
Extension Polymorphism

Dharini Balasubramaniam

School of Mathematical and Computational Sciences

University of St Andrews

St Andrews

Fife

KY16 9SS

Scotland

Abstract

Any system that models a real world application has to evolve to be consistent

with its changing domain. Dealing with evolution in an effective manner is

particularly important for those systems that may store large amounts of data

such as databases and persistent languages. In persistent programming systems,

one of the important issues in dealing with evolution is the specification of code

that will continue to work in a type safe way despite changes to type definitions.

Polymorphism is one mechanism which allows code to work over many types.

Inclusion polymorphism is often said to be a model of type evolution. However,

observing type changes in persistent systems has shown that types most

commonly exhibit additive evolution. Even though inclusion captures this

pattern in the case of record types, it does not always do so for other type

constructors. The confusion of subtyping, inheritance and evolution often leads

to unsound or at best, dynamically typed systems. Existing solutions to this

problem do not completely address the requirements of type evolution in

persistent systems.

The aim of this thesis is to develop a form of polymorphism that is suitable for

modelling additive evolution in persistent systems. The proposed strategy is to

study patterns of evolution for the most generally used type constructors in

persistent languages and to define a new relation, called extension, which

models these patterns. This relation is defined independent of any existing

relations used for dealing with evolution. A programming language mechanism

is then devised to provide polymorphism over this relation. The polymorphism

thus defined is called extension polymorphism.

This thesis presents work involving the design and definition of extension

polymorphism and an implementation of a type checker for this polymorphism.

A proof of soundness for a type system which supports extension polymorphism

is also presented.

Acknowledgements

Many people have contributed in different ways to this thesis. I would

particularly like to thank the following for their role:

My supervisor Ron Morrison for his advice, guidance, encouragement and good

humour throughout this project and for his dedication and drive which made this

thesis complete

My second supervisor Richard Connor for encouraging my interest in type

systems and for his invaluable help and advice during the project

Graham Kirby for his time and effort in meticulously reading the draft of the

thesis and suggesting many improvements

Past and present members of the persistent programming research group in St

Andrews, Quintin Cutts, Graham Kirby, Dave Munro and Stephan Scheuerl,

for their contributions to various aspects of the thesis

My mother and my brother for their constant support and understanding

The secretary of the Computer Science Division, Helen Bremner, for always

being helpful, kind and patient

Frédérique Stintzy for being a great friend and for all those cups of tea

Graham Smith, Johannes Courtial, Clare Jarvis and Shane and Debbie Bonetti

for their friendship

Contents

1 Introduction ... 1

1.1 Persistent Evolution ... 1

1.2 Polymorphism ... 2

1.3 The History of Type Evolution.. 3

1.4 Motivation ... 4

1.5 Outline of Thesis ... 4

1.5.1 Fundamentals .. 5

1.5.2 Background... 5

1.5.3 Schema Evolution ... 5

1.5.4 Related Work .. 6

1.5.5 Extension Polymorphism.. 6

1.5.6 A Type Checker for Extension Polymorphism............. 6

2 The Base Language ... 7

2.1 Programs ... 7

2.2 Types ... 7

2.3 Declarations ... 9

2.4 Expressions ... 9

2.5 Abbreviations ... 12

2.6 Naming Conventions ... 12

2.7 Typing Rules ... 12

2.7.1 Programs ... 13

2.7.2 Declarations .. 13

2.7.3 Expressions ... 14

2.7.3.1 Integers .. 14

2.7.3.2 Booleans .. 15

2.7.3.3 Records .. 16

2.7.3.4 Variants .. 16

2.7.3.5 Functions.. 16

2.7.3.6 Identifiers ... 17

2.7.3.7 Locations.. 17

2.7.3.8 Infinite Union... 18

2.7.3.9 Sequence .. 18

2.7.3.10 Block.. 18

2.7.3.11 Conditional .. 19

2.8 Summary ... 19

3 Semantics of the Base Language... 20

3.1 A Semantic Context for Types .. 20

3.2 Meta-operations ... 21

3.3 A Semantics for Base... 23

3.3.1 Programs ... 24

3.3.2 Declarations .. 24

3.3.3 Integers ... 24

3.3.4 Booleans ... 24

3.3.5 Records ... 24

3.3.6 Variants ... 25

3.3.7 Functions... 25

3.3.8 Identifiers .. 25

3.3.9 Locations... 25

3.3.10 Infinite Union.. 25

3.3.11 Sequence ... 26

3.3.12 Block ... 26

3.3.13 Conditional ... 26

3.4 Type Mapping ... 26

3.5 Summary ... 27

4 A Proof of Soundness for Base ... 28

4.1 Programs ... 28

4.2 Declarations ... 29

4.3 Base Cases ... 30

4.4 Expressions ... 30

4.4.1 Integers ... 30

4.4.2 Booleans ... 32

4.4.3 Records ... 34

4.4.4 Variants ... 34

4.4.5 Functions... 35

4.4.6 Identifiers .. 36

4.4.7 Locations... 37

4.4.8 Infinite Union.. 38

4.4.9 Sequence ... 39

4.4.10 Block ... 39

4.4.11 Conditional ... 39

4.5 Summary ... 40

5 Background ... 41

5.1 Polymorphic Systems .. 41

5.1.1 Sets and Types .. 41

5.1.2 Partial Orders and Lattices.. 42

5.1.3 System F ... 43

5.1.3.1 Parametric Polymorphism 44

5.1.3.2 Quantification .. 46

5.1.4 System F≤.. 46

5.1.4.1 Inclusion Polymorphism................................ 46

5.1.4.2 Subsets, Subtypes and Type Constructors 47

5.1.4.3 Subsumption .. 55

5.1.4.4 Anomalies of Subsumption............................ 56

5.1.4.5 Bounded Quantification................................. 57

5.1.5 Summary... 58

5.2 Type Checking ... 58

5.2.1 Properties of Type Checking Algorithms 59

5.2.1.1 A Sound Algorithm.. 60

5.2.1.2 A Sound and Complete Algorithm 61

5.2.1.3 A Sound, Complete and Convergent

Algorithm... 61

5.2.2 Type Representation ... 62

5.2.3 Type Checking Algorithms... 63

5.2.3.1 Monomorphic Type Systems 63

5.2.3.2 Polymorphic Type Systems 64

5.2.4 Summary... 65

5.3 Object Oriented Programming... 65

5.3.1 Introduction... 65

5.3.2 Objects and Classes .. 66

5.3.3 Inheritance .. 68

5.3.4 Delegation... 69

5.3.5 Subclassing ... 70

5.3.6 self and MyType ... 72

5.3.7 Advantages of Object Oriented Programming 74

5.3.8 Summary... 74

6 Schema Evolution ... 75

6.1 Introduction ... 75

6.2 The Effects of Schema Evolution .. 75

6.3 Data Evolution in the O2 Database System 79

6.3.1 Introduction... 79

6.3.2 The O2 System Structure .. 79

6.3.3 An Overview of the O2 Type System 79

6.3.4 Schema Evolution in O2 ... 80

6.3.5 Database Updates in O2 .. 80

6.3.5.1 Restructuring Data in O2 80

6.3.5.2 Moving Data to Other Classes 81

6.3.5.3 Time of Update in O2 82

6.3.6 The Implementation of Database Updates.................... 83

6.4 Summary ... 83

7 Related Work ... 85

7.1 Eiffel ... 85

7.1.1 An Overview of the Eiffel Type System 85

7.1.2 Genericity ... 86

7.1.3 Inheritance .. 86

7.1.4 Feature Calls ... 90

7.1.5 Conformance... 91

7.1.6 Reattachment of Entities ... 92

7.1.7 Type Checking Feature Calls.. 93

7.1.8 Comments ... 94

7.2 Type Matching ... 94

7.2.1 Motivation... 95

7.2.2 Syntax ... 95

7.2.3 Subtyping .. 96

7.2.4 Subclasses ... 98

7.2.5 Type Quantification .. 101

7.2.6 Inheritance .. 101

7.2.7 Matching ... 102

7.2.8 Type Checking self ... 103

7.2.9 Adding Bounded Polymorphism 104

7.2.10 Reconciling Subtyping, Matching and

Quantification .. 106

7.2.11 Replacing Subtyping by Matching 107

7.2.12 Extending Matching to Function Types 110

7.3 Other Languages ... 111

7.3.1 Simula ... 111

7.3.2 SmallTalk.. 111

7.3.3 Ada ... 111

7.3.4 C++ ... 112

7.3.5 Java ... 112

7.4 Summary ... 112

8 Extension Polymorphism ... 114

8.1 Examples of Extension in Persistent Systems 115

8.1.1 Records ... 115

8.1.2 Variants ... 116

8.1.3 Functions... 116

8.1.4 Locations... 118

8.2 The Extension Relation.. 118

8.2.1 Reflection.. 118

8.2.2 Base Types.. 119

8.2.3 Records ... 119

8.2.4 Variants ... 119

8.2.5 Functions... 119

8.2.6 Locations... 119

8.3 Adding Polymorphism... 120

8.3.1 Typing Extension Variables ... 120

8.3.2 Explicit Extension Variables .. 121

8.3.3 Implicit Extension Variables .. 124

8.3.4 Polymorphism over Type Constructors 124

8.3.4.1 Base Types... 125

8.3.4.2 Records .. 125

8.3.4.3 Variants .. 125

8.3.4.4 Functions.. 126

8.3.4.5 Locations.. 127

8.3.5 Quantified Functions .. 128

8.4 Interaction with Other Kinds of Polymorphism 128

8.5 Summary ... 129

9 A Language with Extension Polymorphism.. 130

9.1 Types ... 130

9.2 Expressions ... 130

9.3 Typing Rules ... 131

9.3.1 Base Types.. 131

9.3.2 Records ... 131

9.3.3 Variants ... 132

9.3.4 Quantified Functions .. 132

9.3.5 Locations... 133

9.3.6 Infinite Union.. 133

9.3.7 Extension Quantifier Variables..................................... 133

9.4 Semantic Context ... 133

9.5 Meta-operations ... 134

9.6 Semantics ... 134

9.6.1 Quantified Functions .. 134

9.7 Proof of Soundness .. 134

9.7.1 Base Types with Extension... 135

9.7.2 Records with Extension .. 135

9.7.3 Variants with Extension.. 136

9.7.4 Quantified Functions .. 137

9.7.5 Locations with Extension ... 138

9.7.6 Infinite Union with Extension 138

9.8 Summary ... 139

10 Type Checking of Extension Polymorphism 140

10.1 Implementation Strategy.. 140

10.1.1 Functionality ... 140

10.1.2 Implementation Procedure.. 140

10.2 Type Representations... 141

10.2.1 Base Types.. 143

10.2.2 Records ... 143

10.2.3 Variants ... 144

10.2.4 Functions... 145

10.2.5 Locations... 146

10.2.6 Any ... 146

10.2.7 Quantifier Variables.. 147

10.2.8 Quantified Functions .. 147

10.3 Type Checking ... 148

10.3.1 Type Equivalence Checking 148

10.3.2 Type Extension Checking... 149

10.3.3 Dealing with Extension Quantifier Variables............. 150

10.3.3.1 Creating Extension Quantifier Variables..... 151

10.3.3.2 Using Extension Quantifier Variables 152

10.4 Summary ... 153

11 Conclusions ... 154

11.1 A Polymorphic Type System for Evolution 154

11.1.1 Aim and Motivation.. 154

11.1.2 Related Work .. 154

11.1.3 Extension Polymorphism.. 155

11.1.4 Type Checking Extension Polymorphism 156

11.1.5 Properties of a Type System with Extension

Polymorphism.. 156

11.2 Advantages of Extension Polymorphism................................... 156

11.3 Disadvantages of Extension Polymorphism 157

11.4 Future Work ... 157

Appendix A A Context-free Definition of the Language Base 159

Appendix B A Context-free Definition of the Language Ext 162

Glossary ... 165

References ... 166

1

1 Introduction

1.1 Persistent Evolution

Systems that fail to evolve will atrophy and eventually die. The cost of failing to

evolve can be gauged by the resources being invested in interfacing with legacy

systems. Databases are systems which store potentially large amounts of data

that model real world entities. This data may be used for computations by

application programs which model real world operations. Database schemata or

meta-data organise the data into logically related groups. Since the real world

being modelled is constantly changing, the data and its uses also change. These

changes are reflected in the database in the form of changes to data, application

programs and schemata. The focus of this thesis is the evolution of database

schemata.

Schema evolution [SZ87, Cla92, Rod92, MCC+93, Cla94, Odb94, Rod95,

MM96] can be additive, subtractive or descriptive. Additive evolution models

more semantic knowledge than was previously available. Subtractive evolution

models less semantic knowledge than before while descriptive evolution models

the same knowledge in a different manner. Changing the schemata of a database

while maintaining the consistency of the data and programs belonging to them

with the semantics of change has proved to be a difficult problem [Zdo86,

Cla92, MCC+93, Odb94].

As explained in [AM95], database programming languages have unified data

models and type systems and some approximate equivalences can be recognised,

as shown in Figure 1.1 below.

Databases Programming Languages

data model type system

schema type expression

database variable

database extent value

Figure 1.1 : Equivalences between Databases and Programming Languages

Thus, the core concepts in both databases and programming languages serve

similar purposes as illustrated in the table. Data models and type systems,

schemata and type expressions, databases and variables and database extent and

values model equivalent features in their respective domains.

2

In contrast to databases, type evolution in programming languages does not

normally cause a major problem as there is no extant data described by the type.

In the case of programming languages data only exists during the execution of a

program.

Persistent programming languages [ABC+83, Coc83, AM86, AMP86, AM95,

MBC+96b] seek to eliminate the distinction between database systems and

traditional programming languages by providing a single system that deals with

both the storage and the manipulation of data. With persistent languages, as in

the case of databases, when types evolve to reflect changes in the application

domain, both programs that use them and the data that belong to them are

affected by the changes. Thus the issue of evolution of types in persistent

systems is important since it can potentially concern both large amounts of

valuable data and a variety of types which may evolve in various ways.

One solution to this problem is to make use of a mechanism that will allow the

same programs to keep working in a type safe manner despite changes to types.

That is the subject of this thesis.

1.2 Polymorphism

Polymorphism [Str67, Mil78, CW85] is one mechanism which provides

programs with the ability to work over changing types. A polymorphic type

system is one in which values and variables can have more than one type. This

can be contrasted with the more traditional monomorphic systems in which each

value belongs to at most one type.

Polymorphism preserves static typing while providing more flexibility and

expressive power than is possible in a monomorphic type system with static

typing. A piece of code exhibiting polymorphism can operate over a number of

types provided they conform to some common structure. The structure required

depends on the kind of polymorphism in use.

Parametric polymorphism [Mil78, CW85] and inclusion polymorphism [Car84,

CW85, CL90] are two widely used kinds of polymorphism. Parametric

polymorphism uses type parameters to provide the common structure whilst

inclusion polymorphism makes use of a hierarchy provided by a subtyping

relation and a programming language algebra to support it. Inclusion

polymorphism in particular is often used to capture type evolution.

3

1.3 The History of Type Evolution

Traditionally record types have been the most commonly used database type

structures. When record types evolve in database systems, it is usually by the

addition of new fields or a similar change to one or more of the field types.

Cardelli’s subtyping relation [Car84] completely captures this form of additive

evolution in records and is used in the rest of the thesis as the basis for inclusion

polymorphism.

In object oriented programming languages [DT88], there are two ways of

creating a new class from an existing class : addition of new fields and over-

riding or redefining existing ones. Inheritance is one mechanism which supports

such code reuse. The evolution of a subclass from a superclass is similar to the

evolution of record types in databases. In order to ensure type safety, the type of

a field that is inherited by a subclass is required to be in the subtyping relation

with the type of its counterpart in the superclass. Due to this property, the

meanings of inheritance, evolution and subtyping have often been confused and

the terms are used interchangeably.

However it is not always desirable for subtyping and subclassing to coincide

when method types are taken into consideration. A binary method of an object

of type o is a function that has at least one argument of type o. It is binary since

it acts over at least two objects of the same type: the argument and the object

itself. When methods with one or more parameters are inherited by a subclass

they may be specialised to take and return values of smaller types. But the

subtyping rule for functions is contravariant on the argument type i.e. it requires

the argument type of a subtype to be greater than that of the supertype. Thus

subtyping fails to capture the specialisation often needed by inheritance of

method types. Despite this incompatibility, the existence of a subtyping relation

is often claimed between a superclass and its subclasses where it is not the case.

In these contexts, the subtyping relation is forced to capture a situation it is not

intended to model. This leads to unsound or, at best, dynamically type checked

systems.

Despite these concerns, covariant subtyping, where the argument type of a

function subtype is smaller than that of the supertype, is used in some object

oriented systems as it is more intuitive and expressive in this context. Eiffel

[Mey92] and O2 [Zic89, Deu90, LRV90, Deu91, Zic91] use this technique to

create more specialised classes. The designers of these systems claim that the

4

use of covariance for the inheritance of binary methods has not, in practice,

caused many problems regarding type safety.

In [Cas95], Castagna explains that covariance and contravariance are two

distinct and independent mechanisms which need not be mutually exclusive.

Contravariance is used by subtyping relations to allow substitution whereas

covariance is a specialisation mechanism which permits substitution in some

particular cases. In order to increase expressiveness, both can be integrated in a

type-safe manner.

In recent years, a new concept called matching [Bru95, BCC+95, AC96, Bru96]

has been introduced to deal with the problem of inheriting binary methods in

object oriented systems. In this a matching relation between classes is defined

and a subclass which matches its superclass can safely inherit and use its binary

methods.

1.4 Motivation

The motivation for the work behind this thesis is to develop a mechanism for

dealing with additive type evolution in persistent systems independently from

any existing solutions. In particular, it is necessary to remove any ambiguity

between inheritance and subtyping in the context of evolution. Even though

matching is a useful solution to the problem of inheritance of binary methods, it

is only applicable to object types in object oriented programming and does not

deal with other type constructors or paradigms.

The aim of this work is to develop a more general mechanism that captures type

evolution in most generally used type constructors. The proposed strategy for

developing this mechanism is to study patterns of type evolution for different

type constructors in persistent systems and to define a new relation, called

extension, without reference to any other existing ones, to model the most

common patterns. A programming language mechanism is then devised to

support polymorphism over this relation.

The work presented in this thesis is an attempt at developing a formal model of

this relation and an implementation of a type checker for the salient features of

the relation and the polymorphism mechanism.

5

1.5 Outline of Thesis

This thesis consists of eleven chapters. Chapters 2 to 7 provide the basis for the

new work and discuss the background topics and related work. Chapter 8

presents the new relation and the polymorphism mechanisms over it. A

language supporting extension polymorphism, called Ext, is formally defined

and its soundness is proved in Chapter 9. An implementation of a type checker

for the features given in Chapters 8 and 9 and related issues are discussed in

Chapter 10. The following sections give brief descriptions of the contents of

each of these chapters. The conclusions from the work are presented in Chapter

11.

1.5.1 Fundamentals

A core language called Base is introduced in Chapters 2, 3 and 4 as a basis for

the work. The type system of Base supports base types such as integers and

boolean and the most common type constructors used in programming languages

such as records, variants, functions and locations. It does not support any form

of polymorphism. A formal definition of Base and a proof of soundness of its

type system is given. Base is extended further as necessary in later chapters to

illustrate relevant concepts and to incorporate new features.

1.5.2 Background

Chapter 5 presents the background to the main work of the thesis. A detailed

discussion of polymorphism, type checking and object oriented programming is

given.

The main concepts behind polymorphism and its uses are explained in detail in

section 5.1. The main function of a type checker is to match the expected type

of an expression with its actual type to ensure type safety. It determines, for

example, whether a function has been supplied with the right type of actual

parameter and whether a location has been assigned the right type of expression.

For a complete piece of code to be correctly typed, every expression and

statement in it must be correctly typed. Examples of type checking are given

and the properties of type checkers are discussed.

Object oriented programming has emerged as one of most popular paradigms in

recent years. In an object oriented system the real world is modelled by objects.

Objects can be considered to be instances of abstract data types encapsulating

6

both state and behaviour. Section 5.3 explains the most important concepts used

by object oriented programming.

1.5.3 Schema Evolution

Databases contain data that are logically grouped into schemata. Changes that

have to be made to the schemata in a database in order to reflect changes in the

application domain are known as schema evolution. Chapter 6 presents an

overview of the context and kinds of schema evolution and the problems caused

by it. The strategy adopted by the O2 database system to deal with schema

evolution at the data level is also described.

1.5.4 Related Work

There have been various solutions proposed to overcome the problem of type

evolution. Chapter 7 describes two of these that are of most relevance to this

thesis. Eiffel makes use of covariant subtyping to deal with the inheritance of

binary methods in subclassing. A dynamic check is used to ensure type safety.

The concept of matching has been recently introduced to capture the type safe

inheritance of binary methods in object oriented languages. TooL [GM95,

GM96] and PolyTOIL [BSG95] are two languages which have incorporated

matching in their type systems. Chapter 7 also gives an overview of these type

systems and describes how matching is used to guarantee type safety in

inheritance. A brief account of the techniques used by some other languages is

also presented.

1.5.5 Extension Polymorphism

The aim of the work behind this thesis is to develop a means of capturing the

most common patterns of type evolution in persistent systems. A new relation,

called extension, which models additive evolution over records, variants,

functions and locations, is introduced. A bounded quantification mechanism is

then developed over this relation to provide polymorphism. Chapter 8 explains

the design and development of these features in detail.

Extension polymorphism is incorporated into the experimental language Base.

The resulting language Ext and its semantics are formally defined in Chapter 9.

A proof of soundness for the type system of Ext is also presented.

7

1.5.6 A Type Checker for Extension Polymorphism

A type checker for the extension relation and the polymorphism mechanism

presented in Chapter 8 is implemented in S-algol [Mor79, CM82] and tested.

Chapter 10 explains the implementation strategy, type representations and the

type checking issues involved in the process.

8

2 The Base Language

We introduce a core language, Base, which will be used as the basis for

introducing parametric, inclusion and extension polymorphism. The type

system of Base incorporates some of the most common types found in

programming languages and is intended to be our experimental base. Base, as

described here, contains no mechanism to provide polymorphism. The language

will be extended in Chapter 5 to provide parametric and inclusion polymorphism

and in Chapter 8 for extension polymorphism.

For the moment, Base does not support recursion at the type level which means

that no type can be defined in terms of itself. This restriction is introduced to

simplify the definition since it is known that recursion yields non-trivial

anomalies. [Ghe93b] shows that the addition of recursion to System F≤ is not

conservative. Conservativity is a property which ensures that any extension to a

system preserves existing relations in the system. Thus, when recursion is added

to F≤, it is possible to create a type lattice in which previously unrelated types

are in the subtyping relation. In the absence of recursion such complications in

the prototype language are avoided and various forms of polymorphism can be

considered. Section 11.4 incorporates a discussion on the addition of recursion

to the language.

A definition of the syntax of Base is presented in sections 2.1 to 2.6 and the

typing rules for all the syntactic constructs in Base are given in section 2.7.

Chapter 3 describes the semantics of Base and a proof of soundness of its type

system is presented in Chapter 4.

2.1 Programs

The set of programs that can be constructed in Base can be defined as :

P ::= D; E

where D is a set of declarations and E is a set of expressions in the language.

Thus a program in Base is a set of expressions preceded by a set of declarations.

D and E are defined formally in later sections.

2.2 Types

The set of types in Base, ranged over by T, is given by the following syntax :

9

T ::= int | bool | unit | decl | { l1 : T, . . . , ln : T } | [l1 : T, . . . , lm : T] |

fun(T → T) | loc(T) | any | t

where

Type Interpretation

int integers

bool boolean values

unit trivial type

decl sets of bindings consisting of identifiers and their

meanings

{ l 1 : T1, . . . , ln : Tn } labelled cartesian cross products or records;

 l1, . . . , ln are distinct labels

[l1 : T1, . . . , lm : Tm] labelled disjoint sums or variants;

 l1, . . . , lm are distinct labels

fun(T1 → T2) functions and procedures

loc(T) locations of type T

any infinite union

t type identifier

Figure 2.1 : Types in the Base Language

The base types provided are integers, booleans and two trivial types unit and

decl which contain no elements. unit is the type of expressions that do not

evaluate to a value of any other type and decl is the type of declarations.

Records provide a means for collecting fields of different types into one

structure. Variants offer the choice of any one of a predefined collection of

fields of different types. Functions take a value of the argument type and return

a value of the result type. Mutability is explicitly modelled in this type system

and hence the type constructor loc. Any value in the value space of Base can be

an element of the infinite union type any. While the rest of the types correspond

to values in the value space, decl is used to type declarations, unit is the type of

void constructs in Base, and variants and any provide abstractions over types.

Types can also be type identifiers introduced by type declarations explained in

the next section.

10

2.3 Declarations

The set of possible declarations in the base language can be defined by

D ::= type t is T | let x = E | D ; D

where

Syntax Interpretation

type t is T binds the type identifier t to the type expression T

let x = E binds the identifier x to the expression E

D ; D sequences declarations

Figure 2.2 : Declarations

Thus, Base allows type and identifier declarations and the sequencing of any of

these declarations.

2.4 Expressions

The set of expressions in the base language is given by the following syntax :

E ::= n | b | E + E | E - E | ~ E | E or E | E and E | E = E |

{ l 1 = E, . . . , ln = E } | E.l |

[l i : E] : T | project E as X onto l : T in E else E |

fun(x : T → T) E | E(E) | x |

^ E | E := E | @ E |

inject(E, T) | project E as X onto T in E else E |

if E then E else E | E ; E | begin D ; E end

11

 where

Syntax Interpretation

n integer literal

b boolean literal

E1 + E2 sum of two integer expressions

E1 - E2 difference between two integer expressions

~ E boolean negation

E1 or E2 logical or

E1 and E2 logical and

E1 = E2 test of equality

{ l 1 = E1, . . . , ln = En } record constructor

E.l field selection from a record

[l i : Ei] : T variant constructor

project E as X onto l : T in

E1 else E2

projection from a variant onto a label with

projected value bound to X in the expression E1

fun(x : T1 → T2) E function expression

E1(E2) function application

x identifier

^ E location that contains E

E1 := E2 assignment

@ E value contained in location E

inject(E, T) injection into any

project E as X onto T in E1

else E2

projection from a value of any with projected

value bound to X in the expression E1

if E then E1 else E2 conditional

E1 ; E2 sequence of expressions

begin D ; E end block definition

Figure 2.3 : Base Language Expressions

The atomic expressions n and b stand for literals of base types int and bool

respectively. Integers have the operators for addition and subtraction, + and -,

12

defined over them. Booleans have the logical not, or and and operators defined

over them. In addition to these, both integers and booleans have an equality

operation.

Record expressions are constructed by associating an expression with each field

of the record. A dot operator is provided to dereference a record field.

A variant expression can be constructed by associating an expression with the

chosen field and specifying the variant type. This type information is necessary

to identify the exact type to which the variant expression belongs since many

variants may have the same labels. The project clause is provided to dereference

the current value of a variant. This operation projects the value onto the label

specified. If the projection is successful then the result of the operation is the

expression following the in keyword. The identifier specified following the as

keyword will have the value of the variant and the type T associated with it

within this expression. If the label does not match the variant then the else

expression is chosen and the identifier will have the value and the type of the

variant.

A function value is created by specifying the formal parameter, argument and

result types and the expression for the function body. A function can be applied

by supplying it with an actual parameter within round brackets.

Locations have three operations defined over them. The ^ operator creates a

location containing the expression following it. The infix assignment operator

takes a location value and an expression and assigns the latter to the former. The

value contained in a location can be dereferenced by the @ operator.

A value of type any can be created by performing an inject operation on an

expression along with its type. The projection operation over any is very similar

to the one for variants. In this case, the value is projected onto the type

specified.

The infix ; operator allows the specification of a sequence of expressions just as

it is used for sequencing declarations. The keywords begin and end mark the

beginning and end of a block definition. The if then else clause provides the

means to specify two way choices. If the boolean expression E is true then the

result of the whole conditional expression is E1 otherwise it is E2.

13

2.5 Abbreviations

The following abbreviations in notation are introduced:

Abbreviation Stands for Explanation

{ l i : Ti } (i = 1, n) { l 1 : T1, . . . , ln : Tn } a record type containing fields l1

to ln with corresponding types T1

to Tn

{ l k: Tk} + { . . . , lk : Tk, . . . } a record type containing at least

the field lk with type Tk

{ l i = Ei } (i = 1, n) { l 1 = E1, . . . , ln = En } a record expression containing

fields l1 to ln with expressions E1
to En associated with them

[l i : Ti] (i = 1, m) [l1 : T1, . . . , lm : Tm] a variant type containing branches

l1 to lm with corresponding types

T1 to Tm

[lk : Tk]+ [. . . , lk : Tk, . . .] a variant type containing at least

the branch lk with type Tk

Figure 2.4 : Abbreviations

2.6 Naming Conventions

The conventions specified below are adopted for naming different constructs in

Base in the sections to follow.

• expression variables belong to the set { x, y, z }

• type variables belong to the set { s, t, u, v }

• types belong to the set { S, T, U, V }

2.7 Typing Rules

The concept of environments is introduced to determine the types of the

constructs in Base. In the following typing rules for programs, declarations and

expressions, environments are lists of bindings. π denotes the environments

where identifiers are bound to their types (x : T) and τ stands for the

14

environments in which type identifiers are bound to type expressions (t = T).

A1::b::A2 is used to represent a list A which contains a binding b. A++B is used

to denote the concatenation of two lists of bindings A and B. Both π and τ are

global environments and support block structure. The notation α .i is used to

represent the identifier i contained in environment α.

The function typeDecl takes a list of bindings between type identifiers and type

expressions and adds them to the environment τ. Similarly, function idDecl

takes a list of bindings between identifiers and types as its arguments and

updates the environment π with the new bindings. Bindings are represented as

pairs and the notation < x, T > is used to denote a pair value consisting of x and

T. (b1, . . . , bn) is a list containing bindings b1 to bn.

The typing rules make use of a set Type which is a set of strings defined by T in

section 2.2. If a type S can be generated by this definition then S is a member of

Type. Thus Type is a set of all well-formed types in Base. Similarly all
expressions e and ei in the type rules belong to the set of all well-formed

expressions, Expression, defined by E in section 2.4.

