, all variables are in italics and all Base expressions
are incourier font. The keywords of Base are in bold.

2.7.1 Programs

@, @ + D:decl typeDecl( Q) idDecl(W) @:Q, ¢g:W re: T
o, p+rD; e : T

[program]

If declaration D causes the lists of bindingandw to be added to the type and
identifier environments which were previously empty and given these bindings,
the type of expression e can be deduced to be T then the type of a ppogram
eisalsoT.

2.7.2 Declarations

T +T O Type
Trtype t is T:dec typeDec(( <t, T >))

[typeDecl]

If t has a new binding associating the type identifier t to type expression T then
the declaratiomype t is T is of typedecland will have the effect of updating
t with the new binding.
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T, mF e: T
T,mtlet x = e:decl idDecl(( <x, T >))

[idDecl ]

If it can be deduced that an expression e is of type T then the decl&ation
=e Is of typedecland will have the effect of updatimgvith the binding x : T.

T, m+ D,:decl Decl;, 7++Q,, m++W¥, + D, : decl Decl,
T, T+ D, ; D,:decl typeDecl(Q, ++Q,) idDecl( W, ++W¥,)
[declSeq]

where Dec] stands for typeDeal;) and idDecl{;) and Dec} stands for
typeDeclQ>) and idDecl{,).

If declaration b causes changes andw; to be introduced to the environments

1 andm, and when these changes have been incorporated into the environments,
declaration  causes change3, andW¥, to be added then the declaration
sequence operatiompPD2 has the effect of causing chan@as+Qo andwy++4»
respectively.

2.7.3 Expressions

The type rules for expressions belonging to each base type and type constructor
in the language are given below.

2.7.3.1 Integers

nDlﬂ [intValue]
n:int

If n belongs to the set of integer literals then n is of type

T, The:int 1, ke, :int fintAdd]

T, ke, + e,:int
If expressions gand e are of typeint then the expressiosy +e » is also of

typeint.

T,The:int 1, ke, :int
T, T-e, — e,:int

[intSub]
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If expressions gand e are of typeint then the expressiosy -e » is also of
typeint.

T,The:int 1, ke, :int
T, T-e, = e,:bool

[intEq]

If expressions £and e are of typeint then the expressiosy =e » is of type
bool.

2.7.3.2 Booleans

b O Boolean [boolValue]
b : bool
If b belongs to the set of boolean literals then b is of bagud.
T, T+ e: bool ,
[negation]

T, T+ ~e : bool

If expression e is of typleool then the expressiore is of typebool.

T, Tk e :bool 1,1tk e, : bool
T, Tke, or e,:bool

[or]

If expressions gand e are of typebool then the expressian or e » is also of
type bool.

T, Tk e :bool 1, Ttk e, : bool
T, Tk e, and e,: bool

[and]

If expressions gand e are of typebool then the expressian, and e » is also
of typebool.

T, Tk e :bool 1,1k e, : bool
T, T-e, = e,:bool

[boolEq]

If expressions gand ¢ are of typebool then the expressian =e » is of type
bool.

16



2.7.3.3 Records

O O{1.n}(l,0labels 7, m+-e:T,)
r,mE{l,=e}i=om:{1:T}i=1m

[recValue]

If I 1 to I belong to the set of labels and expressian® e are of type Tto Tn
respectively then the record expression formegdiby =e ; Yi=1,n) is of

type {1 : Ti} (i=1,n)

r,mre: {I: T}’
T, mrel : T

[recDeref]

If e is a record expression with at least the field | of type T then the dereference
expressiore.l is of type T.

2.7.3.4 Variants

T,mre:T, 1, mux:Tum Fx:[1:T, T
L, 1, =e]: T:[Ii:T,T

[varValue]

If T is a variant type with at least a labgbf type T, and expression, das type
T; then the type of the expressiph ; =e ; ]: T is a variant type with at
least a label; lof type T,.

,mre: [T, ] r,mux:Tumbe: T 1,THe:T
T, TFproject e as x onto I,: T, in e elsee, : T

[varProj]

If the type of expression e is a variant with at least a lalbélith is of type T,
expression gis of type T if the identifier x is of type; Bnd expressionyas of
type T then the project operation on the variant tgpgect e as x onto
i :T j in e else ey hastypeT.

2.7.3.5 Functions

T, max: T,umbE e:T,

[funValue]
,mFfun( x: T, -T,) e:fun(T, - T,)
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If t andm with a binding x : T imply that expression e is of type Then the
function expressiofun (x:T 1 - T2)e isoftypefun (T - To).

r,mre:T, r,mre: fun(T, - T,)
,m-€ e, ): T,

[funApp]

If expression ¢ is of type T and expression e is of a function type
fun (T, - T») then the expressiaste 1) is of type .

2.7.3.6 ldentifiers

[id]
T, X Tum Fx: T

If Tcontains a binding associating the identifier x with type T then x is of type T.

2.7.3.7 Locations

,mre,: T 1, mte:loc(T)
T, Tke :=e,:unit

[assign]

If expression gis of type T and expression i of a location typéoc( T ) then
the assignment expressien:=e » is of typeunit.

nmre:T [locValue]
T, m-"e:loc(T)
If expression é&s of type T then the expression is of typeloc( T ).
T, mFe:loc(T) llocDeref]

I, TF-@: T

If expression &s of typeloc( T ) then the dereference express@msis of type T.
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2.7.3.8 Infinite Union

T, mre: T
T, Trinject( e T ):any

[anylInj]

If expression e is of type T then the expressigat (e, T) is of typeany.

T, mr-e:any T,UOtypes 71, mux:T,umbre:T 1, mHe,:T
T, T-project e as x onto T, in e, else e, : T

[anyProj]

If expression e is of typany, T is a valid type in Base, expressioni€ of type
T if the identifier x is of type T and expression,és also of type T then the
project expression oany, project e as x onto T in e else e, Is of
type T.

2.7.3.9 Sequence

I, Tre:unit 7, mre,: T

se
T, mbe;; e, ;T [seq]

If expression gis of typeunit and expression,es of some type T then the
sequence of expressioss; e o is also of type T.

2.7.3.10 Block

T, T+ D:decl typeDecl( Q) idDecl(W) 17++Q, m+t+Wte: T
T, m-begin D; e end: T

[block]

If declaration D of typealecl causes change&sandW¥ to environments andn
respectively and if, after incorporating the changes to the environments, the
expression e is of type T then the block definitiegin D;e end is also of

type T.
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2.7.3.11 Conditional

T,m-e:bool 7, mre:T 1,m+e,:T
I,mrif e thene else e,: T

[if]

If expression e is of typleool and expressions,and e are of the same type T
then the conditional expressione then eq else e » is also of type T.

2.8 Summary

An experimental base language called Base has been formally defined in this
chapter and the typing rules for its constructs are presented. Base includes some
of the most common type constructors used by programmers but does not
incorporate recursion or any form of polymorphism. Later chapters will use
Base as the basis for introducing different kinds of polymorphism.

20



3 Semantics of the Base Language

The syntax of Base was formally defined in the previous chapter. We now
present a semantic context for the types in Base and a semantics for its
constructs.

3.1 A Semantic Context for Types

The semantic context for the types which can be used to construct values in the
value space of Base along with the notation used for them in semantics is given
in Figure 3.1 below. The notatihnr | is used to represent the meaning of type

T.

Type Semantic Context Denotation of Semantic
Context

int the set of integers Integer

bool the set of booleajBoolean
values (true, false)

unit the empty set Unit

decl the set of bindingpgList( Pair ( identifier,
caused by a declaratign meaning ))

Abbreviated to Decl

{11:Te,..,h:Th} |the set of tuples withRecord({:[ T1],..,
fields Iy to I h:lTal )

fun( Ty - T2) the set of functiongFunction([ T1] - [T2])
from[Ty] to[ T2 ]

loc( T) the set of locations thptocation([ T ] )
contain[ T

Figure 3.1 : Semantic Context of Value Constructors

The semantics of type constructors which merely provide an abstraction over
other types rather than creating new values in the value space are given in Figure
3.2. The meta-typgypeRepused in this table stands for type representations of
any type in Base.
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Type

Context Denoted by

[[lh:Ty oo Tm]]

the set of values being opBair (label,[ T, ])
of [ T1] to[ Ty ] for labeld where T, is one of

[any]

the set of all the values iPair (typeRep, T])
the language coerced intq where T can be any
general type type in Base

Figure 3.2 : Semantic Context of Type Abstractions

A variant type represents a union of the sets of values belonging to the types

corresponding to all the labels. Since a variant value at any time can only be a

value of one of the component types, it can be represented as a label - value pair
and its type accordingly. Sin@ay is an infinite union type incorporating all

legal values in Base of any type, values of this type can be represented as a pair

of type representation indicating the specific type and value.

3.2 Meta-operations

The meta-operations defined over the value constructors described in Figure 3.1

are given below in Figure 3.3.

Semantic Type Meta-operations
Integer add : (Integer, Integer Integer )
subtract : ( Integer, Integer Integer )
intEquals : ( Integer, Integer Boolean )
Boolean andOp : ( Boolean, BooleanBoolean)

orOp : ( Boolean, Boolean Boolean)
notOp : ( Boolean. Boolean)

boolEquals : ( Boolean, BooleanBoolean )

Unit

Decl
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Record ({1 : Ty, ..., h:Tn) | mkRec : ( List( Pair( label T; ) )
Abbreviated to: - Record (i : Tk)(k=1,n)
Record (k: Tk)(k=1,n) getly : (Record (d: Tk)(k=1,n) - T1)

getl, : (Record (d: Tk)(k=1,n) » Tn)

Function (L - T») mKkFun : ( expression, variable, environment
-~ Function (| - T2))

apply : (Function (T - T2), Ty - T2)

Location (T) mkLoc : ( T- Location(T))
put : ( Location( T ), T- Unit)
get: (Location(T) T)

Figure 3.3 : Meta-operations for Type Constructors

Integers have the meta-operaticadd, subtractandintEqualsdefined over

them. They are used to perform integer addition, integer subtraction and the test
for integer equality respectively. Boolean values are provided avittOp

orOp, notOpandboolEqualswhich are used for logical and, logical or, boolean
negation and the test for boolean equality.

There are no meta-operations defined @brit andDecl since no values are
constructed of these types.

The meta-operations provided for records anek&®ecfunction that takes a list

of pairs consisting of labels and expressions and returns a record with fields
corresponding to the pairs in the list and 'get functions' for each label of the
record which take a record and return the value associated with the label.

Functions have amkFunmeta-operation that takes the expression of function
body, the parameter variable and the environment in which the expression is to
be evaluated and returns a function. apely operation takes a function and a
parameter value and returns a value of the result type.

Mutable types have three meta-operations associated with themmkLioe
function takes a value of type T and returns a location which contains the value.
The put operation takes a location containing T and a value of type T and
assigns the value to the location. Since there is no value to be returned the result
type is Unit. Thegetoperation takes a location and returns the value contained
in the location.
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The meta-operations for type abstractions are given below in Figure 3.4.

Semantic Type Meta-operations
Pair (label][ T ]) mkPair : (label[ T] - Pair (label,[ T]))
for variants fst: (Pair (label,[ T]) - label)

snd: (Pair (label,] T]) - [T])
Pair (typeRep, T]) | mkPair: (typeRefd, T] - Pair (typeRep, T]))

for any fst: (Pair (typeRep, T]) - typeRep)
snd: (Pair (typeRep, T]) - [ T] )

Figure 3.4 : Meta-operations for Type Abstractions

Since variants are modelled as a pair of label and value, the meta-operations on
these structures are those available to pairsakRair operation, which takes a

label and a value belonging to the type of the label and returns a pair, is provided
as the constructor. In order to dereference the pair, two operdibasdsnd

are defined which return the first and the second elements of the pair.

The meta-operations associated vathy are very similar to those for variants
sinceany is also modelled as a pair. In this casentkair operation takes a

type representation and a value of the type and returns a pair consisting of both.
The fst andsnd operations are again defined to access the first and second
elements of the pair.

3.3 A Semantics for Base

Given the semantic context and meta-operations specified in Figures 3.1 to 3.4,
the semantics of the language can now be defified g, is used to denote the
meaning of a well-typed expression e and Env is the environment against which
meanings of expressions are defined. J&ny 1 is used to indicate that in this
environment, identifier x has meaning V belonging to type T associated with it.
Similarly Enwa is used to mean that the environment incorporates any changes
that might have been caused by an expression or declaratipistAnds for an
environment which contains no bindings. The funcgetTypeRepsed for
infinite unions takes any legal type in Base and returns its type representation as
atypeRep Functionif, used to define the semantics of variants, infinite union
and conditionals, takes a Boolean and the meanings of two expressions and
returns one of the meanings depending on the Boolean value.
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3.3.1 Programs

[D;elg =1 €Jeny Where Enp=[ D]y D1

3.3.2 Declarations

[ typetisTleny =0 D2
[letx=e]gny =mKList(<X,[e]gn>) D3
[Dl;DZ]Env=[D1]Env++[D2]Enle D4

3.3.3 Integers

[n]env =n D5
wheren is the semantic meaning (integer value n) of the syntactic form n.

[er+e]enw = add( e ]enw [ & JEny) D6
[ e1-& Jenv = subtract] e Jeny, [ € JEnv) D7
[ &1 =& ]env = intEquals( e Jenv [ €2]Env) D8

3.3.4 Booleans

[blenv =D D9
whereb is the semantic meaning (boolean value b) of the syntactic form b.

[ ~elenv = notOp( eleny) D10
[ewore Jeny = orOp( e Jen [ &2]Env) D11
[eandey]eny = andOp( er Jeny [ €2]Env) D12
[ & =& ]env = boolEquals( e [env [ €2]Env) D13

3.3.5 Records

[{liza}(izlln)]Env:
mkRec(<{,[e1]enw>++ . . . ++<d,[en]Env>) D14
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[el]env = getL((e]env ) D15

3.3.6 Variants
[[lize]: [Tyl (kzl,m)]Env = mkPair(il, [ e Jenv ) D16

[ projecteasxontol: Tin e elsee]gny =
if( sameLabel( fst{ €]env), 1), [ €] Enw = snagejgny)or 710 [ €21ENV)

D17
3.3.7 Functions
[fun(x:T1 - T2 ) e]eny = mkFun( e, x, Env) D18
[e(e)]en = apply( erlenv, [ €env ) D19
3.3.8 Identifiers
[X]Ean:VDT =V D20
3.3.9 Locations
[ “e]env = mkLoc([ e]eny ) D21
[ Xx:=€e]env = put([ X]env,[ €lenv ) D22
[ @ elenv = get( eleny ) D23
3.3.10 Infinite Union
[ inject( e, T)]en = mkPair( getTypeRep( T )J,e]gnv ) D24
| project easxontoTin e elsee]gn =
if( sameTypeRep( fs{(e]env ), getTypeRep(T) ),
[ el]Ean=snd0[e]EnV)D[T]’[ & Env) D25
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3.3.11 Sequence

[e e lenv=] &) e D26
3.3.12 Block
[ beginD ; eend]env = €]Eny D27

3.3.13 Conditional

[ if etheneyelsee Jenv=if([ €lenv [ € ]enw [ €]Env)
D28

3.4 Type Mapping

Languages which support both structural type equivalence and the use of type
identifiers require a rewrite rule to reduce a type expression to its canonical
form. A canonical form in this context is the expanded version of a type which
contains no type identifiers. Consider the following type definitions in Figure
3.5. The typestring used below is a base type representing a string of
characters.

type ageTypds loc( int )

type persons { name :string , age : ageType }

type expandedPersda { name :string , age loc(int ) }

Figure 3.5 : The Canonical Form of a Type

The definition of typepersoncontains a type identifieageType Type
expandedPersors the canonical form of the type person since it defines the
same type and the type identifiegeTypdn its definition has been replaced by
the corresponding type expression.

The mapping of a type identifier t to its type expression T is denoted- By t
For this mapping to be valid, the type environmeshould contain the binding
<t, T>. The notatiorT is used in this thesis to denote the canonical form of a
type T. T» T if every type identifier in T has been replaced by the type
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expression associated with itin The canonical form of any type expression
can be determined by the recursive application of the following rules:

© (1T} oy P {l T} g2
c [T dgorm P Ui Tidgor m
o fun(Ty - T2)efun( Ty -~ T2)

e loc(T)>loc(T)

It should be noted that both T afidrepresent the same set of values. However,
while T may be needed to evaluate the meaning of T, the meanifigcah be
evaluated independently. ThisT ]:=[ T ]

3.5 Summary

A semantic context for the type constructors in Base has been presented. Type
constructors which create new values in the value space have been differentiated
from those which merely provide an abstraction over other types. Meta-
operations which are suitable for representing operations over the type
constructors in their respective semantic contexts are defined. These meta-
operations are then used to provide a semantics for the syntactic constructs in
Base. The semantics introduced here is used in the next chapter to provide a
proof of soundness of the typing rules for Base.
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4 A Proof of Soundness for Base

Given a framework in which meanings can be assigned to expressions, the
typing of an expression e of type T is sound if the meaning of e is in the set of
meanings of T. The soundness of the typing rules for Base presented in section
2.7 can be proved by structural induction [FS91, Sch94] based on the following
definition of soundness :

,nte:TO[e]legwO[ Tl
wheredi ODEnv,0 On.[ Env.i] O] mi]

This definition states that if the type of a well typed expression e can be deduced
to be T from the environments(which contains the bindings between type
identifiers and the types they stand for) an@which contains the bindings
between identifiers and their types) then the meaning of e evaluated with respect
to an environment Env belongs to the meaning of T with respecunder the
condition that for every identifier i in Env there is a correspondingri snch

that the meaning of i in Env belongs to the meaning ofi iSince Env is a list

of bindings between identifiers and their meanings, this condition ensures the
consistency between the different environments used in the proof. It should also
be noted here that given the definition of Decl in Figure 3.1, Env belongs to
Decl.

The meanings of types in Base have been defined in Figures 3.1 and 3.2 and the
meanings of expressions in Base can be evaluated using the semantics specified
in section 3.4.

The proof of the whole type system can be broken down into proofs for
programs, declarations and the different kinds of expressions that can be formed
in the language. Sections 4.1 to 4.4 consider programs, declarations, base cases
for the expressions and non-atomic expressions respectively.

4.1 Programs
The proof obligation for any program in Base can be stated as
oo Fp:TO[pleO[ Tl

This is a specialisation of the soundness rule given earlier for any expression.
Since every binding that can be used by a program is contained within it, the
soundness of the program has to be proven from empty premises.
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Expression o,oFD;e:T
To be proved [D:ele0[ Tle
Inductive Hypotheses [ D]oO[ decl]yand] eJenp O[ T+«

since D :decland e : T with D added toandn
by type rule [program]

Inductive Step

[D;eleg=I[¢elenp by D1

But [ eleny O[T+ by hypotheses
Therefore[ D ;e]o0[ T]:

However[ D ;elo0[ T]y whereT> T

4.2 Declarations

The declarations are considered below.

Expression T,k typetis T :decl
To be proved [ typetis T]gn O decl];
Inductive Hypothesis T O Type by type rule [typeDecl]

Inductive Step
[typetisT]gnw=9 by D2

Since, in this casey stands for the environment Env without any bindings,
o0 [ decl]; by the definition of Env and Decl

Therefore| type tis T Jgny O [ decl];

Expression 1,1 F let x = e :decl

To be proved [ letx =e]gn 0| decl];

Inductive Hypothesis [elenvO[ Tl by type rule [idDecl]
Inductive Step

[ letx =elenv=En% = e]jgny by D3

But Eng = ejg,, O [ decl]; by the definition of Env and Decl

Therefore| let x = e]gny O [ decl ]y
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Expression .,k Dy Dy decl
To be proved [ D1; D2 JenvO[ decl];
Inductive Hyp. | D1]envO[ decl];and| Dz]Enle 0 [ decl];
sincet, t + Dy : declandr, ' + D, : decl wherer andm’

stand forr andtwith D; added to them
by type rule [declSeq]

Inductive Step

[DliDZ]Env:[Dl]Env'H'[DZ]Enle by D4
But [ Dy Jgnv 0| decl];and] Dz]Enlem [ decl]y by hypotheses
[ D1lenv++[ D2 ]en, 0 decl; by the definition of Env

Therefore| D1 ; Do Jgny O [ decl]y

4.3 Base Cases

The two base cases for the proof are considered below.

