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Abstract 1.1. Multicomputer Object Stores

This paper presents scalable algorithms for recovery and

page coherency in multicomputer object stores. Recov- This research was conducted in the context of a broader
ery and coherency are central to object store engineering objective of creating a software environment which facil-
and distributed memory multicomputers anflamental itates the integration of high performance computers into
to scalable computation. Efficient recovery is implemented networked computer systems. Distributed memory multi-
through a combination of local logging and a localisation computers are central to the project because of their key
of the transactional workspace model. A vector of update role in the quest for scalable high performance computa-
counts is used to efficiently represent global time. tion. This factor together with the increasing importance

The algorithms have been successfully implemented andPf Object orientation in computation and data management
tested on a 128 node Fitsu APLOOO distributed memory ~ 9ivesrise to our focus on Multicomputer Object Stores.
multicomputer. Thepaper presents performance results ~ Many of the important factors in MOS design are com-
which indicate good performance and scaliy for these mon to the design of conventional object stores, however
algorithms under a range of situations. The work is seen astheir relative importance is changed because of the unique

a step in the continuing development of high performancearchitectural properties of multicomputers. Key concerns
multicomputer object stores. are problems associated with distribution, concurrency and

issues of scalable performance. Multicomputers are distin-

guished from more general distributed computing environ-
1. Introduction ments by their low latency, high bandwidth, high reliability
interconnections and their provision for computational iso-

This paper reports on sgalable recovery anq PAYE COYation (typically through such mechanisms as gang schedul-
herency algorithms for distributed memory multicomputer ing or physical paitioning)

object stores (MOS). Recovery and coherency are central to . .
) ( ) y y Scalable memory bandwidth, scalable processing power

ensuring the durability and consistency of data held in ob- d lable /O tund tal t labl tati

ject stores, while scalability is of primary importance to the and scalable are fundamental to scalable computation.

design of multicomputer software infrastructure Distributed memory multicomputers seek to deliver these
' characteristics and so play an important role in achieving

Sectu;]n _1'1 ;ntrod;mii rr?ultl(;omputer otg_ect stores, d'Tc'jscalable performance. The development of scalable soft-
cusses their role in the high performance object store world, o for such machines depends on that software not in-

and explains the importance of scalability in MOS design. pipiing scalability though contention and non-lolitst of
Because this paper is limited to addressmg the_ issues of 'e4ata. The objective of scalabilitynderpins many of the
covery and page coherency, the context in which the work yosion gecisions reported in this paper, and is central to

is presented is significant. The assumptions and limitations, , challenge of developing efficient multicomputer object
imposed by that context are spelt out in section 1.2. stores

Section 2 outlines the store architecture designed as part
of this project, and explains the role the recovery and co- 1.2, Project Context and Assumptions
herency algorithms play in making that architecture scal-
able. Section 3 discusses the recovery algorithm and section The goal of this project was to further our understand-
4 outlines the page coherency algorithm. Results and the aping of multicomputer object stores, by building on lessons
proach to validation and performance analysis are outlinedlearnt from the Multicomputer Texas [1] experiment and
in section 5. by exploring elements of the DataSafe [2] recovery mech-



anism that might be relevant to multicomputer object store transactions C] C]
design. To this end, an efficient multicomputer agale of
the DataSafe recovery mechanism was designed and imple- I
mented. The target machine, a Fujitsul®P0, is typical of workspaces [ A|[DJ[E]
distributed memory multicomputers. reference pages [DJ[F][E]/A]
In taking DataSafe as a starting point for the design of
the recovery mechanism, a number of DataSafe characteris-
tics are adopted. The following sections describe the impact
various aspects of the DataSafe design had on this project.
Relevant characteristics of the exemplar multicomputer, the
AP1000, are also discussed.