In the following type rules, all variables are in italics and all Base expressions

are in Courier font. The keywords of Base are in bold.

2.7.1 Programs

φ , φ h D : decl typeDecl(Ω) idDecl(Ψ) φ::Ω, φ::Ψ h e : T
φ , φ h D ; e : T

[program]

If declaration D causes the lists of bindings Ω and Ψ to be added to the type and

identifier environments which were previously empty and given these bindings,

the type of expression e can be deduced to be T then the type of a program D ;

e is also T.

2.7.2 Declarations

τ h T ∈ Type

τ h type t is T : decl typeDecl((< t, T >))
[typeDecl]

If τ has a new binding associating the type identifier t to type expression T then

the declaration type t is T is of type decl and will have the effect of updating

τ with the new binding.

15

τ, π h e : T

τ, π h let x = e : decl idDecl((< x, T >))
[idDecl]

If it can be deduced that an expression e is of type T then the declaration let x

= e is of type decl and will have the effect of updating π with the binding x : T.

τ, π h D1 : decl Decl1 τ + +Ω1, π + +Ψ1 h D2 : decl Decl2

τ, π h D1 ; D2 : decl typeDecl(Ω1 + + Ω2) idDecl(Ψ1 + + Ψ2)

[declSeq]

where Decl1 stands for typeDecl(Ω1) and idDecl(Ψ1) and Decl2 stands for

typeDecl(Ω2) and idDecl(Ψ2).

If declaration D1 causes changes Ω1 and Ψ1 to be introduced to the environments

τ and π, and when these changes have been incorporated into the environments,

declaration D2 causes changes Ω2 and Ψ2 to be added then the declaration

sequence operation D1; D2 has the effect of causing changes Ω1++Ω2 and Ψ1++Ψ2
respectively.

2.7.3 Expressions

The type rules for expressions belonging to each base type and type constructor

in the language are given below.

2.7.3.1 Integers

n ∈ Integer

n : int
[intValue]

If n belongs to the set of integer literals then n is of type int .

τ, π h e1 : int τ, π h e2 : int
τ, π h e1 + e2 : int

[intAdd]

If expressions e1 and e2 are of type int then the expression e1 + e 2 is also of

type int .

τ, π h e1 : int τ, π h e2 : int
τ, π h e1 – e2 : int

[intSub]

16

If expressions e1 and e2 are of type int then the expression e1 - e 2 is also of

type int .

τ, π h e1 : int τ, π h e2 : int
τ, π h e1 = e2 : bool

 [intEq]

If expressions e1 and e2 are of type int then the expression e1 = e 2 is of type

bool.

2.7.3.2 Booleans

b ∈ Boolean

b : bool
[boolValue]

If b belongs to the set of boolean literals then b is of type bool.

τ, π h e : bool
τ, π h ~ e : bool

[negation]

If expression e is of type bool then the expression ~e is of type bool.

τ, π h e1 : bool τ, π h e2 : bool
τ, π h e1 or e2 : bool

[or]

If expressions e1 and e2 are of type bool then the expression e1 or e 2 is also of

type bool.

τ, π h e1 : bool τ, π h e2 : bool
τ, π h e1 and e2 : bool

[and]

If expressions e1 and e2 are of type bool then the expression e1 and e 2 is also

of type bool.

τ, π h e1 : bool τ, π h e2 : bool
τ, π h e1 = e2 : bool

 [boolEq]

If expressions e1 and e2 are of type bool then the expression e1 = e 2 is of type

bool.

17

2.7.3.3 Records

∀i ∈ { 1...n } (li ∈ labels τ, π h ei: Ti)

τ, π h { li = ei }(i = 1, n) : { li:Ti }(i = 1, n)
[recValue]

If l 1 to ln belong to the set of labels and expressions e1 to en are of type T1 to Tn

respectively then the record expression formed by { l i = e i } (i = 1, n) is of

type { li : Ti } (i = 1, n)

τ, π h e : { l : T }+

τ, π h e.l : T
[recDeref]

If e is a record expression with at least the field l of type T then the dereference

expression e.l is of type T.

2.7.3.4 Variants

τ, π h ei : Ti τ, π1::x : T::π2 h x : [li : Ti]+

τ, π h [li = ei] : T : [li : Ti]+ [varValue]

If T is a variant type with at least a label li of type Ti and expression ei has type

Ti then the type of the expression [l i = e i] : T is a variant type with at

least a label li of type Ti.

τ, π h e : [li : Ti]+ τ, π1::x : Ti::π2 h e1 : T τ, π h e2 : T
τ, π h project e as x onto li : Ti in e1 else e2 : T

[varProj]

If the type of expression e is a variant with at least a label li which is of type Ti,

expression e1 is of type T if the identifier x is of type Ti and expression e2 is of

type T then the project operation on the variant type, project e as x onto

l i : T i in e 1 else e 2 , has type T.

2.7.3.5 Functions

τ, π1::x : T1::π2 h e : T2

τ, π h fun(x : T1 → T2) e : fun(T1 → T2)
[funValue]

18

If τ and π with a binding x : T1 imply that expression e is of type T2 then the

function expression fun (x : T 1 → T 2) e is of type fun (T1 → T2).

τ, π h e1 : T1 τ, π h e : fun(T1 → T2)

τ, π h e(e1) : T2

[funApp]

If expression e1 is of type T1 and expression e is of a function type

fun (T1 → T2) then the expression e(e 1) is of type T2.

2.7.3.6 Identifiers

τ, π1::x : T::π2 h x : T
[id]

If π contains a binding associating the identifier x with type T then x is of type T.

2.7.3.7 Locations

τ, π h e2 : T τ, π h e1 : loc(T)
τ, π h e1 := e2 : unit

[assign]

If expression e2 is of type T and expression e1 is of a location type loc(T) then

the assignment expression e1 := e 2 is of type unit .

τ, π h e : T

τ, π h ^e : loc(T)
[locValue]

If expression e is of type T then the expression ^e is of type loc(T).

τ, π h e : loc(T)

τ, π h @e : T
[locDeref]

If expression e is of type loc(T) then the dereference expression @e is of type T.

19

2.7.3.8 Infinite Union

τ, π h e : T

τ, π h inject(e, T) : any
 [anyInj]

If expression e is of type T then the expression inject (e, T) is of type any.

τ, π h e : any T1 ∈ types τ, π1::x : T1::π2 h e1 : T τ, π h e2 : T
τ, π h project e as x onto T1 in e1 else e2 : T

[anyProj]

If expression e is of type any, T1 is a valid type in Base, expression e1 is of type

T if the identifier x is of type T1 and expression e2 is also of type T then the

project expression on any, project e as x onto T 1 in e 1 else e 2, is of

type T.

2.7.3.9 Sequence

τ, π h e1 : unit τ, π h e2 : T

τ, π h e1 ; e2 : T
[seq]

If expression e1 is of type unit and expression e2 is of some type T then the

sequence of expressions e1 ; e 2 is also of type T.

2.7.3.10 Block

τ, π h D : decl typeDecl(Ω) idDecl(Ψ) τ + + Ω, π + + Ψ h e : T
τ, π h begin D ; e end : T

[block]

If declaration D of type decl causes changes Ω and Ψ to environments τ and π

respectively and if, after incorporating the changes to the environments, the

expression e is of type T then the block definition begin D ; e end is also of

type T.

20

2.7.3.11 Conditional

τ, π h e : bool τ, π h e1 : T τ, π h e2 : T
τ, π h if e then e1 else e2 : T

[if]

If expression e is of type bool and expressions e1 and e2 are of the same type T

then the conditional expression if e then e1 else e 2 is also of type T.

2.8 Summary

An experimental base language called Base has been formally defined in this

chapter and the typing rules for its constructs are presented. Base includes some

of the most common type constructors used by programmers but does not

incorporate recursion or any form of polymorphism. Later chapters will use

Base as the basis for introducing different kinds of polymorphism.

21

3 Semantics of the Base Language

The syntax of Base was formally defined in the previous chapter. We now

present a semantic context for the types in Base and a semantics for its

constructs.

3.1 A Semantic Context for Types

The semantic context for the types which can be used to construct values in the

value space of Base along with the notation used for them in semantics is given

in Figure 3.1 below. The notation [T] is used to represent the meaning of type

T.

Type Semantic Context Denotation of Semantic

Context

int the set of integers Integer

bool the set of boolean

values (true, false)

Boolean

unit the empty set Unit

decl the set of bindings

caused by a declaration

List(Pair (identifier,

 meaning))

Abbreviated to Decl

{ l 1 : T1, . . , ln : Tn } the set of tuples with

fields l1 to ln

Record(l1 : [T1] , . . ,

 ln : [Tn])

fun(T1 → T2) the set of functions

from [T1] to [T2]

Function([T1] → [T2])

loc(T) the set of locations that

contain [T]

Location([T])

Figure 3.1 : Semantic Context of Value Constructors

The semantics of type constructors which merely provide an abstraction over

other types rather than creating new values in the value space are given in Figure

3.2. The meta-type typeRep used in this table stands for type representations of

any type in Base.

22

Type Context Denoted by

[[l1 : T1, . . , lm : Tm]] the set of values being one

of [T1] to [Tm] for labels

l1 to lm

Pair (label, [Tn])

where Tn is one of

T1 to Tm

[any] the set of all the values in

the language coerced into a

general type

Pair (typeRep, [T])

where T can be any

type in Base

Figure 3.2 : Semantic Context of Type Abstractions

A variant type represents a union of the sets of values belonging to the types

corresponding to all the labels. Since a variant value at any time can only be a

value of one of the component types, it can be represented as a label - value pair

and its type accordingly. Since any is an infinite union type incorporating all

legal values in Base of any type, values of this type can be represented as a pair

of type representation indicating the specific type and value.

3.2 Meta-operations

The meta-operations defined over the value constructors described in Figure 3.1

are given below in Figure 3.3.

Semantic Type Meta-operations

Integer add : (Integer, Integer → Integer)

subtract : (Integer, Integer → Integer)

intEquals : (Integer, Integer → Boolean)

Boolean andOp : (Boolean, Boolean → Boolean)

orOp : (Boolean, Boolean → Boolean)

notOp : (Boolean → Boolean)

boolEquals : (Boolean, Boolean → Boolean)

Unit

Decl

23

Record (l1 : T1, . . . , ln : Tn)

Abbreviated to:

Record (lk : Tk)(k = 1, n)

mkRec : (List(Pair(labeli , Ti))

 → Record (lk : Tk)(k = 1, n))

getL1 : (Record (lk : Tk)(k = 1, n) → T1)

 . . .

getLn : (Record (lk : Tk)(k = 1, n) → Tn)

Function (T1 → T2) mkFun : (expression, variable, environment

 → Function (T1 → T2))

apply : (Function (T1 → T2), T1 → T2)

Location (T) mkLoc : (T → Location(T))

put : (Location(T), T → Unit)

get : (Location(T) → T)

Figure 3.3 : Meta-operations for Type Constructors

Integers have the meta-operations add, subtract and intEquals defined over

them. They are used to perform integer addition, integer subtraction and the test

for integer equality respectively. Boolean values are provided with andOp,

orOp, notOp and boolEquals which are used for logical and, logical or, boolean

negation and the test for boolean equality.

There are no meta-operations defined for Unit and Decl since no values are

constructed of these types.

The meta-operations provided for records are a mkRec function that takes a list

of pairs consisting of labels and expressions and returns a record with fields

corresponding to the pairs in the list and 'get functions' for each label of the

record which take a record and return the value associated with the label.

Functions have a mkFun meta-operation that takes the expression of function

body, the parameter variable and the environment in which the expression is to

be evaluated and returns a function. The apply operation takes a function and a

parameter value and returns a value of the result type.

Mutable types have three meta-operations associated with them. The mkLoc

function takes a value of type T and returns a location which contains the value.

The put operation takes a location containing T and a value of type T and

assigns the value to the location. Since there is no value to be returned the result

type is Unit. The get operation takes a location and returns the value contained

in the location.

24

The meta-operations for type abstractions are given below in Figure 3.4.

Semantic Type Meta-operations

Pair (label, [T])

for variants

mkPair : (label, [T] → Pair (label, [T]))

fst : (Pair (label, [T]) → label)

snd : (Pair (label, [T]) → [T])

Pair (typeRep, [T])

for any

mkPair : (typeRep, [T] → Pair (typeRep, [T]))

fst : (Pair (typeRep, [T]) → typeRep)

snd : (Pair (typeRep, [T]) → [T])

Figure 3.4 : Meta-operations for Type Abstractions

Since variants are modelled as a pair of label and value, the meta-operations on

these structures are those available to pairs. A mkPair operation, which takes a

label and a value belonging to the type of the label and returns a pair, is provided

as the constructor. In order to dereference the pair, two operations, fst and snd,

are defined which return the first and the second elements of the pair.

The meta-operations associated with any are very similar to those for variants

since any is also modelled as a pair. In this case the mkPair operation takes a

type representation and a value of the type and returns a pair consisting of both.

The fst and snd operations are again defined to access the first and second

elements of the pair.

3.3 A Semantics for Base

Given the semantic context and meta-operations specified in Figures 3.1 to 3.4,

the semantics of the language can now be defined. [e] Env is used to denote the

meaning of a well-typed expression e and Env is the environment against which

meanings of expressions are defined. Envx = V ∈ T is used to indicate that in this

environment, identifier x has meaning V belonging to type T associated with it.

Similarly EnvA is used to mean that the environment incorporates any changes

that might have been caused by an expression or declaration A. φ stands for an

environment which contains no bindings. The function getTypeRep used for

infinite unions takes any legal type in Base and returns its type representation as

a typeRep. Function if, used to define the semantics of variants, infinite union

and conditionals, takes a Boolean and the meanings of two expressions and

returns one of the meanings depending on the Boolean value.

25

3.3.1 Programs

[D ; e]φ = [e]EnvD where EnvD = [D]φ D1

3.3.2 Declarations

[type t is T]Env = φ D2

[let x = e]Env = mkList(< x, [e]Env >) D3

[D1 ; D2] Env = [D1] Env ++ [D2] EnvD1
D4

3.3.3 Integers

[n]Env = n D5

where n is the semantic meaning (integer value n) of the syntactic form n.

[e1 + e2] Env = add([e1] Env, [e2] Env) D6

[e1 - e2] Env = subtract([e1] Env, [e2] Env) D7

[e1 = e2] Env = intEquals([e1] Env, [e2] Env) D8

3.3.4 Booleans

[b]Env = b D9

where b is the semantic meaning (boolean value b) of the syntactic form b.

[~ e]Env = notOp([e]Env) D10

[e1 or e2] Env = orOp([e1] Env, [e2] Env) D11

[e1 and e2] Env = andOp([e1] Env, [e2] Env) D12

[e1 = e2] Env = boolEquals([e1] Env, [e2] Env) D13

3.3.5 Records

[{ l i = ei } (i = 1, n)] Env =

mkRec(< l1 , [e1] Env > ++ . . . ++ < ln , [en] Env >) D14

26

[e.l]Env = getL([e] Env) D15

3.3.6 Variants

[[l i : ei] : [lk: Tk] (k = 1, m)] Env = mkPair(li , [ei] Env) D16

[project e as x onto l : T in e1 else e2] Env =
if(sameLabel(fst([e]Env), l), [e1] Envx = snd([e]Env) ∈ [T] , [e2] Env)

D17

3.3.7 Functions

[fun (x : T1 → T2) e]Env = mkFun(e, x, Env) D18

[e1(e2)] Env = apply([e1] Env , [e2] Env) D19

3.3.8 Identifiers

[x]Envx = V ∈ T = V D20

3.3.9 Locations

[^ e]Env = mkLoc([e] Env) D21

[x := e]Env = put([x] Env , [e]Env) D22

[@ e]Env = get([e]Env) D23

3.3.10 Infinite Union

[inject (e, T)] Env = mkPair(getTypeRep(T), [e]Env) D24

[project e as x onto T in e1 else e2] Env =

if(sameTypeRep(fst([e]Env), getTypeRep(T)),
 [e1] Envx = snd([e]Env) ∈ [T] , [e2] Env) D25

27

3.3.11 Sequence

[e1 ; e2] Env = [e2] Enve1
D26

3.3.12 Block

[begin D ; e end]Env = [e]EnvD D27

3.3.13 Conditional

[if e then e1 else e2] Env = if([e]Env, [e1] Env, [e2] Env)

 D28

3.4 Type Mapping

Languages which support both structural type equivalence and the use of type

identifiers require a rewrite rule to reduce a type expression to its canonical

form. A canonical form in this context is the expanded version of a type which

contains no type identifiers. Consider the following type definitions in Figure

3.5. The type string used below is a base type representing a string of

characters.

type ageType is loc(int)

type person is { name : string , age : ageType }

type expandedPerson is { name : string , age : loc(int) }

Figure 3.5 : The Canonical Form of a Type

The definition of type person contains a type identifier ageType. Type

expandedPerson is the canonical form of the type person since it defines the

same type and the type identifier ageType in its definition has been replaced by

the corresponding type expression.

The mapping of a type identifier t to its type expression T is denoted by t ≈ T.

For this mapping to be valid, the type environment τ should contain the binding

< t, T >. The notation T is used in this thesis to denote the canonical form of a

type T. T ≈ T if every type identifier in T has been replaced by the type

28

expression associated with it in τ. The canonical form of any type expression

can be determined by the recursive application of the following rules:

• { l i : Ti } (i = 1, n) ≈ { l i : Ti} (i = 1, n)

• [l i : Ti] (i = 1, m) ≈ [li : Ti] (i = 1, m)

• fun(T1 → T2) ≈ fun(T1 → T2)

• loc(T) ≈ loc(T)

It should be noted that both T and T represent the same set of values. However,

while τ may be needed to evaluate the meaning of T, the meaning of T can be

evaluated independently. Thus, [T] τ = [T] φ.

3.5 Summary

A semantic context for the type constructors in Base has been presented. Type

constructors which create new values in the value space have been differentiated

from those which merely provide an abstraction over other types. Meta-

operations which are suitable for representing operations over the type

constructors in their respective semantic contexts are defined. These meta-

operations are then used to provide a semantics for the syntactic constructs in

Base. The semantics introduced here is used in the next chapter to provide a

proof of soundness of the typing rules for Base.

29

4 A Proof of Soundness for Base

Given a framework in which meanings can be assigned to expressions, the

typing of an expression e of type T is sound if the meaning of e is in the set of

meanings of T. The soundness of the typing rules for Base presented in section

2.7 can be proved by structural induction [FS91, Sch94] based on the following

definition of soundness :

τ, π h e : T ⇒ [e]Env ∈ [T] τ

where ∀ i ∈ Env, ∃ i ∈ π . [Env.i] ∈ [π.i]

This definition states that if the type of a well typed expression e can be deduced

to be T from the environments τ (which contains the bindings between type

identifiers and the types they stand for) and π (which contains the bindings

between identifiers and their types) then the meaning of e evaluated with respect

to an environment Env belongs to the meaning of T with respect to τ under the

condition that for every identifier i in Env there is a corresponding i in π such

that the meaning of i in Env belongs to the meaning of i in π. Since Env is a list

of bindings between identifiers and their meanings, this condition ensures the

consistency between the different environments used in the proof. It should also

be noted here that given the definition of Decl in Figure 3.1, Env belongs to

Decl.

The meanings of types in Base have been defined in Figures 3.1 and 3.2 and the

meanings of expressions in Base can be evaluated using the semantics specified

in section 3.4.

The proof of the whole type system can be broken down into proofs for

programs, declarations and the different kinds of expressions that can be formed

in the language. Sections 4.1 to 4.4 consider programs, declarations, base cases

for the expressions and non-atomic expressions respectively.

4.1 Programs

The proof obligation for any program in Base can be stated as

φ, φ h p : T ⇒ [p] φ ∈ [T]φ

This is a specialisation of the soundness rule given earlier for any expression.

Since every binding that can be used by a program is contained within it, the

soundness of the program has to be proven from empty premises.

30

Expression φ, φ h D ; e : T

To be proved [D ; e]φ ∈ [T]φ

Inductive Hypotheses [D]φ ∈ [decl]φ and [e]EnvD ∈ [T] τ

since D : decl and e : T with D added to τ and π

by type rule [program]

Inductive Step

[D ; e]φ = [e]Env D by D1

But [e]EnvD ∈ [T] τ by hypotheses

Therefore, [D ; e]φ ∈ [T] τ

However, [D ; e]φ ∈ [T] φ where T ≈ T

4.2 Declarations

The declarations are considered below.

Expression τ, π h type t is T : decl

To be proved [type t is T]Env ∈ [decl]τ

Inductive Hypothesis T ∈ Type by type rule [typeDecl]

Inductive Step

[type t is T]Env = φ by D2

Since, in this case, φ stands for the environment Env without any bindings,

φ ∈ [decl]τ by the definition of Env and Decl

Therefore, [type t is T]Env ∈ [decl]τ

Expression τ, π h let x = e : decl

To be proved [let x = e]Env ∈ [decl]τ

Inductive Hypothesis [e]Env ∈ [T] τ by type rule [idDecl]

Inductive Step

[let x = e]Env = Envx = [e]Env by D3

But Envx = [e]Env ∈ [decl]τ by the definition of Env and Decl

Therefore, [let x = e] Env ∈ [decl]τ

31

Expression τ, π h D1 ; D2 : decl

To be proved [D1 ; D2] Env ∈ [decl]τ

Inductive Hyp. [D1] Env ∈ [decl]τ and [D2] EnvD1
 ∈ [decl]τ

since τ, π h D1 : decl and τ′, π′ h D2 : decl where τ′ and π′

stand for τ and π with D1 added to them

by type rule [declSeq]

Inductive Step

[D1 ; D2] Env = [D1] Env ++ [D2] EnvD1
by D4

But [D1] Env ∈ [decl]τ and [D2] EnvD1
∈ [decl]τ by hypotheses

[D1] Env ++ [D2] EnvD1
∈ [decl]τ by the definition of Env

Therefore, [D1 ; D2] Env ∈ [decl]τ

4.3 Base Cases

The two base cases for the proof are considered below.

Case 1 Expression τ, π h n : int

[n]Env = n by D5

n ∈ Integer by type rule [intValue]

[int]τ = Integer from Table 3.1

Therefore [n] Env ∈ [int] τ

Case 2 Expression τ, π h b : bool

[b]Env = b by D9

b ∈ Boolean by type rule [boolValue]

[bool]τ = Boolean from Table 3.1

Therefore [b] Env ∈ [bool] τ

4.4 Expressions

4.4.1 Integers

Expression τ, π h e1 + e2 : int

To be proved [e1 + e2] Env ∈ [int] τ

32

Inductive Hypotheses [e1] Env ∈ [int] τ and [e2] Env ∈ [int] τ

since τ, π h e1 : int and τ, π h e2 : int

by type rule

[intAdd]

Inductive Step

[e1 + e2] Env = add([e1] Env, [e2] Env) by D6

[int]τ = Integer from Table 3.1

[e1] Env ∈ Integer and [e2] Env ∈ Integer by hypotheses

Since add is a function that takes two Integer values and returns an Integer,

add([e1] Env, [e2] Env) ∈ Integer

i.e. add([e1] Env, [e2] Env) ∈ [int] τ

i.e. [e1 + e2] Env ∈ [int] τ

Expression τ, π h e1 - e2 : int

To be proved [e1 - e2] Env ∈ [int] τ

Inductive Hypotheses [e1] Env ∈ [int] τ and [e2] Env ∈ [int] τ

since τ, π h e1 : int and τ, π h e2 : int

by type rule [intSub]

Inductive Step

[e1 - e2] Env = subtract([e1] Env, [e2] Env) by D7

[int]τ = Integer from Table 3.1

[e1] Env ∈ Integer and [e2] Env ∈ Integer by hypotheses

Since subtract is a function that takes two Integer values and returns an Integer,

subtract([e1] Env, [e2] Env) ∈ Integer

i.e. subtract([e1] Env, [e2] Env) ∈ [int] τ

i.e. [e1 - e2] Env ∈ [int] τ

Expression τ, π h e1 = e2 : bool

To be proved [e1 = e2] Env ∈ [bool] τ

Inductive Hypotheses [e1] Env ∈ [int] τ and [e2] Env ∈ [int] τ

since τ, π h e1 : int and τ, π h e2 : int

by type rule [intEq]

33

Inductive Step

[e1 = e2] Env = intEquals([e1] Env, [e2] Env) by D8

[int]τ = Integer from Table 3.1

[e1] Env ∈ Integer and [e2] Env ∈ Integer by hypotheses

Since intEquals is a function that takes two Integer values and returns a Boolean,

intEquals([e1] Env, [e2] Env) ∈ Boolean

i.e. intEquals([e1] Env, [e2] Env) ∈ [bool] τ

i.e. [e1 = e2] Env ∈ [bool] τ

4.4.2 Booleans

Expression τ, π h ~ e : bool

To be proved [~ e]Env ∈ [bool] τ

Inductive Hypothesis [e]Env ∈ [bool] τ

since τ, π h e : bool by type rule [negation]

Inductive Step

[~ e]Env = notOp([e]Env) by D10

[bool]τ = Boolean from Table 3.1

[e]Env ∈ Boolean by hypothesis

Since notOp is a function that takes a Boolean value and returns a Boolean,

notOp([e]Env) ∈ Boolean

i.e. notOp([e]Env) ∈ [bool] τ

i.e. [~ e] Env ∈ [bool] τ

Expression τ, π h e1 or e2 : bool

To be proved [e1 or e2] Env ∈ [bool] τ

Inductive Hypotheses [e1] Env ∈ [bool] τ and [e2] Env ∈ [bool] τ

since τ, π h e1 : bool and τ, π h e2 : bool

by type rule [or]

Inductive Step

[e1 or e2] Env = orOp([e1] Env, [e2] Env) by D11

[bool]τ = Boolean from Table 3.1

[e1] Env ∈ Boolean and [e2] Env ∈ Boolean by hypotheses

34

Since orOp is a function that takes two Boolean values and returns a Boolean,

orOp([e1] Env, [e2] Env) ∈ Boolean

i.e. orOp([e1] Env, [e2] Env) ∈ [bool] τ

i.e. [e1 or e2] Env ∈ [bool] τ

Expression τ, π h e1 and e2 : bool

To be proved [e1 and e2] Env ∈ [bool] τ

Inductive Hypotheses [e1] Env ∈ [bool] τ and [e2] Env ∈ [bool] τ

since τ, π h e1 : bool and τ, π h e2 : bool

by type rule [and]

Inductive Step

[e1 and e2] Env = andOp([e1] Env, [e2] Env) by D12

[bool]τ = Boolean from Table 3.1

[e1] Env ∈ Boolean and [e2] Env ∈ Boolean by hypotheses

Since andOp is a function that takes two Boolean values and returns a Boolean,

andOp([e1] Env, [e2] Env) ∈ Boolean

i.e. andOp([e1] Env, [e2] Env) ∈ [bool] τ

i.e. [e1 and e2] Env ∈ [bool] τ

Expression τ, π h e1 = e2 : bool

To be proved [e1 = e2] Env ∈ [bool] τ

Inductive Hypotheses [e1] Env ∈ [bool] τ and [e2] Env ∈ [bool] τ

since τ, π h e1 : bool and τ, π h e2 : bool

by type rule [boolEq]

Inductive Step

[e1 = e2] Env = boolEquals([e1] Env , [e2] Env) by D13

[bool]τ = Boolean from Table 3.1

[e1] Env ∈ Boolean and [e2] Env ∈ Boolean by hypotheses

Since boolEquals is a function that takes two Boolean values and returns a

Boolean,

boolEquals([e1] Env , [e2] Env) ∈ Boolean

i.e. boolEquals([e1] Env , [e2] Env) ∈ [bool] τ

i.e. [e1 = e2] Env ∈ [bool] τ

35

4.4.3 Records

Expression τ, π h { l i = ei } (i = 1, n) : { l i : Ti } (i = 1, n)

To be proved [{ l i = ei } (i = 1, n)] Env ∈ [{ l i : Ti } (i = 1, n)] τ

Inductive Hypotheses [e1] Env ∈ [T1] τ , . . . , [en] Env ∈ [Tn] τ

since τ, π h e1 : T1, . . . τ, π h en : Tn

by type rule [recValue]

Inductive Step

[{ l i = ei } (i = 1, n)] Env =

mkRec(< l1 , [e1] Env > ++ . . . ++ < ln , [en] Env >) by D14

Since mkRec is an operation that takes a list of n pairs each of type < Label, Ti >

and returns a record with fields corresponding to the labels,

mkRec(< l1 , [e1] E n v > ++ . . . ++ < ln , [en] E n v >) ∈

Record (lk : Tk)(k = 1, n)

i.e. mkRec(< l1 , [e1] Env > ++ . . . ++ < ln , [en] Env >) ∈

[{ l i : Ti } (i = 1, n)] τ

i.e. [{ l i = ei } (i = 1, n)] Env ∈ [{ l i : Ti } (i = 1, n)] τ

Expression τ, π h e.l : T

To be proved [e.l]Env ∈ [T] τ

Inductive Hypothesis [e]Env ∈ Record(l : T)+

since τ, π h e : { l : T }+ by type rule [recDeref]

Inductive Step

[e.l]Env = getL([e] Env) by D15

[e]Env ∈ Record(l : T)+ by hypothesis

Since getL takes a record and returns a value of the type of field l of that record,

getL([e]Env) ∈ [T] τ

i.e. [e.l] Env ∈ [T] τ

4.4.4 Variants

Expression τ, π h [li = e] : [li : Ti]+

To be proved [[li = e] : [li : Ti]+]Env ∈ [[li : Ti]+] τ

36

Inductive Hypothesis [e]Env ∈ [Ti] τ

since τ, π h e : Ti by type rule [varValue]