Case 1 Expression T, T F Nnint

[ nlenv=n by D5

n O Integer by type rule [intValue]
[ int ]; = Integer from Table 3.1

Therefore] n]gny O int |+

Case 2 Expression T, + b :bool

[ blenv=Db by D9

b 0 Boolean by type rule [boolValue]
[ bool ]; = Boolean from Table 3.1

Therefore] b]gny O bool ] ¢

4.4 Expressions
4.4.1 Integers

Expression LmFe+6e:int

To be proved e+ e]enO[int];
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Inductive Hypotheses ler]envO[int ] and] & Jgnv O int ]¢
sincetr,m + e :int andt, m + & :int

by type rule
[intAdd]
Inductive Step
[e+&enwv=add( e Jemw [ &]env) by D6
[ int J; = Integer from Table 3.1
[ €1 ]env O Integer and & ] gny O Integer by hypotheses

Since add is a function that takes two Integer values and returns an Integer,
add([ e Jenv [ & ]Env) O Integer

i.e.add( e Jenw [ & JEnv) O iNt J¢

ie.[er+e]ena[int];

Expression LTFe-6&:int
To be proved [e-&]envO[int ]y

sincetr,mt F e :intandt, m F & :int
by type rule [intSub]

Inductive Step

[ e - & ]env = subtract( e; Jenv [ € Jenv) by D7
[ int J{ = Integer from Table 3.1
| e ]envO Integer and & | gny O INnteger by hypotheses

Since subtract is a function that takes two Integer values and returns an Integer,
subtract( €1 [env [ € Jenv) O Integer

i.e. subtract( e1 Jenw [ & JEnv) O int ]t

ie.[e1-&]envO[int];

Expression 1, Tk e =6 :bool
To be proved [ e1=& ]envO[ bool];

Inductive Hypotheses [ € JgnvO[ it ] and[ & JenO[int ]¢
sincetr,m + g :int andt, m F & :int
by type rule [intEq]
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Inductive Step

[ e1=&]en=intEquals( e Jenv [ € Jenv) by D8
[ int J{ = Integer from Table 3.1
[ e ]envO Integer and e | gny O INnteger by hypotheses

Since intEquals is a function that takes two Integer values and returns a Boolean,
intEquals( e, Jenw | € JEnv) O Boolean

i.e. intEquals( e Jenv [ & Jenv) O[ bool ]

i.e.[ €1 =& JgnvO][ bool];

4.4.2 Booleans

Expression 1,1 F ~ e bool
To be proved [ ~e]gnvO]| bool ]

Inductive Hypothesis [ elenvO [ bool]+

sincer, t + e :bool by type rule [negation]
Inductive Step
[ ~ eJenv=notOp( eJeny) by D10
[ bool ] = Boolean from Table 3.1
| e]env 0 Boolean by hypothesis

Since notOp is a function that takes a Boolean value and returns a Boolean,
notOp(| e]env) O Boolean

i.e. notOp([ e]env) O [ bool ]

i.e.[ ~e]enO][ bool ]

Expression T, T F e or e :bool
To be proved [ eror e ]eny 0] bool]:

Inductive Hypotheses [ € ]gny 0 [ bool]; and[ & ] gn O [ bool ]
sincet, t + € : boolandr, t + & : bool
by type rule [or]

Inductive Step

[ exorex]env=0rOp([ e ]enw [ &]env) by D11
[ bool ]; = Boolean from Table 3.1
| 1 ]env 0 Boolean and e; | gny 0 Boolean by hypotheses
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Since orOp is a function that takes two Boolean values and returns a Boolean,
orOp([ e1 Jenw [ € ]env) O Boolean

i.e. orOp(| e Jenv [ € ]env) O [ bool ]+
i.e.[eror e ]enO][ bool]

Expression 1, mF e ande; : bool
To be proved [ egand e | gny O [ bool ¢

Inductive Hypotheses [ € ]gny 0 [ bool]; and[ & ] gn O [ bool ]
sincer, t + ¢ : bool andr, m + & : bool
by type rule [and]

Inductive Step

[ erand & |gny=andOp( €1 Jenw [ € ]Env) by D12
[ bool]; = Boolean from Table 3.1
| 1 ]env 0 Boolean and e; | gny 0 Boolean by hypotheses

Since andOp is a function that takes two Boolean values and returns a Boolean,
andOp( e Jenv, [ € Jenv) O Boolean

i.e. andOp( ey Jenv [ & JEnv) O[ bool];
i.e.[ egand e |gny O[ bool ]

Expression ., TF e =6 :bool
To be proved [er=&]en O bool]
Inductive Hypotheses [ er]eny O[ bool]; and] & Jgny O bool ]

sincer, t + € : boolandt, t + & : bool
by type rule [boolE(q]

Inductive Step

[ &1 =& ]env =boolEquals( e Jenv. [ € Jenv ) by D13
[ bool J; = Boolean from Table 3.1
| e1]env O Boolean andl e; | gy O Boolean by hypotheses

Since boolEquals is a function that takes two Boolean values and returns a
Boolean,
boolEquals( e, |env,[ € ]env ) O Boolean

i.e. boolEquals| e1 Jenv, | € ]env ) O [ bool ]

i.e.[ er =€ ]en O[ bool];
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4.4.3 Records

Expression T’”}'{li:e}(izl,n):{li:Ti}(izl,n)
To be proved [{li=a} (i:lyn)]EnV of{li:Ti} (i:lyn)]T
Inductive Hypotheses [et]env Ol Tede s .-l @nlenv O Tl

sincet,mke Ty, ...1,mEF & T,
by type rule [recValue]

Inductive Step

[{liza}(izlyn)]Env:
mkRec(<{,[e1]gnw >++ . . . ++ <], [en]env >) by D14

Since mkRec is an operation that takes a list of n pairs each of type < Label, T
and returns a record with fields corresponding to the labels,

mkRec( < i, [ e1]env >++ . . . ++<d,[enleny > )0
Record (k: Tk)(k=1,n)
i.e. mkRec(<{,[ei1]gnw >++ . . . ++ <], [en]eny > )O

{1i:Ti} (i:lln)]l’
ie.[{li=a} joq mlew OL{LTi} o1 nlt

Expression ,ntel:T
To be proved [el]lgnw O[T

Inductive Hypothesis [ elenv ORecord(1:TH
sincet,m+ e:{l: T} by type rule [recDeref]

Inductive Step

[ ellenv =getl((e]env ) by D15
| e]env ORecord(1:T) by hypothesis

Since getlL takes a record and returns a value of the type of field | of that record,
getL([ eJenv )O[ Tt

4.4.4 Variants
Expression unk[li=e]: [{:Ti J*

To be proved [[li=e]:[V:Ti Mlenv OLLL 2T I¥]e
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Inductive Hypothesis [elenv O[ Tilt

sincet,mke: T by type rule [varValue]
Inductive Step
[[li=el:[k:Ti I*]env=mkPair (i, [e]env) by D16
[e]lenwD[ Tl by hypothesis

Since mkPair is a function that takes a label and an expression and returns a pair
representing the variant value with the expression associated with the label,

mkPair( |, [ e Jgny) O Pair( label] T;]¢)
But [[I;: T 1" ]: = Pair(label[ T;J+) from table 3.2
e f[li=el:[V:Ti FlenOL[li:Ti 1" ]t

Expression 1, F project easxontol: Tiine elsee: T
To be proved [ project easxontol: T1in e elsee JgnvO[ Ty
Inductive Hyp. [elenvO[[1:T1 ]*]r and
[ el]E”Vx=snd0[e]EnV)D[ 11 © [T]rand] & JenvO[ Tt
sincet,mre:[l: T |"andy, m:x: Tiimbk e T
andt,mke:T by type rule [varProj]
Inductive Step
| project easxontolin e elsee]gny =
if(fst([ eJenv) =1, [ el]Ean:sndQIe]Env) O[Ty ]° [ &]Env) by D17
But[ eJenvO[[1:T1 J*]cand] e JennO[ Tlrand] & JenO[ Tlx
by hypotheses
But[ [I:T¢]* ] =Pair(label,[ T1]¢)

Since if is a function that takes a Boolean and two expressions of the same type
and returns an expression,

if(fst([ eJenv) =1, [ el]Ean:snd@[e]Env)D[Tl] [ elenw)d[ Tl

i.e.| project easxontol: Tiine elsee |gnvO[ T J¢
4.4.5 Functions

Expression Lnkfun(x:Ty- To)e:fun(Ti- Ty)
To be proved [fun(x: Ty - T2)eleny O[fun(Ty - T2)]s
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Inductive Hypothesis [ elenw=yv:1y O[ T2]¢
sincet, m::X : Tiimo b+ e : T by type rule [funValue]
Inductive Step
[fun(x:Ty - T2 ) eJeny =mkFun(e, x, Env) D18
[e] Eng=y. 7y O[ T2]¢ by hypothesis
Since mkFun is a function which takes an expression, an identifier and an

environment and returns a Function and from the hypothesis it can be seen that
when x is assigned a value of typgif Env then e will be of type,l

mkFun( e, x, Env o Function( | - T2)
[ fun(Ty - T2)]: =Function( g - T2) from table 3.1
e.[fun(x:Ty - To)elgnw O[fun(Ty - To2)le

Expression Lnte(e): T

To be proved [e(e)]enD[ T2]<
Inductive Hypotheses ler]envO[fun(Ty - T2)]rand[ & envO [ T1l¢

sinceg:Trand q :fun( Ty - T») by type rule

[funApp]

Inductive Step

[ ei(e2)]env = apply( e ]env, [ &]env) by D19
[e]envO[fun(Ty -~ T2)]rand] &]envO[ T1ls by hypotheses

Since apply is a function which takes a Function and an expression and returns a
value of the result type of the function,

apply([ e1]env, [ €]env) O T2]1
i-(:)-[(:"l((:-’Z)]EnvD [ TZ]T

4.4.6 |dentifiers

Expression ,mEX:T

To be proved [ X]enwO[ T]e

Inductive Hypothesis < none >

Inductive Step

[ x]Jenw=voT=V by D20

Since Env contains a binding that indicates V belongs [o<Tgn O [ T+
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4.4.7 Locations

Expression ,mk"Ne:loc(T)
To be proved [Me]eny O loc(T)];
Inductive Hypothesis [elenw O[T
sincet,mt+e:T by type rule [locValue]
Inductive Step
[ ~eJenv = mkLoc([ €]Eny ) by D21
[ e]enw O[T from hypothesis

Since mkLoc takes an expression of type T and returns a Location( T ),

mkLoc([ eJeny ) O Location( T )

i.e.[~e]gn O[loc(T)]:

Expression T, T F € =6 unit
To be proved [er:=e]gn O] unit J;
Inductive Hypotheses [ €1 JgnvO[loc(T) ] and| & JenvO[ T+
sincet,mt e :loc(T)and, nt+ e: T
by type rule [assign]
Inductive Step

ler=elenw = put((erlen, [ & ]enw) by D22
[ e ]envO[loc(T)]rand] & Jenv O[Tt from hypotheses
[ loc(T)J; =Location ( T) and unit ] = Unit from Table 3.1

Since put takes a Location ( T ) and T and returns Unit,
put([ e Jenv, [ € Jenv) O Unit

i.e.[ er:=€& |enyO[ unit J;

Expression ,mF@e:T
To be proved [ @e|legnvO[ Tl

Inductive Hypotheses [ e]envO[loc(T)]+
sincet,m F e:loc(T) by type rule [locDeref]

Inductive Step
[ @ €elenv = get( e]env) by D23
[ elenvO[loc(T)]: from hypothesis

38



[ loc(T)]; =Location (T) from Table 3.1
Since get is a function that takes a Location ( T ) and returns a T,
get([elenv)I [ Te

ie.[ @elenO[ Tl

4.4 .8 Infinite Union

Expression T, F inject( e, T) :any
To be proved [inject(e, T)enO[ any;
Inductive Hypothesis [e]lenvO[ T]e
sincet,mkFe:T by type rule [anyInj]
Inductive Step
[inject(e, T)]gn = mkPair( getTypeRep( T))e]en) by D24
[elenwD[ Tl by hypothesis
[ any] = Pair(typeRep, T]{) from Table 3.2
Since mkPair takes a typeRep and an expression and returns a Pair of the two,
mkPair( getTypeRep( T ),e Jenv) O Pair( typeRep, T ];)

i.e. [inject(e, T)]enwO[ any J;

Expression 1, F project easxonto T1in e elsee: T
To be proved [ project easxonto Ty in e elsee)]gnO[ Ty
Inductive Hyp. | e]lenvO[ any]; and

| erlen = sndgejenyyop T2 2L Tlrand[ & Jenv D[ T e
sincer, m F e :anyandr, X Tk e 0 T
andti,m+e: T by type rule [anyProj]
Inductive Step

[ project easxonto Ty in e, elsee|gny =
if(fst([ eJenv) = getTypeRep( T )[ €1 ] Env = snd( e]gny) O[ T [ &]env)

by D25
But[ e]gnO[ anyJ; by hypotheses
But[ any ], = Pair( typeRep] T; )

Since if is a function that takes a Boolean and two expressions of the same type
and returns an expression,
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if(fst([ eJenv) = getTypeRep( T )[ el]Envxzsnd([ eleny) O[ T1" [ &]env)
O[Tl

i.e.[ project easxontol: Tiin e elsee |gnvO[ T It

4.4.9 Sequence

Expression Lnbe ;e T
To be proved e e]enO[ Tl

Inductive Hypotheses ler]envO[ unit ]y and] & JenvO[ T+
,mF e unitandt, k& : T bytype rule [seq]

Inductive Step
[ e elenv=] elenve by D26

[&]enD[ Tl by hypotheses
Therefore[ &; JEnve O[ T]:

ie.[er;e]envO] Tt

4.4.10 Block
Expression T, m+ beginD ;eend: T
To be proved [ beginD ; eend]gny0[ Tt

Inductive Hypotheses [ D]envO[ unit Jand] e] EnvpO[ T+
sincet,m+ D:unit andt,m+e: T
by type rule [block]

Inductive Step

[ beginD ; eend]gn =[ e]Enwp by D27

But [ e]envp O] T]+ by hypotheses
Therefore| beginD ; eend]gnO[ T+

4.4.11 Conditional

Expression .,k if ethengelsee,: T

To be proved [ if etheneelsee JenvO[ Ty
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Inductive Hyp. [ elenvO[bool]r, [ e ]envO[ Tlrand] & JenO[ Tt
sincet,mF e:bool,t,nFe :Tand,nte:T
by type rule [conditional]

Inductive Step
[ if ethene elsee; [eny = if([ €]env, [ €1]1enw [ €& ]Eny) by D28

But [ e]gnvO[ bool]r, [ e ]JenvO[ T]rand] & JenO[ T]e
by hypotheses

Since if is a function that takes a Boolean and two expressions of the same type
and returns an expression of this type,

if( [ elenw [@)Enw [ @JEn) O Tt
Therefore| if ethene; elsee |gnv 0O T+

4.5 Summary

The definition of soundness states that if an expression e is of type T then the
meaning of e belongs to the meaning of T. Structural induction has been used to
prove this property for every construct in Base, thus proving the soundness of
the whole type system. The proof strategy for any construct ¢ of Base can be
summarised as follows. The type rules of Base specify the expected type of c.
They also specify the hypotheses which need to hold for this typing. The
semantics (the meaning) of c is defined in terms of the meta-operations of Base.
The type of the meaning of c is determined from the type of the meta-operations
and the hypotheses. The meanings of various types in Base have been defined in
section 3.1. If the meaning of the expected type of c is the same of the type of
the meaning of ¢ then the typing of c is sound. This strategy is again used in
Chapter 9 to prove that the addition of extension polymorphism preserves the
soundness of the type system of Base.
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5 Background

The aim of this thesis is to address the problem of type evolution in persistent
systems using polymorphism. Some of the concepts and issues that need to be
understood in order to carry out this work are explained in this chapter. The
salient features of polymorphism, type checking and object oriented
programming are explained in sections 5.1 to 5.3. The relevance of each topic to
the main work of this thesis is outlined at the end of each section.

5.1 Polymorphic Systems

Static typing in programming languages provides the ability of determining the
type of every expression by static program analysis. While there are advantages
to this mechanism, such as being able to detect type errors early and efficient
program execution, it also demands that every variable and expression should be
bound to a type at compile time. In a monomorphic type system this can
sometimes be too restrictive and lead to loss of expressive power and flexibility.
Polymorphism is one method by which a programming language can preserve
static typing while easing some of its traditional restrictions.

A polymorphic type system is one in which values and variables can have more
than one type. This can be contrasted with the more traditional monomorphic
systems in which each value belongs to at most one type. Two of the most
widely used kinds of polymorphism are parametric polymorphism and inclusion
polymorphism. They are described in detail in later sections.

The correspondence between sets and types is first discussed in this section. A
brief outline of the theory of partially ordered sets [Lew85, FS91] and lattices
[Lew85] is then given as lattices are later used to illustrate type hierarchies in
polymorphic type systems. The formal model, the concept and a programming
language mechanism to implement the concept are described for both parametric
and inclusion polymorphism. System F provides the formal basis for parametric
polymorphism and system_For inclusion polymorphism. While parametric
polymorphism may be incorporated into a language by the use of universal
guantification, subsumption and bounded quantification are mechanisms that
support inclusion polymorphism.

5.1.1 Sets and Types

Polymorphism is described by Cardelli and Wegner [CW85] in terms of set
theory. They assert that there is a universe of values, V, which includes integers,
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cross products and functions. To a first approximation and for all programming
languages, a type is a set of values of V. Values that belong to any type form a
subset of V. If a value v has a type t then it is a member of the subset of V
corresponding to t. Sets may overlap and values may have more than one type.
This flexibility gives rise to polymorphic type systems. Parametric
polymorphism can be modelled in terms of set intersection while inclusion
polymorphism is modelled by set inclusion.

5.1.2 Partial Orders and Lattices

Consider a relation p A x A on a set A. p is said be a partial order on A if it
has the following properties:

+ reflexive

if (a,a)dpforevery al A
e anti-symmetric

if(ag, &), (&, a)0pimpliesa=a fora, 0A
e transitive

if (a1, &), (@, @) 0 pimplies (g, a)0p

The pair ( A, p) is then referred to as a partially ordered set or a poset. A strict
partial ordex on A can be defined as satisfying the following properties:

* irreflexive

if (a,a)0pforevery alA
* asymmetric

if (ag,@)0pimplies(a, & )0p
» transitive

as defined before

In the context of a poset ( A,), and given that is the associated strict partial
order of p, the following terms can be defined:

b is a successor of a in A ifeb and is an immediate successor of a if there does
not exist a c in A such thatsac < b for a, b0 A. The inverse of these relations
defines the predecessor and immediate predecessor relations. A mgmbgr a
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is the least member of A if it is a predecessor of every other member of A. A
member gin A is a minimal of A if it has no predecessor. A poset always has
one or more minimals but has a least member if and only if it is also the unique
minimal. The inverse of these conditions define the greatest member and the
maximals of a poset.

A member g in A is a lower bound of a subset E of A iffsax for every x in E.

If the set of lower bounds of E has a greatest member then this member is called
the infimum or the greatest lower bound of E. Similarly inverse conditions
define the upper bounds and the supremum or the lowest upper bound. The
bounds of E need not be members of E.

A poset ( Sg) is a lattice if and only if every subset consisting of two members
of S has an infimum and a supremum in S.

Consider set inclusiondj over some universal set U. The subset relation is
reflexive, anti-symmetric and transitive for any pair of sets A and B belonging to
2U i.e. the set of all subsets of U [Lew85]. Therefore it is a partial order.

For the subset relation and any two members a and ¥, ith@ infimum is the
intersection of a and b and the supremum is the union of a and b. Since both
these sets belong td’2the subset relation is a lattice. The diagrammatic
notation shown below is used to represent lattices.

>

w

Figure 5.1.1 : Subset Lattice

The lattice in Figure 5.1.1 represents the fact that set B is a subset of set A.
5.1.3 System F

System F is an extension of the typed lambda calculus [Sch94] that provides the
basis for polymorphic programming languages. It was introduced independently
in the contexts of proof theory [Gir71, GTL89] and programming languages
[Rey74]. In addition to the functionality provided by typed lambda calculus,
System F permits the binding of type variables.
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In the case of the typed lambda calculus, the type of every expression can be
deduced from the types of the free variables it contains. Whenever a variable is
bound, a type expression is also specified for it. For example, the identity
function for values of type t can be written)as: t. x. The meaning of such
expressions depend on both the free variables and the free type variables.

System F provides the facility to specify bindings for type variables to create
polymorphic functions. These are functions from types to values. For example,
At. AX : t. X is the polymorphic identity function which takes a type t and returns
the identity function for values of type t. The application of polymorphic
functions to type expressions can be specified &s ( )[ w ] where r is an
expression and w is a type expression. This application can be reduced to an
expression obtained from r by replacing every free occurrence of t by w, after
any necessary alpha-conversion to avoid clashing of variable names. The type
of a polymorphic function, which when applied to a type t produces a value of
type w, isAt. w. Therefore if expression r is of type w then the expreggian

is of typent. w. Parametric polymorphism is based on this model.

5.1.3.1 Parametric Polymorphism

In the case of parametric polymorphism the uniformity of type structure
necessary for universal polymorphism is achieved by the use of type parameters.
Implicit or explicit type parameters determine the type of argument for each
application of a polymorphic function.

Consider defining an identity function each for integers, booleans and a record
type calledPerson

fun (x:int ->int) x

fun ( x : bool ->bool ) x

fun ( x : Person -> Person ) x

Figure 5.1.2 : Identity Functions

As can be seen from Figure 5.1.2, the signatures of all these functions have a
similar structure and the function bodies are identical. It is easy to see that

whatever the type used to define the identity function, these statements will hold.

Therefore a polymorphic function, parameterised by the desired type, can be

defined to replace all of these functions.
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letgenld=fun [T](x:T->T)x

intldval := genld [int ] ( 100)

let boolld = genld ool ]

Figure 5.1.3 : Polymorphic Identity Function

Figure 5.1.3 shows one model for defining and using a polymorphic identity
function genld This example uses universal quantification to implement
parametric polymorphismintidVal is assigned the value returned dmnid
when it is parameterised by the tyipé and called with the value 100. In this
case the type ohtldVal will be int, as might be expected. In some type systems
it is also possible to obtain a specialised function applicable to specific type by
merely applying the polymorphic function to a type parameter. Napier88
[MCC+95, MBC+96] is an example of a language that provides this facility.
boolldin Figure 5.1.3 is an instanceg#nld specialised to operate over boolean
values. Its functionality will, in effect, be the same as that of the second
function in Figure 5.1.2. Thus, polymorphic functions abstract over the
argument types of functions.

In set theoretic terms, parametric polymorphism is modelled by set intersection.
A polymorphic function can be considered as the intersection of all the
monomorphic functions it can represent. Thus, using the examples in Figure
5.1.2, a type lattice can be drawn as shown in Figure 5.1.4 below.

intFun boolfun personFun

polyFun

Figure 5.1.4 : Type Lattice for Parametric Polymorphism

In this lattice,intFun, boolFunandpersonFunstand for the types of the three
functions defined in Figure 5.1.2 apdlyFunis the type of the polymorphic
identity function.
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5.1.3.2 Quantification

Quantification [CW85, CM92] is a abstraction mechanism for polymorphism
which allows the programmer to specify a type variable to range over the
possible types which can be type parameters to a quantified function. There are
two kinds of quantification mechanisms: universal and existential. Universal
guantification, which is the model of interest to this thesis, has been used for the
examples in Figure 5.1.3. It is a model of parametric polymorphism and allows
the specification of generic code. This is usually achieved through parameter
passing.

5.1.4 System E

System E [Ghe90, Ghe93] is an extension of System F which provides the

ability to express polymorphism over subtyping. In addition to lambda
abstraction, System_Fallows second order abstraction with respect to type
variables and thus can model bounded quantification. A polymorphic function
can have a bound type for the type variable and only the subtypes of this bound
can be actual parameters to the polymorphic function. For examgld.. r is

such a function where T is the bound and r is an expression. The type of this
function isAt < T. w where w is the type of r and may be defined in terms of t.
The type system of Fcontains a type Top, whose canonical element is top,
which is a supertype of all types. Thus, an unbounded lambda abstraction r may
also be written ast < Top. r. The application of a second order functioa T.

r to a type A is specified ast < T. r{ A }. Ghelli has extended this language
further in System F-bounded [Ghe94] where it is possible to write bound types
that contain the bounded variable.

It should be noted that there are differences in the notations used by System F
and System Fto denote similar semantic entities. For example, System F uses

A to stand for the construct that specifies type binding while Systenses.
Thus,Ot. rin System E will be written as\t. r in System F.

5.1.4.1 Inclusion Polymorphism

Inclusion polymorphism is a combination of two concepts : a subtype relation
and a programming language algebra that supports the subtyping relation. The
subtyping relation between two types can be defined as follows : type A is a
subtype of type B if all operations allowed on B are also allowed on A. This is
written as A< B. A subtype has all the functionality of the supertype and
possibly more. The programming algebra is the collection of constructs
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provided by the language to implement the concepts it supports. One
programming algebra rule that can be used to support subtyping is subsumption.
The rule of subsumption can be written as :

na: X and X<Y impliesn- a:Y

wheremn is the identifier - type environment introduced in Chapter 2, a is an
expression and X and Y are types. The colon is used to denote 'is of type'.
nk a: X means that froma can be deduced to be of type X. Therefore the rule
of subsumption can be stated as 'if a is of type X and X is a subtype of Y then a
is also of type Y'. This allows a subtype value to be used wherever a supertype
value is expected.