volatile

non-volatile

safe map

1.2.1. DataSafe Architecture and Recovery Mechanism
The DataSafe recovery mechanism has been implemented
in the framework of the Flask [3] object store architecture.
The F_Iask architecture promotes modular implementation provide a scalable recovery mechanism.
of various store components through a layered software ab-

straction With Well_defined int.erfaces. .A property ofthe 155 Workspaces for Optimistic Computation The
Flask architecture |s_that conflict detection is undertaken by DataSafe employs workspaces as a means of isolating un-
the upper layers. This frees, to a large extent, the lower lay-committed transactionpdates. This mechanism helps to
ers from interference management and increases flexibility gngyre the transactional properties of atomicity, coherency,
in the choice of concurrency model in the upper layers. This jsq|ation and durability (ACID) properties [5].

is in contrast tolsystems Where_ concurrency control and re- Workspaces are separate address space contexts through
covery mechanisms are more tightly integrated. which each transaction sees the store. Until a transaction
There are many approaches to recovery documented inmodifies a page, it has read-only access to a shafed
the literature. The DataSafe architecture is based on the D%nce pag(écached store page). When a transaction attempts
cache [4], which uses contiguous writes to a circular log file tg write to a page for the first time, a copy is made of the
called the “safe” to reduce write time, while using a ran- reference pageThe transaction’s address map is modified
dom access file for the main store. All pages updated in thesg that further references by the transaction to that page will
course of a transaction are Written Cmﬂbusly to the safe. see the Workspace Copy rather than the reference page_ By
The updated pages are migrated to the store opportunisticomparing workspace pages with the corresponding refer-
Ca”y, fl‘eeing up the safe and Updating the store. If insuffi- ence pages, updates to the Workspace pages can be deter-
cient space is available in the safe, the migration of pages tomined. When a transaction commits, all updates made by
the store may be forced. Although the safe may be thoughtthat transaction are propagated from the workspace to the
ofas a fixed Size Cil‘CUlar |Og ﬁle, W|th minor SOphiStication reference pages Wh|Ch are atomica”y Written to the Safe and
to the design, it may be implemented as an adaptable sizghen opportunistically vitten to the store. Updates are dis-
log. On re-start the safe is checked for data not propagatettarded on abort. For a more complete discussion of the
to the store. A safe map is used to record the location andworkspace model see [6], and [7].
status of pages in the safe, and by implication, the status The upper half of Figure fllustrates the workspace con-
of pages in the store. By ensuring atomicity of safe map cept. The two transactions underway are accessing the
operations, all store and safe operations are atomic. pages D, F, E, and A, so reference copies of these pages are
The lower half of Figure 1illustrates the key cponents  in memory. The pages being updated by each of the trans-
of the recovery mechanism. The state depicted in the il- actions have been copied into their respective workspaces.
lustration reflects the following sequence of events: Pages The concurrency control layer assumed by DataSafe as-
C,F, B, G, H, D, and J were updated by earlier cdtted  sures object isolation (section 1.2.3), a property that is ex-
transactions. Subsequently, pages B, C and D were opporploited in the implementation of the following mechanism,
tunistically written back to the store. These events resultedwhich ensures that updates generated from workspace pages
in pages F, G, H, and J residing in the safe, with all other agre coherent with respect to other updates to the same store
pages residing in the store. page. In the absence of update logging or any other such
The DataSafe recovery mechanism is not suitable for ameans of identifying which part of a page has been mod-
scalable implementation because access to a single safe arified, delta (update) pages are generated by bitwise XOR-
safe map would become a bottleneck for committing trans- ing each comiitting workspace page with the corpemnd-
actions. Section 2.6 explains how local safes are used tang reference page.

Figure 1. The DataSafe architecture.



Each committed workspace page becomes the new refermore than 50MB/sec for large writes, under the test condi-
ence page and the delta is applied to each workspace copyions reported in section 5 (80KB write per commit), only
of the original reference page — maintaining the invariant about 20MB/sec was seen.