Inductive Step

[[l i = e] : [li : Ti]+]Env = mkPair (li , [e] Env) by D16

[e]Env ∈ [Ti] τ by hypothesis

Since mkPair is a function that takes a label and an expression and returns a pair

representing the variant value with the expression associated with the label,

mkPair(li , [e] Env) ∈ Pair(label, [Ti] τ)

But [[li : Ti]+] τ = Pair(label, [Ti] τ) from table 3.2

i.e. [[l i = e] : [li : Ti]+]Env ∈ [[li : Ti]+] τ

Expression τ, π h project e as x onto l : T1 in e1 else e2 : T

To be proved [project e as x onto l : T1 in e1 else e2] Env ∈ [T] τ

Inductive Hyp. [e]Env ∈ [[l : T1]+] τ and

[e1] Envx = snd([e]Env) ∈ [T1] ∈ [T] τ and [e2] Env ∈ [T] τ

since τ, π h e : [l : T1]+ and τ, π1::x : T1::π2 h e1 : T

and τ, π h e2 : T by type rule [varProj]

Inductive Step

[project e as x onto l in e1 else e2] Env =
if(fst([e]Env) = l, [e1] Envx = snd([e]Env) ∈ [T1] , [e2] Env) by D17

But [e]Env ∈ [[l : T1]+] τ and [e1] Env ∈ [T] τ and [e2] Env ∈ [T] τ

by hypotheses

But [[l : T1]+] τ = Pair(label, [T1] τ)

Since if is a function that takes a Boolean and two expressions of the same type

and returns an expression,

if(fst([e]Env) = l, [e1] Envx = snd([e]Env) ∈ [T1] , [e2] Env) ∈ [T] τ

i.e. [project e as x onto l : T1 in e1 else e2] Env ∈ [T] τ

4.4.5 Functions

Expression τ, π h fun(x : T1 → T2) e : fun(T1 → T2)

To be proved [fun(x : T1 → T2) e]Env ∈ [fun(T1 → T2)] τ

37

Inductive Hypothesis [e]Envx = v : T1 ∈ [T2] τ

since τ, π1::x : T1::π2 h e : T2 by type rule [funValue]

Inductive Step

[fun (x : T1 → T2) e]Env = mkFun(e, x, Env) D18

[e] Envx = v : T1 ∈ [T2] τ by hypothesis

Since mkFun is a function which takes an expression, an identifier and an

environment and returns a Function and from the hypothesis it can be seen that

when x is assigned a value of type T1 in Env then e will be of type T2,

mkFun(e, x, Env) ∈ Function(T1 → T2)

[fun(T1 → T2)] τ = Function(T1 → T2) from table 3.1

i.e. [fun (x : T1 → T2) e]Env ∈ [fun(T1 → T2)] τ

Expression τ, π h e1(e2) : T2

To be proved [e1(e2)] Env ∈ [T2] τ

Inductive Hypotheses [e1]Env ∈ [fun(T1 → T2)] τ and [e2]Env ∈ [T1] τ

since e2 : T1 and e1 : fun(T1 → T2) by type rule

[funApp]

Inductive Step

[e1(e2)] Env = apply([e1] Env , [e2] Env) by D19

[e1]Env ∈ [fun(T1 → T2)] τ and [e2]Env ∈ [T1] τ by hypotheses

Since apply is a function which takes a Function and an expression and returns a

value of the result type of the function,

apply([e1] Env , [e2] Env) ∈ [T2] τ

i.e. [e1(e2)] Env ∈ [T2] τ

4.4.6 Identifiers

Expression τ, π h x : T

To be proved [x]Env ∈ [T] τ

Inductive Hypothesis < none >

Inductive Step

[x]Envx = V ∈ T = V by D20

Since Env contains a binding that indicates V belongs to T, [x]Env ∈ [T] τ

38

4.4.7 Locations

Expression τ, π h ^ e : loc(T)

To be proved [^ e]Env ∈ [loc(T)] τ

Inductive Hypothesis [e]Env ∈ [T] τ

since τ, π h e : T by type rule [locValue]

Inductive Step

[^ e]Env = mkLoc([e] Env) by D21

[e]Env ∈ [T] τ from hypothesis

Since mkLoc takes an expression of type T and returns a Location(T),

mkLoc([e]Env) ∈ Location(T)

i.e. [^ e] Env ∈ [loc(T)] τ

Expression τ, π h e1 := e2 : unit

To be proved [e1 := e2] Env ∈ [unit]τ

Inductive Hypotheses [e1] Env ∈ [loc(T)] τ and [e2] Env ∈ [T] τ

since τ, π h e1 : loc(T) and τ, π h e2 : T

by type rule [assign]

Inductive Step

[e1 := e2] Env = put([e1] Env , [e2] Env) by D22

[e1] Env ∈ [loc(T)] τ and [e2] Env ∈ [T] τ from hypotheses

[loc(T)]τ = Location (T) and [unit] = Unit from Table 3.1

Since put takes a Location (T) and T and returns Unit,

put([e1] Env , [e2] Env) ∈ Unit

i.e. [e1 := e2] Env ∈ [unit]τ

Expression τ, π h @ e : T

To be proved [@ e]Env ∈ [T] τ

Inductive Hypotheses [e]Env ∈ [loc(T)] τ

since τ, π h e : loc(T) by type rule [locDeref]

Inductive Step

[@ e]Env = get([e]Env) by D23

[e]Env ∈ [loc(T)] τ from hypothesis

39

[loc(T)]τ = Location (T) from Table 3.1

Since get is a function that takes a Location (T) and returns a T,

get([e]Env)∈ [T] τ

i.e. [@ e] Env ∈ [T] τ

4.4.8 Infinite Union

Expression τ, π h inject(e, T) : any

To be proved [inject(e, T)] Env ∈ [any]τ

Inductive Hypothesis [e]Env ∈ [T] τ

since τ, π h e : T by type rule [anyInj]

Inductive Step

[inject (e, T)] Env = mkPair(getTypeRep(T), [e]Env) by D24

[e]Env ∈ [T] τ by hypothesis

[any] = Pair(typeRep, [T] τ) from Table 3.2

Since mkPair takes a typeRep and an expression and returns a Pair of the two,

mkPair(getTypeRep(T), [e]Env) ∈ Pair(typeRep, [T]τ)

i.e. [inject(e, T)]Env ∈ [any]τ

Expression τ, π h project e as x onto T1 in e1 else e2 : T

To be proved [project e as x onto T1 in e1 else e2] Env ∈ [T] τ

Inductive Hyp. [e]Env ∈ [any]τ and

[e1] Envx = snd([e]Env) ∈ [T1] ∈ [T] τ and [e2] Env ∈ [T] τ

since τ, π h e : any and τ, π1::x : T1::π2 h e1 : T

and τ, π h e2 : T by type rule [anyProj]

Inductive Step

[project e as x onto T1 in e1 else e2] Env =
if(fst([e]Env) = getTypeRep(T), [e1] Envx = snd([e]Env) ∈ [T] , [e2] Env)

by D25

But [e]Env ∈ [any]τ by hypotheses

But [any]τ = Pair(typeRep, [Ti] τ)

Since if is a function that takes a Boolean and two expressions of the same type

and returns an expression,

40

if(fst([e]Env) = getTypeRep(T), [e1] Envx = snd([e]Env) ∈ [T] , [e2] Env)

 ∈ [T] τ

i.e. [project e as x onto l : T1 in e1 else e2] Env ∈ [T] τ

4.4.9 Sequence

Expression τ, π h e1 ; e2 : T

To be proved [e1 ; e2] Env ∈ [T] τ

Inductive Hypotheses [e1] Env ∈ [unit]τ and [e2] Env ∈ [T] τ

τ, π h e1 : unit and τ, π h e2 : T by type rule [seq]

Inductive Step

[e1 ; e2] Env = [e2] Enve1
 by D26

[e2] Env ∈ [T] τ by hypotheses

Therefore, [e2] Enve1
 ∈ [T] τ

i.e. [e1 ; e2] Env ∈ [T] τ

4.4.10 Block

Expression τ, π h begin D ; e end : T

To be proved [begin D ; e end]Env ∈ [T] τ

Inductive Hypotheses [D]Env ∈ [unit] and [e] EnvD ∈ [T] τ

since τ, π h D : unit and τ, π h e : T

by type rule [block]

Inductive Step

[begin D ; e end]Env = [e]EnvD by D27

But [e]EnvD ∈ [T] τ by hypotheses

Therefore, [begin D ; e end] Env ∈ [T] τ

4.4.11 Conditional

Expression τ, π h if e then e1 else e2 : T

To be proved [if e then e1 else e2] Env ∈ [T] τ

41

Inductive Hyp. [e]Env ∈ [bool] τ, [e1] Env ∈ [T] τ and [e2] Env ∈ [T] τ

since τ, π h e : bool, τ, π h e1 : T and τ, π h e2 : T

by type rule [conditional]

Inductive Step

[if e then e1 else e2] Env = if([e]Env, [e1] Env, [e2] Env) by D28

But [e]Env ∈ [bool] τ, [e1] Env ∈ [T] τ and [e2] Env ∈ [T] τ

by hypotheses

Since if is a function that takes a Boolean and two expressions of the same type

and returns an expression of this type,

if([e]Env, [e1] Env, [e2] Env) ∈ [T] τ

Therefore, [if e then e1 else e2] Env ∈ [T] τ

4.5 Summary

The definition of soundness states that if an expression e is of type T then the

meaning of e belongs to the meaning of T. Structural induction has been used to

prove this property for every construct in Base, thus proving the soundness of

the whole type system. The proof strategy for any construct c of Base can be

summarised as follows. The type rules of Base specify the expected type of c.

They also specify the hypotheses which need to hold for this typing. The

semantics (the meaning) of c is defined in terms of the meta-operations of Base.

The type of the meaning of c is determined from the type of the meta-operations

and the hypotheses. The meanings of various types in Base have been defined in

section 3.1. If the meaning of the expected type of c is the same of the type of

the meaning of c then the typing of c is sound. This strategy is again used in

Chapter 9 to prove that the addition of extension polymorphism preserves the

soundness of the type system of Base.

42

5 Background

The aim of this thesis is to address the problem of type evolution in persistent

systems using polymorphism. Some of the concepts and issues that need to be

understood in order to carry out this work are explained in this chapter. The

salient features of polymorphism, type checking and object oriented

programming are explained in sections 5.1 to 5.3. The relevance of each topic to

the main work of this thesis is outlined at the end of each section.

5.1 Polymorphic Systems

Static typing in programming languages provides the ability of determining the

type of every expression by static program analysis. While there are advantages

to this mechanism, such as being able to detect type errors early and efficient

program execution, it also demands that every variable and expression should be

bound to a type at compile time. In a monomorphic type system this can

sometimes be too restrictive and lead to loss of expressive power and flexibility.

Polymorphism is one method by which a programming language can preserve

static typing while easing some of its traditional restrictions.

A polymorphic type system is one in which values and variables can have more

than one type. This can be contrasted with the more traditional monomorphic

systems in which each value belongs to at most one type. Two of the most

widely used kinds of polymorphism are parametric polymorphism and inclusion

polymorphism. They are described in detail in later sections.

The correspondence between sets and types is first discussed in this section. A

brief outline of the theory of partially ordered sets [Lew85, FS91] and lattices

[Lew85] is then given as lattices are later used to illustrate type hierarchies in

polymorphic type systems. The formal model, the concept and a programming

language mechanism to implement the concept are described for both parametric

and inclusion polymorphism. System F provides the formal basis for parametric
polymorphism and system F≤ for inclusion polymorphism. While parametric

polymorphism may be incorporated into a language by the use of universal

quantification, subsumption and bounded quantification are mechanisms that

support inclusion polymorphism.

5.1.1 Sets and Types

Polymorphism is described by Cardelli and Wegner [CW85] in terms of set

theory. They assert that there is a universe of values, V, which includes integers,

43

cross products and functions. To a first approximation and for all programming

languages, a type is a set of values of V. Values that belong to any type form a

subset of V. If a value v has a type t then it is a member of the subset of V

corresponding to t. Sets may overlap and values may have more than one type.

This flexibility gives rise to polymorphic type systems. Parametric

polymorphism can be modelled in terms of set intersection while inclusion

polymorphism is modelled by set inclusion.

5.1.2 Partial Orders and Lattices

Consider a relation p ∈ A × A on a set A. p is said be a partial order on A if it

has the following properties:

• reflexive

if (a, a) ∈ p for every a ∈ A

• anti-symmetric

if (a1, a2), (a2, a1) ∈ p implies a1 = a2 for a1, a2 ∈ A

• transitive

if (a1, a2), (a2, a3) ∈ p implies (a1, a3) ∈ p

The pair (A, p) is then referred to as a partially ordered set or a poset. A strict

partial order < on A can be defined as satisfying the following properties:

• irreflexive

if (a, a) ∉ p for every a ∈ A

• asymmetric

if (a1, a2) ∈ p implies (a2, a1) ∉ p

• transitive

as defined before

In the context of a poset (A, ≤), and given that < is the associated strict partial

order of p, the following terms can be defined:

b is a successor of a in A if a < b and is an immediate successor of a if there does

not exist a c in A such that a < c < b for a, b ∈ A. The inverse of these relations

defines the predecessor and immediate predecessor relations. A member a0 in A

44

is the least member of A if it is a predecessor of every other member of A. A

member a0 in A is a minimal of A if it has no predecessor. A poset always has

one or more minimals but has a least member if and only if it is also the unique

minimal. The inverse of these conditions define the greatest member and the

maximals of a poset.

A member a0 in A is a lower bound of a subset E of A iff a0 ≤ x for every x in E.

If the set of lower bounds of E has a greatest member then this member is called

the infimum or the greatest lower bound of E. Similarly inverse conditions

define the upper bounds and the supremum or the lowest upper bound. The

bounds of E need not be members of E.

A poset (S, ≤) is a lattice if and only if every subset consisting of two members

of S has an infimum and a supremum in S.

Consider set inclusion (⊆) over some universal set U. The subset relation is

reflexive, anti-symmetric and transitive for any pair of sets A and B belonging to

2U i.e. the set of all subsets of U [Lew85]. Therefore it is a partial order.

For the subset relation and any two members a and b in 2U, the infimum is the

intersection of a and b and the supremum is the union of a and b. Since both

these sets belong to 2U, the subset relation is a lattice. The diagrammatic

notation shown below is used to represent lattices.

A

B

Figure 5.1.1 : Subset Lattice

The lattice in Figure 5.1.1 represents the fact that set B is a subset of set A.

5.1.3 System F

System F is an extension of the typed lambda calculus [Sch94] that provides the

basis for polymorphic programming languages. It was introduced independently

in the contexts of proof theory [Gir71, GTL89] and programming languages

[Rey74]. In addition to the functionality provided by typed lambda calculus,

System F permits the binding of type variables.

45

In the case of the typed lambda calculus, the type of every expression can be

deduced from the types of the free variables it contains. Whenever a variable is

bound, a type expression is also specified for it. For example, the identity

function for values of type t can be written as λx : t. x. The meaning of such

expressions depend on both the free variables and the free type variables.

System F provides the facility to specify bindings for type variables to create

polymorphic functions. These are functions from types to values. For example,

Λt. λx : t. x is the polymorphic identity function which takes a type t and returns

the identity function for values of type t. The application of polymorphic

functions to type expressions can be specified as (Λt. r)[w] where r is an

expression and w is a type expression. This application can be reduced to an

expression obtained from r by replacing every free occurrence of t by w, after

any necessary alpha-conversion to avoid clashing of variable names. The type

of a polymorphic function, which when applied to a type t produces a value of

type w, is Λt. w. Therefore if expression r is of type w then the expression Λt. r

is of type Λt. w. Parametric polymorphism is based on this model.

5.1.3.1 Parametric Polymorphism

In the case of parametric polymorphism the uniformity of type structure

necessary for universal polymorphism is achieved by the use of type parameters.

Implicit or explicit type parameters determine the type of argument for each

application of a polymorphic function.

Consider defining an identity function each for integers, booleans and a record

type called Person.

fun (x : int -> int) x

fun (x : bool -> bool) x

fun (x : Person -> Person) x

Figure 5.1.2 : Identity Functions

As can be seen from Figure 5.1.2, the signatures of all these functions have a

similar structure and the function bodies are identical. It is easy to see that

whatever the type used to define the identity function, these statements will hold.

Therefore a polymorphic function, parameterised by the desired type, can be

defined to replace all of these functions.

46

let genId = fun [T] (x : T -> T) x

intIdVal := genId [int] (100)

let boolId = genId [bool]

Figure 5.1.3 : Polymorphic Identity Function

Figure 5.1.3 shows one model for defining and using a polymorphic identity

function genId. This example uses universal quantification to implement

parametric polymorphism. intIdVal is assigned the value returned by genId

when it is parameterised by the type int and called with the value 100. In this

case the type of intIdVal will be int , as might be expected. In some type systems

it is also possible to obtain a specialised function applicable to specific type by

merely applying the polymorphic function to a type parameter. Napier88

[MCC+95, MBC+96] is an example of a language that provides this facility.

boolId in Figure 5.1.3 is an instance of genId specialised to operate over boolean

values. Its functionality will, in effect, be the same as that of the second

function in Figure 5.1.2. Thus, polymorphic functions abstract over the

argument types of functions.

In set theoretic terms, parametric polymorphism is modelled by set intersection.

A polymorphic function can be considered as the intersection of all the

monomorphic functions it can represent. Thus, using the examples in Figure

5.1.2, a type lattice can be drawn as shown in Figure 5.1.4 below.

intFun boolfun personFun

polyFun

Figure 5.1.4 : Type Lattice for Parametric Polymorphism

In this lattice, intFun, boolFun and personFun stand for the types of the three

functions defined in Figure 5.1.2 and polyFun is the type of the polymorphic

identity function.

47

5.1.3.2 Quantification

Quantification [CW85, CM92] is a abstraction mechanism for polymorphism

which allows the programmer to specify a type variable to range over the

possible types which can be type parameters to a quantified function. There are

two kinds of quantification mechanisms: universal and existential. Universal

quantification, which is the model of interest to this thesis, has been used for the

examples in Figure 5.1.3. It is a model of parametric polymorphism and allows

the specification of generic code. This is usually achieved through parameter

passing.

5.1.4 System F≤

System F≤ [Ghe90, Ghe93] is an extension of System F which provides the

ability to express polymorphism over subtyping. In addition to lambda
abstraction, System F≤ allows second order abstraction with respect to type

variables and thus can model bounded quantification. A polymorphic function

can have a bound type for the type variable and only the subtypes of this bound

can be actual parameters to the polymorphic function. For example, ∀ t ≤ T. r is

such a function where T is the bound and r is an expression. The type of this

function is Λt ≤ T. w where w is the type of r and may be defined in terms of t.
The type system of F≤ contains a type Top, whose canonical element is top,

which is a supertype of all types. Thus, an unbounded lambda abstraction r may

also be written as ∀ t ≤ Top. r. The application of a second order function ∀ t ≤ T.

r to a type A is specified as ∀ t ≤ T. r{ A }. Ghelli has extended this language

further in System F-bounded [Ghe94] where it is possible to write bound types

that contain the bounded variable.

It should be noted that there are differences in the notations used by System F
and System F≤ to denote similar semantic entities. For example, System F uses

Λ to stand for the construct that specifies type binding while System F≤ uses ∀ .

Thus, ∀ t. r in System F≤ will be written as Λt. r in System F.

5.1.4.1 Inclusion Polymorphism

Inclusion polymorphism is a combination of two concepts : a subtype relation

and a programming language algebra that supports the subtyping relation. The

subtyping relation between two types can be defined as follows : type A is a

subtype of type B if all operations allowed on B are also allowed on A. This is

written as A ≤ B. A subtype has all the functionality of the supertype and

possibly more. The programming algebra is the collection of constructs

48

provided by the language to implement the concepts it supports. One

programming algebra rule that can be used to support subtyping is subsumption.

The rule of subsumption can be written as :

 π ∫ a : X and X ≤ Y implies π ∫ a : Y

where π is the identifier - type environment introduced in Chapter 2, a is an

expression and X and Y are types. The colon is used to denote 'is of type'.

π ∫ a : X means that from π a can be deduced to be of type X. Therefore the rule

of subsumption can be stated as 'if a is of type X and X is a subtype of Y then a

is also of type Y'. This allows a subtype value to be used wherever a supertype

value is expected.

Since the subtyping relation is equivalent to the subset relation over the same

universe of discourse, subtyping is also a partial order and a lattice. At the top

of this lattice is the set representing the universe of values V and at the bottom,

the empty set. Since types are sets, subtypes correspond to subsets and the

notion that A is a subtype of B in the type space corresponds to the set

theoretical condition that A is a subset of B in the value space. In the

subsequent sections both lattices and Venn diagrams are used to illustrate

subtype hierarchies.

This concept is discussed further in the next section using Cardelli's subtyping

relation [Car84] as an example. Sections 5.1.4.3 and 5.1.4.5 present a discussion

of subsumption and bounded universal quantification as programming language

mechanisms to support the use of the subtyping relation.

5.1.4.2 Subsets, Subtypes and Type Constructors

In an operation based type system sets are formed over the value space defined

by the operations that can be performed on the values. If an operation can

manipulate values of a set, values of any its subsets can also be acted upon by

that operation. Cardelli established a model of subtyping relation based on the

notion of types as sets of values which assumes subsumption in the

programming language algebra. Cardelli's subtyping relation is defined below.

The correspondence between subtype relation in type space and subset relation

in value space is justified in this section by means of examples. The

characterisation of type here is in terms of two criteria : applicability of

operations and the set of possible results of these operations. Consider a type T

with operations O1 to On such that all possible results of these operations form

49

the sets R1 to Rn respectively. If there is a value v such that O1 to On can be

applied to v and Oi(v) is a member of Ri for all i from 1 to n, then v can be

considered to be of type T. The subtyping relation is discussed for each of the

common type constructors.

a) All types

T ≤ T for any type T

Any type is a subtype of itself. Similarly any set is a subset of itself.

b) Labelled cross products

A labelled cross product is a collection of values which have names or labels.

The subtyping rule for labelled cross products is :

t1 ≤ t1', , tn ≤ tn' implies { a1 : t1, . . . , an+m : tn+m} ≤ { a1 : t1', . . ., an : tn'}

where m ∈ N and n ∈ N1

A labelled cross product S1 is a subtype of another labelled cross product S2 if

S1 has all the fields of S2 and possibly more and the types of common fields in

S1 are in turn subtypes of the those in S2. Figure 5.1.15 gives some examples of

labelled cross product definitions illustrating the subtype relation.

type person is { name : format1 }

type teacher is { name : format2 , exp : int }

type student is { name : format2 , rollNo : int }

type tutor is { name : format2 , exp : int , rollNo : int }

Figure 5.1.5 : Examples of Labelled Cross Products

where format2 ≤ format1. The relations that hold between the types in Figure

5.1.5 by virtue of the subtyping rule are specified along with explanation for

each case in the table in Figure 5.1.6 below.

50

Relation Explanation

teacher ≤ person format2 ≤ format1 and teacher has an additional

label exp

student ≤ person format2 ≤ format1 and student has an additional

label rollNo

tutor ≤ person format2 ≤ format1 and tutor has two additional

labels exp and rollNo

tutor ≤ teacher tutor has an additional label rollNo

tutor ≤ student tutor has an additional label exp

Figure 5.1.6 : Subtyping Relations for Examples

The type lattice for these types can be represented by the following diagram in

Figure 5.1.7.

person

teacher student

tutor

Figure 5.1.7 : Type Lattice for Example Types

The relations in terms of set theory can be illustrated by the Venn diagram below

in Figure 5.1.8.

51

Person

Student

Teacher
Tutor

Figure 5.1.8 : Subset Relations

c) Labelled disjoint sums

A labelled disjoint sum represents a choice between a finite, named collection of

types. The subtyping rule for labelled disjoint sums is :

 t1 ≤ t1', , tn ≤ tn' implies [a1 : t1, . . . , an : tn] ≤ [a1 : t1', . . , an+m : tn+m']

A labelled disjoint sum V1 is a subtype of another labelled disjoint sum V2, if V2

has all the branches of V1 and possibly more and the types of the branches in V1

are in turn subtypes of the corresponding branches in V2. Given below in Figure

5.1.9 are examples of definitions of labelled disjoint sums where

higherIntermediate ≤ intermediate.

type generalScale is [S : senior , I : intermediate ; J : junior]

type twoScale is [S : senior , I : intermediate]

type highScale is [S : senior , I : higherIntermediate , J : junior]

type seniorScale is [S : senior]

Figure 5.1.9 : Examples of Labelled Disjoint Sums

According to the subtyping rule given above, the following relations explained

Figure 5.1.10 hold between these types :

52

Relation Explanation

twoScale ≤ generalScale generalScale has an additional branch J

highScale ≤ generalScale higherIntermediate ≤ intermediate

seniorScale ≤ generalScale generalScale has two additional branches I and J

seniorScale ≤ twoScale twoScale has an additional branch I

seniorScale ≤ highScale highScale has two additional branches I and J

Figure 5.1.10 : Relations between Labelled Disjoint Sums

The type lattice for these labelled disjoint sum definitions can be drawn as

shown in Figure 5.1.11.

generalScale

twoScale highScale

seniorScale

Figure 5.1.11 : Type Lattice for Disjoint Sum Examples

The subset relations between these types are illustrated by the Venn diagram in

Figure 5.1.12 below where sS stands for seniorScale.

generalScale

twoScale highScalesS

 Figure 5.1.12 : Venn Diagram for Disjoint Sums

53

d) Functions

Functions are represented by an arrow operator requiring a domain and a range

type. The subtyping rule for functions is :

 s' ≤ s and t ≤ t' implies s → t ≤ s' → t'

Thus this rule requires the argument type of the subtype to be greater and the

result type of the subtype to be smaller than the corresponding types of the

supertype. This condition is said to be contravariant on the argument type and

covariant on the result type.

Assuming the definition of labelled cross product types employee, person, car

and vehicle such that employee ≤ person and car ≤ vehicle, function types can be

defined as follows in Figure 5.1.13.

type vehicleOfPerson is fun (person → vehicle)

type carOfPerson is fun (person → car)

type carOfEmployee is fun (employee → car)

type vehicleOfEmployee is fun (employee → vehicle)

Figure 5.1.13 : Examples of Functions

According to the subtyping rule given above, the following relations specified in

Figure 5.1.14 hold :

Relation Explanation

vehicleOfPerson ≤ vehicleOfEmployee employee ≤ person

carOfPerson ≤ vehicleOfPerson car ≤ vehicle

carOfPerson ≤ carOfEmployee employee ≤ person

carOfPerson ≤ vehicleOfEmployee employee ≤ person and car ≤ vehicle

carOfEmployee ≤ vehicleOfEmployee car ≤ vehicle

Figure 5.1.14 : Relations between Functions

54

The type lattice for these function types can be drawn as shown in Figure 5.1.15

below.

vehicleOfEmployee

carOfPerson

vehicleOfPerson carOfEmployee

Figure 5.1.15 : Type Lattice for Function Examples

The subtype relations between these function types are illustrated by the Venn

diagram given in Figure 5.1.16. In the diagram, F1, F2, F3 and F4 stand for

vehicleOfPerson, carOfPerson, carOfEmployee and vehicleOfEmployee

respectively.

F3F2

F4

F1

 Figure 5.1.16 : Venn Diagram for Functions

e) Mutable values

The subtyping rule for mutable values is :

 a) loc(A) ≤ loc(B) iff A ≤ B and B ≤ A

Since subtyping is a partial order satisfying the anti-symmetric condition, these

conditions imply that A = B.

55

It is also possible to incorporate another rule for subtyping over mutable though

it is not part of Cardelli’s model and is not compatible with the corresponding

set theory. However, by adopting suitable operations over mutable values, the

soundness of the type system can be preserved despite the addition of the

following rule:

b) loc(A) ≤ A

In Figure 5.1.17 given below, locPer and locEmp are examples of mutable types.

type person is { name : string }

type employee is { name : string ; eno : int }

type locPer is loc(person)

type locEmp is loc(employee)

Figure 5.1.17 : Mutable Types

According to the subtyping rules for locations, the subtyping relations between

these types are given in Figure 5.1.18.

Relation Explanation

locPer ≤ person by rule b

locEmp ≤ employee by rule b

Figure 5.1.18 : Subtyping Relation between Mutable Types

The type lattice for the location types in the example can be drawn as shown in

Figure 5.1.19.

56

person

employee locPer

locEmp

Figure 5.1.19 : Type Lattice for Mutable Type Examples

The subtype relations between the example mutable types can be illustrated by

the following Venn diagram in Figure 5.1.20.

person

locPer

employee

locEmp

Figure 5.1.20 : Venn Diagram for Mutable Types

5.1.4.3 Subsumption

Subsumption is one programming language mechanism which enables the use of

the subtyping relation in programs. It can be defined by the following rule.

π ∫ a : t and t ≤ t' implies π ∫ a : t'

This means that if a value a is of type t and if t is a subtype (by the rules of the

subtyping relation adopted) of another type t' then a is also of type t'.

57

If the subtyping relation described in section 5.1.3 were added to the type system

of Base, described in Chapter 2, then subsumption can be used in the following

contexts.

a) assignment

π ∫ a : loc(X) , π ∫ b : Y and Y ≤ X implies a := b is valid

If a belongs to the location type of type X, b is a value of type Y and Y is a

subtype of X then it is type safe to assign b to a and b will be viewed as being of

type X.

b) function application and result

 π ∫ f : s → t and π ∫ a : s' where s' ≤ s implies

f(a) is meaningful and π ∫ f(a) : t

If f is a function type from s to t and expression a is of type s' where s' is a

subtype of s then f can be applied to a and the result of this application will be of

type t.

c) projection from infinite union

π ∫ s : X' , X' ≤ X and t = inject(s, X') then the projection of t onto X will be

successful

If s is an expression of type X', X' is a subtype of X and if t is the result when s

has been injected to form an any then the project operation on t, project t as y

onto X in E1 else E2, is valid and the expression corresponding to type X will

be chosen.