Since the subtyping relation is equivalent to the subset relation over the same
universe of discourse, subtyping is also a partial order and a lattice. At the top
of this lattice is the set representing the universe of values V and at the bottom,
the empty set. Since types are sets, subtypes correspond to subsets and the
notion that A is a subtype of B in the type space corresponds to the set
theoretical condition that A is a subset of B in the value space. In the
subsequent sections both lattices and Venn diagrams are used to illustrate
subtype hierarchies.

This concept is discussed further in the next section using Cardelli's subtyping
relation [Car84] as an example. Sections 5.1.4.3 and 5.1.4.5 present a discussion
of subsumption and bounded universal quantification as programming language
mechanisms to support the use of the subtyping relation.

5.1.4.2 Subsets, Subtypes and Type Constructors

In an operation based type system sets are formed over the value space defined
by the operations that can be performed on the values. If an operation can
manipulate values of a set, values of any its subsets can also be acted upon by
that operation. Cardelli established a model of subtyping relation based on the
notion of types as sets of values which assumes subsumption in the
programming language algebra. Cardelli's subtyping relation is defined below.

The correspondence between subtype relation in type space and subset relation
in value space is justified in this section by means of examples. The
characterisation of type here is in terms of two criteria : applicability of
operations and the set of possible results of these operations. Consider a type T
with operations @to O, such that all possible results of these operations form
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the sets Rto R, respectively. If there is a value v such thatt® O, can be
applied to v and @ v ) is a member of For all i from 1 to n, then v can be
considered to be of type T. The subtyping relation is discussed for each of the
common type constructors.

a) All types

T<Tforanytype T

Any type is a subtype of itself. Similarly any set is a subset of itself.
b) Labelled cross products

A labelled cross product is a collection of values which have names or labels.
The subtyping rule for labelled cross products is :

st .o hsSt implies{a it .. i ey ST YL Lt
where mO N andn o N4

A labelled cross product S1 is a subtype of another labelled cross product S2 if
S1 has all the fields of S2 and possibly more and the types of common fields in

S1 are in turn subtypes of the those in S2. Figure 5.1.15 gives some examples of
labelled cross product definitions illustrating the subtype relation.

type persons { name : formatl }

type teacheiis { name : format2 , expint }

type studenis { name : format2 , rolINo int }

type tutoris { name : format2 , expint , rolINo :int }

Figure 5.1.5 : Examples of Labelled Cross Products

whereformat2< formatl The relations that hold between the types in Figure
5.1.5 by virtue of the subtyping rule are specified along with explanation for
each case in the table in Figure 5.1.6 below.
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Relation Explanation

teachek person formatx formatl and teacher has an additignal
label exp

studenk person formatx formatl and student has an additignal
label rolINo

tutor < person format2 < formatl and tutohas two additiong|

labels exp and rolINo

tutor < teacher tutor has an additional label rolINo

tutor < student tutor has an additional label exp

Figure 5.1.6 : Subtyping Relations for Examples

The type lattice for these types can be represented by the following diagram in
Figure 5.1.7.

person

"\

teacher student

N

tutor

Figure 5.1.7 : Type Lattice for Example Types

The relations in terms of set theory can be illustrated by the Venn diagram below
in Figure 5.1.8.
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Person

g

Figure 5.1.8 : Subset Relations

c) Labelled disjoint sums

A labelled disjoint sum represents a choice between a finite, named collection of
types. The subtyping rule for labelled disjoint sums is :

Lt .o st implies[g ity .., aitI<[agity, o am baml

A labelled disjoint sum Yis a subtype of another labelled disjoint sugi¥/V

has all the branches ofi\and possibly more and the types of the branches in V
are in turn subtypes of the corresponding branches.inGiven below in Figure
5.1.9 are examples of definitions of labelled disjoint sums where
higherintermediat& intermediate

type generalScales [ S : senior, | : intermediate ; J : junior
type twoScales [ S : senior, | : intermediaie
type highScales [ S : senior, | : higherintermediate , J : junior

type seniorScalés [ S : seniof

Figure 5.1.9 : Examples of Labelled Disjoint Sums

According to the subtyping rule given above, the following relations explained
Figure 5.1.10 hold between these types :
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Relation Explanation

twoScales< generalScale | generalScale has an additional branch J

highScale< generalScale| higherintermediatentermediate

seniorScale generalScalg generalScale has two additional branches Ifand J

seniorScale twoScale twoScale has an additional branch |

seniorScale highScale highScale has two additional branches | andJ

Figure 5.1.10 : Relations between Labelled Disjoint Sums

The type lattice for these labelled disjoint sum definitions can be drawn as
shown in Figure 5.1.11.

generalScale

o D

twoScale highScale

Ny .

seniorScale

Figure 5.1.11 : Type Lattice for Disjoint Sum Examples

The subset relations between these types are illustrated by the Venn diagram in
Figure 5.1.12 below where sS stands for seniorScale.

generalScale

Figure 5.1.12 : Venn Diagram for Disjoint Sums
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d) Functions

Functions are represented by an arrow operator requiring a domain and a range
type. The subtyping rule for functions is :

s'<s and €t implies s-t< st

Thus this rule requires the argument type of the subtype to be greater and the
result type of the subtype to be smaller than the corresponding types of the
supertype. This condition is said to be contravariant on the argument type and
covariant on the result type.

Assuming the definition of labelled cross product types employee, person, car
and vehicle such that employe@erson and carvehicle, function types can be
defined as follows in Figure 5.1.13.

type vehicleOfPersors fun ( person- vehicle )

type carOfPersois fun ( person- car)

type carOfEmployeas fun ( employee- car)

type vehicleOfEmployeés fun ( employee- vehicle )

Figure 5.1.13 : Examples of Functions

According to the subtyping rule given above, the following relations specified in
Figure 5.1.14 hold :

Relation Explanation

vehicleOfPersor vehicleOfEmployeg employeeperson

carOfPersori vehicleOfPerson catr vehicle
carOfPersor carOfEmployee employeeperson
carOfPersor vehicleOfEmployee employeeperson and carvehicle

carOfEmployee& vehicleOfEmployee| cat vehicle

Figure 5.1.14 : Relations between Functions
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The type lattice for these function types can be drawn as shown in Figure 5.1.15
below.

vehicleOfEmployege

PN

vehicleOfPerson carOfEmployee

S

carOfPerson

Figure 5.1.15 : Type Lattice for Function Examples

The subtype relations between these function types are illustrated by the Venn
diagram given in Figure 5.1.16. In the diagram, F1, F2, F3 and F4 stand for
vehicleOfPerson, carOfPerson, carOfEmployee and vehicleOfEmployee

respectively.

F4

(@

Figure 5.1.16 : Venn Diagram for Functions

e) Mutable values
The subtyping rule for mutable values is :
a)loc(A)< loc(B) iff A<B and B A

Since subtyping is a partial order satisfying the anti-symmetric condition, these
conditions imply that A = B.
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It is also possible to incorporate another rule for subtyping over mutable though
it is not part of Cardelli's model and is not compatible with the corresponding
set theory. However, by adopting suitable operations over mutable values, the
soundness of the type system can be preserved despite the addition of the
following rule:

b)loc(A)< A

In Figure 5.1.17 given beloMgcPerandlocEmpare examples of mutable types.

type persons { name :string }

type employeds { name :string ; eno :int }

type locPeris loc( person )

type locEmpis loc( employee )

Figure 5.1.17 : Mutable Types

According to the subtyping rules for locations, the subtyping relations between
these types are given in Figure 5.1.18.

Relation Explanation

locPers< person by rule b

locEmps< employee | byruleb

Figure 5.1.18 : Subtyping Relation between Mutable Types

The type lattice for the location types in the example can be drawn as shown in
Figure 5.1.19.
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person

"\

employee locPer

.

locEmp

Figure 5.1.19 : Type Lattice for Mutable Type Examples

The subtype relations between the example mutable types can be illustrated by
the following Venn diagram in Figure 5.1.20.

person

employee

@

Figure 5.1.20 : Venn Diagram for Mutable Types

5.1.4.3 Subsumption

Subsumption is one programming language mechanism which enables the use of
the subtyping relation in programs. It can be defined by the following rule.

na:t and &t impliesn- a:t

This means that if a value a is of type t and if t is a subtype (by the rules of the
subtyping relation adopted) of another type t' then a is also of type t'.
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If the subtyping relation described in section 5.1.3 were added to the type system
of Base, described in Chapter 2, then subsumption can be used in the following
contexts.

a) assignment
- a:loc( X),n+ b:Yand Y< Ximplies a:=bis valid

If a belongs to the location type of type X, b is a value of type Y and Y is a
subtype of X then it is type safe to assign b to a and b will be viewed as being of
type X.

b) function application and result

n- f:s- t andnk a:s' where €s implies
f( a) is meaningful andr f(a) : t

If f is a function type from s to t and expression a is of type s' where s' is a
subtype of s then f can be applied to a and the result of this application will be of

type t.

c) projection from infinite union

nk s: X', X'sX andt=inject(s, X") then the projection of t onto X will be
successful

If s is an expression of type X', X' is a subtype of X and if t is the result when s
has been injected to form amy then the project operation onprojectt asy

onto X in ElelseE2 is valid and the expression corresponding to type X will
be chosen.

5.1.4.4 Anomalies of Subsumption

While subsumption allows more flexibility of operations than is possible in a
system without a similar mechanism for polymorphism, there is a conflict
between the use of subsumption and type accuracy in a system [CM92]. This is
due to the fact that using subsumption reduces the amount of static information
available about the relationship between types. Consider the example in Figure
5.1.21 below.
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let compare fun( a, b : person -bool) . ..

let personid fun( p : person -> person ) p
let s = personld( aStudent )

Figure 5.1.21 : Example of Subsumption

If the type system supports subsumption then it can not be assumed in the body
of comparethata andb are of exactly the same type since either or both of them
may belong to a type that is a subtypg@efson A similar problem occurs with

the definition ofpersonldin the example. This function is defined to take a
value of typepersonand return a result of tygeerson However subsumption
allows the user to pass a value of tyhedent(wherestudentis a subtype of
persor) as the actual parameter to the function but the result returned will still be
typed asperson Although these operations are type safe, some relevant
semantic knowledge may be hidden from the user. A possible solution to this
problem is described in section 5.1.5.

5.1.4.5 Bounded Quantification

One way to overcome the restrictions placed by the use of subsumption,
explained in the previous section, is to replace subsumption with a mechanism
that allows similar flexibility in the language but models the relationships
between types explicitly. For example, given two types A and B, it should be
possible to determine statically whether they are equivalent, in a subtype relation
or whether one of them is a component of the other. Bounded quantification
[CW85, Ghe90, CM92] is a mechanism that provides more type information
with subtyping.

In a system that supports bounded quantification without subsumption,
subtyping is only permitted where explicitly specified; all other instances require
an exact type match. Bounded quantification differs from the quantification
mechanisms discussed in sections 5.1.2.3 to 5.1.2.6 in that a bound by subtyping
is placed on the quantifier variable. Bounded universal quantification which is
used later in the thesis is described below.

Bounded universal quantification provides a means to produce polymorphic
code which can operate over all types which are subtypes of the bound type
specified. The identity functiopersonldfrom Figure 5.1.19 can now be
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defined as shown in Figure 5.1.22. In this fotmanges over all subtypes of
person

let personid fun[t<person](p:t->t)p

let s = personld[ student ]( aStudent )

let compare fun[t < person ](p1, p2:t-bool). ..

Figure 5.1.22 - Bounded Universal Quantification

This definition of the function, while still providing polymorphism, also allows
the actual parameter and the result to be statically and exactly typed. Thus if
personldwas quantified by the typsudentand applied to a value sfudentas
shown in Figure 5.1.20 the type®fan be statically deduced to $tedent The

use of bounded quantification also means that in the definition of function
compare parameterpl andp2 can safely be assumed to be of the same type.

5.1.5 Summary

Sections 5.1.1 to 5.1.4 have presented the different kinds of polymorphism and
their expressive power and uses have also been described. It can be seen that
polymorphism is a means to provide various kinds of abstraction, software reuse
and information at the type level. This idea is pursued further in Chapter 8 to
use polymorphism to devise a way to capture type evolution in persistent
systems.

5.2 Type Checking

The main function of a type checker is to check that a program is well-typed by
comparing the expected type of an expression, deduced from its context, with
the actual type. It determines, for example, whether a function has been
supplied with the right type of actual parameter and whether a location has been
assigned the right type of expression. For a complete piece of code to be
correctly typed, every expression and statement in it must be correctly typed. In
some systems such as Napier88 [Con88], the type checker also constructs the
data structures that represent types in the persistent store. Structural type
equivalence [CBC+90] checking is implemented by performing an equivalence
test on such structures.
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In the traditional compiler architecture, shown below in Figure 5.2.1, type
checking is a separate phase that takes place between parsing and code
generation.

Lexical

Source ‘ Analyser

—p | Parser

'

Code < Type
Executable®——| ~ 0.0 Checker

Figure 5.2.1 : Traditional Compiler Architecture

In modern architectures, this distinction between different phases of compiling
may be blurred. For example, parsing, type checking and code generation for
each language construct may be performed by a single unit of code.

In sections 5.2.2 and 5.2.3 a Napier88 like type checker is used to illustrate some
of the key features of type checking. This type checker creates type
representations as graphs and performs type checking by comparing these graphs
for isomorphism. In this case, the interface of the type checker module provides
three types of functions: constructors, selectors and operators. Constructors are
used for the creation of type representations, selectors for dereferencing
components of type representations and operators for performing type checking.

Section 5.2.2 describes the construction of type representations while section
5.2.3 presents some basic principles behind type checking monomorphic and
polymorphic type systems. It is assumed that the systems use structural type
equivalence.

5.2.1 Properties of Type Checking Algorithms

A type system is decidable if its type checking algorithm will always produce
the correct answer to the question whether some expression is well typed. In a
decidable system, the algorithm will exhibit all three of the following properties:
soundness, completeness and convergence. An algorithm is sound if the
answers it provides are always correct. A complete algorithm will always find
the answer if there is one. An algorithm is said to be convergent if the
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computation it performs is finite and therefore the algorithm will terminate;
otherwise it is said to be divergent.

Based on these properties, sound algorithms may be classified into three
categories:

* sound algorithms
» sound and complete algorithms
» sound, complete and convergent algorithms

These categories are further explained below using illustrations based on those
presented in [Ghe93c]. In the descriptions given below, the following
conventions are adopted:

good terms are those correctly typed
* bad terms are those which are not correctly typed

* YES denotes the set of expressions for which the algorithm returns a
positive answer while NO is the set for which a negative answer is
returned

* the striped area represents those terms for which the algorithm is
divergent

5.2.1.1 A Sound Algorithm

Good terms Bad ter

Figure 5.2.2 : Sound Algorithm

Figure 5.2.2 above illustrates a sound type checking algorithm. If a sound
algorithm gives a YES answer then the term is correctly typed but it may fail to
recognise some correctly typed terms as such. Similarly a NO answer from this
algorithm will mean that the term is incorrectly typed but it may not recognise

61



all badly typed terms. A type system supported by such an algorithm is not
decidable.

5.2.1.2 A Sound and Complete Algorithm

Good terms

YES

Figure 5.2.3 : Sound and Complete Algorithm

A complete algorithm is one which will always give a result provided there is a

YES result. A sound and complete algorithm is illustrated in Figure 5.2.3. If a

term is correctly typed then the algorithm will always give a YES answer but in

the case of badly typed terms, its behaviour is similar to that of a sound
algorithm. Thus this algorithm is convergent in the case of good terms but
divergent otherwise. A type system supported by a sound and complete
algorithm is said to be semi-decidable.

5.2.1.3 A Sound, Complete and Convergent Algorithm

Good terms Bad ter

YES NO

Figure 5.2.4 : Sound, Complete and Convergent Algorithm

A sound, complete and co-complete algorithm, as shown in Figure 5.2.4, will
recognise all good terms and bad terms in the universe of discourse as such and

is convergent in either case. A type system with such an algorithm is said to be
decidable.

62



5.2.2 Type Representation

Figure 5.2.5 below illustrates a possible data structure for representing types
taken from[Con90]. Tosimplify the example, it is assumed that the type
operatoilist and the operations on it are predefined.

rec type TYPEIs { label : string ;
specificlnfo :string ;
ref : list[ TYPE ] }

Figure 5.2.5 : Definition of Type

TYPE is defined as a recursive record type which contains three fields. The
label field is an indication of the type constructor (e.g. "base'lrfgr'rec" for

records and "fun" for functions). Information specific to the type being
represented, such as the name of the base type or field or branch names in the
case of records and variants, is contained irsgieificinfofield. ref contains

the reference to a list of component types, such as field types for records and
argument and result types for functions.

Using this definition, the data structures for base tgp@and a record type that
has two fields< andy of typesint andbool respectively can be diagrammatically
shown in Figures 5.2.6 and 5.2.7 as follows.

"basel Ilintll

Figure 5.2.6 : Representation oint

Thelabelfield indicates that it is a base tympecificinfoindicates which base
type it is and since it is a base type there are no references to any component

types.
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||reC|| "*X*y" l

int"

——» "base'

——| "base’| "bool"

Figure 5.2.7 : Representation of a Record Type

For the recordlabel contains "rec"specificinfocontains the names of the two
fields delimited by a * sign in order to distinguish the two names rad
contains a pointer to a list which contains the representations for the two field

types.

5.2.3 Type Checking Algorithms

The type representation scheme presented in the last section constructs a graph
for each type in the code being checked. These graphs can then be compared for
isomorphism to check type equivalence. Since the type system is infinite, a
recursive type checking algorithm is needed to test the isomorphism of the
graphs.

5.2.3.1 Monomorphic Type Systems

In a monomorphic type system, type checking involves comparing the graph of
the type expected and the graph of the actual type for structural equivalence. An
outline of a recursive algorithm [Con90, CBC+90] that uses the type
representation scheme of the previous section can be specified as follows:
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rec leteqType =fun(t1, t2 : TYPE ->bool)
typeldentity( t1, t2 por
(tl.label = t2.labe&nd
t1.specificinfo = t2.specificinfand
eqList( t1.ref, t2.ref))

& eqList =fun( 11, 12 : list [ TYPE ] ->bool )

(11 =niland 12 = nil ) or

(11 ~=niland 12 ~= niland eqType( head( 11 ), head( 12 and
eqList( tail(11), tail(12)))

Figure 5.2.8 : Basic Type Checking Algorithm

Thus the algorithm first checks for identity of the two graphs, in which case a
full structural check is unnecessary. If they are not identical then the labels and
specific information are checked for equality and a list equivalence test, which
tests the equivalence of each pair of corresponding elements, is carried out on
the reference fields of both types.

5.2.3.2 Polymorphic Type Systems

In polymorphic type systems, type checking is more complicated due to the fact
that values can have more than one type. Hence a mere structural equivalence
test will not suffice in these systems. Consider, for example, a type system that
supports inclusion polymorphism. Then the type checker will not only need to
be able to check for equivalence but also for the existence of a subtyping relation
between two types. A simplified subtype checking algorithm for determining
whether type t1 is a subtype of type t2 may be defined as follows:

rec let subtype fun(tl, t2 : TYPE ->bool)
eqType( t1, t2 pr
(tl.label = t2.labe&nd
sublnfo( t1.specificnfo, t2.specificinfcand
subList( t1.ref, t2.ref) )

Figure 5.2.9 : Subtype Checking Algorithm

Thus the algorithm first performs an equivalence check since equivalence
implies that the two types are in the subtyping relation. Otherwise the
conditions necessary for subtyping are checked. For tl to be a subtype of t2, the
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labels of both types have to be the same, the specific information and reference
fields of t1 and t2 have to satisfy the subtyping conditions necessary for the
appropriate type constructor. FunctiosisbinfoandsubList perform these
checks in the algorithm given above. It should be noted that this simplified
algorithm does not support the subtyping rule which allows location types to be
subtypes of their content types.

If the system supports bounded universal quantification based on inclusion then
the functionality of the type checker becomes further complicated. Bounded
guantification introduces type variables in the signature of the function. One
way of type checking these type variables involves creating an environment in
which inclusion bindings between type variables and their bound types are
stored. It might also be necessary for the compiler to create new type variables
and assign bounds to them as the code is compiled. This technique is discussed
in detail in Chapter 10.

5.2.4 Summary

The main principles behind the process of type checking and the type checking
algorithms have been discussed. The properties of type checking algorithms
have also been described. These principles are made use of in Chapter 10 where
the implementation of a type checker for a new form of polymorphism is
described.

5.3 Object Oriented Programming
5.3.1 Introduction

Object orientation [DT88] has emerged as one of the most popular paradigms in
recent years. Many of the ideas associated with it have their origin in the Simula
language [DN66] and were later refined during the development of SmallTalk
[GR83].

The basic concepts of object oriented programming are explained in this section.
It should be noted however that this presents a general overview of the object
oriented paradigm and that many object oriented languages deviate from this
description in various details. Chapters 6 and 7 present some detailed account of
the object oriented languages Eiffel, PolyTOIL and TooL and the object oriented
system Q.
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5.3.2 Objects and Classes

In an object oriented system the real world is modelled by objects. Objects can
be considered to be instances of abstract data types encapsulating both state and
behaviour. State is represented by a collection of instance variables and
behaviour is represented by operations or methods. Methods can be functions
which return a value or procedures which do not. All computations are specified

in terms of message sends. Objects have an identity which persists over time,
independent of the changes to the state of the object. When a message is sent to
an object, one of the methods available to the object is selected for execution
depending on the message. Some possible responses from the object receiving
the message involve changing its internal state, sending messages to other
objects, replying with an answer, creating new objects or a combination of these.
Binary methods, discussed further in section 5.4, are those which have a
parameter whose type is intended to be the same as the receiver of the message.

There are two ways of creating an object:
* using prototypes

new objects are created by using existing objects as prototypes. If this
mechanism is used then the system must also permit the creation of
objects by specifying a set of methods and instance variables.

* using classes

a more usual approach is to specify the class of the object to be created.
The class is then used as a template for creating object instances.

Classes may also be treated as first class values rather than types. Types provide
interface information which determines the operations that can be applied, while
classes contain implementation information including initial values for instance
variables and bodies for methods. Classes themselves may have types, distinct
from object types. Class types include types of instance variables and methods
whereas object types only include types of methods. The example in Figure
5.3.1 below illustrates the above concepts.
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classPerson

var
name :="": String;
age := 0 : Integer,
job :="": String
methods

function getName() : String {return name}

function getAge() : Integer {return age}

procedure changeJob(newJob : String) {job := newJob}
end class

Figure 5.3.1 : A Class Definition

Personis defined as a class with three instance variablsg ageandjob and

three methodsgetName getAgeandchangeJob getNameandgetAge are
functions since they return a value arfthngeJolis a procedure since it does
not. Class definitions include initial values for instance variables and complete
definitions of the methods. The type of cl&&ssoncan be specified as

classtypePersonClass (  name : String ;
age : Integer ;
job : String ;
getName: fun(): String ;
getAge: fun(): Integer ;
changeJob: proc(String) )

end classtype

Figure 5.3.2 : Class Types

An object belonging to clag3ersonwill have the following object type:

objecttype PersonTypés (  getName: fun(): String ;
getAge: fun(): Integer ;
changeJob: proc(String) )

end objecttype

Figure 5.3.3 : Object Types
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As the only operations allowed on objects are method sends, the object type only
specifies method types. Figure 5.3.4 shows how an object of a particular object
type can be created.

var aPerson : PersonType;

aPerson := new (Person)

Figure 5.3.4 : Object Creation

The identifier for the intended obje@Person is first declared to be of type
PersonTypend then th@ewfunction is called with the appropriate class, in this
casePerson which initialises the attributes of the objecew can be used with
any class in the language to initialise its objects.

aName := aPerson.getName

Figure 5.3.5 : Method Invocation

Figure 5.3.5 above gives an example of method invocation. The dot notation is
normally used for message sending. In this case, megsti§@mds sent to the
objectaPersonand the result is stored in the variaadame

Instance variables are only visible to the methods of that object. It is possible to
change the values of instance variables of objects through the execution of their
methods. However, methods associated with an object cannot be modified. In
general, methods of an object can be mutually interdependent.