_that the only d_ifference between (_aach workspace page and The communications network of the AP1000 supports
its corresponding reference page is the updates made by thﬁner-node message passing as the main internal commu-

transaction runr_nng in that workspace. nications mechanism. MPI-1, a widely accepted portable
The application of deltas to all other workspace pages message passing interface [10], is implemented on the

requires thesynchronougooperation of the corresponding aAp1000 [11] and was used in this project. Under our

transactions. This is acceptable in a uniprocessor conteXtest conditions MPI delivered a latency of 188c (3125

as only one transaction can be executing at a time. How-gpaRc U cycles) and 2.69MB/sec bandwidth for a one-
ever, it is inappropriate in a multiprocessing context where way trip — anny , value of 336 bytes.

the cost of synchronisation would grow with the number

of concurrently executing transactions, making the system Handling messages asynchronously would enable the ef-
fundamentally unscalable. ficient implementation of responsive servers by avoiding

; ; C g he need to poll. Such a mechanism is not available un-
Section 2.4 describes a scalable approach to dlstnbutecijer MPI-1. However the handled-receiedcy()) oper-

workspaces, and section 4 describes algorithms that main- i h ¢ 4in the draft MPI-2. is |
tain page level coherency in that environment. ation, an enhancement proposed in the dra "<, 1S 0

cally implemented. The operation allows a handler to be
asynchronously invoked on arrival of a matching message
fmuch like an interrupt handler). This powerful mecha-

nism provides a means of emulating preemptively sched-

1.2.3. Object Isolation The approach to page coherency
described in section 1.2.2 assumes a concurrency contro
layer that enforces object isolation. Object isolation is also led hreads i that therwi inal
assumed in our distributed architecture. For this reason, ob€ server.t reads In processes that are ofherwise single-
S S . ] threaded clients.
ject isolation is defined here:

Given a history, H, representing the ordering of eventsin L .
the concurrent execution of a set of transactions, a transac-2- A Distributed Stable Store Architecture
tion t, € H will only commit if for all overlapping comitted
transactions t € H the read set of; tdoes not intersect the A distributed store architecture based loosely on the
write set of . DataSafe is the framework within which distributed recov-

This definition of object isolation is predicated on a to- €fYy and page coherency experiments were conducted. Un-
tal ordering on transaction initiation and termination events, der this distributed architecture, transactions and their asso-
with only a partial ordering of other events. In this con- ciated workspaces are distriputed across nodes, with access
text the concept of “overlapping transactions” is intuitive. to aghareq store. The following sections outline key aspects
A less strong definition of object isolation may be made in Of this design.
the context of a total ordering on all events.

2.1. Client-Server Architecture

1.2.4. AP1000 Distributed Memory Multicomputer
The platform for this work was the Fujitsu ABOO mul- Following the Multicomputer Texas work [1], we have
ticomputer [8]. The AP1000 is a distributed memory ma- adopted a client-server architecture where servers run as
chine consisting of a number of SPARC 1 nodes connectedthreads within client processes. A product of this approach
via a high speed, low-latency network, with memory and is dynamicmaintenence of client/server resource usage ra-
possibly other resources such as disk attached to each dfios. By contrast, in a conventional client-server architec-
the nodes. The machine used in this project was config-tures, resources are normasitatically distributed between
ured with 128 nodes, each with 16MB of RAM. 32 of these client and server nodes, precluding dynamic client/server
nodes had an option board with an 1/O processor, 2MB of resource usage. Another advantage of this approach over
RAM, and a 2MB/sec peak throughput disk of 512MB — an other client server architectures is that the work load is phys-
aggregate 16GB with 64MB/sec theoretical peak through- ically more distributed as the number of nodes that are serv-
put. The HIiDIOS parallel file system[9] on the AP1000 ing is increased. As a result, the communications network
provides all nodes with a single file system image, the dis- is less likely to suffer from bottlenecksqmtuced by con-
tribution of the disks being transparent to the user. Files gestion at individual nodes. By having the client and server
are striped across the 32 disks in 128KB stripes. Reads oishare the same address space, greater caching ogpestun
writes that span multiple stripes can exploit the parallelism exist and the cost of a request to the local server is very
of the file system, with multiple disks serving the request low. We use the MPhrecv() facility (see section 1.2.4) to
in parallel. While the HIDIOS file system readily delivers emulate preemptive daemon server threads.