5.1.4.4 Anomalies of Subsumption

While subsumption allows more flexibility of operations than is possible in a

system without a similar mechanism for polymorphism, there is a conflict

between the use of subsumption and type accuracy in a system [CM92]. This is

due to the fact that using subsumption reduces the amount of static information

available about the relationship between types. Consider the example in Figure

5.1.21 below.

58

let compare = fun(a, b : person -> bool) . . .

let personId = fun(p : person -> person) p

let s = personId(aStudent)

Figure 5.1.21 : Example of Subsumption

If the type system supports subsumption then it can not be assumed in the body

of compare that a and b are of exactly the same type since either or both of them

may belong to a type that is a subtype of person. A similar problem occurs with

the definition of personId in the example. This function is defined to take a

value of type person and return a result of type person. However subsumption

allows the user to pass a value of type student (where student is a subtype of

person) as the actual parameter to the function but the result returned will still be

typed as person. Although these operations are type safe, some relevant

semantic knowledge may be hidden from the user. A possible solution to this

problem is described in section 5.1.5.

5.1.4.5 Bounded Quantification

One way to overcome the restrictions placed by the use of subsumption,

explained in the previous section, is to replace subsumption with a mechanism

that allows similar flexibility in the language but models the relationships

between types explicitly. For example, given two types A and B, it should be

possible to determine statically whether they are equivalent, in a subtype relation

or whether one of them is a component of the other. Bounded quantification

[CW85, Ghe90, CM92] is a mechanism that provides more type information

with subtyping.

In a system that supports bounded quantification without subsumption,

subtyping is only permitted where explicitly specified; all other instances require

an exact type match. Bounded quantification differs from the quantification

mechanisms discussed in sections 5.1.2.3 to 5.1.2.6 in that a bound by subtyping

is placed on the quantifier variable. Bounded universal quantification which is

used later in the thesis is described below.

Bounded universal quantification provides a means to produce polymorphic

code which can operate over all types which are subtypes of the bound type

specified. The identity function personId from Figure 5.1.19 can now be

59

defined as shown in Figure 5.1.22. In this form, t ranges over all subtypes of

person.

let personId = fun[t ≤ person](p : t -> t) p

let s = personId[student](aStudent)

let compare = fun[t ≤ person](p1, p2 : t -> bool) . . .

Figure 5.1.22 - Bounded Universal Quantification

This definition of the function, while still providing polymorphism, also allows

the actual parameter and the result to be statically and exactly typed. Thus if

personId was quantified by the type student and applied to a value of student as

shown in Figure 5.1.20 the type of s can be statically deduced to be student. The

use of bounded quantification also means that in the definition of function

compare, parameters p1 and p2 can safely be assumed to be of the same type.

5.1.5 Summary

Sections 5.1.1 to 5.1.4 have presented the different kinds of polymorphism and

their expressive power and uses have also been described. It can be seen that

polymorphism is a means to provide various kinds of abstraction, software reuse

and information at the type level. This idea is pursued further in Chapter 8 to

use polymorphism to devise a way to capture type evolution in persistent

systems.

5.2 Type Checking

The main function of a type checker is to check that a program is well-typed by

comparing the expected type of an expression, deduced from its context, with

the actual type. It determines, for example, whether a function has been

supplied with the right type of actual parameter and whether a location has been

assigned the right type of expression. For a complete piece of code to be

correctly typed, every expression and statement in it must be correctly typed. In

some systems such as Napier88 [Con88], the type checker also constructs the

data structures that represent types in the persistent store. Structural type

equivalence [CBC+90] checking is implemented by performing an equivalence

test on such structures.

60

In the traditional compiler architecture, shown below in Figure 5.2.1, type

checking is a separate phase that takes place between parsing and code

generation.

Source

Executable

Lexical
Analyser

Parser

Type
Checker

Code
Generator

Figure 5.2.1 : Traditional Compiler Architecture

In modern architectures, this distinction between different phases of compiling

may be blurred. For example, parsing, type checking and code generation for

each language construct may be performed by a single unit of code.

In sections 5.2.2 and 5.2.3 a Napier88 like type checker is used to illustrate some

of the key features of type checking. This type checker creates type

representations as graphs and performs type checking by comparing these graphs

for isomorphism. In this case, the interface of the type checker module provides

three types of functions: constructors, selectors and operators. Constructors are

used for the creation of type representations, selectors for dereferencing

components of type representations and operators for performing type checking.

Section 5.2.2 describes the construction of type representations while section

5.2.3 presents some basic principles behind type checking monomorphic and

polymorphic type systems. It is assumed that the systems use structural type

equivalence.

5.2.1 Properties of Type Checking Algorithms

A type system is decidable if its type checking algorithm will always produce

the correct answer to the question whether some expression is well typed. In a

decidable system, the algorithm will exhibit all three of the following properties:

soundness, completeness and convergence. An algorithm is sound if the

answers it provides are always correct. A complete algorithm will always find

the answer if there is one. An algorithm is said to be convergent if the

61

computation it performs is finite and therefore the algorithm will terminate;

otherwise it is said to be divergent.

Based on these properties, sound algorithms may be classified into three

categories:

• sound algorithms

• sound and complete algorithms

• sound, complete and convergent algorithms

These categories are further explained below using illustrations based on those

presented in [Ghe93c]. In the descriptions given below, the following

conventions are adopted:

• good terms are those correctly typed

• bad terms are those which are not correctly typed

• YES denotes the set of expressions for which the algorithm returns a

positive answer while NO is the set for which a negative answer is

returned

• the striped area represents those terms for which the algorithm is

divergent

5.2.1.1 A Sound Algorithm

YES NO

Good terms Bad terms

NO

Figure 5.2.2 : Sound Algorithm

Figure 5.2.2 above illustrates a sound type checking algorithm. If a sound

algorithm gives a YES answer then the term is correctly typed but it may fail to

recognise some correctly typed terms as such. Similarly a NO answer from this

algorithm will mean that the term is incorrectly typed but it may not recognise

62

all badly typed terms. A type system supported by such an algorithm is not

decidable.

5.2.1.2 A Sound and Complete Algorithm

YES

Good terms

NO

Bad terms

Figure 5.2.3 : Sound and Complete Algorithm

A complete algorithm is one which will always give a result provided there is a

YES result. A sound and complete algorithm is illustrated in Figure 5.2.3. If a

term is correctly typed then the algorithm will always give a YES answer but in

the case of badly typed terms, its behaviour is similar to that of a sound

algorithm. Thus this algorithm is convergent in the case of good terms but

divergent otherwise. A type system supported by a sound and complete

algorithm is said to be semi-decidable.

5.2.1.3 A Sound, Complete and Convergent Algorithm

YES NO

Good terms Bad terms

Figure 5.2.4 : Sound, Complete and Convergent Algorithm

A sound, complete and co-complete algorithm, as shown in Figure 5.2.4, will

recognise all good terms and bad terms in the universe of discourse as such and

is convergent in either case. A type system with such an algorithm is said to be

decidable.

63

5.2.2 Type Representation

Figure 5.2.5 below illustrates a possible data structure for representing types

taken from [Con90]. To simplify the example, it is assumed that the type

operator list and the operations on it are predefined.

rec type TYPE is { label : string ;

specificInfo : string ;

ref : list [TYPE] }

Figure 5.2.5 : Definition of Type

TYPE is defined as a recursive record type which contains three fields. The

label field is an indication of the type constructor (e.g. "base" for int, "rec" for

records and "fun" for functions). Information specific to the type being

represented, such as the name of the base type or field or branch names in the

case of records and variants, is contained in the specificInfo field. ref contains

the reference to a list of component types, such as field types for records and

argument and result types for functions.

Using this definition, the data structures for base type int and a record type that

has two fields x and y of types int and bool respectively can be diagrammatically

shown in Figures 5.2.6 and 5.2.7 as follows.

"base" "int"

Figure 5.2.6 : Representation of int

The label field indicates that it is a base type, specificInfo indicates which base

type it is and since it is a base type there are no references to any component

types.

64

"rec" "*x*y"

"base" "int"

"base" "bool"

Figure 5.2.7 : Representation of a Record Type

For the record, label contains "rec", specificInfo contains the names of the two

fields delimited by a * sign in order to distinguish the two names and ref

contains a pointer to a list which contains the representations for the two field

types.

5.2.3 Type Checking Algorithms

The type representation scheme presented in the last section constructs a graph

for each type in the code being checked. These graphs can then be compared for

isomorphism to check type equivalence. Since the type system is infinite, a

recursive type checking algorithm is needed to test the isomorphism of the

graphs.

5.2.3.1 Monomorphic Type Systems

In a monomorphic type system, type checking involves comparing the graph of

the type expected and the graph of the actual type for structural equivalence. An

outline of a recursive algorithm [Con90, CBC+90] that uses the type

representation scheme of the previous section can be specified as follows:

65

rec let eqType = fun(t1, t2 : TYPE -> bool)

typeIdentity(t1, t2) or

(t1.label = t2.label and

 t1.specificInfo = t2.specificInfo and

 eqList(t1.ref, t2.ref))

& eqList = fun(l1, l2 : list [TYPE] -> bool)

(l1 = nil and l2 = nil) or

(l1 ~= nil and l2 ~= nil and eqType(head(l1), head(l2)) and

 eqList(tail(l1), tail(l2)))

Figure 5.2.8 : Basic Type Checking Algorithm

Thus the algorithm first checks for identity of the two graphs, in which case a

full structural check is unnecessary. If they are not identical then the labels and

specific information are checked for equality and a list equivalence test, which

tests the equivalence of each pair of corresponding elements, is carried out on

the reference fields of both types.

5.2.3.2 Polymorphic Type Systems

In polymorphic type systems, type checking is more complicated due to the fact

that values can have more than one type. Hence a mere structural equivalence

test will not suffice in these systems. Consider, for example, a type system that

supports inclusion polymorphism. Then the type checker will not only need to

be able to check for equivalence but also for the existence of a subtyping relation

between two types. A simplified subtype checking algorithm for determining

whether type t1 is a subtype of type t2 may be defined as follows:

rec let subtype = fun(t1, t2 : TYPE -> bool)

eqType(t1, t2) or

(t1.label = t2.label and

 subInfo(t1.specificInfo, t2.specificInfo) and

 subList(t1.ref, t2.ref))

Figure 5.2.9 : Subtype Checking Algorithm

Thus the algorithm first performs an equivalence check since equivalence

implies that the two types are in the subtyping relation. Otherwise the

conditions necessary for subtyping are checked. For t1 to be a subtype of t2, the

66

labels of both types have to be the same, the specific information and reference

fields of t1 and t2 have to satisfy the subtyping conditions necessary for the

appropriate type constructor. Functions subInfo and subList perform these

checks in the algorithm given above. It should be noted that this simplified

algorithm does not support the subtyping rule which allows location types to be

subtypes of their content types.

If the system supports bounded universal quantification based on inclusion then

the functionality of the type checker becomes further complicated. Bounded

quantification introduces type variables in the signature of the function. One

way of type checking these type variables involves creating an environment in

which inclusion bindings between type variables and their bound types are

stored. It might also be necessary for the compiler to create new type variables

and assign bounds to them as the code is compiled. This technique is discussed

in detail in Chapter 10.

5.2.4 Summary

The main principles behind the process of type checking and the type checking

algorithms have been discussed. The properties of type checking algorithms

have also been described. These principles are made use of in Chapter 10 where

the implementation of a type checker for a new form of polymorphism is

described.

5.3 Object Oriented Programming

5.3.1 Introduction

Object orientation [DT88] has emerged as one of the most popular paradigms in

recent years. Many of the ideas associated with it have their origin in the Simula

language [DN66] and were later refined during the development of SmallTalk

[GR83].

The basic concepts of object oriented programming are explained in this section.

It should be noted however that this presents a general overview of the object

oriented paradigm and that many object oriented languages deviate from this

description in various details. Chapters 6 and 7 present some detailed account of

the object oriented languages Eiffel, PolyTOIL and TooL and the object oriented

system O2.

67

5.3.2 Objects and Classes

In an object oriented system the real world is modelled by objects. Objects can

be considered to be instances of abstract data types encapsulating both state and

behaviour. State is represented by a collection of instance variables and

behaviour is represented by operations or methods. Methods can be functions

which return a value or procedures which do not. All computations are specified

in terms of message sends. Objects have an identity which persists over time,

independent of the changes to the state of the object. When a message is sent to

an object, one of the methods available to the object is selected for execution

depending on the message. Some possible responses from the object receiving

the message involve changing its internal state, sending messages to other

objects, replying with an answer, creating new objects or a combination of these.

Binary methods, discussed further in section 5.4, are those which have a

parameter whose type is intended to be the same as the receiver of the message.

There are two ways of creating an object:

• using prototypes

new objects are created by using existing objects as prototypes. If this

mechanism is used then the system must also permit the creation of

objects by specifying a set of methods and instance variables.

• using classes

a more usual approach is to specify the class of the object to be created.

The class is then used as a template for creating object instances.

Classes may also be treated as first class values rather than types. Types provide

interface information which determines the operations that can be applied, while

classes contain implementation information including initial values for instance

variables and bodies for methods. Classes themselves may have types, distinct

from object types. Class types include types of instance variables and methods

whereas object types only include types of methods. The example in Figure

5.3.1 below illustrates the above concepts.

68

class Person

var

name := "" : String;

age := 0 : Integer;

job := "" : String

methods

function getName() : String {return name}

function getAge() : Integer {return age}

procedure changeJob(newJob : String) {job := newJob}

end class

Figure 5.3.1 : A Class Definition

Person is defined as a class with three instance variables, name, age and job and

three methods, getName, getAge and changeJob, getName and getAge are

functions since they return a value and changeJob is a procedure since it does

not. Class definitions include initial values for instance variables and complete

definitions of the methods. The type of class Person can be specified as

classtype PersonClass is (name : String ;

age : Integer ;

job : String ;

getName: fun(): String ;

getAge: fun(): Integer ;

changeJob: proc(String))

end classtype

Figure 5.3.2 : Class Types

An object belonging to class Person will have the following object type:

objecttype PersonType is (getName: fun(): String ;

getAge: fun(): Integer ;

changeJob: proc(String))

end objecttype

Figure 5.3.3 : Object Types

69

As the only operations allowed on objects are method sends, the object type only

specifies method types. Figure 5.3.4 shows how an object of a particular object

type can be created.

var aPerson : PersonType;

. . .

aPerson := new (Person)

Figure 5.3.4 : Object Creation

The identifier for the intended object, aPerson, is first declared to be of type

PersonType and then the new function is called with the appropriate class, in this

case Person, which initialises the attributes of the object. new can be used with

any class in the language to initialise its objects.

aName := aPerson.getName

Figure 5.3.5 : Method Invocation

Figure 5.3.5 above gives an example of method invocation. The dot notation is

normally used for message sending. In this case, message getName is sent to the

object aPerson and the result is stored in the variable aName.

Instance variables are only visible to the methods of that object. It is possible to

change the values of instance variables of objects through the execution of their

methods. However, methods associated with an object cannot be modified. In

general, methods of an object can be mutually interdependent.

5.3.3 Inheritance

Inheritance is a mechanism which allows incremental definition of classes in

object oriented systems. Thus it also provides software reuse. There are two

ways of obtaining inheritance corresponding to the two ways in which objects

can be created.

• default delegation of responsibility

used by systems that make use of prototypes for object creation

• subclassing

used by systems that make use of classes for object creation

70

There have been different views on the relation between inheritance and

delegation. The one adopted here is the classification presented by [DT88]. It

should also be noted that [Ste87] has proved that inheritance with subclassing

and delegation can model one another. Subclassing, as the name suggests, deals

with inheritance at the class level whereas delegation deals directly with objects.

Both these categories are briefly discussed below.

5.3.4 Delegation

Delegation [Ste87, DT88] allows the incremental definition of objects. In a

system that supports delegation, there is only one type of object. The real world

entities are modelled by these objects and they are often referred to as instances

without classes. Any object can be defined in terms of any other. Both methods

and instance variables can be shared through delegation. If an object delegates

an attribute to a prototype then any changes to this attribute will affect both

objects. Therefore, objects in a delegation hierarchy may be dependent on one

another. Figure 5.3.6 below gives a diagrammatic example of a delegation

hierarchy.

name

getName getAge

getJob

"Smith"

age

32

"teacher"

exp

10

job

incAge

14000

salary

delegates to

getSalary

incExp

Figure 5.3.6 : A Delegation Hierarchy

In Figure 5.3.6, two objects which may be used to model a person and an

employee are illustrated. Instance variables and the values associated with them

71

are shown in rectangles while methods are represented by ellipses. In this case

the employee object delegates the instance variables name and age and the

methods getName, getAge and incAge to the person object and declares only

those attributes which are specific to the employee in its definition.

5.3.5 Subclassing

In class based languages, logically related attributes are grouped into classes. In

this context classes can be considered as repositories of type and behaviour

specifications that can be reused and modified by inheritance. Classes are

related in a subclass hierarchy depending on the pattern of inheritance. If class

A inherits from class B then A is a subclass of B and B is a superclass of A.

This implies that the attributes available to an object of class A are not only

those defined in class A but also those defined in any ancestor of class A in the

subclass hierarchy. The hierarchy is specified using an inherit clause in the

definition of classes. For example, in a class based language, the diagrammatic

example of inheritance in Figure 5.3.6 can be specified with class definitions as

shown in Figure 5.3.7 below.

72

class Person

var

name := "" : String;

age := 0 : Integer;

methods

function getName() : String {return name}

function getAge() : Integer {return age}

procedure incAge {age := age + 1}

end class

class Employee

inherits Person

var

job := "" : String;

exp := 0 : Integer;

salary := 0 : Integer;

methods

function getJob() : String {return job}

function getSalary() : Integer {return salary}

procedure incExp {exp := exp + 1}

end class

Figure 5.3.7 : Inheritance using Subclasses

Class Person is defined with instance variables name and age and methods

getName, getAge and incAge. Any object belonging to this class will

automatically have all these attributes associated with it. Class Employee is

defined to inherit from class Person in addition to having its own attributes

declared in the body. Therefore any object belonging to Employee will have the

instance variables name, age, job, exp and salary and the methods getName,

getAge, incAge, getJob, getSalary and incExp associated with it. Thus the

inherits clause in Employee avoids the redefinition of all the attributes declared

in Person.

An example of a subclass hierarchy incorporating the two classes in Figure 5.3.7

is shown below in Figure 5.3.8.

73

Person

Employee Student

Teacher Undergraduate Postgraduate

Research

Figure 5.3.8 : A Subclass Hierarchy

Classes are represented by rectangular boxes in Figure 5.3.8 and an arrow from

A to B indicates that class B inherits from class A. An interesting point in this

hierarchy is the fact that Postgraduate inherits from two classes Student and

Research. This is referred to as multiple inheritance.

5.3.6 self and MyType

The concept of object identity plays an important part in inheritance by

subclassing. The keyword self (or current or this) is used in method bodies to

refer to the receiver of the message and the keyword MyType is used to denote

the type of self. If the method has not been inherited then self will always refer

to an object of the class in which the method is defined and MyType will denote

the object type of this object.

74

class Element

var

number = 0 : Integer;

name = "" : String;

nextElement = nil : MyType

methods

. . .

function getNext() : MyType {return nextElement}

procedure displayElement() {self.print}

. . .

end class

Figure 5.3.9 : self and MyType

Figure 5.3.9 illustrates the use of self and MyType. Class Element contains an

attribute nextElement which is typed as MyType. This implies that an object

belonging to Element will contain a reference to another object of the same

class. Since nextElement has not been inherited from another class, it can also

be typed as Element without changing the semantics of the typing. The body of

procedure displayElement contains a print message to the object denoted by self.

Again, without inheritance, self will refer to an object of class Element.

However, during subclassing, the meaning of MyType changes automatically to

refer to the object type associated with the subclass just as the meaning of self

changes to correspond to an element of the subclass. This facility enables

methods of the superclass to be used by any subclass without redefinition.

class Element2

inherits Element

var

previousElement = nil : MyType

methods

. . .

function getPrevious() : MyType {return previousElement}

. . .

end class

Figure 5.3.10 : Inheritance of self and MyType

75

Given the definition of class Element in Figure 5.3.9, consider defining a

subclass Element2 that inherits Element as shown in Figure 5.3.10 above. Any

object e2 of Element2 will have access to all the features of Element. Therefore

a method of Element may be sent to e2. In this case the MyType instance of the

method will refer to Element2 and self will refer to e2.

The inheritance of binary methods in this context and the problems arising from

it are discussed further in Chapter 6 and the solutions to these adopted by some

object oriented languages are presented in Chapter 7.

5.3.7 Advantages of Object Oriented Programming

The following are some of the important advantages claimed for using an object

oriented language for system construction [DT88]:

• it aids design, implementation and maintenance of complex systems by

supporting modularity

• it aids code reuse and extensibility by supporting inheritance

• it may allow designs in which objects provide opportunities for variable

grain parallelism and in which decisions relating to the implementation

of objects (in software or hardware) are flexible

5.3.8 Summary

The salient features of the object oriented paradigm have been presented in this

section. The topics that are of particular interest to this thesis are the inheritance

of binary methods and the use of self and MyType to aid inheritance. Binary

methods and their typing in the presence of inheritance are discussed in detail in

the next chapter. The use of self and MyType allows methods of a superclass to

be used in the subclass without redefinition. This concept plays an important

role in addressing the problem of binary methods.

76

6 Schema Evolution

6.1 Introduction

Schema evolution in any system may require changes to types or schemata and

changes to data (including programs) that conform to these types or schemata.

Dealing with the effects of evolution at the two different levels requires different

strategies. Programming languages provide mechanisms at the type level to

capture evolution whereas database systems, in addition to any type level

mechanisms, also require other tools to explicitly evolve data to keep it up to

date with the changes to schemata. Eiffel, TooL and PolyTOIL are languages

that provide mechanisms at the type level to capture evolution. O2, Orion

[BKK+87] and GemStone [PS87] are examples of systems that have developed

mechanisms to deal with the changes caused by evolution at the data level.

A brief outline of the kinds of schema evolution and the effects it has on type

and data is presented in this chapter. The O2 mechanisms for dealing with

evolution at the data level are also described since it is a typical object oriented

database management system which is well established and contains advanced

features that deal with evolution. Chapter 7 describes the strategies used by

Eiffel, TooL and PolyTOIL at the type level.

6.2 The Effects of Schema Evolution

Databases contain data that has been logically grouped by schemata to model

real world entities. The constantly changing needs of the applications that use

databases require changes to data, programs and meta-data (schemata) in

databases. The changes to the schemata of a database are referred to as schema

evolution.

Schema evolution can generally be categorised into three types [MCC+93].

• additive evolution : the new schema models more semantic knowledge

than the old schema

• subtractive evolution : the new schema models less semantic knowledge

than the old schema

• descriptive evolution : the new schema models the same semantic

knowledge as the old schema but in a different manner

In the case of additive evolution, previous programs will continue to execute in a

type safe manner. However, their semantics may not match the updated schema

77

and hence they may need to be changed. Every change to the schema will also

require a corresponding change to data belonging to that schema.

With subtractive evolution, programs which access the deleted parts of the data

model have to be deleted themselves or modified. Corresponding changes to

data belonging to the model are not necessary but will avoid wasting space.

After descriptive evolution, the semantics of the model will remain the same as

before even though the database structure may change. Descriptive changes are

often made for reasons of convenience or efficiency. This type of evolution is

claimed to be the hardest to accommodate in traditional database systems.

In practice, any change to the schemata of a database is likely to involve a

combination of all three kinds of evolution. Changing the schema of database

while maintaining the consistency of data and programs belonging to that

schema with the semantics of change has proved to be a difficult problem

[Zdo86, SZ87, MCC+93, Odb94, Rod95]. There are two levels at which the

problem of schema evolution may be addressed.

• type or class level

• data (instances of types or classes) level

At the type or class level, one mechanism for dealing with schema evolution is

polymorphism. Since this provides data abstraction and software reuse,

polymorphic code may accommodate evolution on a schema. However, any

particular type of polymorphism supported by a system is unlikely to cover all

possible changes to a schema.

Object oriented languages support inheritance as a means of abstraction and

reuse and to capture evolution. In object oriented systems, refinement, often

equated with inheritance, leads to the well-documented problem of the

inheritance of binary methods [BCC+95, Cas95]. Binary operations, such as the

= relation and the subset relation, take two arguments of the same type. In

object oriented languages, operations are coded as methods and the receiver of

the message is implicitly the first argument of these methods. The second

parameter of the method is the only explicit argument. The term binary method

is used to describe any method which has at least two arguments, with an

implicit and an explicit argument of the same type.

The problem with binary methods is caused by their typing in the presence of

inheritance. To ensure type safety, the type of an inherited method in the

78

subclass must be a subtype of its type in the superclass. Since methods are

functions, this condition implies that their parameter types have to be

contravariantly replaced by supertypes in the subclass.

The type of the implicit argument of the method automatically changes during

subclassing to refer to the object type of the subclass. The explicit argument

also changes in the same way as functions often evolve by specialising their

parameter types. However, these type changes in subclasses may not produce

subtypes. Consider the example in Figure 6.2.1 below.

class Coordinate

var

x := 0 : Integer;

y := 0 : Integer;

methods

function equal(c : Coordinate) : Boolean

{return x = c.x and y = c.y}

end class

class ThreeDCoordinate

inherits Coordinate

var

z := 0 : Integer;

methods

function equal(c : ThreeDCoordinate) : Boolean

{return x = c.x and y = c.y and z = c.z}

end class

Figure 6.2.1 : Inheritance of Binary Methods

Class ThreeDCoordinate inherits the features from class Coordinate. A new

instance variable z is added in the subclass and the method equal is redefined to

incorporate the new variable. Both the implicit and the explicit arguments to

equal are now of type ThreeDCoordinate. Given this redefinition, the type of

equal in the subclass is not a subtype of the original method type and hence the

method in the subclass cannot be used where the original method is expected.

Consider the use of the method equal in figure 6.2.2 below.

79

var newC : Coordinate

var aThreeDC : ThreeDCoordinate

procedure compare(x : Coordinate) : Boolean

begin

 newC := new Coordinate(50, 75)

 ! a new instance of class Coordinate is assigned to newC

 x.equal(newC)

end

aThreeDC := new ThreeDCoordinate(45, 60, 25)

let b = compare(aThreeDC)

Figure 6.2.2 : An Unsafe Method Call

If procedure compare is called with an actual parameter of type Coordinate then

the call is type safe. However, if the actual parameter is a ThreeDCoordinate ,

as shown in Figure 6.2.2, then a runtime error will occur when the method call is

evaluated. Since the value of x is a ThreeDCoordinate, the code for equal in

ThreeDCoordinate will be executed. But newC has no instance variable called z

and hence the call will fail. Thus, contravariant subtyping rule is needed for

type safety while the covariant substitution captures the evolutionary demands of

method types.

At the data level, the main concerns regarding evolution in a database are how

updates are carried out on the data and how the database is brought to a

consistent state after schema modifications. To this end, the following issues

must be addressed.

• Restructuring data to conform to the new schemata

• Moving instances of a class/type to another

• Determining when data is to be updated

Each of these issues is examined further in the context of the O2 database system

in the following section and the solutions adopted by O2 in each case are

presented.

80

6.3 Data Evolution in the O2 Database System

6.3.1 Introduction

The O2 model [Deu90, LRV90, Deu91] was developed by the Altair group in

France. Although, as an object oriented database system, O2 supports subtyping

and inheritance, the topic of interest here is how it deals with evolution at the

data level. The O2 strategies [Zic89, Zic91] are used as an example of the issues

involved in bringing the data up to date with the semantics of schema changes.

6.3.2 The O2 System Structure

O2 schemata are logical entities which group together data definitions. A

schema can contain the following elements: classes, named objects and values,

functions and applications. Each schema has one or more bases associated with

it. An O2 base groups together objects and values which conform to a schema.

Schemata and bases are physically stored on files grouped together into

volumes. A volume is implemented as a Unix file. A named system is a

collection of volumes.

6.3.3 An Overview of the O2 Type System

Types in O2 can be atomic or structured. A type is defined recursively from

atomic types, named types, classes and constructors. Constructed types can be

defined by applying tuple, list, set and unique set constructors to other types.

O2 supports multiple inheritance. Any name collisions are resolved by local

renaming. An inherited feature may be redefined in accordance with the

covariant subtyping semantics.

Objects model real world entities. An object has an identity, a value and a

behaviour defined by its methods. Objects are instances of classes just as values

are instances of types.

Objects with the same value type and methods are grouped together in the same

class. A class specification contains the following information: class name,

class type, public and private properties, class methods and class inheritance.

All O2 classes are treated as subclasses of the system defined class Object. If a

class does not explicitly specify any superclasses then it is an immediate

descendant of Object.

81

Programs create values and objects during their execution which, by default, are

discarded at the end of the execution. However an entity (object or value) will

be persistent if it is directly or transitively reachable from a persistent root. O2

provides a name declaration to create these roots. Persistence does not affect the

manipulation of entities.

6.3.4 Schema Evolution in O2

Schema modifications can be performed using special primitives, for example

by adding or deleting attributes in a class, or by redefining the structure of a

class. The special primitives available in O2 for changing schemata are:

• creation of a new class

• modification of an existing class

• deletion of an existing class

• renaming of an existing class

• creation of an inheritance link between two classes

• deletion of an inheritance link between two classes

• creation of a new attribute

• modification of an existing attribute

• deletion of an existing attribute

• renaming of an existing attribute

6.3.5 Database Updates in O2

Once the schemata have been changed to incorporate the requirements of

evolution, the data that belong to them must be changed to be consistent with the

schemata. The following sections describe how each of the data update issues

stated earlier in section 6.2 are dealt with by the O2 system.

6.3.5.1 Restructuring Data in O2

O2 makes use of conversion functions to restructure data after schema changes.

Conversion implies that the structure of classes have been modified and that data

belonging to these classes need to be changed to conform to the new structure.

82

It should be noted that data will still belong to the same class after restructuring.

Conversion functions are attached to modified classes and contain specifications

of how the data is to be changed.

Conversion functions may be user defined or default. The user has the option to

explicitly define conversion functions and associate them with the modified

classes. User defined conversion functions can be of two types: simple or

complex. Simple functions perform transformations that only require local

information of the object being accessed i.e. they do not need to access any other

object. On the other hand, complex conversion functions perform the

transformations using objects other than the one being accessed.