5.3.3 Inheritance

Inheritance is a mechanism which allows incremental definition of classes in
object oriented systems. Thus it also provides software reuse. There are two
ways of obtaining inheritance corresponding to the two ways in which objects
can be created.

» default delegation of responsibility
used by systems that make use of prototypes for object creation
» subclassing

used by systems that make use of classes for object creation
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There have been different views on the relation between inheritance and
delegation. The one adopted here is the classification presented by [DT88]. It
should also be noted that [Ste87] has proved that inheritance with subclassing
and delegation can model one another. Subclassing, as the name suggests, deals
with inheritance at the class level whereas delegation deals directly with objects.
Both these categories are briefly discussed below.

5.3.4 Delegation

Delegation [Ste87, DT88] allows the incremental definition of objects. In a
system that supports delegation, there is only one type of object. The real world
entities are modelled by these objects and they are often referred to as instances
without classes. Any object can be defined in terms of any other. Both methods
and instance variables can be shared through delegation. If an object delegates
an attribute to a prototype then any changes to this attribute will affect both
objects. Therefore, objects in a delegation hierarchy may be dependent on one
another. Figure 5.3.6 below gives a diagrammatic example of a delegation
hierarchy.

name | age |
"Smith" 32

Wto
job |

exp | salary|
"teacher” 10 14000

getSalary

Figure 5.3.6 : A Delegation Hierarchy

In Figure 5.3.6, two objects which may be used to model a person and an
employee are illustrated. Instance variables and the values associated with them
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are shown in rectangles while methods are represented by ellipses. In this case
the employee object delegates the instance variaiale® and age and the
methodsgetNamegetAgeandincAgeto the person object and declares only
those attributes which are specific to the employee in its definition.

5.3.5 Subclassing

In class based languages, logically related attributes are grouped into classes. In
this context classes can be considered as repositories of type and behaviour
specifications that can be reused and modified by inheritance. Classes are
related in a subclass hierarchy depending on the pattern of inheritance. If class
A inherits from class B then A is a subclass of B and B is a superclass of A.
This implies that the attributes available to an object of class A are not only
those defined in class A but also those defined in any ancestor of class A in the
subclass hierarchy. The hierarchy is specified using an inherit clause in the
definition of classes. For example, in a class based language, the diagrammatic
example of inheritance in Figure 5.3.6 can be specified with class definitions as
shown in Figure 5.3.7 below.
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classPerson

var
name :="": String;
age := 0 : Integer,
methods

function getName() : String {return name}
function getAge() : Integer {return age}
procedure incAge {age := age + 1}

end class

classEmployee
inherits Person
var
job :="": String;
exp := 0 : Integer;
salary := 0 : Integer;
methods
function getJob() : String {return job}
function getSalary() : Integer {return salary}
procedure incExp {exp := exp + 1}
end class

Figure 5.3.7 : Inheritance using Subclasses

ClassPersonis defined with instance variableemeand age and methods
getNamegetAgeandincAge Any object belonging to this class will
automatically have all these attributes associated with it. GEagdoyeas
defined to inherit from clasBersonin addition to having its own attributes
declared in the body. Therefore any object belongirgnployeewill have the
instance variablesame age job, exp andsalary and the methodgetName
getAgeincAge getJohgetSalaryand incExp associated with it. Thus the
inherits clause inEmployeeavoids the redefinition of all the attributes declared
in Person

An example of a subclass hierarchy incorporating the two classes in Figure 5.3.7
is shown below in Figure 5.3.8.
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Person

O\

Employee

Teacher

Student

Undergraduate

Research

Postgraduat

Figure 5.3.8 : A Subclass Hierarchy

D

Classes are represented by rectangular boxes in Figure 5.3.8 and an arrow from
A to B indicates that class B inherits from class A. An interesting point in this
hierarchy is the fact th&ostgraduatanherits from two classeStudentand
Research This is referred to as multiple inheritance.

5.3.6 self and MyType

The concept of object identity plays an important part in inheritance by
subclassing. The keywoslf (or currentor this) is used in method bodies to
refer to the receiver of the message and the keyMyrlypeis used to denote
the type of self. If the method has not been inherited sbémill always refer

to an object of the class in which the method is definedvaid/pewill denote

the object type of this object.
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classElement

var
number = 0 : Integer;
name ="": String;
nextElement = nil : MyType
methods

function getNext() : MyType {return nextElement}
procedure displayElement() {self.print}

end class

Figure 5.3.9 : self and MyType

Figure 5.3.9 illustrates the use s#lfandMyType ClassElementcontains an
attributenextElementvhich is typed aslyType This implies that an object
belonging toElementwill contain a reference to another object of the same
class. SinceextElemenhas not been inherited from another class, it can also
be typed a&lementwithout changing the semantics of the typing. The body of
proceduralisplayElementontains grint message to the object denotedsbif
Again, without inheritanceselfwill refer to an object of cladslement

However, during subclassing, the meanind/lgfTypechanges automatically to
refer to the object type associated with the subclass just as the measéiig of
changes to correspond to an element of the subclass. This facility enables
methods of the superclass to be used by any subclass without redefinition.

classElement2
inherits Element
var
previousElement = nil : MyType
methods

function getPrevious() : MyType {return previousElemen{}

end class

Figure 5.3.10 : Inheritance of self and MyType
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Given the definition of clas&lementin Figure 5.3.9, consider defining a
subclasElement2hat inheritsElementas shown in Figure 5.3.10 above. Any
objecte2 of Element2will have access to all the featuresedément Therefore

a method oElementmay be sent te2 In this case th®lyTypeinstance of the
method will refer taElement2andselfwill refer toe2

The inheritance of binary methods in this context and the problems arising from
it are discussed further in Chapter 6 and the solutions to these adopted by some
object oriented languages are presented in Chapter 7.

5.3.7 Advantages of Object Oriented Programming

The following are some of the important advantages claimed for using an object
oriented language for system construction [DT88]:

* it aids design, implementation and maintenance of complex systems by
supporting modularity

* it aids code reuse and extensibility by supporting inheritance

* it may allow designs in which objects provide opportunities for variable
grain parallelism and in which decisions relating to the implementation
of objects (in software or hardware) are flexible

5.3.8 Summary

The salient features of the object oriented paradigm have been presented in this
section. The topics that are of particular interest to this thesis are the inheritance
of binary methods and the uses#lfandMyTypeto aid inheritance. Binary
methods and their typing in the presence of inheritance are discussed in detail in
the next chapter. The uses#lfandMyTypeallows methods of a superclass to

be used in the subclass without redefinition. This concept plays an important
role in addressing the problem of binary methods.

75



6 Schema Evolution
6.1 Introduction

Schema evolution in any system may require changes to types or schemata and
changes to data (including programs) that conform to these types or schemata.
Dealing with the effects of evolution at the two different levels requires different
strategies. Programming languages provide mechanisms at the type level to
capture evolution whereas database systems, in addition to any type level
mechanisms, also require other tools to explicitly evolve data to keep it up to
date with the changes to schemata. Eiffel, TooL and PolyTOIL are languages
that provide mechanisms at the type level to capture evolution. OGon
[BKK+87] and GemStone [PS87] are examples of systems that have developed
mechanisms to deal with the changes caused by evolution at the data level.

A brief outline of the kinds of schema evolution and the effects it has on type
and data is presented in this chapter. Them@chanisms for dealing with
evolution at the data level are also described since it is a typical object oriented
database management system which is well established and contains advanced
features that deal with evolution. Chapter 7 describes the strategies used by
Eiffel, TooL and PolyTOIL at the type level.

6.2 The Effects of Schema Evolution

Databases contain data that has been logically grouped by schemata to model
real world entities. The constantly changing needs of the applications that use
databases require changes to data, programs and meta-data (schemata) in
databases. The changes to the schemata of a database are referred to as schema
evolution.

Schema evolution can generally be categorised into three types [MCC+93].

* additive evolution : the new schema models more semantic knowledge
than the old schema

» subtractive evolution : the new schema models less semantic knowledge
than the old schema

» descriptive evolution : the new schema models the same semantic
knowledge as the old schema but in a different manner

In the case of additive evolution, previous programs will continue to execute in a
type safe manner. However, their semantics may not match the updated schema
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and hence they may need to be changed. Every change to the schema will also
require a corresponding change to data belonging to that schema.

With subtractive evolution, programs which access the deleted parts of the data
model have to be deleted themselves or modified. Corresponding changes to
data belonging to the model are not necessary but will avoid wasting space.

After descriptive evolution, the semantics of the model will remain the same as
before even though the database structure may change. Descriptive changes are
often made for reasons of convenience or efficiency. This type of evolution is
claimed to be the hardest to accommodate in traditional database systems.

In practice, any change to the schemata of a database is likely to involve a
combination of all three kinds of evolution. Changing the schema of database
while maintaining the consistency of data and programs belonging to that
schema with the semantics of change has proved to be a difficult problem
[Zd086, SZ87, MCC+93, Odb94, Rod95]. There are two levels at which the

problem of schema evolution may be addressed.

* type or class level

» data (instances of types or classes) level

At the type or class level, one mechanism for dealing with schema evolution is
polymorphism. Since this provides data abstraction and software reuse,
polymorphic code may accommodate evolution on a schema. However, any
particular type of polymorphism supported by a system is unlikely to cover all
possible changes to a schema.

Object oriented languages support inheritance as a means of abstraction and
reuse and to capture evolution. In object oriented systems, refinement, often
equated with inheritance, leads to the well-documented problem of the
inheritance of binary methods [BCC+95, Cas95]. Binary operations, such as the
= relation and the subset relation, take two arguments of the same type. In
object oriented languages, operations are coded as methods and the receiver of
the message is implicitly the first argument of these methods. The second
parameter of the method is the only explicit argument. The term binary method
is used to describe any method which has at least two arguments, with an
implicit and an explicit argument of the same type.

The problem with binary methods is caused by their typing in the presence of
inheritance. To ensure type safety, the type of an inherited method in the
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subclass must be a subtype of its type in the superclass. Since methods are
functions, this condition implies that their parameter types have to be
contravariantly replaced by supertypes in the subclass.

The type of the implicit argument of the method automatically changes during
subclassing to refer to the object type of the subclass. The explicit argument
also changes in the same way as functions often evolve by specialising their
parameter types. However, these type changes in subclasses may not produce
subtypes. Consider the example in Figure 6.2.1 below.

classCoordinate

var
X := 0 : Integer,
y := 0 : Integer,

methods

function equal( c : Coordinate ) : Boolean
{return x =c.xandy = c.y}
end class

classThreeDCoordinate
inherits Coordinate

var
z :=0: Integer;
methods

function equal( c : ThreeDCoordinate ) : Boolean
{returnx =c.xandy =c.y and z = c.z}
end class

Figure 6.2.1 : Inheritance of Binary Methods

ClassThreeDCoordinatenherits the features from cla€oordinate A new
instance variable is added in the subclass and the metquhilis redefined to
incorporate the new variable. Both the implicit and the explicit arguments to
equalare now of typd hreeDCoordinate Given this redefinition, the type of
equalin the subclass is not a subtype of the original method type and hence the
method in the subclass cannot be used where the original method is expected.
Consider the use of the methegualin figure 6.2.2 below.

78



var newC : Coordinate

var aThreeDC : ThreeDCoordinate

procedure compare( x : Coordinate ) : Boolean
begin
newC :=new Coordinate( 50, 75)
I'a new instance of class Coordinate is assigned to pewC
x.equal( newC )
end

aThreeDC :=new ThreeDCoordinate( 45, 60, 25)

let b = compare( aThreeDC)

Figure 6.2.2 : An Unsafe Method Call

If procedurecompareis called with an actual parameter of ty@eordinatethen

the call is type safe. However, if the actual parameteisraeDCoordinate

as shown in Figure 6.2.2, then a runtime error will occur when the method call is
evaluated. Since the value 0fis aThreeDCoordinatethe code foequalin
ThreeDCoordinatevill be executed. ButewChas no instance variable called

and hence the call will fail. Thus, contravariant subtyping rule is needed for
type safety while the covariant substitution captures the evolutionary demands of
method types.

At the data level, the main concerns regarding evolution in a database are how
updates are carried out on the data and how the database is brought to a
consistent state after schema modifications. To this end, the following issues

must be addressed.

* Restructuring data to conform to the new schemata
* Moving instances of a class/type to another
* Determining when data is to be updated

Each of these issues is examined further in the context of;tHat@base system
in the following section and the solutions adopted Byi® each case are
presented.
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6.3 Data Evolution in the Q Database System
6.3.1 Introduction

The G, model [Deu90, LRV90, Deu91] was developed by the Altair group in
France. Although, as an object oriented database systesupPorts subtyping

and inheritance, the topic of interest here is how it deals with evolution at the
data level. The @strategies [Zic89, Zic91] are used as an example of the issues
involved in bringing the data up to date with the semantics of schema changes.

6.3.2 The Q System Structure

O, schemata are logical entities which group together data definitions. A
schema can contain the following elements: classes, named objects and values,
functions and applications. Each schema has one or more bases associated with
it. An O, base groups together objects and values which conform to a schema.

Schemata and bases are physically stored on files grouped together into
volumes. A volume is implemented as a Unix file. A named system is a
collection of volumes.

6.3.3 An Overview of the Q Type System

Types in Q can be atomic or structured. A type is defined recursively from
atomic types, named types, classes and constructors. Constructed types can be
defined by applying tuple, list, set and unique set constructors to other types.

O, supports multiple inheritance. Any name collisions are resolved by local
renaming. An inherited feature may be redefined in accordance with the
covariant subtyping semantics.

Objects model real world entities. An object has an identity, a value and a
behaviour defined by its methods. Objects are instances of classes just as values
are instances of types.

Objects with the same value type and methods are grouped together in the same
class. A class specification contains the following information: class name,
class type, public and private properties, class methods and class inheritance.
All O, classes are treated as subclasses of the system defineQljleds If a

class does not explicitly specify any superclasses then it is an immediate
descendant dDbject
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Programs create values and objects during their execution which, by default, are
discarded at the end of the execution. However an entity (object or value) will
be persistent if it is directly or transitively reachable from a persistent rgot. O
provides anamedeclaration to create these roots. Persistence does not affect the
manipulation of entities.

6.3.4 Schema Evolution in @

Schema modifications can be performed using special primitives, for example
by adding or deleting attributes in a class, or by redefining the structure of a
class. The special primitives available ipfor changing schemata are:

* creation of a new class

* modification of an existing class

» deletion of an existing class

* renaming of an existing class

» creation of an inheritance link between two classes
» deletion of an inheritance link between two classes
» creation of a new attribute

* modification of an existing attribute

» deletion of an existing attribute

renaming of an existing attribute
6.3.5 Database Updates in ©

Once the schemata have been changed to incorporate the requirements of
evolution, the data that belong to them must be changed to be consistent with the
schemata. The following sections describe how each of the data update issues
stated earlier in section 6.2 are dealt with by thesygdtem.

6.3.5.1 Restructuring Data in Q

O, makes use of conversion functions to restructure data after schema changes.
Conversion implies that the structure of classes have been modified and that data
belonging to these classes need to be changed to conform to the new structure.
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It should be noted that data will still belong to the same class after restructuring.
Conversion functions are attached to modified classes and contain specifications
of how the data is to be changed.

Conversion functions may be user defined or default. The user has the option to
explicitly define conversion functions and associate them with the modified
classes. User defined conversion functions can be of two types: simple or
complex. Simple functions perform transformations that only require local
information of the object being accessed i.e. they do not need to access any other
object. On the other hand, complex conversion functions perform the
transformations using objects other than the one being accessed.

If the user has not specified any conversion functions, then the database system
automatically transforms objects using default transformation rules. When a
class is modified, each attribute of the class before and after modification are
compared and the value of the attribute is transformed according to the default
rules. These rules are outlined below:

* an attribute present in the class before but not after its modification (a
deleted attribute) is ignored

* an attribute present in the class after but not before its modification (a
new attribute) is initialised with default initial values

* an attribute present in the class both before and after its modification is
transformed according to a set of rules which depend on the initial and
final types of the attribute.

If user defined conversion functions are available then they take precedence over
the default transformation rules.

6.3.5.2 Moving Data to Other Classes

Object migration in @ refers to the ability of an object to change its type by
moving from one class to another. There are two ways in which objects may
migrate in Q.

* asingle object may change its class

* an entire class extension or part of it may be migrated to another class
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The root clas©bjecthas a system methadigrate() associated with it. Since

all classes are subclassesaijject this method is available to every object in
O,. When invoked for a particular object, with the name of the target subclass
as the input parametenigrateenables the object to migrate from its class to the
specified subclass. To avoid runtime type errors objects are only permitted to
migrate to subclasses. Despite this limitation, migration is believed to be useful
in the following cases:

» existing objects of superclasses need to be moved to a newly added
subclass

» objects belonging to a class that is to be deleted need to be retained by
moving them to subclasses

An entire class extension or part of it may also be moved to subclasses by
associating migration functions with classes. These functions can specify
selection conditions for migration based on the attributes of the class. Every
object of the associated class that satisfies the selection conditions will be
migrated to the required subclass using the system funcignate

Conversion functions restructure data to keep them consistent with their
modified classes. The classes and types to which data belong remain the same.
Migration functions move data from one class to another, thus changing their

types.

6.3.5.3 Time of Update in Q

An important design decision for implementing database updates is when the
database is brought to a consistent state with the updated schemata. This
determines when conversion and migration functions will be executed over the
data to be changed. There are two choices for the time of update:

» with an immediate strategy, objects in the database are updated as soon
as the schema modification is performed.

* with a deferred strategy, objects are updated only when they are used
after the schema modification.

O, provides support for both of these strategies and the user can choose one that
IS most appropriate to the application.
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6.3.6 The Implementation of Database Updates

Both conversion and migration functions used for updating the database can be
implemented using either the immediate or the deferred strategy. However the
default implementation mechanism in @r the execution of these functions is

the deferred update. The basic principle which determines the correctness of any
deferred transformation is that the end result of a transformation performed
using deferred update must be the same as the result of the same transformation
implemented using immediate update. Thus the implementation strategy should
be orthogonal to the semantics of the transformation.

O, uses a technique known as screening to implement deferred update for both
simple and complex conversion functions. With this technique, deleted or
modified information in an object is not physically deleted but is retained in a
screened part of the data structure representing the object. Only conversion
functions are allowed access to screened information. Application programs can
not see the screened part of an object. When an object is accessed by an
application the system will execute the associated conversion function to
perform the transformation.

Screening is particularly important for implementing complex conversion
functions with deferred update as this combination can result in runtime errors or
incorrect database information. Complex conversion functions require access to
other objects which may already have been modified since the update is not
immediate. However, screening ensures that the information that may have been
modified or lost is stored in the screened part of the objects required.

The immediate database transformations inaPe implemented using the
algorithm for deferred transformation. , @rovides a schema command,
transform databasewnhich launches an internal tool that traces all the objects in
the database that are not up to date. The conversion and migration functions
associated with these objects are then executed using the deferred update
algorithm. After the execution of this command, all objects in the database
conform to the latest schema definition.

6.4 Summary

The effects of evolution on schema and data and the problems relating to them
have been presented. As explained in the chapter, these problems can be
addressed at two different levels. The mechanisms adopted by, thiej&at

oriented database system for dealing with evolution at the data level have also
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been discussed. These mechanisms provide an example of what will be needed
if the system does not provide a means of capturing evolution at the type level.
Chapter 7 describes existing type level strategies used by programming
languages to deal with evolution.
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7 Related Work

Chapter 6 examined the problems associated with schema evolution and gave an
example of the way these problems are dealt with at the data level. Two
different ways of addressing the problem of evolution at the type level in object
oriented languages, especially the type safe inheritance of binary methods, are
described in this chapter. The object oriented languages Eiffel, PolyTOIL and
TooL are used as examples of systems supporting these techniques. A brief
summary of how some other well-known languages such as SmallTalk [GR83,
GGH+91], C++ [Str86, GGH+91] and Java [Fla97] deal with the inheritance of
methods is also presented.

7.1 Eiffel

Eiffel [Mey92] is an object oriented programming language that uses covariant
specialisation. The type system of Eiffel and its inheritance and type safety
mechanisms are discussed in the following sections. Some comments on these
mechanisms are presented in section 7.1.8.

7.1.1 An Overview of the Eiffel Type System

Eiffel supports the concepts of classes, objects, features and inheritance. The
type system of Eiffel is based entirely on the notion of classes. Thus each object

that exists during the execution of a system belongs to a class of that system.

Such objects are called direct instances of the class. Deferred classes have no
direct instances. They are incomplete abstractions which their descendants use
as the basis for further refinement.

Classes introduce a set of features which may be of two kinds. Attributes
represent fields of direct instances of the class while routines represent
computations applicable to those instances. An attribute is either constant or
variable. A routine is either a function (returns a result) or a procedure (does not
return a result).

Every type in the language is based on a class known as the base class of the
type. There are three possible kinds of types in Eiffel:
» reference types

instances of reference types are references to objects which are created at
run time through explicit creation operations

* expanded types
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instances of expanded types are the objects themselves rather than
references to objects and hence do not require creation operations

» formal generic names

these correspond to type parameters to be provided during uses of a class
by parents or proper descendants. Instances of these types may be
references or objects

7.1.2 Genericity

Generic classes can be defined in Eiffel by parameterising class definitions.

classLINKED LIST [T]
feature

end -- class LINKED_LIST

Figure 7.1.1 : A Generic Class

In Figure 7.1.1, LINKED_LIST is a generic class, parameterised by the formal
generic parameter T. In order to obtain a type, a generic class must be supplied
with a type as an actual generic parameter. A type thus obtained is referred to as
a generic derivation of the base class, which in the example is LINKED_LIST.

It is also possible to constrain the formal generic parameter by specifying a
bound on it as shown in Figure 7.1.2 below.

classLINKED_LIST [T -> PERSON]
feature

end -- class LINKED_LIST

Figure 7.1.2 : A Constrained Generic Class
Any actual parameter corresponding to T must be a descendant of the class
PERSON.