2.2. Single Store Image the other nodes were accessing any of these pages, it would

) S ~ have its own reference page.
Multicomputers are distiguished from more general dis-

tributed computing systems by their relatively low latency, 2 5 Distributed Page Management

high bandwidth, high reliability inteannect. For this rea-

son we choose to introduce a high degree of distribution  Although inter-workspace coherency is relaxed, co-

transparency and present a single store image to all nodedierency must still be maintained. The approach taken in
In this environment, all nodes see the same PID (persistenbur distributed store architecture is to delegate page man-
identifier) address space and access objects in the same waggement respondlllies to nodes on a per-page basis. The

regardless of any notion of the object’s location. delegation can be implemented with a simple hash function
(asillustrated in Figure 2).
2.3. Global Concurrency Control Each node manages a set of pages (according to the dele-

gation algorithm), maintaining a master copy for each page

Following the Flask architecture, we assume a layered ar-in that set that is accessed by any node in the system. All
chitecture including thassumed existencéa concurrency  committedupdates to a page are propagated to the corre-
control layer. By adopting such an architecture we are free snonding master page by the coittimg node. The owner
to independently develop the lower layers of the store, main- manager) of a master page is responsible for coherently
taining a focus on distributed page coherency and recoveryapplying updates to the page and opportunisticallging
mechanisms. As with the DataSafe implementation, we as-pages back to the store. The algorithms involved are dis-
sume the concurrency control layer enforces objectisolation - ssed in detail in sections 3 and 4.
(section 1.2.3). In this context a transaction runsooiy Whenever a coherent version of a page is required by
one node Each node may concurrently execute a number 5y node, a request for that page is sent to the owner of the
of transactions. master copy and the owner returns a coherent version of the
page, reading it in from disk if necessary. This approach
to page management has the side effect of introducing a
layer of page caching, reducing the number of disk reads.
Performance results (section 5) show that cache effects are
significant, contributing to super-linear speedup.

2.4, Distributed Workspace Model

Section 1.2.2 describes the workspace concept and th
DataSafe implementation of workspaces. The key imple-
mentation issue is maintaining coherency between multi-
ple workspaces sharing a common reference page so th
at commit time the changes made by the transaction ownin
the workspace can be readily detected and applied to the \while the argument for a single store image suggests a
store. need for coordinated access to the store, there is no need for

The DataSafe’s workspace model is modified hertoby  globally coordinated access to a single safe. On the con-
calisingthe management of coherency between workspacetrary, by localising safe use, the need for coordination is
pages to each node. Rather than using workspaces to prosignificantly reduced, thereby enhancing the scalability of
vide up to date versions of pagés writing atcommittime,  the system. Our architecture therefore uses local logging.
workspaces are used to derigeltas (updates) associated At commit time, the committingnode writes deltas to its-
with the committing transaction. It is sufficient to record cal safe and propagates the updates to the relevant master
deltas at commit time to ensure recoverability. nodes.

To derive a delta, all that is needed are two versions ofthe  The combination of local logging and the use of deltas
page which differ only in terms of those changes made by rather than updated pages significantly reduces the coordi-
the executing transaction. This is achieved in our distributed nation overhead at commit time, thereby greatly improving
store by having local reference pages amdy maintain-  the scalability of the system. The side effects of this ap-
ing inter-workspace coherency between workspaces sharproach are two-fold. By committing deltas rather than up-
ing that reference pagethereby avoiding inter node syn- dated pages, store pages are always necessary for recovery
chronisation (section 1.2.2). (deltas are applied to the original to produce the updated