If the user has not specified any conversion functions, then the database system

automatically transforms objects using default transformation rules. When a

class is modified, each attribute of the class before and after modification are

compared and the value of the attribute is transformed according to the default

rules. These rules are outlined below:

• an attribute present in the class before but not after its modification (a

deleted attribute) is ignored

• an attribute present in the class after but not before its modification (a

new attribute) is initialised with default initial values

• an attribute present in the class both before and after its modification is

transformed according to a set of rules which depend on the initial and

final types of the attribute.

If user defined conversion functions are available then they take precedence over

the default transformation rules.

6.3.5.2 Moving Data to Other Classes

Object migration in O2 refers to the ability of an object to change its type by

moving from one class to another. There are two ways in which objects may

migrate in O2.

• a single object may change its class

• an entire class extension or part of it may be migrated to another class

83

The root class Object has a system method migrate() associated with it. Since

all classes are subclasses of Object, this method is available to every object in

O2. When invoked for a particular object, with the name of the target subclass

as the input parameter, migrate enables the object to migrate from its class to the

specified subclass. To avoid runtime type errors objects are only permitted to

migrate to subclasses. Despite this limitation, migration is believed to be useful

in the following cases:

• existing objects of superclasses need to be moved to a newly added

subclass

• objects belonging to a class that is to be deleted need to be retained by

moving them to subclasses

An entire class extension or part of it may also be moved to subclasses by

associating migration functions with classes. These functions can specify

selection conditions for migration based on the attributes of the class. Every

object of the associated class that satisfies the selection conditions will be

migrated to the required subclass using the system function migrate.

Conversion functions restructure data to keep them consistent with their

modified classes. The classes and types to which data belong remain the same.

Migration functions move data from one class to another, thus changing their

types.

6.3.5.3 Time of Update in O2

An important design decision for implementing database updates is when the

database is brought to a consistent state with the updated schemata. This

determines when conversion and migration functions will be executed over the

data to be changed. There are two choices for the time of update:

• with an immediate strategy, objects in the database are updated as soon

as the schema modification is performed.

• with a deferred strategy, objects are updated only when they are used

after the schema modification.

O2 provides support for both of these strategies and the user can choose one that

is most appropriate to the application.

84

6.3.6 The Implementation of Database Updates

Both conversion and migration functions used for updating the database can be

implemented using either the immediate or the deferred strategy. However the

default implementation mechanism in O2 for the execution of these functions is

the deferred update. The basic principle which determines the correctness of any

deferred transformation is that the end result of a transformation performed

using deferred update must be the same as the result of the same transformation

implemented using immediate update. Thus the implementation strategy should

be orthogonal to the semantics of the transformation.

O2 uses a technique known as screening to implement deferred update for both

simple and complex conversion functions. With this technique, deleted or

modified information in an object is not physically deleted but is retained in a

screened part of the data structure representing the object. Only conversion

functions are allowed access to screened information. Application programs can

not see the screened part of an object. When an object is accessed by an

application the system will execute the associated conversion function to

perform the transformation.

Screening is particularly important for implementing complex conversion

functions with deferred update as this combination can result in runtime errors or

incorrect database information. Complex conversion functions require access to

other objects which may already have been modified since the update is not

immediate. However, screening ensures that the information that may have been

modified or lost is stored in the screened part of the objects required.

The immediate database transformations in O2 are implemented using the

algorithm for deferred transformation. O2 provides a schema command,

transform database, which launches an internal tool that traces all the objects in

the database that are not up to date. The conversion and migration functions

associated with these objects are then executed using the deferred update

algorithm. After the execution of this command, all objects in the database

conform to the latest schema definition.

6.4 Summary

The effects of evolution on schema and data and the problems relating to them

have been presented. As explained in the chapter, these problems can be

addressed at two different levels. The mechanisms adopted by the O2 object

oriented database system for dealing with evolution at the data level have also

85

been discussed. These mechanisms provide an example of what will be needed

if the system does not provide a means of capturing evolution at the type level.

Chapter 7 describes existing type level strategies used by programming

languages to deal with evolution.

86

7 Related Work

Chapter 6 examined the problems associated with schema evolution and gave an

example of the way these problems are dealt with at the data level. Two

different ways of addressing the problem of evolution at the type level in object

oriented languages, especially the type safe inheritance of binary methods, are

described in this chapter. The object oriented languages Eiffel, PolyTOIL and

TooL are used as examples of systems supporting these techniques. A brief

summary of how some other well-known languages such as SmallTalk [GR83,

GGH+91], C++ [Str86, GGH+91] and Java [Fla97] deal with the inheritance of

methods is also presented.

7.1 Eiffel

Eiffel [Mey92] is an object oriented programming language that uses covariant

specialisation. The type system of Eiffel and its inheritance and type safety

mechanisms are discussed in the following sections. Some comments on these

mechanisms are presented in section 7.1.8.

7.1.1 An Overview of the Eiffel Type System

Eiffel supports the concepts of classes, objects, features and inheritance. The

type system of Eiffel is based entirely on the notion of classes. Thus each object

that exists during the execution of a system belongs to a class of that system.

Such objects are called direct instances of the class. Deferred classes have no

direct instances. They are incomplete abstractions which their descendants use

as the basis for further refinement.

Classes introduce a set of features which may be of two kinds. Attributes

represent fields of direct instances of the class while routines represent

computations applicable to those instances. An attribute is either constant or

variable. A routine is either a function (returns a result) or a procedure (does not

return a result).

Every type in the language is based on a class known as the base class of the

type. There are three possible kinds of types in Eiffel:

• reference types

instances of reference types are references to objects which are created at

run time through explicit creation operations

• expanded types

87

instances of expanded types are the objects themselves rather than

references to objects and hence do not require creation operations

• formal generic names

these correspond to type parameters to be provided during uses of a class

by parents or proper descendants. Instances of these types may be

references or objects

7.1.2 Genericity

Generic classes can be defined in Eiffel by parameterising class definitions.

class LINKED_LIST [T]

feature

. . .

end -- class LINKED_LIST

Figure 7.1.1 : A Generic Class

In Figure 7.1.1, LINKED_LIST is a generic class, parameterised by the formal

generic parameter T. In order to obtain a type, a generic class must be supplied

with a type as an actual generic parameter. A type thus obtained is referred to as

a generic derivation of the base class, which in the example is LINKED_LIST.

It is also possible to constrain the formal generic parameter by specifying a

bound on it as shown in Figure 7.1.2 below.

class LINKED_LIST [T -> PERSON]

feature

. . .

end -- class LINKED_LIST

Figure 7.1.2 : A Constrained Generic Class

Any actual parameter corresponding to T must be a descendant of the class

PERSON.

7.1.3 Inheritance

Eiffel supports the use of inheritance as a module extension (defining new

classes from existing ones by adding or adapting features) and type refinement

(defining new types as specialisations of existing ones) mechanism. Features

obtained by a class C from its parents are called inherited features. If feature f

88

has been defined in C then there are two possibilities. If f is inherited then the

definition is a redeclaration whereas if f is a new feature it is said to be

immediate to C and is introduced in C. In the latter case, C is the class of origin

for feature f.

In the graphical convention adopted by Eiffel designers for representing

inheritance hierarchies, classes are represented by labelled ellipses and the

inheritance relation is represented by directed arrows from the heir to the parent.

Thus, Figure 7.1.3 denotes that B inherits from A.

B

A

Figure 7.1.3 : Graphical Representation of Inheritance

Cycles are not permitted in the hierarchy. However, multiple, and as a result,

repeated inheritance are permissible. Figures 7.1.4 and 7.1.5 below illustrate the

inheritance structures for multiple and repeated inheritance.

A B

C

Figure 7.1.4 : Multiple Inheritance

Class C in Figure 7.1.4 inherits from both class A and class B.

K

L M

N

89

Figure 7.1.5 : Repeated Inheritance

Repeated inheritance occurs when an attribute is inherited by a class in more

than one way. If two or more ancestors of a class have a common parent, then it

may repeatedly inherit a feature from the common parent. In Figure 7.1.5 class

N inherits from L and M which in turn inherit from class K. Thus N inherits

from K in two different ways.

The simplest case of repeated inheritance, called direct repeated inheritance, is

shown in Figure 7.1.6 below where EMPLOYEE is a repeated heir of PERSON.

The class PERSON is specified twice in the inheritance part of the class

definition of EMPLOYEE. This facility is useful if two copies of the same

feature from PERSON are needed in EMPLOYEE or if a feature is required to be

redefined in two different ways.

class EMPLOYEE inherit

 PERSON

 rename . . . redefine . . . end

 PERSON

 rename . . . redefine . . . end

 . . .

end -- class EMPLOYEE

Figure 7.1.6 : Direct Repeated Inheritance

Indirect repeated inheritance occurs when one parent of a class C is a proper

descendant of a class A and one or more of the other parents are descendants of

A. An example is given below in Figure 7.1.7.

90

class PERSON

 feature

 age : INTEGER;

 . . .

end -- class PERSON

class WORKER inherit

 PERSON

 . . .

end -- class WORKER

class EMPLOYEE inherit

 WORKER

 . . .

end -- class EMPLOYEE

class STUDENT inherit

 PERSON

 . . .

end -- class STUDENT

class DEMONSTRATOR inherit

 EMPLOYEE

 . . .

 STUDENT

 . . .

end -- class DEMONSTRATOR

Figure 7.1.7 : Indirect Repeated Inheritance

Class DEMONSTRATOR in Figure 7.1.7 repeatedly inherits the attribute age

from EMPLOYEE and STUDENT. EMPLOYEE inherits it from PERSON

through WORKER while STUDENT directly inherits it from PERSON.

Eiffel provides the programmer with some techniques to choose the result of

repeated inheritance in any class. Sharing results in only one feature whereas

replication permits several. Thus, the repeated inheritance rule can be stated as

follows:

91

Let C be a class and B1, . . . , Bn (n ≥ 2) be parents of C with a common

ancestor A. Let f1, . . . , fn be features of these respective parents all having as

origin the same feature f of A. Then any subset of these features inherited by C

under the same final name yields a single feature for C while any two features

inherited under different names yield two different features for C. Features are

said to be shared in the first case and replicated in the second. Renaming

inherited features is one way to replicate them.

7.1.4 Feature Calls

In the Eiffel model, as is common to object oriented languages, the fundamental

means of computation is to apply an operation to an object. Given the model,

this operation has to be a feature of the class to which the object belongs. A call

is an application of a feature to an object possibly with arguments. Thus, with

the common dot notation, the structure of a call is

object.feature(parameter_list)

Object and parameter list are optional to a feature call. Figure 7.1.8 below gives

examples.

aPerson.incAge

aStudent.enterGrade(stGrade)

fixSalary(increment)

Figure 7.1.8 : Feature Calls

The first call is the application of routine incAge, which takes no parameters, to

an object aPerson of class PERSON. The second call contains all the

components of a feature call. In the third call, the target object fixSalary

operates over is the predefined entity Current which represents the current object

of system execution and may be omitted in a feature call.

If the feature is an attribute or a function then the call is syntactically an

expression. If it is a procedure then the call is an instruction.

92

7.1.5 Conformance

Conformance is a relation between types which determines when a type may be

used in place of another. The conformance relation is based on inheritance. A

type V will conform to a type T where the following conditions hold.

• the base class of V is a descendant of the base class of T

• If V is a generically derived type then its actual generic parameters

conform to the corresponding ones in T

• If T is expanded then no inheritance is allowed; V can only be identical

to T or its base type

Conformance validates the use of many operations. Any of the following will be

valid if V conforms to T according to the definition given above, with x of type

T and y of type V.

• the assignment x := y

• the routine call r (. . , y, . .) where x is the formal parameter declared in r

at the position of y

• the creation ! V ! x, . . . which creates an instance of V and attaches x to

it

• the redeclaration of x as being of type V in a proper descendant where x

is an attribute, a function or a routine argument

• any use of C [. . , V, . .] with V as the actual parameter where the

corresponding formal parameter of C is constrained by T

The conformance relation can also be applied to signatures of features in classes.

Using the definition of type conformance specified earlier, the concept of

signature conformance can be defined as follows.

A signature t = (< B1, . . . , Bn >, < S >) conforms to a signature s = (< A1, . . . ,

Am >, < R >) if and only if the following conditions are satisfied.

• each of the two sequence components of t has the same number of

elements as the corresponding components in s

• every type Ti in each of the two sequence components of t conforms to

the corresponding type Si in the corresponding components of s

93

7.1.6 Reattachment of Entities

At any point during execution, every entity of the Eiffel system has an

attachment status: it is either attached to an object or it is void. There are four

reattachment operations which may change the attachment status of an entity

• association of an actual argument to a formal argument during a routine

call

• the assignment instruction which may attach an entity to a new object or

remove an existing attachment

• the assignment attempt instruction which conditionally performs the

same function as the assignment instruction in cases where the

assignment may be statically considered unsafe

• the creation instruction which attaches an entity to a newly created object

Figure 7.1.9 below gives examples of all four operations in the order given

above.

r (. . ., y, . . .) with routine declaration r (. . . , x : T, . . .) is . . .

x := y

x ?= y

!! x

Figure 7.1.9 : Reattachment Operations

In the first two cases, the condition required for reattachment is that the type of

the source conforms to the type of the target. These are called direct

reattachment. They also have the same semantics: for reference types, the target

is made to refer to the object attached to the source, otherwise it is made void.

However, the assignment attempt applies only to reference types and is free from

any conformance constraints. This is referred to as reverse reattachment since it

is possible to perform assignments which go against the normal conformance

rules if it is known that the assignment will be type safe. Assignment attempt

behaves as an assignment instruction if the dynamic type of the source object

conforms to the type of the target, otherwise the target is made void.

94

7.1.7 Type Checking Feature Calls

Since feature calls perform most of the computations in Eiffel, the validity of

feature calls essentially ensures the type safety of the system. There are two

levels of type validity in Eiffel.

• class level validity

• system level validity

In the absence of inheritance and genericity, checking class level validity is

straight forward and is sufficient to guarantee type safety. For the routine call

target.fname(y) to be valid, the type of target must have a feature of final name

fname; this feature must be available to the class from the which the call is

made; and the feature must have the requested signature i.e. it must be a routine

with a single formal argument which y conforms to. Calls which satisfy these

conditions are said to be class-valid.

Class validity does not imply that the call is valid since the dynamic type of an

object may be different from its static type. This difference is caused by the

inheritance mechanism being used in the following instances.

• a class may override the export policies of its parents

• a routine redefinition may replace the type of a formal argument by a

type conforming to the original (covariant argument typing)

To overcome this problem, a system level validity check was proposed. The

possible dynamic types of an object are said to form its dynamic type set. For a

feature call to be system-valid, the conditions for class validity must be enforced

for each class in the dynamic type set of the object concerned. A call is

unconditionally valid if it is both class-valid and system-valid.

However, this policy is not implemented as it requires access to the entire

system [Mey97] and could not be performed incrementally [Mey97]. Therefore,

instead of this check, the notions of polymorphic entity and catcall were

introduced and a new type rule based on these notions was formulated to ensure

validity of feature calls.

An entity x is polymorphic if it can be attached to objects of more than one type.

The following are the possible circumstances for x to be polymorphic:

• the assignment x := y where y is of a different type from x or is

polymorphic

95

• x is a formal routine argument

• x is an external function

A routine call is polymorphic if its target is polymorphic. A routine is a cat

(changing availability or type) if a redefinition changes its export status or the

type of any of its arguments. A routine call is a catcall if a redefinition makes it

invalid because of a change to its export status or argument type. The type rule

necessary to ensure validity of a call is that polymorphic catcalls are invalid i.e.

a routine call cannot be both polymorphic and a catcall.

7.1.8 Comments

The inheritance relation, covariant specialisation of features and generic classes

provide the facilities for dealing with evolution in Eiffel. However the use of

these mechanisms requires a means to guarantee the type safety of operations

such as routine calls and assignments.

Eiffel does not support subtyping. It defines a conformance relation to check for

compatibility between target and source objects. Thus, conformance is the only

relation that controls the validity of operations. Although conformance models

the inheritance patterns for features, it is essentially covariant and hence it is

possible to attach an object of a more general type to one which is a subtype.

Eiffel provides two mechanisms for dealing with this problem. The assignment

attempt is a construct that tests for the dynamic type of a source object at

runtime and performs the assignment only if it is type safe. The designers of

Eiffel claim that just as programming without covariance and descendant hiding

(ability of a descendant to override the export policies of its parents) will be too

restrictive, static typing will be too restrictive without assignment attempts. The

other mechanism for ensuring validity of operations is making polymorphic

catcalls invalid, as described in the previous section.

7.2 Type Matching

In object oriented languages, it is often necessary to define subclasses that

inherit binary methods from their superclasses. Since subtyping fails to capture

this form of evolution, type safe inheritance of binary methods during

subclassing is not possible. The concept of matching [Bru95, BCC+95, AC96,

Bru96] has been proposed to address this problem. Two languages that have

incorporated matching in their type systems are introduced here.

96

PolyTOIL [BSG95, Bru96] was developed by Bruce et al at Williams College,

Massachusetts. The Tycoon object-oriented Language (TooL) [GM95, GM96]

evolved from the language Tycoon developed at Hamburg University. Various

features relevant to inheritance, polymorphism and evolution are described for

each language in the following sections.

Matching is a relation between two object types. It eases some of the

restrictions placed by the subtyping relation on inheritance while preserving type

safety and static typing. Since matching coincides with the specialisation of

method types in subclasses, generic code bounded by matching can capture the

evolution of types in object oriented languages.

7.2.1 Motivation

The aim of the PolyTOIL language is to achieve the following:

• support for incremental modification of code

• capturing accurate type information especially in the case of methods

inherited or redefined in subclasses

• type safe inheritance of binary methods

The motivation for designing TooL as a new language based on Tycoon was to

verify the following hypotheses:

• that a purely object oriented language leads to more uniform and easier

to understand program libraries

• that type matching increases code reuse in complex libraries

7.2.2 Syntax

The syntax of PolyTOIL is very similar to the one presented in section 5.3 to

illustrate object oriented programming.

A TooL program is a set of (mutually recursive) named class definitions. A

typical class definition in TooL is shown below in Figure 7.2.1.

97

class aClass

 private

 x : Int

 . . .

 public

 m1 (x : Self) : Bool

 . . .

Figure 7.2.1 : Class Definition in TooL

The keyword Self indicates the self reference of classes. Figure 7.2.2 shows the

object type of aClass.

Interface aClass (Self)

 { m1(x : Self) : Bool, . . . }

Figure 7.2.2 : Object Types in TooL

Object types contain only the method types. A class definition implicitly defines

its object type. TooL allows parameterisation of class definitions by an element

type. These classes are referred to as generic classes. It is also possible to

specify a bound on the element type.

class WriteStream (E <: Object)

 put (e : E) : Void

Figure 7.2.3 : Parameterisation of Classes in TooL

In the example in Figure 7.2.3, WriteStream is a generic class, E is its element

type and E is subtype-bounded by Object. This bound enables the programmer

to specify the basic methods that any element type will be required to support.

TooL also permits the parameterisation of individual method signatures.

It should be noted here that both languages use structural equivalence and hence

there is an implicit hierarchy of types and an explicit hierarchy of classes.

7.2.3 Subtyping

Subtyping, along with subsumption, provides a mechanism for using objects of a

type where objects of a different but related type are expected. The definition of

subtyping in PolyTOIL can be stated as :

98

ObjectType{mj : T'j} 1 ≤ j ≤ k <: ObjectType{mi : Ti} 1 ≤ i ≤ l

 where mj and mi are methods and T'j and Ti are method types

 if 1) l ≤ k and for each i ≤ l, T'i <: Ti

 2) no method type has a contravariant occurrence of MyType

Thus, in Figure 7.2.4 Student is a subtype of Person.

Person = class

var

name = "": string

methods

function setName(newName: string) {name := newName}

function getName(): string {return name}

end class

Student = class

inherits Person

var

id = 0: Integer

methods

function setId(newId: Integer) {id := newId}

function getId(): Integer {return id}

end class

Figure 7.2.4 : Subtyping in PolyTOIL

In TooL, the relation that A is a subtype of B is written as A <: B. The subtype

relation is defined by structural induction on object types. An object type called

Object is the top of the subtyping lattice and the bottom is Nil.. The important

uses of subtyping are subsumption and bounded quantification with bounds

specified by subtyping.

99

class WriteStream (E <: Object)

 put (e : E) : Void

class File

 get : Char

 put (ch : Char) : Void

 close : Void

Figure 7.2.5 : Subtyping in TooL

In Figure 7.2.5, File is a subtype of WriteStream (Char). This means that if

class Object is defined as shown in Figure 7.2.6

class Object

 printOn (aStream : WriteStream (Char))

Figure 7.2.6 : Definition of Class Object in TooL

and stdout is an instance of the class File then the message send to a string literal

object in Figure 7.2.7 is valid.

"a string".printOn (stdout)

Figure 7.2.7 : Inherited Method Call in TooL

7.2.4 Subclasses

The concept of subclasses is introduced to support the reuse of instance variables

and methods of an existing class (referred to as the superclass) in defining a new

class (the subclass). The common members are said to be inherited by the

subclass. In PolyTOIL, the keyword super is used in a subclass to refer to the

superclass from which it inherits. A subclass can modify a method it inherited

from the superclass. Thus subclasses support incremental modification. For

example, a subclass of a class Point can be specified as shown in Figure 7.2.8

below.

100

ColourPoint = class

inherits Point modifying move

var

colour := green: ColourType

methods

function getColour(): ColourType {return colour}

. . .

procedure move(dx, dy: integer) {super.move; colour :=

 red}

end class

Figure 7.2.8 : Subclasses in PolyTOIL

In an object, MyType is simply the type of that object since no inheritance is

possible at that level. In classes, it will have a flexible meaning. The following

example in Figure 7.2.9 illustrates the use of self and MyType.

101

Node = class

var

value = 0: Integer;

next = nil: MyType

methods

. . .

function getNext(): MyType {return next}

procedure setNext(newNext: MyType) {next := newNext}

procedure attachRight(newNext: MyType)

{setNext(newNext)}

end class

DbleNode = class

inherits Node modifying attachRight

var

prev = nil: MyType

methods

. . .

procedure setPrev(newPrev: MyType) {prev := newPrev}

procedure attachRight(newNext: MyType)

{setNext(newNext); newNext.setPrev(self)}

end class

Figure 7.2.9 : self and MyType in PolyTOIL

In Node, the instance variable next is declared to be of type MyType. The

methods shown also make use of MyType for parameter and result types. For an

object of class Node, MyType merely denotes Node. However, when Node is

inherited by DbleNode, the meaning of MyType in the inherited features

automatically changes to refer to DbleNode even though the features are defined

in Node.

There are distinct hierarchies for subclasses and subtypes. It is possible to have

subclasses which are not subtypes of their superclasses and subtypes which are

not subclasses. Both concepts support reuse in different ways. If type B is a

subtype of type A then any operation available to A can also be performed over

B. This depends only on the interface information of objects. Subclasses allow

reuse of code inside classes i.e. in their definition.

102

7.2.5 Type Quantification

Classes can be made generic by type parameterisation. Both PolyTOIL and

TooL support bounded parametric polymorphism. Figure 7.2.5 contains an

example of a class parameterised by a bounded type.

7.2.6 Inheritance

The use of inheritance in PolyTOIL has been illustrated in detail in section 7.2.4

which describes the use of subclasses in the language.

Figure 7.2.10 gives an example of inheritance in TooL.

class Indexed (K <: Object, E <: Equality)

super Bounded (E), Sortable (E), Keyed (K, E)

 . . .

Figure 7.2.10 : Inheritance in TooL

All objects of class Equality have the equality operation defined over them.

Class Indexed inherits from three other classes Bounded, Sortable and Keyed. In

parameterised class definitions different element types can inherit from different

superclasses. Possible conflicts due to multiple inheritance are solved by

linearisation of the inheritance tree. In addition to methods, type parameters of

superclasses may also be refined during inheritance.

103

class Point

super Equality

 x : Int

 y : Int

 . . .

class Set (E <: Object)

 add (e : E) : Void

 includes (e : E) : Bool

 iterate (F <: Object, unit : F, f : fun (: F, : E) : F) : F

 . . .

class PointSet (E <: Point)

super Set (E)

 averageX () : Int {self.iterate (0, fun (total : Int, e : E)

 total + e.x / size)}

Figure 7.2.11 : Refining Type Parameters in Subclasses in TooL

In Figure 7.2.11, class PointSet inherits from class Set but refines the bound of

the type parameter from Object to Point.

7.2.7 Matching

The matching relation between two object types in PolyTOIL is defined by

ObjectType{mj : T'j} 1 ≤ j ≤ k <# ObjectType{mi : Ti} 1 ≤ i ≤ n

 if n ≤ k and for each i ≤ n, T'i <: Ti

Object type A matches object type B if for every method mi : Ti in B there is a

corresponding method mj : T'j in A such that T'i is a subtype of Ti. This is a

weaker relation than subtyping. No assumption is made on the meaning of

MyType while determining whether two method types are in subtype relation.

Therefore the method type of attachRight in DbleNode will be a subtype of the

method type in Node and the object type of DbleNode will match that of Node .

It should be noted these object types are not in subtyping relation since

attachRight has a contravariant occurrence of MyType.

In TooL, A matches B is denoted by A <∗: B. An object type A matches an

object type B if they are subtypes under the assumption that the corresponding

104

Self types are equal. Matching does not support subsumption in general. It

supports inheritance and specialisation of methods with contravariant

occurrences of the recursion variable. As in the case of subtyping, matching is

also defined by structural induction on object types.

class Equality

 "=" (x : Self) : Bool

class Int

 "=" (x : Self) : Bool

 "+" (x : Self) : Self

 "-" (x : Self) : Self

Figure 7.2.12 : Matching Classes in TooL

Class Int matches Equality in the example in Figure 7.2.12 above. A subtype

relationship is not possible between the two classes due to the contravariant

occurrence of Self in the method signature of "=". Matching allows the

following generic method, which tests the equality of two objects and returns the

negated result, to be defined as shown in Figure 7.2.13 below.

"!=" (T <*: Equality, x : T, y : T)

 { ! (x = y) }

Figure 7.2.13 : Method Definition using Matching in TooL

The only necessary condition is that both arguments are of some type T that

matches Equality. A generic method defined using subtyping instead of

matching will not accept objects of class Int as arguments even though it is type

safe to do so.

7.2.8 Type Checking self

In PolyTOIL, any subclass will always match its superclass but is not

necessarily a subtype. Subtypes always match. If the only occurrences of

MyType in method types are covariant then the two types match iff they are

subtypes. Methods of an object are type checked under the assumption that

MyType matches that object type. Though more method bodies can be type

checked if it is assumed that MyType is the same as the object type, they will not

be type correct when inherited. If object o of type S has a method m of type T

then o.m has type T[S/MyType]. The type of the message send in Figure 7.2.14

105

below will be proc(DbleNodeType) where DbleNodeType is the object type

corresponding to DbleNode.

var aDbleNode, anotherDbleNode: DbleNodeType;

. . .

aDbleNode := new (DbleNode);

. . .

aDbleNode.setNext(anotherDbleNode)

Figure 7.2.14 : Typing Method Calls in PolyTOIL

During type checking, method bodies will have to be checked with some

assumption about the type Self. TooL allows the programmer explicit control

over this assumption. Self can be match-bounded, subtype-bounded or

equivalent. These conditions can be specified as demonstrated in Figure 7.2.15.

class Equality ! match bound

Self <*: class Equality ! match bound

Self <: class Equality ! subtype bound

Self = class Equality ! equivalent

Figure 7.2.15 : Binding Self in TooL

The default is taken to be match-bound. If Self is explicitly subtype-bound then

the subclasses of the class will always be subtypes. If Self is match-bound then

subclasses will match the superclass. If Self is specified to be equivalent then

any subclasses will have to have exactly the same type as the superclass.

Self constraints assumed during modular type checking are enforced when actual

subclassing takes place. Consider the possible cases when Self is bound to a

class C. If Self is bound by matching then method signatures of C are copied

into the subclass. If it is bound by subtyping then method signatures of C are

copied into the subclass and all inherited occurrences of Self are replaced by C.

If Self is equivalent to C then method signatures of C are copied into the

subclass and a check is performed to make sure no additional methods are

defined or refined in the subclass.

7.2.9 Adding Bounded Polymorphism

Polymorphism is essential for cleanly expressing data structures such as

container classes and operations over them. Container classes represent

106

collections of objects, usually of the same or related types such as a list of

elements. The similarity in different implementations of a list for different types

of elements can be captured by polymorphic code.

Some container classes require the support for a minimum set of operations from

the types of elements they can represent. A binary search tree will need

elements whose types will support comparisons. These operations can be

contained in a PolyTOIL object type as specified in Figure 7.2.16.

Comparable = ObjectType

equal : Func(MyType): Boolean;

greaterThan: Func(MyType): Boolean;

lessThan : Func(MyType): Boolean

end

Figure 7.2.16 : Operations for Comparisons in PolyTOIL

The language provides a construct to express the dependency that any type

which is kept in the binary search tree should support at least these operations.

It will not suffice to say that the element type has to be a subtype of Comparable

since there are contravariant occurrences of MyType in method types and hence

no non-trivial subtype can be found. On the other hand, matching can be used to

express this dependency precisely.

If some type T <# Comparable then T will have at least these 3 methods each

with a function type which takes an argument of the same type as the receiver

and returns a Boolean. This mechanism for restricting type parameters using

matching is called bounded matching. The binary search tree example can then

be completed as shown below in Figure 7.2.17

107

BTreeNode = class(T <# Comparable; v: T)

var

value = v: T;

left = nil: MyType;

right = nil: MyType

methods

function getValue(): T {return value}

. . .

end class

BinSearchTree = class(T <# Comparable)

var

root = nil: BTreeNodeType(T)

methods

function find(elmt: T): Boolean { . . . }

procedure insert(newElmt: T) {. . . }

function isEmpty(): Boolean {return (root = nil)}

end class

Figure 7.2.17 : Binary Search Tree using Matching in PolyTOIL

Bounded polymorphism in TooL is similar to form it takes in PolyTOIL. An

example of a polymorphic function bounded by matching is given in Figure

7.2.13.