7.1.3 Inheritance

Eiffel supports the use of inheritance as a module extension (defining new

classes from existing ones by adding or adapting features) and type refinement
(defining new types as specialisations of existing ones) mechanism. Features
obtained by a class C from its parents are called inherited features. If feature f
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has been defined in C then there are two possibilities. If f is inherited then the
definition is a redeclaration whereas if f is a new feature it is said to be
immediate to C and is introduced in C. In the latter case, C is the class of origin
for feature f.

In the graphical convention adopted by Eiffel designers for representing
inheritance hierarchies, classes are represented by labelled ellipses and the
inheritance relation is represented by directed arrows from the heir to the parent.
Thus, Figure 7.1.3 denotes that B inherits from A.

Figure 7.1.3 : Graphical Representation of Inheritance

Cycles are not permitted in the hierarchy. However, multiple, and as a result,
repeated inheritance are permissible. Figures 7.1.4 and 7.1.5 below illustrate the
inheritance structures for multiple and repeated inheritance.

Figure 7.1.4 : Multiple Inheritance

Class C in Figure 7.1.4 inherits from both class A and class B.
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Figure 7.1.5 : Repeated Inheritance

Repeated inheritance occurs when an attribute is inherited by a class in more
than one way. If two or more ancestors of a class have a common parent, then it
may repeatedly inherit a feature from the common parent. In Figure 7.1.5 class
N inherits from L and M which in turn inherit from class K. Thus N inherits
from K in two different ways.

The simplest case of repeated inheritance, called direct repeated inheritance, is
shown in Figure 7.1.6 below wheEMPLOYEEis a repeated heir S ERSON

The classPERSONis specified twice in the inheritance part of the class
definition of EMPLOYEE This facility is useful if two copies of the same
feature fromPERSONare needed iEMPLOYEEor if a feature is required to be
redefined in two different ways.

classEMPLOYEEinherit
PERSON
rename. . .redefine. . .end
PERSON
rename. . .redefine. . .end

end -- class EMPLOYEE

Figure 7.1.6 : Direct Repeated Inheritance

Indirect repeated inheritance occurs when one parent of a class C is a proper
descendant of a class A and one or more of the other parents are descendants of
A. An example is given below in Figure 7.1.7.
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classPERSON
feature
age : INTEGER;
end -- class PERSON

classWORKERIinherit
PERSON

end -- class WORKER

classEMPLOYEEinherit
WORKER

end -- class EMPLOYEE

classSTUDENT inherit
PERSON

end -- class STUDENT

classDEMONSTRATORInherit
EMPLOYEE

STUDENT

end -- class DEMONSTRATOR

Figure 7.1.7 : Indirect Repeated Inheritance

ClassDEMONSTRATORN Figure 7.1.7 repeatedly inherits the attribatge
from EMPLOYEEandSTUDENT EMPLOYEEinherits it fromPERSON
throughWORKERwhile STUDENTdirectly inherits it fromPERSON

Eiffel provides the programmer with some techniques to choose the result of

repeated inheritance in any class. Sharing results in only one feature whereas

replication permits several. Thus, the repeated inheritance rule can be stated as

follows:
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Let C be a class and;B. . ., B, (n= 2 ) be parents of C with a common
ancestor A. Let4f, . . ., f, be features of these respective parents all having as
origin the same feature f of A. Then any subset of these features inherited by C
under the same final name vyields a single feature for C while any two features
inherited under different names yield two different features for C. Features are
said to be shared in the first case and replicated in the second. Renaming
inherited features is one way to replicate them.

7.1.4 Feature Calls

In the Eiffel model, as is common to object oriented languages, the fundamental
means of computation is to apply an operation to an object. Given the model,
this operation has to be a feature of the class to which the object belongs. A call
is an application of a feature to an object possibly with arguments. Thus, with

the common dot notation, the structure of a call is

object.feature(parameter _list)

Object and parameter list are optional to a feature call. Figure 7.1.8 below gives
examples.

aPerson.incAge

aStudent.enterGrade(stGrade)

fixSalary(increment)

Figure 7.1.8 : Feature Calls

The first call is the application of routimecAge which takes no parameters, to
an objectaPersonof classPERSON The second call contains all the
components of a feature call. In the third call, the target objeStalary
operates over is the predefined enGiyrrentwhich represents the current object
of system execution and may be omitted in a feature call.

If the feature is an attribute or a function then the call is syntactically an
expression. Ifitis a procedure then the call is an instruction.
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7.1.5 Conformance

Conformance is a relation between types which determines when a type may be
used in place of another. The conformance relation is based on inheritance. A
type V will conform to a type T where the following conditions hold.

* the base class of V is a descendant of the base class of T

* If Vis a generically derived type then its actual generic parameters
conform to the corresponding onesin T

» If T is expanded then no inheritance is allowed; V can only be identical

to T or its base type

Conformance validates the use of many operations. Any of the following will be
valid if V conforms to T according to the definition given above, with x of type
T and y of type V.

» the assignment x :=y

* theroutinecallr(..,y,..)where xis the formal parameter declared in r
at the position of y

» thecreation!V!x, ... which creates an instance of V and attaches x to
it

» the redeclaration of x as being of type V in a proper descendant where x
is an attribute, a function or a routine argument

e anyuseof C[..,V,..]withV as the actual parameter where the

corresponding formal parameter of C is constrained by T

The conformance relation can also be applied to signatures of features in classes.
Using the definition of type conformance specified earlier, the concept of
signature conformance can be defined as follows.

A signaturet=(<B ..., B, >, <S >) conforms to a signature s = (g A. .,
Am >, <R >)if and only if the following conditions are satisfied.

» each of the two sequence components of t has the same number of
elements as the corresponding components in s

» every type Tin each of the two sequence components of t conforms to
the corresponding typg # the corresponding components of s

92



7.1.6 Reattachment of Entities

At any point during execution, every entity of the Eiffel system has an
attachment status: it is either attached to an object or it is void. There are four
reattachment operations which may change the attachment status of an entity

» association of an actual argument to a formal argument during a routine
call

» the assignment instruction which may attach an entity to a new object or
remove an existing attachment

» the assignment attempt instruction which conditionally performs the
same function as the assignment instruction in cases where the
assignment may be statically considered unsafe

» the creation instruction which attaches an entity to a newly created object

Figure 7.1.9 below gives examples of all four operations in the order given
above.

r(...,y, ...)with routine declarationr (..., x:T,...)is.

Figure 7.1.9 : Reattachment Operations

In the first two cases, the condition required for reattachment is that the type of
the source conforms to the type of the target. These are called direct
reattachment. They also have the same semantics: for reference types, the target
is made to refer to the object attached to the source, otherwise it is made void.

However, the assignment attempt applies only to reference types and is free from
any conformance constraints. This is referred to as reverse reattachment since it
is possible to perform assignments which go against the normal conformance
rules if it is known that the assignment will be type safe. Assignment attempt
behaves as an assignment instruction if the dynamic type of the source object
conforms to the type of the target, otherwise the target is made void.
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7.1.7 Type Checking Feature Calls

Since feature calls perform most of the computations in Eiffel, the validity of
feature calls essentially ensures the type safety of the system. There are two
levels of type validity in Eiffel.

» class level validity

» system level validity

In the absence of inheritance and genericity, checking class level validity is
straight forward and is sufficient to guarantee type safety. For the routine call
target.fname(yjo be valid, the type darget must have a feature of final name
fname this feature must be available to the class from the which the call is
made; and the feature must have the requested signature i.e. it must be a routine
with a single formal argument whighconforms to. Calls which satisfy these
conditions are said to be class-valid.

Class validity does not imply that the call is valid since the dynamic type of an
object may be different from its static type. This difference is caused by the
inheritance mechanism being used in the following instances.

* aclass may override the export policies of its parents

* a routine redefinition may replace the type of a formal argument by a
type conforming to the original (covariant argument typing)

To overcome this problem, a system level validity check was proposed. The
possible dynamic types of an object are said to form its dynamic type set. For a
feature call to be system-valid, the conditions for class validity must be enforced
for each class in the dynamic type set of the object concerned. A call is
unconditionally valid if it is both class-valid and system-valid.

However, this policy is not implemented as it requires access to the entire
system [Mey97] and could not be performed incrementally [Mey97]. Therefore,
instead of this check, the notions of polymorphic entity and catcall were
introduced and a new type rule based on these notions was formulated to ensure
validity of feature calls.

An entity x is polymorphic if it can be attached to objects of more than one type.
The following are the possible circumstances for x to be polymorphic:

» the assignment x := y where y is of a different type from x or is
polymorphic
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* X is a formal routine argument
e X is an external function

A routine call is polymorphic if its target is polymorphic. A routine is a cat
(changing availability or type) if a redefinition changes its export status or the
type of any of its arguments. A routine call is a catcall if a redefinition makes it
invalid because of a change to its export status or argument type. The type rule
necessary to ensure validity of a call is that polymorphic catcalls are invalid i.e.
a routine call cannot be both polymorphic and a catcall.

7.1.8 Comments

The inheritance relation, covariant specialisation of features and generic classes
provide the facilities for dealing with evolution in Eiffel. However the use of
these mechanisms requires a means to guarantee the type safety of operations
such as routine calls and assignments.

Eiffel does not support subtyping. It defines a conformance relation to check for
compatibility between target and source objects. Thus, conformance is the only
relation that controls the validity of operations. Although conformance models

the inheritance patterns for features, it is essentially covariant and hence it is
possible to attach an object of a more general type to one which is a subtype.

Eiffel provides two mechanisms for dealing with this problem. The assignment
attempt is a construct that tests for the dynamic type of a source object at
runtime and performs the assignment only if it is type safe. The designers of
Eiffel claim that just as programming without covariance and descendant hiding
(ability of a descendant to override the export policies of its parents) will be too
restrictive, static typing will be too restrictive without assignment attempts. The
other mechanism for ensuring validity of operations is making polymorphic
catcalls invalid, as described in the previous section.

7.2 Type Matching

In object oriented languages, it is often necessary to define subclasses that
inherit binary methods from their superclasses. Since subtyping fails to capture
this form of evolution, type safe inheritance of binary methods during
subclassing is not possible. The concept of matching [Bru95, BCC+95, AC96,
Bru96] has been proposed to address this problem. Two languages that have
incorporated matching in their type systems are introduced here.
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PolyTOIL [BSG95, Bru96] was developed by Bruce et al at Williams College,
Massachusetts. The Tycoon object-oriented Language (TooL) [GM95, GM96]
evolved from the language Tycoon developed at Hamburg University. Various
features relevant to inheritance, polymorphism and evolution are described for
each language in the following sections.

Matching is a relation between two object types. It eases some of the
restrictions placed by the subtyping relation on inheritance while preserving type
safety and static typing. Since matching coincides with the specialisation of
method types in subclasses, generic code bounded by matching can capture the
evolution of types in object oriented languages.

7.2.1 Motivation

The aim of the PolyTOIL language is to achieve the following:
» support for incremental modification of code

* capturing accurate type information especially in the case of methods
inherited or redefined in subclasses

» type safe inheritance of binary methods
The motivation for designing TooL as a new language based on Tycoon was to
verify the following hypotheses:

» that a purely object oriented language leads to more uniform and easier
to understand program libraries

» that type matching increases code reuse in complex libraries
7.2.2 Syntax

The syntax of PolyTOIL is very similar to the one presented in section 5.3 to
illustrate object oriented programming.

A TooL program is a set of (mutually recursive) named class definitions. A
typical class definition in TooL is shown below in Figure 7.2.1.
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classaClass
private
X :Int
public
ml (x : Self) : Bool

Figure 7.2.1 : Class Definition in TooL

The keywordSelfindicates the self reference of classes. Figure 7.2.2 shows the
object type ofaClass

Interface aClass (Self)
{m1(x: Self) : Bool, . ..}

Figure 7.2.2 : Object Types in TooL

Object types contain only the method types. A class definition implicitly defines

its object type. TooL allows parameterisation of class definitions by an element
type. These classes are referred to as generic classes. It is also possible to
specify a bound on the element type.

classWriteStream (E <: Object)
put (e : E) : Void

Figure 7.2.3 : Parameterisation of Classes in TooL

In the example in Figure 7.2.8yriteStreams a generic clasg is its element

type andE is subtype-bounded bW9ybject This bound enables the programmer

to specify the basic methods that any element type will be required to support.
TooL also permits the parameterisation of individual method signatures.

It should be noted here that both languages use structural equivalence and hence
there is an implicit hierarchy of types and an explicit hierarchy of classes.

7.2.3 Subtyping

Subtyping, along with subsumption, provides a mechanism for using objects of a
type where objects of a different but related type are expected. The definition of
subtyping in PolyTOIL can be stated as :
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ObjectType{m : Tj} 1<j<k <: ObjectType{m: T} 1<i<|
where m and nj are methods andjTand T are method types
if 1) I<kandforeach£l, T'j<: T
2) no method type has a contravariant occurrenédydiype

Thus, in Figure 7.2.&tudenis a subtype dPerson

Person =<lass
var
name ="": string
methods

function getName(): string {return name}
end class

Student =class
inherits Person
var
id = 0: Integer
methods
function setld(newld: Integer) {id := newld}
function getld(): Integer {return id}
end class

function setName(newName: string) {name := newNanpe}

Figure 7.2.4 : Subtyping in PolyTOIL

In ToolL, the relation that A is a subtype of B is written as A <: B. The subtype
relation is defined by structural induction on object types. An object type called
Objectis the top of the subtyping lattice and the bottorNiis. The important

uses of subtyping are subsumption and bounded quantification with bounds

specified by subtyping.
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classWriteStream (E <: Object)
put (e : E) : Void

classFile
get: Char
put (ch : Char) : Void
close : Void

Figure 7.2.5 : Subtyping in TooL

In Figure 7.2.5File is a subtype ofVriteStream (Char) This means that if
classObijectis defined as shown in Figure 7.2.6

classObject
printOn (aStream : WriteStream (Char))

Figure 7.2.6 : Definition of ClassObjectin TooL

andstdoutis an instance of the claBge then the message send to a string literal
object in Figure 7.2.7 is valid.

"a string”.printOn (stdout)

Figure 7.2.7 : Inherited Method Call in TooL
7.2.4 Subclasses

The concept of subclasses is introduced to support the reuse of instance variables
and methods of an existing class (referred to as the superclass) in defining a new
class (the subclass). The common members are said to be inherited by the
subclass. In PolyTOIL, the keywosdiperis used in a subclass to refer to the
superclass from which it inherits. A subclass can modify a method it inherited
from the superclass. Thus subclasses support incremental modification. For
example, a subclass of a cldsint can be specified as shown in Figure 7.2.8
below.
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ColourPoint =lass
inherits Point modifying move
var
colour := green: ColourType
methods
function getColour(): ColourType {return colour}

procedure move(dx, dy: integer) {super.move; colour :F
red}
end class

Figure 7.2.8 : Subclasses in PolyTOIL

In an objectMyTypeis simply the type of that object since no inheritance is
possible at that level. In classes, it will have a flexible meaning. The following
example in Figure 7.2.9 illustrates the ussealf andMyType
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Node =class
var
value = 0: Integer;
next = nil: MyType
methods

function getNext(): MyType {return next}
procedure setNext(newNext: MyType) {next := newNext}
procedure attachRight(newNext: MyType)
{setNext(newNext)}
end class

DbleNode =class
inherits Node modifying attachRight
var
prev = nil: MyType
methods

procedure setPrev(newPrev: MyType) {prev := newPregv}
procedure attachRight(newNext: MyType)
{setNext(newNext); newNext.setPrev(self)]

end class

Figure 7.2.9 : self and MyType in PolyTOIL

In Node the instance variableextis declared to be of typklyType The
methods shown also make usévbfTypefor parameter and result types. For an
object of classNode MyType merely denotedlode However, whermNodeis
inherited byDbleNode the meaning oMyTypein the inherited features
automatically changes to refer@ileNodeeven though the features are defined
in Node

There are distinct hierarchies for subclasses and subtypes. It is possible to have
subclasses which are not subtypes of their superclasses and subtypes which are
not subclasses. Both concepts support reuse in different ways. If type B is a
subtype of type A then any operation available to A can also be performed over
B. This depends only on the interface information of objects. Subclasses allow
reuse of code inside classes i.e. in their definition.
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7.2.5 Type Quantification

Classes can be made generic by type parameterisation. Both PolyTOIL and
TooL support bounded parametric polymorphism. Figure 7.2.5 contains an
example of a class parameterised by a bounded type.

7.2.6 Inheritance

The use of inheritance in PolyTOIL has been illustrated in detail in section 7.2.4
which describes the use of subclasses in the language.

Figure 7.2.10 gives an example of inheritance in TooL.

classindexed (K <: Object, E <: Equality)
super Bounded (E), Sortable (E), Keyed (K, E)

Figure 7.2.10 : Inheritance in TooL

All objects of clas€Equality have the equality operation defined over them.
Classindexedinherits from three other classBeunded SortableandKeyed In
parameterised class definitions different element types can inherit from different
superclasses. Possible conflicts due to multiple inheritance are solved by
linearisation of the inheritance tree. In addition to methods, type parameters of
superclasses may also be refined during inheritance.

102



classPoint
super Equality
X . Int
y o Int

classSet (E <: Object)
add (e : E) : Void
includes (e : E) : Bool
iterate (F <: Object, unit: F, fun O F,:E): F): F

classPointSet (E <: Point)
super Set (E)
averageX () : Intgelfiterate (Ofun (total : Int, e : E)
total + e.x / size)}

Figure 7.2.11 : Refining Type Parameters in Subclasses in TooL

In Figure 7.2.11, cladBointSetinherits from clas$etbut refines the bound of
the type parameter fro@bjectto Point

7.2.7 Matching
The matching relation between two object types in PolyTOIL is defined by
ObjectType{m : Tj} 1<j < k <# ObjectType{m: Ti} 1<i<n

if n< k and for each< n, T} <: T

Object type A matches object type B if for every methed T in B there is a
corresponding methodjm Tj in A such that T'is a subtype of ;T This is a
weaker relation than subtyping. No assumption is made on the meaning of
MyType while determining whether two method types are in subtype relation.
Therefore the method type aftachRightin DbleNodewill be a subtype of the
method type iflNodeand the object type dbleNodewill match that ofNode.

It should be noted these object types are not in subtyping relation since
attachRighthas a contravariant occurrenceVbfType

In TooL, A matches B is denoted by A1<B. An object type A matches an
object type B if they are subtypes under the assumption that the corresponding
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Selftypes are equal. Matching does not support subsumption in general. It
supports inheritance and specialisation of methods with contravariant
occurrences of the recursion variable. As in the case of subtyping, matching is
also defined by structural induction on object types.

classEquality
"=" (x : Self) : Bool

classint
"=" (x : Self) : Bool
"+" (x : Self) : Self
" (x : Self) : Self

Figure 7.2.12 : Matching Classes in TooL

Classint matchesEquality in the example in Figure 7.2.12 above. A subtype
relationship is not possible between the two classes due to the contravariant
occurrence ofSelfin the method signature of "=". Matching allows the
following generic method, which tests the equality of two objects and returns the
negated result, to be defined as shown in Figure 7.2.13 below.

"I=" (T <*: Equality, x : T,y : T)
{tx=y)}

Figure 7.2.13 : Method Definition using Matching in TooL

The only necessary condition is that both arguments are of some type T that
matchesEquality. A generic method defined using subtyping instead of
matching will not accept objects of cldss as arguments even though it is type
safe to do so.

7.2.8 Type Checking self

In PolyTOIL, any subclass will always match its superclass but is not
necessarily a subtype. Subtypes always match. If the only occurrences of
MyTypein method types are covariant then the two types match iff they are
subtypes. Methods of an object are type checked under the assumption that
MyTypematches that object type. Though more method bodies can be type
checked if it is assumed thislly Typeis the same as the object type, they will not

be type correct when inherited. If object o of type S has a method m of type T
then 0.m has type T[ByTypd. The type of the message send in Figure 7.2.14
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below will beproc(DbleNodeTypewhereDbleNodeTypds the object type
corresponding t®bleNode

var aDbleNode, anotherDbleNode: DbleNodeType;
aDbleNode := new (DbleNode);

aDbleNode.setNext(anotherDbleNode)

Figure 7.2.14 : Typing Method Calls in PolyTOIL

During type checking, method bodies will have to be checked with some
assumption about the ty[@elf TooL allows the programmer explicit control
over this assumption.Self can be match-bounded, subtype-bounded or
equivalent. These conditions can be specified as demonstrated in Figure 7.2.15.

classEquality I match bound
Self <*: classEquality ! match bound
Self <:classEquality I subtype bound
Self =classEquality I equivalent

Figure 7.2.15 : Binding Self in TooL

The default is taken to be match-bound Séifis explicitly subtype-bound then

the subclasses of the class will always be subtypeSellfs match-bound then

subclasses will match the superclassSéifis specified to be equivalent then
any subclasses will have to have exactly the same type as the superclass.

Selfconstraints assumed during modular type checking are enforced when actual
subclassing takes place. Consider the possible casesSeiies bound to a

class C. IfSelfis bound by matching then method signatures of C are copied
into the subclass. If it is bound by subtyping then method signatures of C are
copied into the subclass and all inherited occurrenc&elbéire replaced by C.

If Selfis equivalent to C then method signatures of C are copied into the
subclass and a check is performed to make sure no additional methods are
defined or refined in the subclass.

7.2.9 Adding Bounded Polymorphism

Polymorphism is essential for cleanly expressing data structures such as
container classes and operations over them. Container classes represent
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collections of objects, usually of the same or related types such as a list of
elements. The similarity in different implementations of a list for different types
of elements can be captured by polymorphic code.

Some container classes require the support for a minimum set of operations from
the types of elements they can represent. A binary search tree will need
elements whose types will support comparisons. These operations can be
contained in a PolyTOIL object type as specified in Figure 7.2.16.

Comparable ©bjectType
equal : Func(MyType): Boolean;
greaterThan: Func(MyType): Boolean;
lessThan : Func(MyType): Boolean
end

Figure 7.2.16 : Operations for Comparisons in PolyTOIL

The language provides a construct to express the dependency that any type
which is kept in the binary search tree should support at least these operations.
It will not suffice to say that the element type has to be a subty@eraparable

since there are contravariant occurrencdgyfypein method types and hence

no non-trivial subtype can be found. On the other hand, matching can be used to
express this dependency precisely.

If some type T <#Comparablethen T will have at least these 3 methods each
with a function type which takes an argument of the same type as the receiver
and returns a Boolean. This mechanism for restricting type parameters using
matching is called bounded matching. The binary search tree example can then
be completed as shown below in Figure 7.2.17
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BTreeNode <lasgT <# Comparable; v: T)
var
value = v: T;
left = nil: MyType;
right = nil: MyType
methods
function getValue(): T {return value}

end class

BinSearchTree zlasgT <# Comparable)
var
root = nil: BTreeNodeType(T)
methods
function find(elmt: T): Boolean { . . .}
procedure insert(newElmt: T) {. . . }
function isEmpty(): Boolean {return (root = nil)}
end class

Figure 7.2.17 : Binary Search Tree using Matching in PolyTOIL

Bounded polymorphism in TooL is similar to form it takes in PolyTOIL. An
example of a polymorphic function bounded by matching is given in Figure
7.2.13.