7.2.10 Reconciling Subtyping, Matching and Quantification

Since a given piece of TooL code can refer to many types and type variables

each of which can be bound by either matching or subtyping, it is deemed

important to have type rules that refer to both matching and subtyping lattices.

The following rule states that 'within a static context S, a type variable X is a

subtype of a given type T, if within the same context, X matches an object type

with method suite M (written Object Type (Self) M) and it can be proved that

this object type is a subtype of T whereby all occurrences of Self within M have

been replaced by X'.

S h X < *: ObjectType (Self) M S, X <: T h ObjectType (Self) M [X / Self] <: T

S h X <: T

108

This rule provides a safe conservative approximation of the proof steps, taken by

the compiler, if the exact type structure of X is known. This rule is necessary to

prove, for example, that X is a subtype of Void in Figure 7.2.18 and to ensure

type safety.

class EqualitySet (E <*: Equality)

super Set (E)

 includes (x : E) : Bool {elements.some (fun (e : E) {e = x})}

Figure 7.2.18 : An Example

7.2.11 Replacing Subtyping by Matching

The systems described so far are static typing systems that support replacing of

methods by subtypes in subclasses, automatic updating of parameter types in

special cases and safe uses of covariance in parameter types. However, this

flexibility also results in increased complexity. Bounded polymorphism is

necessary to achieve expressibility but the bounds represented by matching are

more useful in this paradigm than those represented by subtyping. Matching is

claimed to be simpler and more natural. Moreover, the difference between the

two relations is quite subtle, depending only on the absence of contravariant

occurrences of MyType.

Therefore, PolyTOIL seeks to replace subtyping with a generalised form of

matching to reduce complexity in the type system. In order to achieve this, the

matching relation has to be made primitive i.e. independent of the subtyping

relation. Its definition can then be refined to

ObjectType{mi : Ti} 1 ≤ i ≤ k <# ObjectType{mi : Ti} 1 ≤ i ≤ n iff n ≤ k

This is a more restrictive definition that does not allow method types to be

explicitly changed in subclasses. Thus, object type A matches object type B if A

can be obtained by adding more methods to B. The object types of Person and

Student1 in Figure 7.2.19 will match while those of Person and Student2 will

not.

109

Person = class

var

name = aName: NameType1

methods

function setName(newName: NameType1)

{name := newName}

function getName(): NameType1 {return name}

end class

Student1 = class

inherits Person

var

id = 0: Integer

methods

function setId(newId: Integer) {id := newId}

function getId(): Integer {return id}

end class

Student2 = class

inherits Student modifying getName

methods

function getName(): NameType2 {. . .}

! NameType2 <: NameType1

end class

Figure 7.2.19 : Using the New Definition of Matching

All uses of subtyping in parameters which are of object types are replaced by

polymorphic functions using bounded matching. A function setName to be used

with objects of any type that matches NameType1 can be written

function setName(N <# NameType1, newName: N) {. . .}

Figure 7.2.20 : A Match-bound Function

A new constructor # is introduced to simplify the notation. If T is a type then #T

is also a type. An object will be of type #T if it has any type that matches T, that

is

if a : S and S <# T then a : #T

110

This also allows a form of subsumption:

if S <# T and a : #S then a : #T

The previous example can then be written as

function setName(newName: #NameType1) {. . .}

Figure 7.2.21 : A Refined Definition of setName

The # constructor now gives at least the flexibility of subtyping. Only object

types can be annotated with #. Record types could be interpreted as degenerate

object types or a notion of matching could be defined for them which simply

corresponds to record extension.

The other important use of subtyping is in assignments to variables. To deal

with this case, #T is treated as the existential type ∃ t <# T.t (some type t that

matches T) to yield the rule:

if x : #T is a variable declaration and e : S for S <# T
then x := e is type correct

It should be noted that #-types are not used as an abbreviation for bounded

matching here. They also provide greater flexibility than was possible with

subtyping. The following example in Figure 7.2.22 illustrates a possible use of

#-types.

111

var myName: #NameType1

. . .

Person = class(NameType <# NameType1, aName: NameType)

var

name = aName: NameType

. . .

methods

function setName(newName: NameType)

 {name := newName}

function getName(): NameType {return name}

. . .

end class

. . .

myName := aPerson.getName

Figure 7.2.22 : Using # Types

This extra flexibility does cause a problem in that it is no longer possible to

statically determine the exact type of a message send if it involves a binary

method. As explained before, if o : S and S <# ObjectType{m : T} then the type

of o.m is T[S / MyType]. However, if o : #S and T is a binary method then the

type of o.m cannot be determined since o's type is only known up to matching.

Therefore where binary methods are needed, explicit bounded matching has to

be used.

This system does not allow method types to be changed in subclasses. It is

possible to deal with this problem by further generalising the matching relation.

This would need a matching relation to be defined on function types. It is not

incorporated into the language as it is believed that the resulting complexity

outweighs the benefits. However, a brief outline of how matching may be

extended to function types is given in the next section.

7.2.12 Extending Matching to Function Types

The previous definition of matching does not allow method types to be explicitly

changed in subclasses. To remove this restriction, it is necessary to generalise

matching by defining a matching relation on function types. The intended

definition can be expressed by the following rules:

Func(t <# a) : r <# Func(t <# a') : r iff a' <# a

112

Func(#a) : #r <# Func(#a') : #r' iff a' <# a and r <# r'

Func(#a) : r <# Func(a') : r iff a' <# a

The definition can then be refined to

ObjectType{mj : T'j} 1 ≤ j ≤ m <# ObjectType{mi : Ti} 1 ≤ i ≤ n

 if n ≤ m and for each i ≤ n, T'i <# Ti

7.3 Other Languages

The subsections below examine how some other well known languages deal
with the issues of inheritance and binary methods.

7.3.1 Simula

Simula [DN66, GGH+91] was the first language to support inheritance. It

provides single inheritance. The current object can be referred as this followed

by the qualifying class. Simula provides boolean operators to check whether an

object belongs to a class or is an instance of one of its subclasses. Virtual

declarations allow objects to access the innermost redefinition of instance

variables and methods to be accessed. All subclasses are treated as subtypes of

the superclass. If methods are over-ridden in subclasses then the changed

methods must be of the same type as those in the superclass. This restriction

avoids the problem caused by binary methods.

7.3.2 SmallTalk

SmallTalk-80 [GR83, GGH+91] supports multiple inheritance whilst

SmallTalk/V only provides single inheritance. The current object may be

referred to as self. Methods may be over-ridden in subclasses. However,

SmallTalk does not have a static type system. All type errors are detected and

dealt with at run time.

7.3.3 Ada

Ada [You84] provides encapsulation through the package mechanism and

polymorphism through genericity of program units. However, inheritance and

subtyping are not supported by the Ada type system and hence a corresponding

problem with binary methods does not arise.

113

7.3.4 C++

C++ [Str86, GGH+91] supports multiple inheritance. It uses the keyword this,

without qualification, to refer to the current object. If methods are declared to be

virtual in the base class then the redefined methods in derived classes are

accessed when they are called from an object of a derived class. C++ does not

permit the types of over-ridden methods to be changed in derived classes. This

restriction prevents the problem of binary methods. C++ also provides run time

type identification which makes use of dynamic type cast to determine the actual

type of a class instance.

7.3.5 Java

Java [Fla97] supports single inheritance. However if a class is declared to be

final then it can not be extended to form a subclass. The key word super is used

in subclasses to denote the superclass and the keyword this in the body of a

method refers to the object through which the method is invoked. Inherited

methods may be over-ridden in the subclass by redefinition. An object

belonging to a subclass can be used in place of one of the superclass. A

dynamic method lookup is used to choose the correct method for a method call.

7.4 Summary

The object oriented languages Eiffel, PolyTOIL and TooL offer type level

solutions to the problems caused by type evolution. Eiffel uses a conformance

relation to determine when two types are compatible. Although this relation

captures the inheritance requirements, it does not guarantee type safety.

Therefore Eiffel uses assignment attempts and avoids polymorphic catcalls to

ensure that operations are type safe.

TooL and PolyTOIL make use of the matching relation to determine the

compatibility of method types. Both these languages use the same definition of

the matching relation. Methods of a class type checked under the assumption

that any occurrences of MyType only match the object type of the class, rather

than that MyType is the same as the object type of the class. This assumption

ensures that inherited methods are type safe in the subclass since the meaning of

MyType in any subclass will always match the object type of the superclass.

The other languages considered in this chapter either deal with the problem

dynamically or restrict the redefinition of methods in subclasses in order to

114

avoid the problem. Another type level solution to the problem of type evolution

in a more general context is presented in the next chapter.

115

8 Extension Polymorphism

The problem of schema evolution in databases and how various systems deal

with this problem are discussed in chapters 6 and 7. The related problem with

covariant inheritance of methods in object oriented programming languages and

the different ways in which it has been dealt with in some languages were also

described.

Polymorphism offers abstraction over types in programming languages and is

therefore an important choice for addressing type evolution. Inclusion

polymorphism has often been quoted as a solution. This is mainly due to the

fact that one of the most common type changes, the addition of new fields to a

record type, corresponds exactly to the subtype relation for records. However,

inclusion does not always match the common evolution patterns of other type

constructors including functions. The terms subtyping and inheritance are often

confused and used interchangeably. This often leads to unsound or at best

dynamically checked languages.

A new mechanism for dealing with type evolution in persistent systems is

described in this chapter. The aim of this work is to provide explicit language

level support for type evolution. Instead of attempting to adapt a subtyping

mechanism to correspond to evolution, the changes to type definitions in

evolving persistent systems are investigated from first principles. The most

common evolution patterns for the different type constructors are then used to

formulate a new form of evolutionary paradigm called extension polymorphism.

The underlying hypothesis of this exercise is that by utilising this facility

programmers will be able to write code which will continue to be typed correctly

(soundly and statically) as the types of data it operates over evolve.

Extension closely models the process through which type definitions evolve by

adding more components or refining existing components. This form of

evolution is commonly referred to as additive evolution. The notion of

extension is formalised by defining an extension relation between types.

Appropriate language mechanisms are then derived to implement polymorphism

over this relation. The experiment is structured in three main phases:

• defining a formal model of evolutionary patterns

• deriving language mechanisms to support this model

• implementing these mechanisms and using them for applications

116

The formal model and the language mechanisms are discussed in detail in this

chapter, a language supporting extension polymorphism is defined and its

soundness proved in Chapter 9 and issues of implementation are discussed in

Chapter 10.

Although extension is defined independently of any existing strategies for

capturing type evolution, it does not necessarily disallow any other

polymorphism mechanism from co-existing in the same system. For instance,

there is some interesting interaction between extension and inclusion

polymorphism which is further explored later in this chapter.

8.1 Examples of Extension in Persistent Systems

The patterns of additive evolution for different type constructors in evolving

applications in a persistent programming environment [MBC+87, MBC+93] are

given in this section. In each case the extent to which inclusion polymorphism

can model the changes mentioned is also described. The core language Base,

defined in chapter 2, is used for examples of code. In order to make it easy to

write down more interesting examples, a base type called string, which is a

string of characters, is added to Base and functions are allowed to have more

than one argument but it remains unchanged otherwise. It is important to

remember here that Base does not support any form of polymorphism.

The definition of refinement in this context is recursive. Whenever a type is said

to evolve by refining a component type, it can be assumed that the component

type evolves in a manner consistent with the general pattern of evolution

described in sections 8.2.1 to 8.2.4.

8.1.1 Records

Record types typically evolve by the addition of more fields or by the refinement

of existing fields.

type employee is { name : string ; addr : address }

type employee2a is { name : string ; addr : address ;

scale : loc(int) }

type employee2b is { name : string ; addr : address2 }

Figure 8.1 : Record Evolution

117

In the examples in Figure 8.1 above, type employee might evolve by addition of

the field scale to employee2a or by refinement of the field addr to employee2b.

The evolution from employee to employee2a can always be modelled by

inclusion. If address2 is a subtype of address then the evolution to employee2b

is also captured by inclusion.

8.1.2 Variants

Variants evolve in two possible ways : the addition of a branch and the

refinement of the type of an existing branch.

type grade is [S : senior ; I : intermediate ; J : junior]

type grade2a is [S : senior ; I : intermediate ; J : junior ;

B : beginner]

type grade2b is [S : senior ; I : intermediate2 ; J : junior]

Figure 8.2 : Variant Evolution

In Figure 8.2, type grade may evolve to grade2a by the addition of branch B or

to type grade2b by the refinement to the type of branch I.

Since grade2a contains an additional branch, it is not a subtype of grade and

hence this evolution can not be modelled by inclusion. The only case where the

inclusion relation captures additive evolution in variants is when a variant type

evolves by simply refining a branch type and the new branch type is a subtype of

the previous one. For example, if intermediate2 is a subtype of intermediate

then the evolution from grade to grade2b can be captured by inclusion. In all

other cases, inclusion does not match additive evolution.

8.1.3 Functions

Function types evolve by refining their argument and result types. Thus, in

Figure 8.3, the function type getAddr can evolve to getAddr2, getAddr3 and

getAddr4 by the refinement of the argument type, the result type and both types

respectively.

118

type getAddr is fun (employee → address)

type getAddr2 is fun (employee2 → address)

type getAddr3 is fun (employee → address2)

type getAddr4 is fun (employee2 → address2)

Figure 8.3 : Function Evolution

The evolution of function types in getAddr2 and getAddr4 coincide with the

notion of covariant subtyping. The parameter type becomes more specialised as

the function type evolves. Inclusion polymorphism cannot capture these

changes since the subtyping rule for functions requires argument types to

become more general in a subtype.

Another interesting possibility is the evolution of a function type by the addition

of one or more argument types. Consider the function types in Figure 8.4 below.

type averageFun is fun (int , int → real)

type averageFun2 is fun (int , int , int → real)

Figure 8.4 : Evolution of Functions by Addition of Arguments

averageFun can represent the type of a function which takes two integers and

returns their average as a real number. If the user now wishes to refine this

function so that it calculates the average of three integers then the type of the

new function can be represented by averageFun2. Thus, the function type

averageFun has evolved by adding another argument.

Functions which can support a varying number of arguments are called variadic

functions. If more arguments than necessary are supplied to such a function then

it ignores the additional ones. If fewer arguments than necessary are given, then

default values are assumed for the arguments without actual parameters. For

example, assume that both the function types in Figure 8.4 represent variadic

functions. A function of type averageFun2 can then be used in place of a

function of type averageFun with 0 as the default value for the third argument.

Conversely a function of type averageFun may be used in place of one of type

averageFun2 by ignoring the third actual parameter.

119

This facility provides a mechanism for dealing with the evolution of function

types by the addition of arguments. However, in order to simplify the resulting

type system, this form of evolution is not supported by the extension relation

defined later in this chapter.

8.1.4 Locations

Mutability is explicitly modelled in Base by the loc type constructor. The

evolution of location types is the result of the evolution of the type of the value

contained in the location.

type dept is { manager : loc (employee) ; workers : int }

type dept2 is { manager : loc (employee2) ; workers : int }

type dept3 is { manager : loc (employee) ; workers : loc (int) }

Figure 8.5 : Location Evolution

In Figure 8.5, dept evolves to dept2 when the type of the manager field is

refined from location of employee to location of employee2. Another commonly

observed change is when a component type which is not originally not defined

to be mutable to become so. The refinement from dept to dept3 illustrates this

case.

Inclusion polymorphism allows only trivial subtyping over location types (that is

loc (A) ≤ loc (A)) in a language which supports an explicit location

dereference operation. If dereferencing locations is performed implicitly then

the additional subtyping rule loc (A) ≤ A may also be allowed.

8.2 The Extension Relation

Based on the patterns in the previous section, the extension relation can now be

formally defined. The notation A ← B is used to denote that type A is extended

from type B. This means that A may be formed by extension from B.

8.2.1 Reflection

T ← T for any type T R1

Any type is an extension of itself.

120

8.2.2 Base Types

T ← B iff T = B for any base type B R2

Any type extended from a base type is the same as that base type, that is only

trivial extension, shown in the previous section, is permitted over base types.

8.2.3 Records

{ l i : Ti } (i = 1, n) ← { l' j: T'j } (j =1, m)

 iff m ≤ n and for k in 1 . . m, lk = l'k and Tk ← T'k R3

A record type A is an extension of another record type B if and only if A has at

least the fields of B and, for the common fields in both types, the labels are the

same and the corresponding field types are in extension relation.

8.2.4 Variants

[l i : Ti] (i = 1, n) ← [l'j: T'j] (j =1, m)

 iff m ≤ n and for k in 1 . . m, lk = l'k and Tk ← T'k R4

A variant type A is an extension of another variant type B if and only if A has at

least the branches of B and, for the common branches in both types, the labels

are the same and the corresponding branch types are in the extension relation.

8.2.5 Functions

fun (p → q) ← fun (p' → q') iff p ← p' and q ← q' R5

A function type A is extended from another function type B if and only if the

argument type of A is extended from the argument type of B and the result type

of A is extended from the result type of B.

8.2.6 Locations

loc (p) ← loc (p') iff p ← p' R6

loc (p) ← p R7

A location type A is an extension of another location type B if the type of values

A contains is an extension of the type of values contained by B. A location type

is an extension of the type of value it contains.

121

8.3 Adding Polymorphism

Given the formal definition of the extension relation specified in the previous

section, polymorphism mechanisms over the relation which will allow the static

typing of extended types may now be defined.

8.3.1 Typing Extension Variables

The first step towards obtaining polymorphism is to derive a typing for

extension variables. This requires a mechanism that will allow expressions to be

typed as 'some type that is extended from T' where T is any legal type in the

language.

One way to achieve this typing is to introduce ← as an explicit type modifier,

allowing the syntactic notation ←T to signify extension from some type T.

Consider defining a getEmpName function, which takes an employee and returns

the value of its name field. If this function is required to operate over not only

employee but any type extended from it then it can be specified as shown in

Figure 8.5.

let getEmpName = fun (e : ← employee → string) e.name

Figure 8.5 : Typing Extension

However, this notation causes problems with structural type equivalence as the

example in Figure 8.6 below shows.

let someFun = fun (e1 : ← employee ; e2 : ← employee)

Figure 8.6 : Equivalence of Two Types

In Figure 8.6, even though e1 and e2 are both typed as ←employee, they can not

be assumed to share the same type. The only condition required by this typing is

that e1 is of type which is extended from employee and e2 is of a type which is

also extended from employee. However this does not imply that they are the

same type. In order to specify the relationship that two parameters share the

same type in this context, a precisely typed algebra is needed.

To overcome this problem, a new typing based on the notion of extension type

variables is introduced. In addition to the type and value environments τ and π

introduced in section 2.4, a third environment called ε is created for these

122

variables. ε contains judgements of the form t ← T where t is any type identifier

and T is any type in the language, including the ones composed from other

extension type variables. Extension type judgements in the language are

restricted to those of the form e : t where t is a member of ε. Two expressions

which are typed by extension type variables are deemed to be type equivalent if

and only if they share the same type variable.

There are two ways of introducing extension type variables: explicit introduction

through the use of a form of bounded universal quantification and implicit

introduction through the application of operations to expressions already typed

with extension variables.

8.3.2 Explicit Extension Variables

A form of bounded universal quantification is used to introduce extension type

variables explicitly. However it is based on extension rather than inclusion. An

example of the use of this construct is given below in Figure 8.6.

let changeManager = fun [t ← dept] (d : t , e : employee → unit)

 . . .

Figure 8.6 : Quantification using Extension

The term quantifier variable is used to refer to type identifiers introduced by

bounded quantification, such as t in Figure 8.6. The meaning of t, as before, is

some type that is extended from dept.

To illustrate the point made about the typing of quantifier variables in the

previous section, consider the function sameAddr in Figure 8.7 below.

let sameAddr = fun [emp ← employee] (e1, e2 : emp → bool)

. . .

Figure 8.7 : Typing Quantifier Variables

Even though the structure of emp may not be known exactly, the values denoted

by e1 and e2 can safely be assumed to share the same type.

An important difference between this mechanism and bounded universal

quantification is that this type abstraction does not imply inclusion. With

universal quantification bounded by inclusion the type quantifier always stands

for a type which is a subtype of the bound type. Therefore any operation defined

123

over the bound type can be safely applied to values of the quantifier variable.

However, with extension polymorphism, the types denoted by the quantifier

variable are not intended to be in the subtyping relation with the bound type. As

a result, it is not always type safe to apply operations defined for the bound type

on the values of the quantifier variable. Figure 8.8 gives an example of this

case.

! per1 : loc (person)

let assignPer = fun (p1 : person) per1 := p1

let polyAssign = fun [per ← person] (p1 : per) per1 := p1

Figure 8.8 : Operations on Bound and Quantifier Types

In Figure 8.8, the identifier per1 is of type loc(person) where person is not a

base type. The function assignPer takes a value of type person and assigns it to

per1. According to the typing rule for assignment this is type correct. Now

consider defining a polymorphic function polyAssign which performed the

assignment for values of any type that is extended from person. If it is defined

as shown in Figure 8.8 then the body of this function will not be type correct.

This is because an exact type match is required for assignment in order to

maintain type safety. It should be noted that in a system that supports subtyping

and subsumption if the bound specified is for inclusion as shown below in

Figure 8.9 then the body of polyAssign will type check.

let polyAssign = fun [per ≤ person] (p1 : per) per1 := p1

Figure 8.9 : Bounded Universal Quantification with Inclusion

As in the case of the example in Figure 8.8, values belonging to the quantifier

variable in a universally quantified function can not claim all the operations

permitted for the bound type. The exact operations that are available to

quantifier variables are examined in section 8.4.4.

Thus the typing of these variables is more restrictive than for those introduced

by bounded universal quantification based on inclusion. This is to ensure the

soundness of the type system and to provide exact type information wherever

possible.

124

The ability to relate quantifiers increases the expressiveness of the system.

Consider the example in Figure 8.10 below.

let aFun = fun [e ← employee, d ← { manager : loc(e) }]

(p : e, t : d → e)

t.manager := p

Figure 8.10 : Related Quantifier Variables

The definition of the quantifier variable d depends on the other quantifier

variable e. e stands for any type extended from employee and d stands for any

type extended from a record type that has a field manager of type loc(e). The

semantics of extension over quantifier variables should be clarified to provide a

clear meaning for d in this context. In order to achieve a useful abstraction only

trivial extension is allowed over quantifier variables. This means that for a call

to aFun, defined in Figure 8.10, to be correctly typed, the two specialising

instances of e must be the same, rather than being in extension relation. Figure

8.11 gives some examples.

type dept is { manager : loc (employee) ; workers : int }

type dept2 is { manager : loc (employee2) ; workers : int }

! e1 : employee ; e2 : employee2 where employee2 ← employee

! d1 : dept ; d2 : dept2

let a = aFun [employee, dept] (e1, d1)

let b = aFun [employee2, dept2] (e2, d2)

let c = aFun [employee, dept2] (e1, d2)

Figure 8.11 : Using Related Quantifier Variables

The first two function calls in Figure 8.11 are correctly typed since the actual

parameter supplied for e is the same in both instances of the quantifier variable.

But the third call to aFun is incorrect as dept2 has the component type

employee2 but employee has been supplied as the actual parameter for the first

type variable.

125

8.3.3 Implicit Extension Variables

Unlike explicit extension variables which are introduced by the programmer,

implicit extension variables are internally introduced by the type checker. Given

the definition of type employee in previous sections, consider the following

example in Figure 8.12.

let derefAddr = fun [emp ← employee] (e : emp)

begin

 let x = e.addr

end

Figure 8.12 : Implicit Extension Variables

The quantifier variable emp stands for any type that is extended from employee.

Therefore the type e.addr is not address but some type that is extended from

address. When determining the type of variable x, the type checker will create a

new identifier for this extension variable and add the extension binding to ε.

The restrictions on extension, for example allowing only trivial extension over

base types and extension variables, sometimes permit the type checker to coerce

new implicit extension variables to known types.

let changeManager = fun [emp ← employee,

 dep ← { manager : loc (emp) }]

 (e: emp, d : dep)

d.manager := e

Figure 8.13 : Location Evolution

In Figure 8.13, the type checker first derives the type of d.manager as a new

extension variable bounded by loc (emp). The type of the content of this

location is derived as another new extension variable bounded by emp and this

type can then be deduced to be emp itself since only trivial extension is allowed,

thus typing the two sides of the assignment as being equivalent.

8.3.4 Polymorphism over Type Constructors

We now present a case by case analysis of the use of extension polymorphism

with different type constructors. In each case, the operations allowed upon the

abstracted form are also discussed.

126

8.3.4.1 Base Types

As stated earlier, only trivial extension is allowed over base types. Therefore the

abstracted form can be coerced to the bound type and all operations defined over

the bound type can also be used for the extended type.

type dept3 is { manager : loc (employee) ; workers : loc(int) }

let incWorkers = fun [dep ← dept3] (d : dep)

d.workers := @(d.workers) + 1

Figure 8.14 : Operations on Extended Base Types

For example, the definition of the function incWorkers, which increments the

number of workers by one, in Figure 8.14 above is correctly typed since the type

of @d.workers can be guaranteed to be exactly int.

8.3.4.2 Records

Since extension and inclusion relations are the same for records, in their case too

all the operations defined for the bound type are available for the abstraction.

type dept is { manager : loc (employee) ; workers : int }

let getWorkers = fun [dep ← dept] (d : dep → int) d.workers

Figure 8.15 : Operations on Extended Records

In Figure 8.15 above, the operation to dereference the workers field is available

to any type that is extended from dept. In general, any dereference operation

that is applicable to a record type is also applicable to any type that is extended

from it.

8.3.4.3 Variants

An extended variant type may belong to any of the branches of the bound or

some new branch of the extended type which is not known statically. A straight

forward solution to this problem is to restrict the use of the abstracted variant

values to within a multi-branch case project statement terminated by a default

clause.

127

type grade is [S : senior ;

I : intermediate ;

J : junior]

let projGrade = fun [newGrade ← grade] (g : newGrade)

begin

 let ans = project g as X onto

S : X ;

I : X ;

J : X ;

 default : X

end

Figure 8.16 : Operations on Extended Variants

In Figure 8.16, function projGrade operates over any type extended from the

variant type grade. If the value of extended type provided as actual parameter to

a call to projGrade belongs to an additional branch of the extended type then it

will be captured by the default clause.

8.3.4.4 Functions

Consider the example in Figure 8.17 below.

let polyFun = fun [aFun ← fun (X → Y)] (f : aFun) ;

. . .

Figure 8.17 : Operations on Extended Functions

In general, function f, supplied as parameter to polyFun can not be applied. The

only information on the parameter type is that it is extended from X and

therefore f could only be safely applied when there are no extensions on X, for

example when X is a base type. But in these cases, the quantified function is not

particularly useful.

However, extended function types can be used in a meaningful manner when

related quantifiers are used.

128

let empPoly = fun [empFunRec ← { empFun : fun (emp) },

emp ← employee] (f : empFunRec, e : emp) ;

f.empFun (e)

Figure 8.18 : Operations on Extended Functions - 2

In Figure 8.18 above, the function call in the body of empPoly is valid since only

trivial extension is permitted over quantifier variables. More generally, if the

argument type of an extended function can be statically determined to be a

known type then the function can be applied in a type safe manner to a value of

this type.

8.3.4.5 Locations

Updates to locations are only allowed when the left hand side of the assignment

statement may be statically deduced to be the location type of the right hand

side.

let changeManager = fun [emp ← employee,

 dep ← { manager : loc (emp) }]

 (e: emp, d : dep) ; d.manager := e

Figure 8.19 : Operations on Extended Locations

In Figure 8.19, for reasons explained in section 8.4.3, the type of the expression

d.manager can be statically determined to the location type of the type of e.

Therefore this update is valid.

Dereferencing a value of an extended type is always allowed though care must

be taken when specifying the type that is returned.

type dept is { manager : loc (employee) ; workers : int }

let DerefManager = fun [dep ← dept] (d : dep) ;

let m = @(d.manager)

Figure 8.20 : Dereferencing Extended Locations

In the example in Figure 8.20, the type of m will be t, where t is some type

extended from employee.

129

8.3.5 Quantified Functions

Since quantified functions have been introduced as a new type constructor, the

definition of the extension relation needs to be modified to include the following

rule:

fun [t ← X] (p → q) ← fun [t ← Y] (p' → q') iff X ← Y, p ← p' and q ← q'

A quantified function type A is extended from another quantified function type

B if and only if the quantifier bound of A is extended from the quantifier bound

of B, the argument type of A is extended from the argument type of B and result

type of A is extended from the result type of B.

The work done on these functions so far indicates that useful abstractions by

extension over quantified functions can only be obtained by using related

quantifiers. However, the importance of allowing only trivial extension over

quantifier variables should be stressed here.

8.4 Interaction with Other Kinds of Polymorphism

Incorporating extension polymorphism into a language does not preclude the use

of other kinds of polymorphism in that language. At the risk of complicating the

type system of the language and obscuring the syntax for various abstractions,

extension polymorphism can co-exist, for example, with universal and inclusion

polymorphism.

There are some interesting interactions between extension polymorphism and

inclusion polymorphism with subsumption described in chapter 5. In order to

explain the possible interactions, the concepts of positive and negative types are

first introduced. These describe subsets of the type space which have the

following properties:

positive = {A ∈ Type | X ← A implies X ≤ A}

negative = {A ∈ Type | X ← A implies A ≤ X}

For example, aRec, defined in Figure 8.21, is positive as any type extended from

it is also a subtype of it.

type aRec is { a : int ; b : { c : bool ; d : real } }

Figure 8.21 : Positive Interaction

130

On the other hand aVar in Figure 8.22 is negative.

type aVar is [a : int ; b : [c : bool ; d : real]]

Figure 8.22 : Negative Interaction

Notice that these sets, which are not disjoint, both include many non-trivial

members. It is relatively straightforward to characterise the notions of positive

and negative by examination of the combination of the structures of the

inclusion and extension relations over each type constructor. The result is that

some statically known extension relationships may be used to imply inclusion

relationships, and therefore the application of the subsumption rule thus

allowing type safe substitution.

8.5 Summary

A new mechanism for dealing with type evolution in persistent systems at the

type level has been described. The concept of extension seeks to capture

additive evolution which is one of the most common forms of evolution in

persistent systems. An extension relation which formalises this concept is

defined for all the type constructors introduced in Base. A programming

language mechanism which provides polymorphism over this relation is

presented. Finally possible patterns of interaction between inclusion and

extension polymorphism are examined. Chapter 9 presents a language extended

from Base that supports extension polymorphism and provides a proof of

soundness for its type system.

131

9 A Language with Extension Polymorphism

The core language Base, defined in Chapter 2, is used as a starting point to

incorporate extension polymorphism. The resulting language is called Ext. The

additions and changes to Base which are needed for implementing extension

polymorphism are described in sections 9.1 to 9.6 and a proof of soundness for

the new type system is given in section 9.7.

9.1 Types

The only change required to the definition of types is the addition of quantified

functions.

T ::= . . . | fun [t ← T] (T → T) | . . .

These functions are quantified by specifying a quantifier variable and the

extension bound type both within square brackets and separated by a left arrow.

The argument and result types as usual are given within round brackets

separated by a right arrow.

9.2 Expressions

The new expressions in the language can be defined by the following syntax :

E ::= . . . | fun [t ← T] (x : T → T) E | E [T] (E) | . . .

where

Syntax Interpretation

fun [t ← T] (x : T1 → T2) E quantified function value

E1[T] (E2) quantified function application

Figure 9.1 : New Expressions in Ext

A function value is created by specifying extension type variable and the

extension type if the function is quantified and the formal parameter, argument

and result types and the expression for function body. A function can be applied

by supplying it with the extension type within square brackets and an actual

parameter for the argument within round brackets.

132

9.3 Typing Rules

In addition to the environments τ and π introduced in Chapter 2 for holding type

and identifier bindings, a new environment ε is added here to contain extension

bindings. The pair < T1, T2 > in ε indicates that type T1 is extended from type

T2. A new declaration function extDecl is defined to take a list of bindings as its

argument and update ε with the new bindings. In sections 9.3 through to 9.7, the

convention adopted for naming extension variables that will be introduced by

the type checker is that a variable that stands for a type extended from type T

will be denoted by t. It should be noted that only the new rules that are required

to incorporate the effects of adding extension polymorphism are presented in

this section. The type rules for the other constructs are the same as those

described in Chapter 2 for the type system of Base.

9.3.1 Base Types

ε1::t ← int::ε2 , τ, π h e : t
ε, τ, π h e : int

[intExt]

If ε with a binding <t, int>, τ and π and imply that an expression e is of type t

then e can be deduced to be of type int .

ε1::t ← bool::ε2 , τ, π h e : t
ε, τ, π h e : bool

[boolExt]

If ε with a binding <t, bool>, τ and π and imply that an expression e is of type t

then e can be deduced to be of type bool.

ε1::t ← unit::ε2 , τ, π h e : t
ε, τ, π h e : unit

[unitExt]

If ε with a binding <t, unit>, τ and π and imply that an expression e is of type t

then e can be deduced to be of type unit .

9.3.2 Records

ε1::s ← { l : T }+::ε2 , τ, π h e : s
 ε1::s ← { l : T }+::ε2::t ← T::ε3, τ, π h e.l : t

[recExtDeref]

If, from ε with a binding that implies that s is extended from a record type with

at least the field l of type T, τ and π, the expression e can be deduced to be of

133

type s then the result of the dereference operation on e, e.l , is of type t where t

is extended from T.

9.3.3 Variants

 ε, τ, π h e1 : T ε, τ, π h e2 : T ε1::v ← [li : Ti]
+::ε2 , τ, π h e : v

ε1::v ← [li : Ti]
+::ε2::t ← T::ε3, τ, π h exp : t

[varExtProj]

where exp stands for the project operation on the variant type, project e as x

onto l i : T i in e 1 else e 2

If expressions e1 and e2 are both of type T and if from ε with a binding that

implies that v is extended from a variant type with at least a label li which is of

type Ti, τ and π, the type of e can be deduced to be v then the project operation

on e has type t where t is some type that is extended from T.

9.3.4 Quantified Functions

ε1::t ← T::ε2 , τ, π1::x : T1::π2 h e : T2

ε, τ, π h fun[t← T](x : T1 → T2) e : fun[t ← T](T1 → T2)

[qFunValue]

If ε with a new binding < t, T >, τ and π with a new binding < x, T1 > imply that

expression e is of type T2 then the quantified function expression fun [t ← T]

(x : T 1 → T 2) e is of type fun [t ← T](T1 → T2).

ε, τ, π h e : fun[t ← T](T1 → T2) ε h T3 ← T ε, τ, π h e1 : T1[T3 / t]
ε, τ, π h e [T3] (e1) : T2[T3 / t]

[qFunApp]

If expression e is of a quantified function type fun [t ← T](T1 → T2), type T3

is extended from type T and expression e1 is of type T1 with any occurrences of t

replaced by T3 then the expression e[T 3](e 1) is of type T2 with any

occurrences of t in it replaced by T3.

134

9.3.5 Locations

ε1:: s ← loc(T)::ε2 , τ, π h e : s
ε1:: s ← loc(T)::ε2::t ← T::ε3, τ, π h @e : t

[locExtDeref]

If type s is extended from type loc(T) and the type of the expression e can be

deduced to be s then the dereference expression @e is of type t where t is some

type extended from T.

9.3.6 Infinite Union

ε1::t ← any::ε2 , τ, π h e : t
ε, τ, π h e : any

[anyExt]

If ε with a binding <t, any>, τ and π imply that e is of type t then e can be

deduced to be of type any.

9.3.7 Extension Quantifier Variables

ε1::s ← t::ε2::t ← T::ε3, τ, π h e : s
ε1::t ← T::ε2 , τ, π h e : t

[quantExt]

If ε with the two bindings < s, t > and < t, T >, τ and π imply that expression e is

of type s then e can be deduced to be of type t.

9.4 Semantic Context

The semantic context for quantified function types is specified in Figure 9.2

given below.

Type Context Denoted by

fun[t ← T] (T1 → T2) the set of quantified

functions from [T1] to

[T2] with [t] in both

bounded by [T]

QFunction ([T] ,

 [T 1] , [T 2])

Figure 9.2 : Semantic Context for Quantified Functions

135

9.5 Meta-operations

The meta-operations defined over quantified function types are described in

Figure 9.3 below.

Semantic Type Meta-operations

QFunction (T, T1, T2) mkQFun : (variable, Type, Expression, variable,

 environment → QFunction (T, T1, T2))

qApply : (QFunction (T, T1, T2), Type, T1 → T2)

Figure 9.3 : Meta-operations on Quantified Functions

Quantified functions have a make quantified function meta-operation which

takes the quantifier variable, the bound type, the expression for the function

body, the parameter variable and the environment in which the expression is to

be evaluated and returns a quantified function. The apply operation takes a

quantified function, a type and a parameter value and returns a value of the result

type.

9.6 Semantics

The semantics for quantified functions can now be defined in terms of the meta-

operations.

9.6.1 Quantified Functions

[fun [t ← T] (x : T1 → T2) e]Env = mkQFun(t, T, e, x, Env) D29

[e1[T] (e2)] Env = qApply ([e1] Env, T, [e2] Env) D30

9.7 Proof of Soundness

A proof of soundness of the type system of Ext is given in this section. As

before, soundness of typing is proved by structural induction. However, the

definition of soundness is extended to incorporate the new extension

environment as follows:

ε, τ, π h e : T ⇒ [e]Env ∈ [T] ε, τ

where ∀ i ∈ Env, ∃ i ∈ π . [Env.i] ∈ [π.i]

Only those expressions which are affected by extension polymorphism and the

new expressions are considered here. The proof for the rest remains the same as

136

that given in Chapter 4 for Base. The different type constructors with extension

are dealt with in Sections 9.7.1 to 9.7.6.

The notation used in the proof is similar to that used in Chapter 4 for Base. Envb

is used to denote Env containing a binding b. The same notation is used for

environments ε, τ and π.

9.7.1 Base Types with Extension

Expression ε, τ, π h e : int

To be proved [e]Env ∈ [int] ε, τ

Inductive Hypothesis [e]Env ∈ [t] εt ← int , τ

since εt ← int, τ, π h e : t by type rule [intExt]

Inductive Step

[e]Env ∈ [t] εt ← int , τ from hypothesis

Since any type that is extended from a base type is identical to that base type

(extension relation definition rule R1),

t = int

Therefore, [e]Env ∈ [int] ε, τ

Expression ε, τ, π h e : bool

To be proved [e]Env ∈ [bool] ε, τ

Inductive Hypothesis [e]Env ∈ [t] εt ← bool, τ

since εt ← bool, τ, π h e : t by type rule [boolExt]

Inductive Step

[e]Env ∈ [t] εt ← bool, τ from hypothesis

Since any type that is extended from a base type is identical to that base type

(extension relation definition rule R1),

t = bool

Therefore, [e]Env ∈ [bool] ε, τ

9.7.2 Records with Extension

Expression ε, τ, π h e.l : t where t ← T

To be proved [e.l]Env ∈ [t] εs ← { l : T } +, t ← T, τ

137

Inductive Hypothesis [e]Env ∈ [s]εs ← { l : T } +, τ

since εs ← { l : T }+ , τ, π h e : s by type rule [recExtDeref]

Inductive Step

[e.l]Env = getL([e] Env) by D15

[e]Env ∈ [s]εs ← { l : T } +, τ by hypothesis

Since getL takes a Record and returns a value of the type of field l of that record

and s is extended from a record type with a field l, getL is applicable to a value

of type s and will return a type that is extended from the type of l. Thus,

getL([e]Env) ∈ [t] εs ← { l : T } +, t ← T, τ

i.e. [e.l] Env ∈ [t] εs ← { l : T } +, t ← T, τ

9.7.3 Variants with Extension

Expression ε, τ, π h project e as x onto l : Ti in e1 else e2 : T

To be proved [project e as x onto l : Ti in e1 else e2] Env ∈
[T] εv ← [l : Ti]+, τ

Ind. Hypotheses [e]Env ∈ [v] εv ← [l : Ti]+, τ and

[e1] Envx = snd([e]Env) ∈ [Ti] ∈ [T] ε, τ and

[e2] Env ∈ [T] ε, τ

since εv ← [l : Ti]+, τ, π h e : v,

ε, τ, πx : Ti h e1 : T

and ε, τ, π h e2 : T by type rule [varExtProj]

Inductive Step

[project e as x onto l : Ti in e1 else e2] Env =
if(fst([e]Env) = l, [e1] Envx = snd([e]Env) ∈ [Ti] , [e2] Env) by D17

But [e]Env ∈ [v] εv ← [l : Ti]+, τ and [e1] Env x = snd([e]Env) ∈ [Ti]∈ [T] ε, τ

and [e2] Env ∈ [T] ε, τ by hypotheses

But [[l : Ti]+] ε, τ = Pair(label, [Ti] ε, τ)

Since if is a function that takes a Boolean and two expressions of the same type

and returns an expression,

if(fst([e]Env) = l, [e1] Envx = snd([e]Env) ∈ [Ti] , [e2] Env) ∈ [T] ε, τ

[project e as x onto l : Ti in e1 else e2] Env V ← [l : Ti]
+ ∈ [T] ε, τ

138

9.7.4 Quantified Functions

Expression ε, τ, π h fun[t ← T](x : T1 → T2) e : fun[t ← T](T1 → T2)

To be proved [fun[t ← T](x : T1 → T2) e]Env ∈

 [fun[t ← T](T1 → T2)] ε, τ

Inductive Hypothesis [e]Envx = v : T1
 ∈ [T2] ε t ← T, τ

since εt ← T, τ, πx : T1
 h e : T2

by type rule [qFunValue]

Inductive Step

[fun [t ← T](x : T1 → T2) e]Env = mkQFun(t, T, e, x, Env) by D29

[e]Envx = v : T1
 ∈ [T2] ε t ← T, τ by hypothesis

Since mkQFun is a function which takes a variable, a type, an expression, an

identifier and an environment and returns a QFunction and from the hypothesis

it can be seen that when x is assigned a value of type T1 and t is extended from T

then e will be of type T2,

mkQFun(t, T, e, x, Env) ∈ QFunction (T, T1, T2)

[fun[t ← T](T1 → T2)] ε, τ = QFunction (T, T1, T2) from table 8.24

i.e. [fun [t ← T](x : T1 → T2) e]Env ∈ [fun[t ← T](T1 → T2)] ε, τ

Expression ε, τ, π h e [T3] (e1) : T2

To be proved [e [T3] (e1)] Env ∈ [T2 [t = T3]] εT3 ← T, τ

Inductive Hypotheses [e]Env ∈ [fun[t ← T](T1 → T2)] ε, τ and
[e1]Env ∈ [T1[t = T3]] εT3 ← T, τ

since εT3 ← T, τ, π h e1 : T1 [t = T3] and

ε, τ, π h e : fun[t ← T](T1 → T2)

by type rule [qFunApp]

Inductive Step

[e [T3] (e1)] Env = qApply([e]Env, T3, [e1] Env) by D30

[e]Env ∈ [fun[t ← T](T1 → T2)] ε, τ and
[e1]Env ∈ [T1[t = T3]] εT3 ← T, τ by hypotheses

Since qApply is a function which takes a QFunction, a type and an Expression

of the argument type of the function and returns a value of the result type of the

function with any occurrences of the quantifier variable replaced by the type

parameter,

139

qApply([e]Env, T3, [e1] Env) ∈ [T2[t = T3]] εT3 ← T, τ

i.e. [e [T3] (e1)] Env ∈ [T2 [t = T3]] εT3 ← T, τ

9.7.5 Locations with Extension

Expression ε, τ, π h @ e : t

To be proved [@ e]Env ∈ [t] εs ← loc(T), t ← T, τ

Inductive Hypothesis [e]Env ∈ [s]εs ← loc(T), τ

since εs ← loc(T), τ, π h e : s

by type rule [locExtDeref]

Inductive Step

[@ e]Env = get([e]Env) by D23

[e]Env ∈ [s]εs ← loc(T), τ by hypothesis

But s is a loc type as it is extended from one.

Since get is a function that takes a Location and returns a value of the content

type,

get([e]Env)∈ [t] εs ← loc(T), t ← T, τ

i.e. [@ e] Env ∈ [t] εs ← loc(T), t ← T, τ

9.7.6 Infinite Union with Extension

Expression ε, τ, π h e : any

To be proved [e]Env ∈ [any]ε, τ

Inductive Hypothesis [e]Env ∈ [t] εt ← any, τ

since εt ← any, τ, π h e : t by type rule [anyExt]

Inductive Step

[e]Env ∈ [t] εt ← any, τ from hypothesis

Since any type that is extended from any is identical to any (extension relation

definition rule R1),

t = any

Therefore, [e]Env ∈ [any]ε, τ

140

Since the soundness of typing has been proved for all expressions affected by

the addition of extension polymorphism to a type system that was already

proved sound, it has been shown that the resulting type system is also sound.

9.8 Summary

The experimental language Base is extended to incorporate extension

polymorphism. A formal definition of the resulting language Ext has been given

and the soundness of its type system proved.

141

10 Type Checking of Extension Polymorphism

This chapter describes a type checker implemented for extension polymorphism.

The design decisions made for implementation of the type checker, the type

representations chosen and the process of type checking itself are explained.

10.1 Implementation Strategy

10.1.1 Functionality

The main focus here is to implement a type checking algorithm for extension

polymorphism. Thus, while lexical analysis, name and scope checking and

syntax analysis are needed in order to type check the code in this context, it is

not necessary to generate executable code for these programs. For this reason,

code generation is omitted from this experiment.

The type representations chosen are similar to those presented in [Con88] for the

Napier88 type checking module. The type equivalence algorithm is again based

on the algorithm presented in [Con88] and [Con90].

10.1.2 Implementation Procedure

The type checker for extension polymorphism is written in S-algol [Mor79,

CM82]. The first step is to implement a type checker for the core language

Base. Since Base does not support any form of polymorphism, implementing a

type checker for it is a relatively straight forward task. The type checker is then

extended to incorporate support for the extension relation and the polymorphism

mechanism over it.

The following are the important parts of the implementation:

• type representations

• type equivalence checking

• type extension checking

• dealing with extension quantifiers

Each of the above is discussed in detail in the following sections. Since one of

the main aims of the implementation is to check the validity and the possibility

of supporting such a polymorphism mechanism, efficiency, in terms of space or

time, is not an important consideration during implementation. Thus, for

142

example, no attempt is made to normalise the graph representation or optimise

the type checking algorithms.

10.2 Type Representations

As a first step towards implementing the type checker, type representations are

defined for the different type constructors in the language. Since Base contains

type constructors of various structures and as space efficiency is not a major

goal, a graph representation is used to model types. Therefore types here are

represented as directed graphs with nodes representing the various type

constructs in the language and edges representing the links between types. The

general format for any node is shown in Figure 10.1 below.

specificInfo referenceslabel

Figure 10.1 : General Type Representation

The label part of the representation identifies the type construct associated with

the type. The table in Figure 10.2 below lists the labels corresponding to the

various type constructs in the language.

Type Construct Type Label

base type base

record rec

record field field

variant var

variant branch branch

function fun

location loc

any any

quantifier variable quant

quantified function qfun

Figure 10.2 : Type Labels

The specific-info part contains any information that is specific to the type being

represented, such as the names of base types. Figure 10.3 shows a table listing

143

the specific information required for each type construct introduced in Figure

10.2.

Type Construct Specific Information

base type name of the base type

record none

record field field name

variant none

variant branch branch name

function none

location none

any none

quantifier variable a unique identifier

quantified function none

Figure 10.3 : Specific Information

A quantifier variable requires a unique identifier as its specific information in

order to distinguish different instances of the same quantifier.

The references part of the type representation contains links to any associated or

component types. Whenever there is a list of types being referred to by a node,

there is an implicit ordering of the elements in the list which may be used as part

of the type information. The table in Figure 10.4 lists the references for various

type constructs.

144

Type Construct References to

base type none

record list of field types

record field field type

variant list of branch types

variant branch branch type

function list containing parameter and result types

location type contained in location

any none

quantifier variable bound type

quantified function list containing quantifier, parameter and

result types

Figure 10.4 : References

Sections 10.2.1 to 10.2.8 give examples of type representations for every type

constructor in the language.

10.2.1 Base Types

Each base type is represented by a single node. For example, the type in Figure

10.5 below is represented by the node shown in Figure 10.6.

type I is int

Figure 10.5 : Integer Example

"base" "int"

Figure 10.6 : Representation for Integers

10.2.2 Records

Records are represented by a node whose references part points to a list of other

nodes representing the fields of the records. Each field node has the

corresponding field name as its specificInfo and its references points to the node

representing the type of the field. Thus, person in Figure 10.7 will be

represented by the type graph in Figure 10.8.

145

type Person is { age : int ; graduate : bool }

Figure 10.7 : Record Example

"rec" ""

"field"

"field"

"age"

"grad
uate"

"bool"

"base" "int"

"base"

Figure 10.8 : Representation for Records

10.2.3 Variants

The type representation structure of variants is similar to that of records. Their

references field points to a list of nodes which contain the names of the branches

and links to their types. Therefore, the variant type Base in Figure 10.9 will be

represented as shown in Figure 10.10.

type Base is [I : int ; B : bool]

Figure 10.9 : Variant Example

146

""

"bool"

"base" "int"

"base"

"var"

"I"

"B"

"branch"

"branch"

Figure 10.10 : Representation for Variants

10.2.4 Functions

The references part of a function type representation points to a list of two

elements. The first element of the list points to the argument type node and the

second to the result type node. Thus the function type in Figure 10.11 is

represented by the graph in Figure 10.12. If the function does not have either of

these components then the corresponding list element points to nil.

type square is fun(int → int)

Figure 10.11 - Function Example

147

"""fun"

"base" "int"

Figure 10.12 : Representation for Functions

10.2.5 Locations

A location type is represented by a node whose references part points to the

node representing the type of the content. For example, intLoc in Figure 10.13

has the representation shown in Figure 10.14.

type intLoc is loc(int)

Figure 10.13 : Location Example

""

"base" "int"

"loc"

Figure 10.14 : Representation for Locations

10.2.6 Any

The infinite union type is represented by a single node with label any. Figure

10.16 illustrates this.

148

type anyType is any

Figure 10.15 : A Type Alias for any

"""any"

Figure 10.16 : Representation for any

10.2.7 Quantifier Variables

Quantifier variables are represented by a node whose references part points to

the representation of the bound type of the function. For example, the quantifier

variable t from Figure 10.17 is represented as shown in Figure 10.18.

type getAgeFun is fun[t ← Person] (t → int)

Figure 10.17 : Quantifier Variable Example

"quant" "t"

personType

Figure 10.18 : Representation for Quantifier Variables

personType in Figure 10.18 stands for the representation of the record type

Person shown in Figure 10.8.

10.2.8 Quantified Functions

The representation of quantified function types is based on that of monomorphic

functions. The references part of the node contains a list of three elements in

this case. In addition to the argument and result type representations described

in section 10.3.4, there is also a link to the quantifier type representation

described in section 10.3.7. Therefore quantified function type qfun in Figure

10.19 will be represented as shown in Figure 10.20.

149

type qfun is fun [t ← int] (t → t)

Figure 10.19 : Quantified Function

"""qfun"

"base" "int"

"quant" "t"

Figure 10.20 : Representation for Quantified Functions

10.3 Type Checking

10.3.1 Type Equivalence Checking

The type system described supports structural type equivalence. Given the basic

representation for types, shown in Figure 10.1, a structural type equivalence

checking algorithm can be defined recursively over it. In essence an algorithm

to determine the equivalence of two type representations should check for the

following:

• equality of the two labels

• equality of the two specific information parts

• recursive equivalence of types being referred to

If the general type representation can be written as shown in Figure 10.21 below

150

type typeRep is { label : string ; specificInfo : string ;

 references : list [typeRep] }

Figure 10.21 : Code for Type Representation

then a basic recursive equivalence checking algorithm can be defined as

rec let eqType = fun (a, b : typeRep → bool)

typeIdentity(a, b) or

(a.label = b.label) and (a.specificInfo = b.specificInfo) and

eqList(a.references, b.references)

&

eqList = fun (p, q : list [typeRep] → bool)

(p is nil and q is nil) or

(~(p is nil) and ~(q is nil) and eqType(head(p), head(q)) and

 eqList(tail(p), tail(q)))

Figure 10.22 : Basic Type Equivalence Checking Algorithm

These definitions are based on the ones presented in [Con90]. If the two types

being checked for equivalence are identical then their equivalence is decided

immediately. Otherwise a recursive scan of the type graph is performed. This

algorithm suffices for type equivalence checking in Ext.

10.3.2 Type Extension Checking

The algorithm for determining whether two types are in the extension relation is

structurally similar to the type equivalence checking algorithm. It is based on

the definition of the extension relation given in Chapter 8. An outline of this

algorithm is given in Figure 10.23 below.

151

let extType = fun(t1, t2 : typeRep → bool)

typeIdentity(t1, t2) or

case t1.label of

 "quant" : t1.label = t2.label and

t1.specificInfo = t2.specificInfo and

eqList(t1.references, t2.references)

 "loc" :if t2.label = "loc" then

 extList(t1.references, t2.references)

 else eqType(head(t1.references), t2)

default : t1.label = t2.label and

t1.specificInfo = t2.specificInfo and

extList(t1.references, t2.references)

Figure 10.23 : Checking for Extension

extType checks whether the type represented by t1 is extended from the type

represented by t2. Since any type is extended from itself, if two types are

identical then they are in the extension relation. As with type equivalence, this

property is detected immediately. In all other cases, a recursive scan of the type

graph is performed to determine whether the two types conform to the relation.

For all type constructors except quantifier variables and location types, equality

tests on the label and specificInfo fields and a recursive pairwise check of the list

of references will complete the extension test. Quantifier variables can only be

in the extension relation if they are equivalent hence the same definition as

before. If one of the types is a location then there are two possibilities for

extension relation. If the second type is also a location then the two component

types will have to be in extension relation. Otherwise the component type of the

first type and the second type have to be equivalent according to the rules in

Figure 10.22.

10.3.3 Dealing with Extension Quantifier Variables

Since extension quantifier variables play a major role in the polymorphism

mechanism implemented here, a detailed account of how they are dealt with by

the type checker is presented in this section.

152

10.3.3.1 Creating Extension Quantifier Variables

Chapter 8 presents a description of the two kinds of quantifier variables.

Explicit quantifier variables are created explicitly in the program through the

definition of quantified functions, while implicit variables are created internally

by the type checker as a result of the application of operations on values

belonging to other quantifier variables.

The type checker provides a function quantifier with the following interface to

create a type representation for quantifier variables.

let quantifier = fun(qId : string; bType : typeRep → typeRep)

Figure 10.24 : Signature of quantifier Function

Thus it takes the unique identifier for the quantifier variable and its bound type

and produces a quantifier type representation with the identifier as specific

information and the references pointing to bType.

Quantifier variables can only be explicitly created by defining quantified

functions. Consider the example in Figure 10.25 below.

let getAgeFun = fun[t ← Person] (p : t → int)

Figure 10.25 : A Quantified Function

In this case, the type checker will perform the following actions. It declares the

extension relation between t and Person by entering the identifier and the type

representation of Person into the current scope of the ε environment. It checks

whether the bound type is one over which only trivial extension is allowed. If

this is the case then the <identifier, type rep> pair is entered into the current

scope of the τ environment since the identifier has to stand for the bound type.

Finally a type representation for the quantifier variable is created, using the

quantifier function specified in Figure 10.24, to be used as part of the type graph

for the function.

Implicit quantifier variables may be introduced as a result of two operations:

dereferencing a field of an extended record or dereferencing an extended

location. In these instances the type checker produces a unique identifier to

stand for the result type of the operation. Consider the record dereference in

Figure 10.26.

153

type Address is { town : string }

type Person is { name : string ; addr : Address }

let assignAddr = fun[t ← Person] (p : t)

begin

 let a := p.addr

end

Figure 10.26 : Dereferencing an Extended Record

When it gets to the expression p.addr, the type checker will generate the string

*t_addr as the identifier for the new quantifier variable. If an extended location

type t had been dereferenced then the string *t_@ is generated. Once the unique

identifier is known, the type checker carries out the functions specified earlier

for explicit quantifier variables i.e. the necessary entries are made in the

appropriate environments and a type representation is constructed for the

quantifier variable using the identifier generated.

10.3.3.2 Using Extension Quantifier Variables

The naming and type representation scheme described above allows the type

compatibility of extension quantifier variables to be detected.

Whenever the function that constructs type representations in the type checker

encounters an identifier it checks the current scope of the τ environment and then

the ε environment to check whether the identifier has already been declared.

Checking them in that order also means that the most specific type can be

associated with the identifier. For example, in Figure 10.25, once the type

representation for the explicit quantifier variable t has been constructed and

added to the necessary environments, it can then be referred to as the type of the

argument.

Generating strings during dereferencing in a standard manner to stand for

implicit quantifier variables also means that other static dereferences in the same

scope can be detected to be equivalent. For example, consider the changeAddr

function defined in Figure 10.27 below.

154

type Address is { town : string }

type Person is { name : string ; addr : Address }

let changeAddr = fun[t ← Person] (p, q : t)

begin

 let a := p.addr

 let b := q.addr

 a := b

end

Figure 10.27 : Type Compatibility

The same identifier is generated to denote the implicit quantifier variable for

both dereferences. This validates the third assignment operation.

10.4 Summary

An implementation of the extension relation and polymorphism mechanism

defined over it described in Chapter 8 is described. The type representations for

different type structures are illustrated. The algorithms used for type

equivalence checking and checking for the extension relation are described. The

treatment of extension quantifier variables in the type checker is presented.

155

11 Conclusions

11.1 A Polymorphic Type System for Evolution

11.1.1 Aim and Motivation

The aim of the work in this thesis is to develop a polymorphism mechanism that

deals with additive evolution in persistent programming systems. In databases

and persistent systems, evolution is unavoidable. Given this fact, it is necessary

to devise means of ensuring the soundness and consistency of programs and data

with the changes that are constantly made. The concepts of subtyping,

inheritance and evolution have often been confused and used interchangeably,

with the end result that subtyping is used for situations and purposes which it

does not naturally capture.

An example of such use is the inheritance of binary methods during subclassing

in object oriented languages. If evolution demands that a subclass is defined

using an existing class, it is common for the subclass to inherit some features of

its superclass and possibly redefine them in its body. If these features are in the

subtyping relation with the original features of the superclass then they may be

used wherever the original features are used. However a problem occurs in the

case of binary methods. The subtyping rule and the general evolution pattern for

these function types do not coincide. Using subtyping to capture this evolution

can lead to unsound systems, or in the best case, dynamic checks to ensure type

safety.

The motivation for this work is the lack any mechanism that is particularly

designed for dealing with additive evolution.

11.1.2 Related Work

Programming languages and database systems have used various strategies to

cope with the problems caused by evolution. The object oriented programming

language Eiffel uses covariant subtyping and dynamic type checks to overcome

the problem of the inheritance of binary methods. In this instance, two function

types are treated as being in the subtype relation even though the argument of

the subtype is covariantly overridden as opposed to the contravariance condition

demanded by Cardelli's subtyping rules. The dynamic checks are needed to

ensure that the use of covariant subtyping is type safe.

156

The strategies used by the O2 object oriented database system are interesting

examples of the way schema evolution is dealt with at the data level. O2 uses

special primitives for performing schema modifications such as creation of a

new class or modification, deletion or renaming of an existing class. Once

modifications to the schema have taken place, data conversion and migration

functions are used to ensure that data is kept consistent with the changes.