7.2.10 Reconciling Subtyping, Matching and Quantification

Since a given piece of TooL code can refer to many types and type variables
each of which can be bound by either matching or subtyping, it is deemed
important to have type rules that refer to both matching and subtyping lattices.

The following rule states that 'within a static context S, a type variable X is a
subtype of a given type T, if within the same context, X matches an object type
with method suite M (written Object Type (Self) M) and it can be proved that
this object type is a subtype of T whereby all occurrences of Self within M have
been replaced by X'.

SEX <*: ObjectType (Self) M S, X <: T+ObjectType (Self) M [X /Sef] < T
SEX < T
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This rule provides a safe conservative approximation of the proof steps, taken by
the compiler, if the exact type structure of X is known. This rule is necessary to
prove, for example, that X is a subtype\did in Figure 7.2.18 and to ensure
type safety.

classEqualitySet (E <*: Equality)
super Set (E)
includes (x : E) : Bool {elements.sonfar{ (e : E) {e = x})}

Figure 7.2.18 : An Example
7.2.11 Replacing Subtyping by Matching

The systems described so far are static typing systems that support replacing of
methods by subtypes in subclasses, automatic updating of parameter types in
special cases and safe uses of covariance in parameter types. However, this
flexibility also results in increased complexity. Bounded polymorphism is
necessary to achieve expressibility but the bounds represented by matching are
more useful in this paradigm than those represented by subtyping. Matching is
claimed to be simpler and more natural. Moreover, the difference between the
two relations is quite subtle, depending only on the absence of contravariant
occurrences dflyType

Therefore, PolyTOIL seeks to replace subtyping with a generalised form of
matching to reduce complexity in the type system. In order to achieve this, the
matching relation has to be made primitive i.e. independent of the subtyping
relation. Its definition can then be refined to

ObjectType{m : Ti} 1<i< k <# ObjectType{m:Ti} 1<i<n iffn<k

This is a more restrictive definition that does not allow method types to be
explicitly changed in subclasses. Thus, object type A matches object type B if A
can be obtained by adding more methods to B. The object tyfysgnand
Studentlin Figure 7.2.19 will match while those BersonandStudent2will

not.
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Person =<lass
var
name = aName: NameTypel
methods
function setName(newName: NameTypel)
{name := newName}
function getName(): NameTypel {return name}
end class

Studentl =lass
inherits Person
var
id = O: Integer
methods
function setld(newld: Integer) {id := newld}
function getld(): Integer {return id}
end class

Student2 =lass
inherits Student modifying getName
methods
function getName(): NameType2 {. . .}
' NameType2 <: NameTypel
end class

Figure 7.2.19 : Using the New Definition of Matching

All uses of subtyping in parameters which are of object types are replaced by
polymorphic functions using bounded matching. A functetNameo be used
with objects of any type that matchidameTypetan be written

function setName(N <# NameTypel, newName: N) {. . .}

Figure 7.2.20 : A Match-bound Function

A new constructor # is introduced to simplify the notation. If T is a type then #T
is also a type. An object will be of type #T if it has any type that matches T, that
is

if a:S and S<# T then a: #T
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This also allows a form of subsumption:
if S<#T and a:#S then a:#T

The previous example can then be written as

function setName(newName: #NameTypel) {. . .}

Figure 7.2.21 : A Refined Definition of setName

The # constructor now gives at least the flexibility of subtyping. Only object
types can be annotated with #. Record types could be interpreted as degenerate
object types or a notion of matching could be defined for them which simply
corresponds to record extension.

The other important use of subtyping is in assignments to variables. To deal
with this case, #T is treated as the existential type# T.t (some type t that
matches T) to yield the rule:

if x:#T is a variable declaration and e:S for S<#T
then x :=e is type correct

It should be noted that #-types are not used as an abbreviation for bounded
matching here. They also provide greater flexibility than was possible with
subtyping. The following example in Figure 7.2.22 illustrates a possible use of
#-types.
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var myName: #NameTypel

Person lasg§NameType <# NameTypel, aName: NameTypq)
var
name = aName: NameType

methods
function setName(newName: NameType)
{name := newName}|
function getName(): NameType {return name}

end class

myName := aPerson.getName

Figure 7.2.22 : Using # Types

This extra flexibility does cause a problem in that it is no longer possible to
statically determine the exact type of a message send if it involves a binary
method. As explained before, if o : S and S <# ObjectType{m : T} then the type
of o.mis T[S /MyType]. However, if o : #S and T is a binary method then the
type of o.m cannot be determined since 0's type is only known up to matching.
Therefore where binary methods are needed, explicit bounded matching has to
be used.

This system does not allow method types to be changed in subclasses. It is
possible to deal with this problem by further generalising the matching relation.
This would need a matching relation to be defined on function types. It is not
incorporated into the language as it is believed that the resulting complexity
outweighs the benefits. However, a brief outline of how matching may be
extended to function types is given in the next section.

7.2.12 Extending Matching to Function Types

The previous definition of matching does not allow method types to be explicitly
changed in subclasses. To remove this restriction, it is necessary to generalise
matching by defining a matching relation on function types. The intended
definition can be expressed by the following rules:

Func(t<#a):r <# Func(t<#a'):r iff a'<#a
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Func(#a) : #r <# Func(#a') : #r' iff a' <#aandr<#r
Func(#a) : r <# Func(a’) :r iff a'<#a
The definition can then be refined to
ObjectType{n : Tj} 1<j<m <# ObjectType{m: Ti} 1<i<n
if n< m and for each< n, T} <# Tj

7.3 Other Languages

The subsections below examine how some other well known languages deal
with the issues of inheritance and binary methods.

7.3.1 Simula

Simula [DN66, GGH+91] was the first language to support inheritance. It
provides single inheritance. The current object can be referitbsdsllowed

by the qualifying class. Simula provides boolean operators to check whether an
object belongs to a class or is an instance of one of its subclasses. Virtual
declarations allow objects to access the innermost redefinition of instance
variables and methods to be accessed. All subclasses are treated as subtypes of
the superclass. If methods are over-ridden in subclasses then the changed
methods must be of the same type as those in the superclass. This restriction
avoids the problem caused by binary methods.

7.3.2 SmallTalk

SmallTalk-80 [GR83, GGH+91] supports multiple inheritance whilst
SmallTalk/V only provides single inheritance. The current object may be
referred to aself Methods may be over-ridden in subclasses. However,
SmallTalk does not have a static type system. All type errors are detected and
dealt with at run time.

7.3.3 Ada

Ada [You84] provides encapsulation through the package mechanism and
polymorphism through genericity of program units. However, inheritance and
subtyping are not supported by the Ada type system and hence a corresponding
problem with binary methods does not arise.
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7.3.4 C++

C++ [Str86, GGH+91] supports multiple inheritance. It uses the keyihs,d
without qualification, to refer to the current object. If methods are declared to be
virtual in the base class then the redefined methods in derived classes are
accessed when they are called from an object of a derived class. C++ does not
permit the types of over-ridden methods to be changed in derived classes. This
restriction prevents the problem of binary methods. C++ also provides run time
type identification which makes use of dynamic type cast to determine the actual
type of a class instance.

7.3.5 Java

Java [Fla97] supports single inheritance. However if a class is declared to be
final then it can not be extended to form a subclass. The keysupsatis used

in subclasses to denote the superclass and the keyhisrdn the body of a
method refers to the object through which the method is invoked. Inherited
methods may be over-ridden in the subclass by redefinition. An object
belonging to a subclass can be used in place of one of the superclass. A
dynamic method lookup is used to choose the correct method for a method call.

7.4 Summary

The object oriented languages Eiffel, PolyTOIL and TooL offer type level
solutions to the problems caused by type evolution. Eiffel uses a conformance
relation to determine when two types are compatible. Although this relation
captures the inheritance requirements, it does not guarantee type safety.
Therefore Eiffel uses assignment attempts and avoids polymorphic catcalls to
ensure that operations are type safe.

TooL and PolyTOIL make use of the matching relation to determine the
compatibility of method types. Both these languages use the same definition of
the matching relation. Methods of a class type checked under the assumption
that any occurrences MyTypeonly match the object type of the class, rather
than thatMyTypeis the same as the object type of the class. This assumption
ensures that inherited methods are type safe in the subclass since the meaning of
MyType in any subclass will always match the object type of the superclass.

The other languages considered in this chapter either deal with the problem
dynamically or restrict the redefinition of methods in subclasses in order to
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avoid the problem. Another type level solution to the problem of type evolution
in a more general context is presented in the next chapter.
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8  Extension Polymorphism

The problem of schema evolution in databases and how various systems deal
with this problem are discussed in chapters 6 and 7. The related problem with
covariant inheritance of methods in object oriented programming languages and
the different ways in which it has been dealt with in some languages were also
described.

Polymorphism offers abstraction over types in programming languages and is
therefore an important choice for addressing type evolution. Inclusion
polymorphism has often been quoted as a solution. This is mainly due to the
fact that one of the most common type changes, the addition of new fields to a
record type, corresponds exactly to the subtype relation for records. However,
inclusion does not always match the common evolution patterns of other type
constructors including functions. The terms subtyping and inheritance are often
confused and used interchangeably. This often leads to unsound or at best
dynamically checked languages.

A new mechanism for dealing with type evolution in persistent systems is
described in this chapter. The aim of this work is to provide explicit language
level support for type evolution. Instead of attempting to adapt a subtyping
mechanism to correspond to evolution, the changes to type definitions in
evolving persistent systems are investigated from first principles. The most
common evolution patterns for the different type constructors are then used to
formulate a new form of evolutionary paradigm called extension polymorphism.
The underlying hypothesis of this exercise is that by utilising this facility
programmers will be able to write code which will continue to be typed correctly
(soundly and statically) as the types of data it operates over evolve.

Extension closely models the process through which type definitions evolve by
adding more components or refining existing components. This form of
evolution is commonly referred to as additive evolution. The notion of
extension is formalised by defining an extension relation between types.
Appropriate language mechanisms are then derived to implement polymorphism
over this relation. The experiment is structured in three main phases:

» defining a formal model of evolutionary patterns
» deriving language mechanisms to support this model

* implementing these mechanisms and using them for applications
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The formal model and the language mechanisms are discussed in detail in this
chapter, a language supporting extension polymorphism is defined and its
soundness proved in Chapter 9 and issues of implementation are discussed in
Chapter 10.

Although extension is defined independently of any existing strategies for
capturing type evolution, it does not necessarily disallow any other
polymorphism mechanism from co-existing in the same system. For instance,
there is some interesting interaction between extension and inclusion
polymorphism which is further explored later in this chapter.

8.1 Examples of Extension in Persistent Systems

The patterns of additive evolution for different type constructors in evolving
applications in a persistent programming environment [MBC+87, MBC+93] are
given in this section. In each case the extent to which inclusion polymorphism
can model the changes mentioned is also described. The core language Base,
defined in chapter 2, is used for examples of code. In order to make it easy to
write down more interesting examples, a base type catiedg, which is a

string of characters, is added to Base and functions are allowed to have more
than one argument but it remains unchanged otherwise. It is important to
remember here that Base does not support any form of polymorphism.

The definition of refinement in this context is recursive. Whenever a type is said
to evolve by refining a component type, it can be assumed that the component
type evolves in a manner consistent with the general pattern of evolution
described in sections 8.2.1 to 8.2.4.

8.1.1 Records

Record types typically evolve by the addition of more fields or by the refinement
of existing fields.

type employeds { name :string ; addr : address }

type employee2as { name :string ; addr : address ;
scale Jloc(int ) }

type employee2bs { name :string ; addr : address2 }

Figure 8.1 : Record Evolution
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In the examples in Figure 8.1 above, tygmeployeemight evolve by addition of
the fieldscaleto employee2ar by refinement of the fieldddr to employee2b

The evolution fromemployeeto employee2acan always be modelled by
inclusion. Ifaddressds a subtype caddresshen the evolution temployee2b
is also captured by inclusion.

8.1.2 Variants

Variants evolve in two possible ways : the addition of a branch and the
refinement of the type of an existing branch.

type gradeis [ S : senior, | : intermediate ; J : junior ]

type grade2as| S : senior, | : intermediate ; J : junior ;
B : beginner ]

type grade2hls| S : senior, | : intermediate2 ; J : junior ]

Figure 8.2 : Variant Evolution

In Figure 8.2, typgrade may evolve tgyrade2aby the addition of branch B or
to typegrade2bby the refinement to the type of branch I.

Sincegrade2acontains an additional branch, it is not a subtypgratie and

hence this evolution can not be modelled by inclusion. The only case where the
inclusion relation captures additive evolution in variants is when a variant type
evolves by simply refining a branch type and the new branch type is a subtype of
the previous one. For example,ntermediate2is a subtype ointermediate

then the evolution frongradeto grade2bcan be captured by inclusion. In all
other cases, inclusion does not match additive evolution.

8.1.3 Functions

Function types evolve by refining their argument and result types. Thus, in
Figure 8.3, the function typgetAddrcan evolve tgetAddr2 getAddr3and
getAddr4by the refinement of the argument type, the result type and both types
respectively.

117



type getAddris fun ( employee- address )

type getAddr2is fun ( employee2. address)

type getAddr3is fun ( employee- address2 )

type getAddrdis fun ( employee2. address?2 )

Figure 8.3 : Function Evolution

The evolution of function types igetAddr2and getAddr4coincide with the

notion of covariant subtyping. The parameter type becomes more specialised as
the function type evolves. Inclusion polymorphism cannot capture these
changes since the subtyping rule for functions requires argument types to
become more general in a subtype.

Another interesting possibility is the evolution of a function type by the addition
of one or more argument types. Consider the function types in Figure 8.4 below.

type averageFurs fun (int, int - real )

type averageFunis fun (int, int, int - real)

Figure 8.4 : Evolution of Functions by Addition of Arguments

averageFuncan represent the type of a function which takes two integers and
returns their average as a real number. If the user now wishes to refine this
function so that it calculates the average of three integers then the type of the
new function can be represented dyerageFun2 Thus, the function type
averageFurhas evolved by adding another argument.

Functions which can support a varying number of arguments are called variadic
functions. If more arguments than necessary are supplied to such a function then
it ignores the additional ones. If fewer arguments than necessary are given, then
default values are assumed for the arguments without actual parameters. For
example, assume that both the function types in Figure 8.4 represent variadic
functions. A function of typeverageFun2can then be used in place of a
function of typeaverageFurnwith O as the default value for the third argument.
Conversely a function of typaverageFunmay be used in place of one of type
averageFunay ignoring the third actual parameter.
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This facility provides a mechanism for dealing with the evolution of function
types by the addition of arguments. However, in order to simplify the resulting
type system, this form of evolution is not supported by the extension relation
defined later in this chapter.

8.1.4 Locations

Mutability is explicitly modelled in Base by tHec type constructor. The
evolution of location types is the result of the evolution of the type of the value
contained in the location.

type deptis { manager loc ( employee ) ; workersint }
type dept2is { manager loc ( employee?2 ) ; workersint }

type dept3is { manager loc ( employee ) ; workersloc (int ) }

Figure 8.5 : Location Evolution

In Figure 8.5,deptevolves todept2when the type of thenanagerfield is
refined from location oémployedo location ofemployee2 Another commonly
observed change is when a component type which is not originally not defined
to be mutable to become so. The refinement faeptto dept3illustrates this
case.

Inclusion polymorphism allows only trivial subtyping over location types (that is
loc ( A) < loc ( A)) in a language which supports an explicit location
dereference operation. If dereferencing locations is performed implicitly then
the additional subtyping rulec ( A ) < A may also be allowed.

8.2 The Extension Relation

Based on the patterns in the previous section, the extension relation can now be
formally defined. The notation A B is used to denote that type A is extended
from type B. This means that A may be formed by extension from B.

8.2.1 Reflection
T - T foranytype T R1

Any type is an extension of itself.
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8.2.2 Base Types
T - B iff T=B forany base type B R2

Any type extended from a base type is the same as that base type, that is only
trivial extension, shown in the previous section, is permitted over base types.

8.2.3 Records
{li ZTi} (i=1,n) < {llj:T'j} (=1, m)
ffms<nandforkinl.. myl=Icvand T - Tk R3

A record type A is an extension of another record type B if and only if A has at
least the fields of B and, for the common fields in both types, the labels are the
same and the corresponding field types are in extension relation.

8.2.4 Variants
[li :Ti] (i=1,n) < [llj:T'j] (=1, m)
ffms<nandforkinl.. myl=Icvand T - Tk R4

A variant type A is an extension of another variant type B if and only if A has at
least the branches of B and, for the common branches in both types, the labels
are the same and the corresponding branch types are in the extension relation.

8.2.5 Functions
fun(p-q)-fun(p'-q") iffp- p'andg- Q' R5

A function type A is extended from another function type B if and only if the
argument type of A is extended from the argument type of B and the result type
of A is extended from the result type of B.

8.2.6 Locations
loc(p)-loc(p') iffp-p' R6
loc(p)- p R7

A location type A is an extension of another location type B if the type of values
A contains is an extension of the type of values contained by B. A location type
is an extension of the type of value it contains.
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8.3 Adding Polymorphism

Given the formal definition of the extension relation specified in the previous
section, polymorphism mechanisms over the relation which will allow the static
typing of extended types may now be defined.

8.3.1 Typing Extension Variables

The first step towards obtaining polymorphism is to derive a typing for
extension variables. This requires a mechanism that will allow expressions to be
typed as 'some type that is extended from T' where T is any legal type in the
language.

One way to achieve this typing is to introduceas an explicit type modifier,
allowing the syntactic notation T to signify extension from some type T.
Consider defining getEmpNaméunction, which takes aemployeend returns

the value of itsmamefield. If this function is required to operate over not only
employeebut any type extended from it then it can be specified as shown in
Figure 8.5.

let getEmpName #un ( e : — employee- string ) e.name

Figure 8.5 : Typing Extension

However, this notation causes problems with structural type equivalence as the
example in Figure 8.6 below shows.

let someFun fun (el : - employee ; e2 ;- employeg

Figure 8.6 : Equivalence of Two Types

In Figure 8.6, even thougil ande2 are both typed as employeethey can not

be assumed to share the same type. The only condition required by this typing is
thatelis of type which is extended froemployeeande2is of a type which is

also extended froremployee However this does not imply that they are the
same type. In order to specify the relationship that two parameters share the
same type in this context, a precisely typed algebra is needed.

To overcome this problem, a new typing based on the notion of extension type
variables is introduced. In addition to the type and value environments$n
introduced in section 2.4, a third environment calde created for these
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variables. e contains judgements of the form-tT where t is any type identifier

and T is any type in the language, including the ones composed from other
extension type variables. Extension type judgements in the language are
restricted to those of the form e : t where t is a member diwo expressions
which are typed by extension type variables are deemed to be type equivalent if
and only if they share the same type variable.

There are two ways of introducing extension type variables: explicit introduction
through the use of a form of bounded universal quantification and implicit
introduction through the application of operations to expressions already typed
with extension variables.

8.3.2 Explicit Extension Variables

A form of bounded universal quantification is used to introduce extension type
variables explicitly. However it is based on extension rather than inclusion. An
example of the use of this construct is given below in Figure 8.6.

let changeManagerfen [t — dept] (d: t, e : employee unit )

Figure 8.6 : Quantification using Extension

The term quantifier variable is used to refer to type identifiers introduced by
bounded quantification, such e Figure 8.6. The meaning gfas before, is
some type that is extended fratapt

To illustrate the point made about the typing of quantifier variables in the
previous section, consider the funct®ameAddin Figure 8.7 below.

let sameAddr fun [ emp — employee ] (el, e2 : empbool)

Figure 8.7 : Typing Quantifier Variables

Even though the structure empmay not be known exactly, the values denoted
by elande2can safely be assumed to share the same type.

An important difference between this mechanism and bounded universal
guantification is that this type abstraction does not imply inclusion. With

universal quantification bounded by inclusion the type quantifier always stands
for a type which is a subtype of the bound type. Therefore any operation defined
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over the bound type can be safely applied to values of the quantifier variable.
However, with extension polymorphism, the types denoted by the quantifier
variable are not intended to be in the subtyping relation with the bound type. As
a result, it is not always type safe to apply operations defined for the bound type
on the values of the quantifier variable. Figure 8.8 gives an example of this
case.

I' perl :loc ( person)

let assignPer fun ( pl : person) perl ;= pl

let polyAssign =fun [ per — person ] ( pl: per) perl :=pl

Figure 8.8 : Operations on Bound and Quantifier Types

In Figure 8.8, the identifieperl is of typeloc(person)wherepersonis not a

base type. The functicassignPettakes a value of typgersonand assigns it to

perl According to the typing rule for assignment this is type correct. Now
consider defining a polymorphic functiggolyAssignwhich performed the
assignment for values of any type that is extended frerson If it is defined

as shown in Figure 8.8 then the body of this function will not be type correct.
This is because an exact type match is required for assignment in order to
maintain type safety. It should be noted that in a system that supports subtyping
and subsumption if the bound specified is for inclusion as shown below in
Figure 8.9 then the body pblyAssigrwill type check.

let polyAssign =fun [ per< person ] ( pl: per) perl :=pl

Figure 8.9 : Bounded Universal Quantification with Inclusion

As in the case of the example in Figure 8.8, values belonging to the quantifier
variable in a universally quantified function can not claim all the operations
permitted for the bound type. The exact operations that are available to
guantifier variables are examined in section 8.4.4.

Thus the typing of these variables is more restrictive than for those introduced
by bounded universal quantification based on inclusion. This is to ensure the
soundness of the type system and to provide exact type information wherever
possible.
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The ability to relate quantifiers increases the expressiveness of the system.
Consider the example in Figure 8.10 below.

let aFun =fun [ e - employee, d- { manager loc( e ) }]
(p:e,t:d-e)
t.manager :=p

Figure 8.10 : Related Quantifier Variables

The definition of the quantifier variablé depends on the other quantifier
variablee. e stands for any type extended fremployeeandd stands for any

type extended from a record type that has a fiedshagerof typeloc( e ) The
semantics of extension over quantifier variables should be clarified to provide a
clear meaning fod in this context. In order to achieve a useful abstraction only
trivial extension is allowed over quantifier variables. This means that for a call
to aFun, defined in Figure 8.10, to be correctly typed, the two specialising
instances ok must be the same, rather than being in extension relation. Figure
8.11 gives some examples.

type deptis { manager loc ( employee ) ; workersint }
type dept2is { manager loc ( employee?2 ) ; workersint }

I el :employee ; e2: employee2 where employeePnployee
I dl:dept; d2: dept2

let a = aFun [ employee, dept] (el, d1)

let b = aFun [ employee?2, dept2 ] (e2, d2)

let c = aFun [ employee, dept2 ] (el, d2)

Figure 8.11 : Using Related Quantifier Variables

The first two function calls in Figure 8.11 are correctly typed since the actual
parameter supplied f&is the same in both instances of the quantifier variable.
But the third call toaFun is incorrect asdept2 has the component type
employeedutemployeenas been supplied as the actual parameter for the first
type variable.
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8.3.3 Implicit Extension Variables

Unlike explicit extension variables which are introduced by the programmer,
implicit extension variables are internally introduced by the type checker. Given
the definition of typeemployeein previous sections, consider the following
example in Figure 8.12.

let derefAddr =fun [ emp — employee ] (e : emp)
begin

letx = e.addr
end

Figure 8.12 : Implicit Extension Variables

The quantifier variablempstands for any type that is extended fremployee
Therefore the type.addris notaddressbut some type that is extended from
address When determining the type of variallehe type checker will create a
new identifier for this extension variable and add the extension binding to

The restrictions on extension, for example allowing only trivial extension over
base types and extension variables, sometimes permit the type checker to coerce
new implicit extension variables to known types.

let changeManager fein [ emp -~ employee,
dep- { manager loc (emp) } ]
(e:emp,d:dep)
d.manager :=e

Figure 8.13 : Location Evolution

In Figure 8.13, the type checker first derives the typd.ofanageras a new
extension variable bounded byc ( emp ) The type of the content of this
location is derived as another new extension variable boundethpgnd this
type can then be deduced todapitself since only trivial extension is allowed,
thus typing the two sides of the assignment as being equivalent.