Matching has recently been proposed as a solution to the problem of type safe

inheritance of binary methods in object oriented programming. Matching, like

subtyping, is a relation between two types but is weaker than the latter. It is

usually defined in terms of subtyping using the following rule: an object type A

matches an object type B if A is a subtype of B under the assumption that any

corresponding Self types (used to denote the object type of the receiver of a

method) are equal. Matching does not support subsumption in general but

allows methods of a subclass that matches its superclass to be safely used in

place of those of the superclass.

In these examples, only Eiffel and languages supporting matching provide a

solution at the type system level. Eiffel's use of subtyping where a covariant

solution is needed requires dynamic checking to guarantee type safety.

Matching provides an effective solution to the problem of binary methods but it

only deals with object types in object oriented programming and is not

applicable to non object oriented systems.

11.1.3 Extension Polymorphism

Unlike traditional programming languages, the presence of persistence also

introduces the problem of keeping a potentially large volume of data consistent

with any type changes that may occur. The existing solutions above do not meet

all these requirements. Subtyping and inheritance, though they are useful in

other circumstances, do not provide the answer to this problem since there is a

mismatch between subtyping and inheritance in object oriented languages and

existing solutions do not scale to other paradigms.

Since existing solutions do not completely capture evolution, a new mechanism,

called extension polymorphism, is presented here. One of the main

requirements in persistent systems is that in the face of type evolution, code

should continue to work safely over data.

The proposed solution is a polymorphism mechanism over a relation that

captures the patterns of type evolution in persistent systems. Since additive

157

evolution is the most common in these systems, the extension relation is defined

to model how the most common type constructors used in programming

languages evolve by refinement. Finally a bounded quantification mechanism,

with the bounds enforcing extension rather than subtyping relation and where

the quantifier variables could be related, is introduced.

11.1.4 Type Checking Extension Polymorphism

A type checker for extension polymorphism, implemented in S-algol, is

presented. It builds type representations similar to the ones presented in [Con88,

Con90, CBC+90] and performs a structural check on these representations to

determine type equivalence and extension. The type variables introduced by

bounded quantification are type checked using an environment which is a list of

bindings between type variables and their extension bounds. It is also necessary

for the type checker to create new type variables during compilation in order to

type some expressions.

11.1.5 Properties of a Type System with Extension Polymorphism

A type system with extension polymorphism has been formally defined in

sections 9.1 to 9.6 of this thesis and its soundness has been proved in section 9.7.

A type checking algorithm based on the type rules of this system is also believed

to be complete and convergent. However, a proof of these properties is beyond

the scope of the thesis.

11.2 Advantages of Extension Polymorphism

Some of the benefits of incorporating extension polymorphism into a type

system are listed below.

• it models the most common patterns of type evolution in persistent

systems

• it deals with the most common type constructors

• it ensures that programs will continue to work safely over data in the

case of additive evolution i.e. the integrity constraints on data up to the

limit of the type system are guaranteed by soundness

• it is possible to use it in conjunction with other kinds of polymorphism to

increase expressive power

158

• the extension rules together with the use of bounded quantification and

related quantifiers provide more type information than is traditionally

available with polymorphism, thus permitting more accurate modelling

11.3 Disadvantages of Extension Polymorphism

Some of the difficulties that may be encountered in using extension

polymorphism as it is described in this thesis are the following:

• complicated syntax for bounded quantification with extension, especially

when using related quantifiers

• function applications and location updates require the use of related

quantifiers except in trivial cases

11.4 Future Work

The following aspects of extension polymorphism are possibilities for future

work in this area:

• incorporating and studying the effects of recursion in a system

supporting extension polymorphism

• implementing extension polymorphism in a full persistent programming

language

• incorporating extension polymorphism into a system that also supports

parametric and inclusion polymorphism and verifying the patterns of

interaction

• simplifying the syntax used for extension polymorphism to make it easier

for programmers to write code

• investigating the definition of a new relation that models subtractive

evolution and polymorphism mechanisms over this relation

Recursion has not been included in the version of extension polymorphism

presented in this thesis. [Ghe93b] has shown that the addition of recursion to

System F≤, which is the basis for bounded quantification with subtyping, is not

conservative. Therefore, recursion is omitted from the initial type system with

extension polymorphism. However, it will be of interest to examine the

following issues: extension of recursive types, recursive specification of

159

quantifier variables, the effects of recursion on the type checking algorithm and

the proof of soundness.

Extension polymorphism described in the thesis is incorporated into Base which

is a non-persistent language designed for experiments on polymorphism but

without the complexity of a full programming language. It will be a valuable

assessment to add extension polymorphism to a persistent programming

language, such as Napier88, to study the effects on its implementation and to

evaluate its usefulness.

The language with extension polymorphism does not support any other forms of

polymorphism. Some possible interactions between extension and inclusion

polymorphism are predicted in section 8.5. It will be an interesting exercise to

include extension in a language that also supports parametric and inclusion

polymorphism and to study the effects on its expressive power and to verify the

patterns of interaction.

As stated in section 11.3, one of the difficulties in using extension

polymorphism may be the complicated syntax for specifying polymorphic

functions. It will be a useful modification to the system to simplify the syntax

for extension polymorphism. A form of type inference mechanism may even be

considered.

A contraction relation that is designed to model subtractive evolution will be an

interesting avenue of research. The definition of such a relation will be the

reverse of extension in most cases. Since the contraction relation will coincide

with the subtyping relation for some type constructors, polymorphism over this

relation may be easier to understand.

160

Appendix A

A Context-free Definition of the Language Base

Programs

program ::= sequence ?

sequence ::= [decl-seq] exp-seq

Type Constructors

type-id ::= int | bool | any | unit | decl | identifier | type-constructor

type-constructor ::= record-type | variant-type | loc-type | fun-type

record-type ::= { field-list }

field-list ::= identifier-list : type-id [, field-list]

identifier-list ::= identifier [, identifier]*

variant-type ::= [field-list]

loc-type ::= loc (type-id)

fun-type ::= fun ([type-id] [→ type-id])

Declarations

decl-seq ::= type-decl | obj-decl [; decl-seq]

type-decl ::= type identifier is type-id

obj-decl ::= let identifier = expression

Expressions

exp-seq ::= expression [; expression]

expression ::= exp1 [or expression]*

exp1 ::= exp2 [and exp2]*

exp2 ::= [~] exp3 [= exp3]

161

exp3 ::= exp4 [add-op exp4]*

exp4 ::= [add-op] exp5

add-op ::= + | -

exp5 ::= literal | value-constructor |

 expression.identifier |

project expression as identifier onto case |

expression (expression) | identifier |

expression := expression | @ expression |

begin sequence end |

if expression then expression else expression

case ::= var-case | any-case

var-case ::= identifier : type-id in expression else expression

any-case ::= type-id in expression else expression

Literals

literal ::= int-literal | bool-literal

int-literal ::= [add-op] digit [digit]*

bool-literal ::= true | false

Value Constructors

value-constructor ::= record-cons | variant-cons | fun-cons | loc-cons |

any-cons

record-cons ::= { record-init-list }

record-init-list ::= identifier = expression [, record-init-list]

variant-cons ::= [identifier : expression] : type-id

162

fun-cons ::= fun ([named-parameter] [→ type-id]) expression

named-parameter ::= identifier : type-id

loc-cons ::= ^ expression

any-cons ::= inject(expression, type-id)

In Appendices A and B, the microsyntax of the languages such as the definitions

of identifier and digit are omitted.

163

Appendix B

A Context-free Definition of the Language Ext

Programs

program ::= sequence ?

sequence ::= [decl-seq] exp-seq

Type Constructors

type-id ::= int | bool | any | unit | decl | identifier | type-constructor

type-constructor ::= record-type | variant-type | loc-type | fun-type

record-type ::= { field-list }

field-list ::= identifier-list : type-id [, field-list]

identifier-list ::= identifier [, identifier]*

variant-type ::= [field-list]

loc-type ::= loc (type-id)

fun-type ::= fun [[quantification]] ([type-id] [→ type-id])

Declarations

decl-seq ::= type-decl | obj-decl [; decl-seq]

type-decl ::= type identifier is type-id

obj-decl ::= let identifier = expression

Expressions

exp-seq ::= expression [; expression]

expression ::= exp1 [or expression]*

exp1 ::= exp2 [and exp2]*

exp2 ::= [~] exp3 [= exp3]

164

exp3 ::= exp4 [add-op exp4]*

exp4 ::= [add-op] exp5

add-op ::= + | -

exp5 ::= literal | value-constructor |

 expression.identifier |

project expression as identifier onto case |

expression[[type-id]](expression) | identifier |

expression := expression | @ expression |

begin sequence end |

if expression then expression else expression

case ::= var-case | any-case

var-case ::= identifier : type-id in expression else expression

any-case ::= type-id in expression else expression

Literals

literal ::= int-literal | bool-literal

int-literal ::= [add-op] digit [digit]*

bool-literal ::= true | false

Value Constructors

value-constructor ::= record-cons | variant-cons | fun-cons | loc-cons |

any-cons

record-cons ::= { record-init-list }

record-init-list ::= identifier = expression [, record-init-list]

variant-cons ::= [identifier : expression] : type-id

165

fun-cons ::= fun [[quantification]] ([named-parameter]

[→ type-id]) expression

quantification ::= identifier ← type-id

named-parameter ::= identifier : type-id

loc-cons ::= ^ expression

any-cons ::= inject(expression, type-id)

166

Glossary

The following terms are defined in the context in which they are used in this
thesis.

Covariance Consider two function types F : A → B and F' : A' → B'. For
F' to be a subtype of F, B' must be a subtype of B. This
condition which requires the result types of functions to vary
in the same direction as the function types is said to be
covariant.

Contravariance In the example above, for F' to be a subtype of F, A must be a
subtype of A'. This condition which requires the argument
types of functions to vary in the opposite direction as the
function types is said to be contravariant.

Conservativity A system S is conservative over a system S' (which is a subset
of S) if for properties P in S', the following condition holds: if
P can be derived from A then P can be derived from S'

Soundness An algorithm is sound if the answers it provides are always
correct.

Completeness An algorithm is complete if it will always find the answer if
there is one.

Convergence An algorithm is convergent if the computation it performs is
finite and will terminate.

Subtyping Subtyping is a relation between two types which can be used
for type safe substitutability. A type A is a subtype of a type
B if all operations of B can also be applied to values of A.

Conformance Conformance is a relation defined by languages such as Eiffel
to check compatibility between two types.

Extension Extension is a new relation between types presented in this
thesis to model additive evolution of types.

Matching Matching is a relation between two object types used by some
object oriented languages to determine when binary methods
can be safely inherited and used. It is less restrictive than the
subtyping relation. An object type A matches an object type
B if A is a subtype of B under the assumption that any
corresponding Self types are equal.

Subsumption Subsumption is a substitution mechanism that allows a value
of a subtype to be used wherever a value of its supertype is
expected.

167

References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. &

Morrison, R. “An Approach to Persistent Programming”.

Computer Journal 26, 4 (1983) pp 360-365.

[AC96] Abadi, M. & Cardelli, L. “On Subtyping and Matching”. ACM

Transactions on Programming Languages and Systems 18, 4

(1996).

[AM86] Atkinson, M.P. & Morrison, R. “Integrated Persistent

Programming Systems”. In Proc. 19th International Conference

on Systems Sciences, Hawaii (1986) pp 842-854.

[AM95] Atkinson, M.P. & Morrison, R. “Orthogonally Persistent Object

Systems”. VLDB Journal 4, 3 (1995) pp 319-401.

[AMP86] Atkinson, M.P., Morrison, R. & Pratten, G.D. “Designing a

Persistent Information Space Architecture”. In Proc. 10th IFIP

World Congress, Dublin (1986) pp 115-120.

[BCC+95] Bruce, K.B., Cardelli, L., Castagna, G., The Hopkins Object

Group, Leavens, G.T. & Pierce, B. “On Binary Methods”. Theory

and Practice of Object Systems 1 (1995).

[BKK+87] Banerjee, J., Kim, W., Kim, H.-J. & Korth, H.F. “Semantics and

Implementation of Schema Evolution in Object-Oriented

Databases”. ACM SIGMOD Record 16, 3 (1987) pp 311-322.

[Bru95] Bruce, K.B. “Subtyping is not a good match for OOL's” (1995).

[Bru96] Bruce, K.B. “Typing in object-oriented languages: Achieving

expressiveness and safety”. Williams College (1996).

[BSG95] Bruce, K.B., Schuett, A. & van Gent, R. “PolyTOIL: A Type-

Safe Polymorphic Object-Oriented Language”. Williams College

(1995).

[Car84] Cardelli, L. “A Semantics of Multiple Inheritance”. In Lecture

Notes in Computer Science 173, Kahn, G., MacQueen, D.B. &

Plotkin, G. (ed), Springer-Verlag, Proc. International Symposium

168

on the Semantics of Data Types, Sophia-Antipolis, France, In

Series: , Goos, G. & Hartmanis, J. (series ed) (1984) pp 51-67.

[Cas95] Castagna, G. “Covariance and Contravariance: Conflict without a

Cause”. ACM Transactions on Programming Languages and

Systems 17, 3 (1995).

[CBC+90] Connor, R.C.H., Brown, A.B., Cutts, Q.I., Dearle, A., Morrison,

R. & Rosenberg, J. “Type Equivalence Checking in Persistent

Object Systems”. In Implementing Persistent Object Bases,

Principles and Practice, Dearle, A., Shaw, G.M. & Zdonik, S.B.

(ed), Morgan Kaufmann, Proc. 4th International Workshop on

Persistent Object Systems, Martha’s Vineyard, USA, In Series:

(1990) pp 151-164.

[CL90] Cardelli, L. & Longo, G. “A Semantic Basis for Quest”. DEC

SRC Technical Report 55 (1990).

[Cla92] Clamen, S.M. “Type Evolution and Instance Adaptation”.

Carnegie Mellon University Technical Report CMU-CS-92-133

(1992).

[Cla94] Clamen, S.M. “Schema Evolution and Integration”. Distributed

and Parallel Databases 2, 1 (1994) pp 101-126.

[CM82] Cole, A.J. & Morrison, R. An Introduction to Programming

with S-algol. Cambridge University Press, Cambridge, England

(1982).

[CM92] Connor, R.C.H. & Morrison, R. “Subtyping Without Tears”. In

Proc. 15th Australian Computer Science Conference, Hobart,

Tasmania (1992) pp 209-225, Technical Report ESPRIT BRA

Project 3070 FIDE FIDE/92/34.

[Coc83] Cockshott, W.P. “Orthogonal Persistence”. Ph.D. Thesis,

University of Edinburgh (1983).

[Con88] Connor, R.C.H. “The Napier Type-Checking Module”.

Universities of Glasgow and St Andrews Technical Report

PPRR-58-88 (1988).

169

[Con90] Connor, R.C.H. “Types and Polymorphism in Persistent

Programming Systems”. Ph.D. Thesis, University of St Andrews

(1990).

[CW85] Cardelli, L. & Wegner, P. “On Understanding Types, Data

Abstraction and Polymorphism”. ACM Computing Surveys 17, 4

(1985) pp 471-523.

[Deu90] Deux, O. “The Story of O2”. IEEE Transactions on Knowledge

and Data Engineering 2, 1 (1990).

[Deu91] Deux, O. et al. “The O2 System”. Communications of the ACM

34, 10 (1991) pp 34-48.

[DN66] Dahl, O. & Nygaard, K. “Simula, an Algol-Based Simulation

Language”. Communications of the ACM 9, 9 (1966) pp 671-

678.

[DT88] Danforth, S. & Tomlinson, C. “Type Theories and Object-

Oriented Programming”. ACM Computing Surveys 20, 1 (1988)

pp 29-72.

[Fla97] Flanagan, D. Java in a Nutshell. O'Reilly & Associates, Inc

(1997).

[FS91] Fejer, P.A. & Simovici, D.A. Mathematical Foundations of

Computer Science. Springer-Verlag (1991).

[GGH+91] Blair, G., Gallagher, J., Hutchison, D. & Shepherd, D. (ed)

Object-oriented Languages, Systems and Applications. Pitman

Publishing (1991).

[Ghe90] Ghelli, G. “Decidability of Type Assignment for the System F≤”.

ESPRIT BRA Project 3070 FIDE Technical Report FIDE/90/2

(1990).

[Ghe93] Ghelli, G. “Divergence of F≤ Type Checking”. ESPRIT BRA
Project 6309 FIDE2 Technical Report FIDE/93/66 (1993).

[Ghe93b] Ghelli, G. “Recursive Types Are Not Conservative Over F≤”.
ESPRIT BRA Project 6309 FIDE2 Technical Report FIDE/93/68

(1993).

170

[Ghe93c] Ghelli, G. “Decidability of Type Checking for Type Systems with

Polymorphism, Subtyping and Recursive Types” (1993).

[Ghe94] Ghelli, G. “Termination of system F-bounded”. ESPRIT BRA
Project 6309 FIDE2 Technical Report FIDE/94/101 (1994).

[Gir71] Girard, J.-Y. “Une extension de l'interprétation de Gödel à

l'analyse, et son application à l'élimination des coupures dans

l'analyse et la théorie des types”. In Proc. 2nd Scandinavian Logic

Symposium (1971).

[GM95] Gawecki, A. & Matthes, F. “TooL: A Persistent Language

Integrating Subtyping, Matching and Type Quantification”.
ESPRIT BRA Project 6309 FIDE2 Technical Report

FIDE/95/135 (1995).

[GM96] Gawecki, A. & Matthes, F. “Integrating Subtyping, Matching and

Type Quantification: A Practical Perspective”. In Proc.

Proceedings of the 10th European Conference on Object-Oriented

Programming, ECOOP'96, Linz, Austria (1996).

[GR83] Goldberg, A. & Robson, D. Smalltalk-80: The Language and

its Implementation. Addison Wesley, Reading, Massachusetts

(1983).

[GTL89] Girard, J.-Y., Taylor, P. & Lafont, Y. Proofs and Types.

Cambridge University Press (1989).

[Lew85] Lew, A. Computer Science: A Mathematical Introduction.

Prentice-Hall International (1985).

[LRV90] Lécluse, C., Richard, P. & Velez, F. “O2, an Object-Oriented

Data Model”. In Readings in Object-Oriented Database

Systems, Zdonik, S.B. & Maier, D. (ed), Morgan Kaufman, In

Series: (1990) pp 227-236.

[MBC+87] Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle,

A. & Atkinson, M.P. “Polymorphism, Persistence and Software

Reuse in a Strongly Typed Object Oriented Environment”.

Software Engineering Journal, December (1987) pp 199-204.

171

[MBC+93] Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I., Kirby,

G.N.C. & Munro, D. “Delivering the Benefits of Persistence to

System Construction and Execution” (1993).

[MBC+96] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle,

A., Kirby, G.N.C. & Munro, D.S. “Napier88 Reference Manual

(Release 2.2.1)”. University of St Andrews (1996).

[MBC+96b] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle,

A., Kirby, G.N.C. & Munro, D.S. “Napier88 Release 2.2.1”.

University of St Andrews (1996).

[MCC+93] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. &

Stemple, D. “Mechanisms for Controlling Evolution in Persistent

Object Systems”. Journal of Microprocessors and

Microprogramming 17, 3 (1993) pp 173-181.

[MCC+95] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Munro,

D.S. & Atkinson, M.P. “The Napier88 Persistent Programming

Language and Environment”. In FIDE Book, Springer-Verlag, In

Series: (1995).

[Mey92] Meyer, B. Eiffel: The Language. Prentice-Hall (1992).

[Mey97] Meyer, B. “Static typing and other mysteries of life”. (1997).

[Mil78] Milner, R. “A Theory of Type Polymorphism in Programming”.

Journal of Computer and System Sciences 17, 3 (1978) pp 348-

375.

[MM96] Malhotra, A. & Munroe, S.J. “Schema Evolution in Persistent

Object Systems”. In Proc. 7th International Workshop on

Persistent Object Systems, Cape May, NJ, USA (1996).

[Mor79] Morrison, R. “S-algol Language Reference Manual”. University

of St Andrews Technical Report CS/79/1 (1979).

[Odb94] Odberg, E. “A Global Perspective of Schema Modification

Management for Object-Oriented Databases”. In Persistent

Object Systems, Tarascon 1994, Atkinson, M.P., Maier, D. &

Benzaken, V. (ed), Springer-Verlag, Proc. 6th International

Workshop on Persistent Object Systems, Tarascon, France, In

172

Series: Workshops in Computing, van Rijsbergen, C.J. (series ed)

(1994).

[PS87] Penney, D.J. & Stein, J. “Class Modification in the GemStone

Object-Oriented DBMS”. ACM SIGPLAN Notices 22, 12 (1987)

pp 111-117.

[Rey74] Reynolds, J.C. “Towards a Theory of Type Structure”. Lecture

Notes in Computer Science 19 (1974).

[Rod92] Roddick, J.F. “Schema Evolution in Database Systems - An

Annotated Bibliography”. University of South Australia (1992).

[Rod95] Roddick, J.F. “A Survey of Schema Versioning Issues for

Database Systems”. Information and Software Technology 37, 7

(1995) pp 383-393.

[Sch94] Schmidt, D.A. The Structure of Typed Programming

Languages. The MIT Press (1994).

[Ste87] Stein, L.A. “Delegation is Inheritance”. In Proc. OOPSLA '87

(1987).

[Str67] Strachey, C. Fundamental Concepts in Programming

Languages. Oxford University Press, Oxford (1967).

[Str86] Stroustrup, B. The C++ Programming Language. Addison-

Wesley (1986).

[SZ87] Skarra, A.H. & Zdonik, S.B. “Type Evolution in an Object-

Oriented Database”. In Research Directions in Object-Oriented

Programming, Shriver, B. & Wegner, P. (ed), MIT Press, In

Series: Computer Systems, Schwetman (series ed) (1987) pp 393-

415.

[You84] Young, S.J. An Introduction to ADA . Ellis Horwood (1984).

[Zdo86] Zdonik, S.B. “Maintaining Consistency in a Database with

Changing Types”. ACM SIGPLAN Notices 21, 10 (1986) pp

120-127.

[Zic89] Zicari, R. “Schema Updates in the O2 Object-Oriented Database

System”. Politecnico di Milano (1989).

173

[Zic91] Zicari, R. “A Framework for Schema Updates in an Object-

Oriented Database System”. In Proc. 7th IEEE International

Conference on Data Engineering, Kobe, Japan (1991) pp 2-13.

	Title
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Persistent Evolution
	1.2 Polymorphism
	1.3 The History of Type Evolution
	1.4 Motivation
	1.5 Outline of Thesis
	1.5.1 Fundamentals
	1.5.2 Background
	1.5.3 Schema Evolution
	1.5.4 Related Work
	1.5.5 Extension Polymorphism
	1.5.6 A Type Checker for Extension Polymorphism

	2 The Base Language
	2.1 Programs
	2.2 Types
	2.3 Declarations
	2.4 Expressions
	2.5 Abbreviations
	2.6 Naming Conventions
	2.7 Typing Rules
	2.7.1 Programs
	2.7.2 Declarations
	2.7.3 Expressions
	2.7.3.1 Integers
	2.7.3.2 Booleans
	2.7.3.3 Records
	2.7.3.4 Variants
	2.7.3.5 Functions
	2.7.3.6 Identifiers
	2.7.3.7 Locations
	2.7.3.8 Infinite Union
	2.7.3.9 Sequence
	2.7.3.10 Block
	2.7.3.11 Conditional

	2.8 Summary

	3 Semantics of the Base Language
	3.1 A Semantic Context for Types
	3.2 Meta-operations
	3.3 A Semantics for Base
	3.3.1 Programs
	3.3.2 Declarations
	3.3.3 Integers
	3.3.4 Booleans
	3.3.5 Records
	3.3.6 Variants
	3.3.7 Functions
	3.3.8 Identifiers
	3.3.9 Locations
	3.3.10 Infinite Union
	3.3.11 Sequence
	3.3.12 Block
	3.3.13 Conditional

	3.4 Type Mapping
	3.5 Summary

	4 A Proof of Soundness for Base
	4.1 Programs
	4.2 Declarations
	4.3 Base Cases
	4.4 Expressions
	4.4.1 Integers
	4.4.2 Booleans
	4.4.3 Records
	4.4.4 Variants
	4.4.5 Functions
	4.4.6 Identifiers
	4.4.7 Locations
	4.4.8 Infinite Union
	4.4.9 Sequence
	4.4.10 Block
	4.4.11 Conditional

	4.5 Summary

	5 Background
	5.1 Polymorphic Systems
	5.1.1 Sets and Types
	5.1.2 Partial Orders and Lattices
	5.1.3 System F
	5.1.3.1 Parametric Polymorphism
	5.1.3.2 Quantification

	5.1.4 System F £
	5.1.4.1 Inclusion Polymorphism
	5.1.4.2 Subsets, Subtypes and Type Constructors
	5.1.4.3 Subsumption
	5.1.4.4 Anomalies of Subsumption
	5.1.4.5 Bounded Quantification

	5.1.5 Summary

	5.2 Type Checking
	5.2.1 Properties of Type Checking Algorithms
	5.2.1.1 A Sound Algorithm
	5.2.1.2 A Sound and Complete Algorithm
	5.2.1.3 A Sound, Complete and Convergent Algorithm

	5.2.2 Type Representation
	5.2.3 Type Checking Algorithms
	5.2.3.1 Monomorphic Type Systems
	5.2.3.2 Polymorphic Type Systems

	5.2.4 Summary

	5.3 Object Oriented Programming
	5.3.1 Introduction
	5.3.2 Objects and Classes
	5.3.3 Inheritance
	5.3.4 Delegation
	5.3.5 Subclassing
	5.3.6 self and MyType
	5.3.7 Advantages of Object Oriented Programming
	5.3.8 Summary

	6 Schema Evolution
	6.1 Introduction
	6.2 The Effects of Schema Evolution
	6.3 Data Evolution in the O2 Database System
	6.3.1 Introduction
	6.3.2 The O2 System Structure
	6.3.3 An Overview of the O2 Type System
	6.3.4 Schema Evolution in O2
	6.3.5 Database Updates in O2
	6.3.5.1 Restructuring Data in O2
	6.3.5.2 Moving Data to Other Classes
	6.3.5.3 Time of Update in O2

	6.3.6 The Implementation of Database Updates

	6.4 Summary

	7 Related Work
	7.1 Eiffel
	7.1.1 An Overview of the Eiffel Type System
	7.1.2 Genericity
	7.1.3 Inheritance
	7.1.4 Feature Calls
	7.1.5 Conformance
	7.1.6 Reattachment of Entities
	7.1.7 Type Checking Feature Calls
	7.1.8 Comments

	7.2 Type Matching
	7.2.1 Motivation
	7.2.2 Syntax
	7.2.3 Subtyping
	7.2.4 Subclasses
	7.2.5 Type Quantification
	7.2.6 Inheritance
	7.2.7 Matching
	7.2.8 Type Checking self
	7.2.9 Adding Bounded Polymorphism
	7.2.10 Reconciling Subtyping, Matching and Quantification
	7.2.11 Replacing Subtyping by Matching
	7.2.12 Extending Matching to Function Types

	7.3 Other Languages
	7.3.1 Simula
	7.3.2 SmallTalk
	7.3.3 Ada
	7.3.4 C++
	7.3.5 Java

	7.4 Summary

	8 Extension Polymorphism
	8.1 Examples of Extension in Persistent Systems
	8.1.1 Records
	8.1.2 Variants
	8.1.3 Functions
	8.1.4 Locations

	8.2 The Extension Relation
	8.2.1 Reflection
	8.2.2 Base Types
	8.2.3 Records
	8.2.4 Variants
	8.2.5 Functions
	8.2.6 Locations

	8.3 Adding Polymorphism
	8.3.1 Typing Extension Variables
	8.3.2 Explicit Extension Variables
	8.3.3 Implicit Extension Variables
	8.3.4 Polymorphism over Type Constructors
	8.3.4.1 Base Types
	8.3.4.2 Records
	8.3.4.3 Variants
	8.3.4.4 Functions
	8.3.4.5 Locations

	8.3.5 Quantified Functions

	8.4 Interaction with Other Kinds of Polymorphism
	8.5 Summary

	9 A Language with Extension Polymorphism
	9.1 Types
	9.2 Expressions
	9.3 Typing Rules
	9.3.1 Base Types
	9.3.2 Records
	9.3.3 Variants
	9.3.4 Quantified Functions
	9.3.5 Locations
	9.3.6 Infinite Union
	9.3.7 Extension Quantifier Variables

	9.4 Semantic Context
	9.5 Meta-operations
	9.6 Semantics
	9.6.1 Quantified Functions

	9.7 Proof of Soundness
	9.7.1 Base Types with Extension
	9.7.2 Records with Extension
	9.7.3 Variants with Extension
	9.7.4 Quantified Functions
	9.7.5 Locations with Extension
	9.7.6 Infinite Union with Extension

	9.8 Summary

	10 Type Checking of Extension Polymorphism
	10.1 Implementation Strategy
	10.1.1 Functionality
	10.1.2 Implementation Procedure

	10.2 Type Representations
	10.2.1 Base Types
	10.2.2 Records
	10.2.3 Variants
	10.2.4 Functions
	10.2.5 Locations
	10.2.6 Any
	10.2.7 Quantifier Variables
	10.2.8 Quantified Functions

	10.3 Type Checking
	10.3.1 Type Equivalence Checking
	10.3.2 Type Extension Checking
	10.3.3 Dealing with Extension Quantifier Variables
	10.3.3.1 Creating Extension Quantifier Variables
	10.3.3.2 Using Extension Quantifier Variables

	10.4 Summary

	11 Conclusions
	11.1 A Polymorphic Type System for Evolution
	11.1.1 Aim and Motivation
	11.1.2 Related Work
	11.1.3 Extension Polymorphism
	11.1.4 Type Checking Extension Polymorphism
	11.1.5 Properties of a Type System with Extension Polymorphism

	11.2 Advantages of Extension Polymorphism
	11.3 Disadvantages of Extension Polymorphism
	11.4 Future Work

	Appendix A: A Context-free Definition of the Language Base
	Appendix B: A Context-free Definition of the Language Ext
	Glossary
	References