8.3.4 Polymorphism over Type Constructors

We now present a case by case analysis of the use of extension polymorphism
with different type constructors. In each case, the operations allowed upon the
abstracted form are also discussed.
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8.3.4.1 Base Types

As stated earlier, only trivial extension is allowed over base types. Therefore the
abstracted form can be coerced to the bound type and all operations defined over
the bound type can also be used for the extended type.

type dept3is { manager loc ( employee ) ; workersloc(int ) }

let incWorkers =fun [ dep — dept3] (d: dep)
d.workers := @( d.workers ) + 1

Figure 8.14 : Operations on Extended Base Types

For example, the definition of the functiomcWorkers,which increments the
number of workers by one, in Figure 8.14 above is correctly typed since the type
of @d.workerscan be guaranteed to be exaatly

8.3.4.2 Records

Since extension and inclusion relations are the same for records, in their case too
all the operations defined for the bound type are available for the abstraction.

type deptis { manager loc ( employee ) ; workersint }

let getWorkers fun [ dep — dept] (d : dep- int ) d.workers

Figure 8.15 : Operations on Extended Records

In Figure 8.15 above, the operation to dereferencevtinkersfield is available

to any type that is extended froshept In general, any dereference operation
that is applicable to a record type is also applicable to any type that is extended
from it.

8.3.4.3 Variants

An extended variant type may belong to any of the branches of the bound or
some new branch of the extended type which is not known statically. A straight
forward solution to this problem is to restrict the use of the abstracted variant
values to within a multi-branch case project statement terminated by a default
clause.
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type gradeis[ S : senior,
| : intermediate ;
J @ junior ]

let projGrade sfun [ newGrade- grade ] (g : newGrade )
begin
let ans =project gas X onto
S: X;
. X;
J: X;
default : X
end

Figure 8.16 : Operations on Extended Variants

In Figure 8.16, functiomprojGrade operates over any type extended from the
variant typegrade If the value of extended type provided as actual parameter to
a call toprojGrade belongs to an additional branch of the extended type then it
will be captured by the default clause.

8.3.4.4 Functions

Consider the example in Figure 8.17 below.

let polyFun =fun [ aFun- fun (X - Y) ] (f:aFun);

Figure 8.17 : Operations on Extended Functions

In general, functior, supplied as parameter polyFuncan not be applied. The
only information on the parameter type is that it is extended fXowmnd
thereforef could only be safely applied when there are no extensioixs for
example wheiX is a base type. But in these cases, the quantified function is not
particularly useful.

However, extended function types can be used in a meaningful manner when
related quantifiers are used.
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let empPoly =fun [ empFunRec¢- { empFun :fun (emp) },
emp — employee ] (f: empFunRec, e : emp)
f.empFun (e)

Figure 8.18 : Operations on Extended Functions - 2

In Figure 8.18 above, the function call in the bodgmipPolyis valid since only

trivial extension is permitted over quantifier variables. More generally, if the
argument type of an extended function can be statically determined to be a
known type then the function can be applied in a type safe manner to a value of
this type.

8.3.4.5 Locations

Updates to locations are only allowed when the left hand side of the assignment
statement may be statically deduced to be the location type of the right hand
side.

let changeManager fein [ emp -~ employee,
dep- { manager loc(emp) } ]
(e:emp, d:dep);dmanager:=e

Figure 8.19 : Operations on Extended Locations

In Figure 8.19, for reasons explained in section 8.4.3, the type of the expression
d.managercan be statically determined to the location type of the type of
Therefore this update is valid.

Dereferencing a value of an extended type is always allowed though care must
be taken when specifying the type that is returned.

type deptis { manager loc ( employee ) ; workersint }

let DerefManager fun [ dep— dept] (d :dep);
let m = @( d.manager )

Figure 8.20 : Dereferencing Extended Locations

In the example in Figure 8.20, the typemofwill be t, wheret is some type
extended fronemployee
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8.3.5 Quantified Functions

Since quantified functions have been introduced as a new type constructor, the
definition of the extension relation needs to be modified to include the following
rule:

fun[t- X](p-q)-fun[t-Y](p'-¢qg) IiffX-Y,p-pandg-q

A quantified function type A is extended from another quantified function type
B if and only if the quantifier bound of A is extended from the quantifier bound
of B, the argument type of A is extended from the argument type of B and result
type of A is extended from the result type of B.

The work done on these functions so far indicates that useful abstractions by
extension over quantified functions can only be obtained by using related
quantifiers. However, the importance of allowing only trivial extension over
guantifier variables should be stressed here.

8.4 Interaction with Other Kinds of Polymorphism

Incorporating extension polymorphism into a language does not preclude the use
of other kinds of polymorphism in that language. At the risk of complicating the
type system of the language and obscuring the syntax for various abstractions,
extension polymorphism can co-exist, for example, with universal and inclusion
polymorphism.

There are some interesting interactions between extension polymorphism and
inclusion polymorphism with subsumption described in chapter 5. In order to
explain the possible interactions, the concepsositiveandnegativetypes are

first introduced. These describe subsets of the type space which have the
following properties:

positive = {A0 Type | X— A implies X< A}
negative = {A0 Type | X- A implies A< X}

For exampleaRe¢ defined in Figure 8.21, is positive as any type extended from
it is also a subtype of it.

type aReds{a:int;b:{c:bool;d:real}}

Figure 8.21 : Positive Interaction
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On the other handVarin Figure 8.22 is negative.

type aVaris[a:int ;b :[c:bool;d:real]]

Figure 8.22 : Negative Interaction

Notice that these sets, which are not disjoint, both include many non-trivial
members. It is relatively straightforward to characterise the notions of positive
and negative by examination of the combination of the structures of the
inclusion and extension relations over each type constructor. The result is that
some statically known extension relationships may be used to imply inclusion
relationships, and therefore the application of the subsumption rule thus
allowing type safe substitution.

8.5 Summary

A new mechanism for dealing with type evolution in persistent systems at the
type level has been described. The concept of extension seeks to capture
additive evolution which is one of the most common forms of evolution in
persistent systems. An extension relation which formalises this concept is
defined for all the type constructors introduced in Base. A programming
language mechanism which provides polymorphism over this relation is
presented. Finally possible patterns of interaction between inclusion and
extension polymorphism are examined. Chapter 9 presents a language extended
from Base that supports extension polymorphism and provides a proof of
soundness for its type system.
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9 A Language with Extension Polymorphism

The core language Base, defined in Chapter 2, is used as a starting point to
incorporate extension polymorphism. The resulting language is called Ext. The
additions and changes to Base which are needed for implementing extension
polymorphism are described in sections 9.1 to 9.6 and a proof of soundness for
the new type system is given in section 9.7.

9.1 Types

The only change required to the definition of types is the addition of quantified
functions.

To= ... fun[tT]J(T-T) ...

These functions are quantified by specifying a quantifier variable and the
extension bound type both within square brackets and separated by a left arrow.
The argument and result types as usual are given within round brackets
separated by a right arrow.

9.2 Expressions

The new expressions in the language can be defined by the following syntax :

E:x= ... |[fun[t-T](x:T- T)E | E[T]J(E) | ...

where

Syntax Interpretation

fun[t - T](x:T1 -T2 )E guantified function value

EifT](E2) guantified function application

Figure 9.1 : New Expressions in Ext

A function value is created by specifying extension type variable and the
extension type if the function is quantified and the formal parameter, argument
and result types and the expression for function body. A function can be applied
by supplying it with the extension type within square brackets and an actual
parameter for the argument within round brackets.
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9.3 Typing Rules

In addition to the environmentsandmr introduced in Chapter 2 for holding type

and identifier bindings, a new environmens$ added here to contain extension
bindings. The pair < {, T» > in ¢ indicates that type 1Tis extended from type

To. A new declaration functioextDeclis defined to take a list of bindings as its
argument and updatewith the new bindings. In sections 9.3 through to 9.7, the
convention adopted for naming extension variables that will be introduced by
the type checker is that a variable that stands for a type extended from type T
will be denoted by t. It should be noted that only the new rules that are required
to incorporate the effects of adding extension polymorphism are presented in
this section. The type rules for the other constructs are the same as those
described in Chapter 2 for the type system of Base.

9.3.1 Base Types

gt —intg, T, mre: t
g T, Mte:int

[iIntExt]

If ¢ with a binding <tint>, t andmn and imply that an expression e is of type t
then e can be deduced to be of tyge

gt — bool::g,, T, mre:t
g, T, mte : bool

[boolExt]

If ¢ with a binding <tpbool>, t andm and imply that an expression e is of type t
then e can be deduced to be of thpel.

gt —unitig,, T, mre:t
g, T, Mte : unit

[unitExt]

If ¢ with a binding <tunit>, t andm and imply that an expression e is of type t
then e can be deduced to be of typé.

9.3.2 Records

gis<{1: T} g, 1, mre:s
gis—{1:T}Yugut « Tug, 1, mrel :t

[recExtDeref]

If, from ¢ with a binding that implies that s is extended from a record type with
at least the field | of type T, andm, the expression e can be deduced to be of
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type s then the result of the dereference operation @n gis of type t where t
is extended from T.

9.3.3 Variants

eT,mre: T g1, ke, T giv[l:T,1e,, T, TFe:V
EV < [T, IMugut « Tig,, T, TEexp :t

[varExtProj]

where exp stands for the project operation on the variantgygt e as x

onto | { :T jine 1 else e>

If expressions gand e are both of type T and if from with a binding that
implies that v is extended from a variant type with at least a lab4dlith is of

type T;, T andm, the type of e can be deduced to be v then the project operation
on e has type t where t is some type that is extended from T.

9.3.4 Quantified Functions

gt <Tug, T, mx:Tmtre: T,
er,mHfun t «T) x: T,-T,) e:fun[t-TNT,-T,)
[gFunValue]

If ¢ with a new binding <t, T >, andn with a new binding < x, 1> imply that
expression e is of type,Then the quantified function expression [t — T]
(x:T 1 -T2)e isoftypefun[t - T](Ty - T2).

e, mre:funft « TI(T,-T,) erT,«T g1, mre: T[T,/ 1]
Eyrynl_e[T3](el)'T2[T3/t]

[aFunApp]

If expression e is of a quantified functiontyjp@ [t -« T](T1 - T2 ), type &
is extended from type T and expressigiiseof type | with any occurrences of t
replaced by T then the expressiosi T 3 ](e 1) is of type T with any
occurrences of tin it replaced by.T
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9.3.5 Locations

&S loc(T)g, 1, Tte:s

[locExtDeref]
s loc(T)igut - Tig, T, mTHE@ : t

If type s is extended from typec( T ) and the type of the expression e can be
deduced to be s then the dereference expregsmnof type t where t is some
type extended from T.

9.3.6 Infinite Union

gt —any:e,, 1, mre: t

[anyExt]
g, T, ke any

If ¢ with a binding <t,any>, t andmn imply that e is of type t then e can be
deduced to be of typamny.

9.3.7 Extension Quantifier Variables

gls—tugut ~Tig, 1, TEHE:S

[quantExt]
gt —Tig, T, TEe: t

If ¢ with the two bindings < s, t > and < t, Tegndmr imply that expression e is
of type s then e can be deduced to be of type t.

9.4 Semantic Context

The semantic context for quantified function types is specified in Figure 9.2
given below.

Type Context Denoted by

fun[t -« T](Ty -~ T2) | the set of quantified QFunction (( T,
functions from[ T1] to [T1],[T2])
[ To] with [ t] in both
bounded by T ]

Figure 9.2 : Semantic Context for Quantified Functions
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9.5 Meta-operations

The meta-operations defined over quantified function types are described in
Figure 9.3 below.

Semantic Type Meta-operations

QFunction (T, T, T2) | mkQFun : ( variable, Type, Expression, variable
environment QFunction (T, T, T2))

gApply : (QFunction (T, T, T2), Type, Ty - T»)

Figure 9.3 : Meta-operations on Quantified Functions

Quantified functions have make quantified functiometa-operation which
takes the quantifier variable, the bound type, the expression for the function
body, the parameter variable and the environment in which the expression is to
be evaluated and returns a quantified function. dpely operation takes a
guantified function, a type and a parameter value and returns a value of the result

type.
9.6 Semantics

The semantics for quantified functions can now be defined in terms of the meta-
operations.

9.6.1 Quantified Functions

[fun[t - T](X:Ty - T2)elenv=mkQFun(t, T, e, x, Env) D29
[elT](e2)lenv =aApply ([ e]en T.[ & env) D30
9.7 Proof of Soundness

A proof of soundness of the type system of Ext is given in this section. As
before, soundness of typing is proved by structural induction. However, the
definition of soundness is extended to incorporate the new extension
environment as follows:

E,T,T[ |' eTD [e]Ean[T]g"[
wheredi O Env,0 Omn.[ Env.i] O mi]

Only those expressions which are affected by extension polymorphism and the
new expressions are considered here. The proof for the rest remains the same as
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that given in Chapter 4 for Base. The different type constructors with extension
are dealt with in Sections 9.7.1 t0 9.7.6.

The notation used in the proof is similar to that used in Chapter 4 for Basg. Env
is used to denote Env containing a binding b. The same notation is used for
environments, t andmn.

9.7.1 Base Types with Extension

Expression e, T, Fe:int
To be proved [elenvO[int]g ¢
Inductive Hypothesis [elenvOltle _int
since & _ int, L, T F €t Dby type rule [intExt]
Inductive Step
[elenwOlt]le _intt from hypothesis
Since any type that is extended from a base type is identical to that base type
(extension relation definition rule R1),
t=int

Therefore| e]gny O [ int J¢

Expression g, 1, T+ e :bool
To be proved [ e]envO[ bool]e ¢
Inductive Hypothesis [elenwDO[tle _ poot
since & _ pool T, T F € : t by type rule [boolExt]
Inductive Step

[elenvO[tle . poolt from hypothesis

Since any type that is extended from a base type is identical to that base type
(extension relation definition rule R1),

t = bool

Therefore] e]gny 0 [ bool]¢ ¢

9.7.2 Records with Extension

Expression e,,mkel:t wherett T
To be proved [e.I]Em,D[t]gsg{l:T}ﬁtleT
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Inductive Hypothesis [ €]gny0[ S]eg (:ThT
sinceg, (: T LmMEe:s by type rule [recExtDeref]

Inductive Step

[ ellenv=getL([ e]env) by D15

[elenvOlsles. (1731 by hypothesis

Since getL takes a Record and returns a value of the type of field | of that record

and s is extended from a record type with a field |, getL is applicable to a value
of type s and will return a type that is extended from the type of I. Thus,

getL([ e]Env)D[tﬂss(_ {(1:TihteT T

le.[ellenwO[tles (1.1t comt

9.7.3 Variants with Extension

Expression g, 1, F project easxontol: Tjine elsee: T
To be proved | project easxontol: T;in e elsee |gny O
[Tley - piomigte
Ind. Hypotheses [elenvO[ V]e, [1:Ti5 T and
[ el]Ean:sndQIe]Env)D [Ti] U [ T]e rand

[e]enwO[ Tle
sinceg,, _ [1:Tifh LT Fe:v,

&, -Tire: T

ande,,mke:T by type rule [varExtProj]
Inductive Step
[ project easxontol: Tjin e elsee ] gny =
if( fst( [ elen) =1, [ €] Enw = snag ejenvyorTi 1+ [ €2JEn) by D17
But[ eJenvO[ V]e, _ 1.7y randl € envy = snagejenvyopmi 100 Tle

and[ e JenvO[ Tle by hypotheses

But[ [I:T;]*]e = Pair(label,[ TiJe 1)
Since if is a function that takes a Boolean and two expressions of the same type
and returns an expression,
if( fst([ elenv) =1 [ € Jeny = snag elenv)of il - L €2lEn) 0L Tlex

[ project easxontol: Tijin e elsee | Envy _[j:7;1" O [ Tle
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9.7.4 Quantified Functions

Expression eLmbfun[t - T)(x:Ty - To)e:fun[t - T](Ty - T2)
Tobeproved [fun[t -~ T](x:Ty - T2)e]gnD
[fun[t « TI(T1 -~ T2)len
Inductive Hypothesis [ €]gny, -, - 7 O [ Toley _ 1t
sinceg, M., kel
by type rule [qFunValue]
Inductive Step
[fun[t « T](x:T1 - T2)elgnw =mkQFun(t, T, e, x,Env) by D29
[ elenw=y. 1 O T2ley _ 11 by hypothesis
Since mkQFun is a function which takes a variable, a type, an expression, an
identifier and an environment and returns a QFunction and from the hypothesis

it can be seen that when x is assigned a value of typadt is extended from T
then e will be of type 7,

mkQFun(t, T, e, X, Env) QFunction (T, T, T»)
[fun[t « T](T1 - T2)Je r=QFunction (T, T, T2) from table 8.24

Expression e,k e[Tz](e): T2
To be proved [E[Ts](el)]EnvD[Tz[t=T3]]sT3hT,T

Inductive Hypotheses elenvO[fun[t « T](T1 - T2)J¢ rand

el]EnVD[Tl[t:T?)]]STsHT,T
sincesTsHT,r,n Fe:Ti[t=Ts]and

enLmnbFe:fun[t-T](T1- To)
by type rule [gFunApp]

[
[

Inductive Step

[e[Tz](e)]env = 9ApPPlY([ e]env, T3, [ €1 lenv) by D30

[elenvO[fun[t « T](T1 - T2)J¢ rand
[elenD [Tl t=Ts]Jer, 11 by hypotheses

Since gApply is a function which takes a QFunction, a type and an Expression
of the argument type of the function and returns a value of the result type of the
function with any occurrences of the quantifier variable replaced by the type
parameter,
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gApply([ eJenv Tz, [ €1 ]env) O[ To[t=Tz] ]8T34_ T.1T
i-e-[e[T3] (el)]EnvD[T2[t:T3]]£T3HT,t

9.7.5 Locations with Extension

Expression e,mMFE@e:t
To be proved [@e]EnVD[t]Eskloc(T),tkT,T
Inductive Hypothesis [ elenvOl Sl og(T) T

sinceeg oty LMEEIS

by type rule [locExtDeref]

Inductive Step
[ @ eJenv = get( e]en) by D23
L elenvOlSles  joqT) 1 by hypothesis
But s is doc type as it is extended from one.
Since get is a function that takes a Location and returns a value of the content
type,
get([ elen )T [ tleg _ toq(T) 1. ToT

i.e.[ @elenvO[ t]eg log(T), t T 1

9.7.6 Infinite Union with Extension

Expression T, T F e:any
To be proved [ elenvO[ anyJe «
Inductive Hypothesis [ €JenvO[ t]e; _ gny 1t

since g _ ,m+ e:t bytype rule [anyExt]

any’
Inductive Step

[elenvOltle _anyt from hypothesis

Since any type that is extended framy is identical toany (extension relation
definition rule R1),

t=any

Therefore] eJgny 0 [ any Je, 1
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Since the soundness of typing has been proved for all expressions affected by
the addition of extension polymorphism to a type system that was already
proved sound, it has been shown that the resulting type system is also sound.

9.8 Summary

The experimental language Base is extended to incorporate extension
polymorphism. A formal definition of the resulting language Ext has been given
and the soundness of its type system proved.
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10 Type Checking of Extension Polymorphism

This chapter describes a type checker implemented for extension polymorphism.
The design decisions made for implementation of the type checker, the type
representations chosen and the process of type checking itself are explained.

10.1 Implementation Strategy
10.1.1 Functionality

The main focus here is to implement a type checking algorithm for extension
polymorphism. Thus, while lexical analysis, name and scope checking and
syntax analysis are needed in order to type check the code in this context, it is
not necessary to generate executable code for these programs. For this reason,
code generation is omitted from this experiment.

The type representations chosen are similar to those presented in [Con88] for the
Napier88 type checking module. The type equivalence algorithm is again based
on the algorithm presented in [Con88] and [Con90].

10.1.2 Implementation Procedure

The type checker for extension polymorphism is written in S-gigok79,
CMB82]. The first step is to implement a type checker for the core language
Base. Since Base does not support any form of polymorphism, implementing a
type checker for it is a relatively straight forward task. The type checker is then
extended to incorporate support for the extension relation and the polymorphism
mechanism over it.

The following are the important parts of the implementation:

* type representations

» type equivalence checking

» type extension checking

» dealing with extension quantifiers
Each of the above is discussed in detail in the following sections. Since one of
the main aims of the implementation is to check the validity and the possibility

of supporting such a polymorphism mechanism, efficiency, in terms of space or
time, is not an important consideration during implementation. Thus, for
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example, no attempt is made to normalise the graph representation or optimise
the type checking algorithms.

10.2 Type Representations

As a first step towards implementing the type checker, type representations are

defined for the different type constructors in the language. Since Base contains

type constructors of various structures and as space efficiency is not a major

goal, a graph representation is used to model types. Therefore types here are
represented as directed graphs with nodes representing the various type

constructs in the language and edges representing the links between types. The
general format for any node is shown in Figure 10.1 below.

label specificinfo | references

Figure 10.1 : General Type Representation

Thelabel part of the representation identifies the type construct associated with
the type. The table in Figure 10.2 below lists the labels corresponding to the
various type constructs in the language.

Type Construct Type Label
base type base
record rec
record field field
variant var
variant branch branch
function fun
location loc
any any
quantifier variable guant
guantified function gfun

Figure 10.2 : Type Labels

Thespecific-infopart contains any information that is specific to the type being
represented, such as the names of base types. Figure 10.3 shows a table listing
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the specific information required for each type construct introduced in Figure

10.2.

Type Construct Specific Information
base type name of the base type
record none
record field field name
variant none

variant branch

branch name

function none
location none
any none

guantifier variable

a unique identifier

guantified function

none

Figure 10.3 : Specific Information

A quantifier variable requires a unique identifier as its specific information in
order to distinguish different instances of the same quantifier.

Thereferencegpart of the type representation contains links to any associated or

component types. Whenever there is a list of types being referred to by a node,
there is an implicit ordering of the elements in the list which may be used as part
of the type information. The table in Figure 10.4 lists the references for various

type constructs.
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Type Construct References to
base type none
record list of field types
record field field type
variant list of branch types
variant branch branch type
function list containing parameter and result typégs
location type contained in location
any none
quantifier variable bound type
guantified function list containing quantifier, parameter angd
result types

Figure 10.4 : References

Sections 10.2.1 to 10.2.8 give examples of type representations for every type
constructor in the language.

10.2.1 Base Types

Each base type is represented by a single node. For example, the type in Figure
10.5 below is represented by the node shown in Figure 10.6.

type lisint

Figure 10.5 : Integer Example

"pbase" "int"

Figure 10.6 : Representation for Integers

10.2.2 Records

Records are represented by a node whefsgencegart points to a list of other
nodes representing the fields of the records. Each field node has the
corresponding field name as figecificinfoand itsreferencegpoints to the node
representing the type of the field. Thysersonin Figure 10.7 will be
represented by the type graph in Figure 10.8.
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type Persons { age :int ; graduate bool }

Figure 10.7 : Record Example

rec

41—

— | "field" | "age" |

——®("base] "int"

——%fiela | F2|

uate"

——» "basel"bool"

Figure 10.8 : Representation for Records

10.2.3 Variants

The type representation structure of variants is similar to that of records. Their
referencedield points to a list of nodes which contain the names of the branches
and links to their types. Therefore, the variant tBpsein Figure 10.9 will be
represented as shown in Figure 10.10.

type Baseis [ | : int ; B : bool ]

Figure 10.9 : Variant Example
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"Val’"

@

—+—»['branch’| "|" |

—+—®{"base] "int"

——®'branch| "B" |

—|—pp{"base]"bool"

Figure 10.10 : Representation for Variants

10.2.4 Functions

The references part of a function type representation points to a list of two

elements. The first element of the list points to the argument type node and the
second to the result type node. Thus the function type in Figure 10.11 is

represented by the graph in Figure 10.12. If the function does not have either of
these components then the corresponding list element points to nil.

type squaras fun(int - int)

Figure 10.11 - Function Example
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"fun" | "™ |

——®{"base"

Int

Figure 10.12 : Representation for Functions

10.2.5 Locations

A location type is represented by a node whaserencesart points to the
node representing the type of the content. For exanmplec in Figure 10.13

has the representation shown in Figure 10.14.

type intLoc is loc( int )

Figure 10.13 : Location Example

"lOC" nn I

——®("base"

llintll

Figure 10.14 : Representation for Locations

10.2.6 Any

The infinite union type is represented by a single node with kel Figure

10.16 illustrates this.
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type anyTypeis any

Figure 10.15 : A Type Alias for any

"any"| ™

Figure 10.16 : Representation for any
10.2.7 Quantifier Variables
Quantifier variables are represented by a node wrediseencegart points to

the representation of the bound type of the function. For example, the quantifier
variablet from Figure 10.17 is represented as shown in Figure 10.18.

type getAgeFunsfun|t - Person] (t int)

Figure 10.17 : Quantifier Variable Example

"quant"| "t |

——9»| personType

Figure 10.18 : Representation for Quantifier Variables

personTypean Figure 10.18 stands for the representation of the record type
Personshown in Figure 10.8.

10.2.8 Quantified Functions

The representation of quantified function types is based on that of monomorphic
functions. The references part of the node contains a list of three elements in
this case. In addition to the argument and result type representations described
in section 10.3.4, there is also a link to the quantifier type representation
described in section 10.3.7. Therefore quantified function dypein Figure

10.19 will be represented as shown in Figure 10.20.
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type gfunisfun [t - int ] (t - t)

Figure 10.19 : Quantified Function

"gfun"| ™ I

—t—®'quant] "t" |

¢ —{"base'| "int"

Figure 10.20 : Representation for Quantified Functions

10.3 Type Checking
10.3.1 Type Equivalence Checking

The type system described supports structural type equivalence. Given the basic
representation for types, shown in Figure 10.1, a structural type equivalence
checking algorithm can be defined recursively over it. In essence an algorithm
to determine the equivalence of two type representations should check for the
following:

» equality of the two labels
» equality of the two specific information parts

* recursive equivalence of types being referred to

If the general type representation can be written as shown in Figure 10.21 below
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type typeReps { label : string ; specificinfo :string ;
references : list [ typeRep ] }

Figure 10.21 : Code for Type Representation

then a basic recursive equivalence checking algorithm can be defined as

rec leteqType =fun ( a, b : typeRep. bool)

typeldentity( a, b br

(a.label = b.label &nd ( a.specificinfo = b.specificinfognd
egList( a.references, b.references )

&

egList =fun (p, q: list [ typeRep } bool)

(pisnil and qis nil ) or

(~(pisnil )and~( gis nil ) and eqType( head( p ), head( gand
egList(tail(p), tail(q)))

Figure 10.22 : Basic Type Equivalence Checking Algorithm

These definitions are based on the ones presented in [Con90]. If the two types
being checked for equivalence are identical then their equivalence is decided
immediately. Otherwise a recursive scan of the type graph is performed. This
algorithm suffices for type equivalence checking in Ext.

10.3.2 Type Extension Checking

The algorithm for determining whether two types are in the extension relation is
structurally similar to the type equivalence checking algorithm. It is based on
the definition of the extension relation given in Chapter 8. An outline of this
algorithm is given in Figure 10.23 below.
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let extType =fun( t1, t2 : typeRep. bool)
typeldentity( t1, t2 por
casetl.labelof
"quant” . tl.label = t2.lalzeid
t1.specificinfo = t2.specificinfand
egList( t1.references, t2.references )

"loc" :if t2.1abel = "loc"then
extList( t1.references, t2.references)
elseeqType( head( tl.references ), t2)

default . tl.label = t2.labahd
t1.specificinfo = t2.specificinfand
extList( t1.references, t2.references)

Figure 10.23 : Checking for Extension

extTypechecks whether the type represented by t1 is extended from the type

represented by t2. Since any type is extended from itself, if two types are

identical then they are in the extension relation. As with type equivalence, this

property is detected immediately. In all other cases, a recursive scan of the type
graph is performed to determine whether the two types conform to the relation.

For all type constructors except quantifier variables and location types, equality
tests on théabel andspecificinfofields and a recursive pairwise check of the list

of references will complete the extension test. Quantifier variables can only be
in the extension relation if they are equivalent hence the same definition as
before. If one of the types is a location then there are two possibilities for

extension relation. If the second type is also a location then the two component
types will have to be in extension relation. Otherwise the component type of the
first type and the second type have to be equivalent according to the rules in
Figure 10.22.

10.3.3 Dealing with Extension Quantifier Variables

Since extension quantifier variables play a major role in the polymorphism
mechanism implemented here, a detailed account of how they are dealt with by
the type checker is presented in this section.
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10.3.3.1 Creating Extension Quantifier Variables

Chapter 8 presents a description of the two kinds of quantifier variables.
Explicit quantifier variables are created explicitly in the program through the
definition of quantified functions, while implicit variables are created internally
by the type checker as a result of the application of operations on values
belonging to other quantifier variables.

The type checker provides a functiquantifier with the following interface to
create a type representation for quantifier variables.

let quantifier = fun( gld : string; bType : typeRep typeRep )

Figure 10.24 : Signature ofjuantifier Function

Thus it takes the unique identifier for the quantifier variable and its bound type
and produces a quantifier type representation with the identifier as specific
information and theeferencegointing tobType

Quantifier variables can only be explicitly created by defining quantified
functions. Consider the example in Figure 10.25 below.

let getAgeFun fun[t - Person] (p:t int)

Figure 10.25 : A Quantified Function

In this case, the type checker will perform the following actions. It declares the
extension relation betwedrandPersonby entering the identifier and the type
representation dPersoninto the current scope of tkeenvironment. It checks
whether the bound type is one over which only trivial extension is allowed. If
this is the case then the <identifier, type rep> pair is entered into the current
scope of thea environment since the identifier has to stand for the bound type.
Finally a type representation for the quantifier variable is created, using the
guantifier function specified in Figure 10.24, to be used as part of the type graph
for the function.

Implicit quantifier variables may be introduced as a result of two operations:
dereferencing a field of an extended record or dereferencing an extended
location. In these instances the type checker produces a unique identifier to
stand for the result type of the operation. Consider the record dereference in
Figure 10.26.
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type Addresss { town : string }
type Persons { name :string ; addr : Address }

let assignAddr fun[t - Person](p:t)
begin

let a := p.addr
end

Figure 10.26 : Dereferencing an Extended Record

When it gets to the expressipraddr, the type checker will generate the string
*t_addr as the identifier for the new quantifier variable. If an extended location
type t had been dereferenced then the stitin@ is generated. Once the unique
identifier is known, the type checker carries out the functions specified earlier
for explicit quantifier variables i.e. the necessary entries are made in the
appropriate environments and a type representation is constructed for the
quantifier variable using the identifier generated.

10.3.3.2 Using Extension Quantifier Variables

The naming and type representation scheme described above allows the type
compatibility of extension quantifier variables to be detected.

Whenever the function that constructs type representations in the type checker
encounters an identifier it checks the current scope afén@ironment and then

the ¢ environment to check whether the identifier has already been declared.
Checking them in that order also means that the most specific type can be
associated with the identifier. For example, in Figure 10.25, once the type
representation for the explicit quantifier variabl@as been constructed and
added to the necessary environments, it can then be referred to as the type of the
argument.

Generating strings during dereferencing in a standard manner to stand for
implicit quantifier variables also means that other static dereferences in the same
scope can be detected to be equivalent. For example, considdéatige Addr
function defined in Figure 10.27 below.
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type Addresss { town : string }
type Persons { name :string ; addr : Address }

let changeAddr fun[t - Person](p,q:t)

begin
let a := p.addr
let b := g.addr
a==>b

end

Figure 10.27 : Type Compatibility

The same identifier is generated to denote the implicit quantifier variable for
both dereferences. This validates the third assignment operation.

10.4 Summary

An implementation of the extension relation and polymorphism mechanism
defined over it described in Chapter 8 is described. The type representations for
different type structures are illustrated. The algorithms used for type
equivalence checking and checking for the extension relation are described. The
treatment of extension quantifier variables in the type checker is presented.
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11 Conclusions
11.1 A Polymorphic Type System for Evolution
11.1.1 Aim and Motivation

The aim of the work in this thesis is to develop a polymorphism mechanism that
deals with additive evolution in persistent programming systems. In databases
and persistent systems, evolution is unavoidable. Given this fact, it is necessary
to devise means of ensuring the soundness and consistency of programs and data
with the changes that are constantly made. The concepts of subtyping,
inheritance and evolution have often been confused and used interchangeably,
with the end result that subtyping is used for situations and purposes which it
does not naturally capture.

An example of such use is the inheritance of binary methods during subclassing
in object oriented languages. If evolution demands that a subclass is defined
using an existing class, it is common for the subclass to inherit some features of
its superclass and possibly redefine them in its body. If these features are in the
subtyping relation with the original features of the superclass then they may be
used wherever the original features are used. However a problem occurs in the
case of binary methods. The subtyping rule and the general evolution pattern for
these function types do not coincide. Using subtyping to capture this evolution
can lead to unsound systems, or in the best case, dynamic checks to ensure type
safety.

The motivation for this work is the lack any mechanism that is particularly
designed for dealing with additive evolution.

11.1.2 Related Work

Programming languages and database systems have used various strategies to
cope with the problems caused by evolution. The object oriented programming
language Eiffel uses covariant subtyping and dynamic type checks to overcome
the problem of the inheritance of binary methods. In this instance, two function
types are treated as being in the subtype relation even though the argument of
the subtype is covariantly overridden as opposed to the contravariance condition
demanded by Cardelli's subtyping rules. The dynamic checks are needed to
ensure that the use of covariant subtyping is type safe.
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The strategies used by the Object oriented database system are interesting
examples of the way schema evolution is dealt with at the data leyalse®
special primitives for performing schema modifications such as creation of a
new class or modification, deletion or renaming of an existing class. Once
modifications to the schema have taken place, data conversion and migration
functions are used to ensure that data is kept consistent with the changes.

Matching has recently been proposed as a solution to the problem of type safe
inheritance of binary methods in object oriented programming. Matching, like
subtyping, is a relation between two types but is weaker than the latter. It is
usually defined in terms of subtyping using the following rule: an object type A
matches an object type B if A is a subtype of B under the assumption that any
corresponding Self types (used to denote the object type of the receiver of a
method) are equal. Matching does not support subsumption in general but
allows methods of a subclass that matches its superclass to be safely used in
place of those of the superclass.

In these examples, only Eiffel and languages supporting matching provide a
solution at the type system level. Eiffel's use of subtyping where a covariant
solution is needed requires dynamic checking to guarantee type safety.
Matching provides an effective solution to the problem of binary methods but it

only deals with object types in object oriented programming and is not

applicable to non object oriented systems.

11.1.3 Extension Polymorphism

Unlike traditional programming languages, the presence of persistence also
introduces the problem of keeping a potentially large volume of data consistent
with any type changes that may occur. The existing solutions above do not meet
all these requirements. Subtyping and inheritance, though they are useful in
other circumstances, do not provide the answer to this problem since there is a
mismatch between subtyping and inheritance in object oriented languages and
existing solutions do not scale to other paradigms.

Since existing solutions do not completely capture evolution, a new mechanism,
called extension polymorphism, is presented here. One of the main
requirements in persistent systems is that in the face of type evolution, code
should continue to work safely over data.

The proposed solution is a polymorphism mechanism over a relation that
captures the patterns of type evolution in persistent systems. Since additive
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evolution is the most common in these systems, the extension relation is defined
to model how the most common type constructors used in programming

languages evolve by refinement. Finally a bounded quantification mechanism,

with the bounds enforcing extension rather than subtyping relation and where
the quantifier variables could be related, is introduced.

11.1.4 Type Checking Extension Polymorphism

A type checker for extension polymorphism, implemented in S-algol, is
presented. It builds type representations similar to the ones presented in [Con88,
Con90, CBC+90] and performs a structural check on these representations to
determine type equivalence and extension. The type variables introduced by
bounded quantification are type checked using an environment which is a list of
bindings between type variables and their extension bounds. It is also necessary
for the type checker to create new type variables during compilation in order to
type some expressions.

11.1.5 Properties of a Type System with Extension Polymorphism

A type system with extension polymorphism has been formally defined in
sections 9.1 to 9.6 of this thesis and its soundness has been proved in section 9.7.
A type checking algorithm based on the type rules of this system is also believed
to be complete and convergent. However, a proof of these properties is beyond
the scope of the thesis.

11.2 Advantages of Extension Polymorphism

Some of the benefits of incorporating extension polymorphism into a type
system are listed below.

it models the most common patterns of type evolution in persistent
systems

* it deals with the most common type constructors

* it ensures that programs will continue to work safely over data in the
case of additive evolution i.e. the integrity constraints on data up to the
limit of the type system are guaranteed by soundness

* itis possible to use it in conjunction with other kinds of polymorphism to
increase expressive power
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» the extension rules together with the use of bounded quantification and
related quantifiers provide more type information than is traditionally
available with polymorphism, thus permitting more accurate modelling

11.3 Disadvantages of Extension Polymorphism

Some of the difficulties that may be encountered in using extension
polymorphism as it is described in this thesis are the following:

» complicated syntax for bounded quantification with extension, especially
when using related quantifiers

» function applications and location updates require the use of related
guantifiers except in trivial cases

11.4 Future Work

The following aspects of extension polymorphism are possibilities for future
work in this area:

* incorporating and studying the effects of recursion in a system
supporting extension polymorphism

* implementing extension polymorphism in a full persistent programming
language

* incorporating extension polymorphism into a system that also supports
parametric and inclusion polymorphism and verifying the patterns of
interaction

» simplifying the syntax used for extension polymorphism to make it easier
for programmers to write code

* investigating the definition of a new relation that models subtractive
evolution and polymorphism mechanisms over this relation

Recursion has not been included in the version of extension polymorphism
presented in this thesis. [Ghe93b] has shown that the addition of recursion to
System k_which is the basis for bounded quantification with subtyping, is not
conservative. Therefore, recursion is omitted from the initial type system with
extension polymorphism. However, it will be of interest to examine the
following issues: extension of recursive types, recursive specification of
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guantifier variables, the effects of recursion on the type checking algorithm and
the proof of soundness.

Extension polymorphism described in the thesis is incorporated into Base which
is a non-persistent language designed for experiments on polymorphism but
without the complexity of a full programming language. It will be a valuable
assessment to add extension polymorphism to a persistent programming
language, such as Napier88, to study the effects on its implementation and to
evaluate its usefulness.

The language with extension polymorphism does not support any other forms of
polymorphism. Some possible interactions between extension and inclusion
polymorphism are predicted in section 8.5. It will be an interesting exercise to

include extension in a language that also supports parametric and inclusion
polymorphism and to study the effects on its expressive power and to verify the
patterns of interaction.

As stated in section 11.3, one of the difficulties in using extension

polymorphism may be the complicated syntax for specifying polymorphic

functions. It will be a useful modification to the system to simplify the syntax

for extension polymorphism. A form of type inference mechanism may even be
considered.

A contraction relation that is designed to model subtractive evolution will be an
interesting avenue of research. The definition of such a relation will be the
reverse of extension in most cases. Since the contraction relation will coincide
with the subtyping relation for some type constructors, polymorphism over this
relation may be easier to understand.
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Appendix A

A Context-free Definition of the Language Base

Programs
program

sequence

Type Constructors

type-id

type-constructor

record-type
field-list
identifier-list
variant-type
loc-type
fun-type
Declarations
decl-seq
type-decl
obj-decl
Expressions
exp-seq
expression
expl

exp2

’= sequenca

== [decl-seq] exp-seq

;= int | bool | any | unit | decl | identifier | type-constructor

.= record-type | variant-type | loc-type | fun-type

= { field-list }

.= identifier-list: type-id [, field-list ]
::= identifier [, identifier ]*

= [ field-list]

loc ( type-id)

fun ([type-id] [ - type-id])

.= type-decl | obj-decl; flecl-seq ]
.= type identifieris type-id

;.= let identifier= expression

= expression expression |

== expldr expression |*

exp2 pnd exp2 J*

[~]exp3 [=exp3]
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exp3 exp4 [ add-op exp4 |*

exp4 = [add-op ] exp5

add-op n= -

exp5 = literal | value-constructor |
expression.identifier |
project expressiorasidentifieronto case |
expressior( expressior) | identifier |
expression= expression (@ expression |
begin sequencend |
if expressiorthen expressiorelseexpression

case ;= var-case | any-case

var-case 2= identifier type-idin expressiorelseexpression

any-case = type-ith expressiorelseexpression

Literals

literal = int-literal | bool-literal

int-literal == [add-op ] digit [ digit ]*

bool-literal = true |false

Value Constructors

value-constructor ::= record-cons | variant-cons | fun-cons | loc-cons |
any-cons

record-cons ::={ record-init-list}

record-init-list .= identifier= expression | record-init-list |

variant-cons .= [ identifier: expressiorj : type-id
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fun-cons

fun ( [ named-parameter |4 type-id ]) expression

named-parameter := identifietype-id
loc-cons ;= / expression
any-cons ;.= inject( expressiontype-id )

In Appendices A and B, the microsyntax of the languages such as the definitions
of identifier anddigit are omitted.
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Appendix B

A Context-free Definition of the Language Ext

Programs
program ’= sequencg
sequence == [decl-seq] exp-seq

Type Constructors

type-id ;= int | bool | any | unit | decl | identifier | type-constructor
type-constructor ::= record-type | variant-type | loc-type | fun-type
record-type = { field-list }

field-list .= identifier-list: type-id [, field-list ]

identifier-list ::= identifier [, identifier ]*

variant-type = [ field-list]

loc-type = loc ( type-id)

fun-type = fun [ [ quantification] ] ( [ type-id] [ - type-id])

Declarations

decl-seq .= type-decl | obj-decl; flecl-seq ]
type-decl .= type identifieris type-id
obj-decl ;.= let identifier= expression

Expressions

exp-seq 1I= expressiorn expression ]
expression == expldr expression |*
expl = exp2 pnd exp2 J*

exp2 [~]1exp3[=exp3]
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exp3 exp4 [ add-op exp4 |*

exp4 = [add-op ] exp5

add-op n= -

exp5 = literal | value-constructor |
expression.identifier |
project expressiorasidentifieronto case |
expression| type-id] ]( expressior) | identifier |
expression= expression (@ expression |
begin sequencend |
if expressiorthen expressiorelseexpression

case ;= var-case | any-case

var-case 2= identifier type-idin expressiorelseexpression

any-case = type-ith expressiorelseexpression

Literals

literal = int-literal | bool-literal

int-literal == [add-op ] digit [ digit ]*

bool-literal = true |false

Value Constructors

value-constructor ::= record-cons | variant-cons | fun-cons | loc-cons |
any-cons

record-cons ::={ record-init-list}

record-init-list 2= identifier= expression | record-init-list |

variant-cons .= [ identifier: expressiorj : type-id
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fun-cons .= fun [ [ quantification] ] ( [ named-parameter ]
[ - type-id ]) expression

guantification = identifier- type-id
named-parameter := identifietype-id
loc-cons ;= / expression

any-cons ;.= inject( expressiontype-id )
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Glossary

The following terms are defined in the context in which they are used in this

thesis.

Covariance

Contravariance

Conservativity

Soundness

Completeness

Convergence

Subtyping

Conformance

Extension

Matching

Subsumption

Consider two function types F -AB and F' : A'> B'. For
F' to be a subtype of F, B' must be a subtype of B. This
condition which requires the result types of functions to vary
in the same direction as the function types is said to be
covariant.

In the example above, for F' to be a subtype of F, A must be a
subtype of A'. This condition which requires the argument
types of functions to vary in the opposite direction as the
function types is said to be contravariant.

A system S is conservative over a system S' (which is a subset
of S) if for properties P in S', the following condition holds: if
P can be derived from A then P can be derived from S'

An algorithm is sound if the answers it provides are always
correct.

An algorithm is complete if it will always find the answer if
there is one.

An algorithm is convergent if the computation it performs is
finite and will terminate.

Subtyping is a relation between two types which can be used
for type safe substitutability. A type A is a subtype of a type
B if all operations of B can also be applied to values of A.

Conformance is a relation defined by languages such as Eiffel
to check compatibility between two types.

Extension is a new relation between types presented in this
thesis to model additive evolution of types.

Matching is a relation between two object types used by some
object oriented languages to determine when binary methods
can be safely inherited and used. It is less restrictive than the
subtyping relation. An object type A matches an object type
B if A is a subtype of B under the assumption that any
corresponding Self types are equal.

Subsumption is a substitution mechanism that allows a value

of a subtype to be used wherever a value of its supertype is
expected.
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