Figure 2 illustrates the distributed DataSafe store. For pages). This means that atechnique such as shadowing must
clarity, only the activity associated with transactions on the be used to atomically update store pages. The second con-
first node isillustrated. The sequence of events that led to sequence is that the recovery process is more complex. The
the depicted state are the same as those for Figure 1 (sedetails of the recovery process are elaborated in section 3.4.
section 1.2.1). Although the reference pages for the otherFigure 2 illustrates the local safes and safe maggensary
nodes are not shown, those for the first node (pages D, Ffor local logging. Note that in contrast to Figure 1, the safes
E, and A) are shown as being local to that node. If any of containdeltas(denoted by a prime), and the corresponding

?.6. Local Logging



A[D]E]

volatile

REER
i i i i
| Im t ase pages I@ @I@ |

non-volatile

store

W E O P EFEHNDRNRKRELEMNIG P

Figure 2. A distributed DataSafe-like store.

store pages are required for recovery (even though they arean, however, have the advantage of significantly reducing
not valid for reading). communication costs. For example an N to N communica-
Further work needs to be done in determining whether tion may be reduced to an N to 1 communication followed
it is better to localise safes on a per-disk basis (maximisingby a 1 to N communication by centralising the procedure.
write locality) or to distribute safes across multiple disks A resolution to the question as to whether it is best to cen-

(maximising opportuities for write parallelism). tralise or not may be helped by contrasting the likelihood
of the target machine’s overall message passing bandwidth
2.7. Transaction Grain Page Coherency being swamped with the likelihood of the centralised server

overloading a node to the point where that service becomes
The assumed concurrency control layer's enforcement of a bottleneck.
objectisolation, as defined in section 1.2.3, does notenforce A centralised server is adopted here to provide a global
page isolation. The replication of reference pages acrossserialisation service. The requirement of only providing
different nodes (section 2.4) requires page coherency amongransaction grain coherency, coupled with the use of an up-
reference pages to be enforced by the lower layers of thedate count vector as a global clock (section 2.9), enables the
system. This is achieved by maintaining coherency of mas-development of very efficient coherency algorithms (sec-
ter pages (section 2.5), and ensuring that cached referencgons 3 and 4). Our performance results support the argu-
pages are invalidated appropriately. ment that the server is efficient and does not become a bot-
The object isolation property is transaction grained, in tleneck to scalability (section 5.4).
the sense that conflict is defined in terms of transaction ini-
tiation and termination rather than in terms of conflictevent 2.9. Update Count Vector Time
and transaction termination (see section 1.2.3). The coher- o ) ) i i
ence of an object is therefore guaranteed by the concurrency Cheaply obtaining a global time against which (partial)
control layer from the point when a transaction begins until 0rdering of distributed events can be made is a long standing
that transaction commits. Therefore coherency need only bePfoblem in dIS_t“bUted computing. The role of global time
established at a transaction grain rather than at the activity!" OUr systemis to place a total ordering on transacitant
grain. As a consequence, the level of communication asso-2ndcommitevents.
ciated with maintaining page coherency is greatly reduced. Our solution to the problem is to use a vectouptiate

Section 4 describes the page coherency algorithm. countsto represent global time. The key temporal refer-
ence events are transaction commits. Each commit cor-
2.8. Centralised Serialisation Server responds with the transmission of updates to one or more

master nodes. Global commit orderings can therefore be de-
Maintenance of coherency demands some degree of synscribed in terms of the count of updates at each node. The
chronisation between nodes. As far as possible the responeommit that sent node 0 its first update and node 2 its fourth
sibility for coherency is left to individuahodes, in order  would be identified by the vector [1,0,4,2], where nodes 1
to minimise communications. Centralisation of services is and 3 had received none and two updates respectively prior
usually avoided in distributed systems because of the po-to the commit.
tential bottlenecks as the system scales up. Centralisation A transaction that started immediately after that commit



would beissu@ the sane updae vedor to idertify its start.
When requesing datafrom node 3 it would quate an updae
court of two, allowing node 3 to ensue that it had recaved
its secom updde before respondhg to the reques

The centrali sed seriali sation server is employed to main-
tain the updaevedor. It upddestherelevart ertries at each
comrit time (uniqudy idertifying ead comnit) and pro-
videstransadionswith the vedor, allowing them to identify
ther start time. The algorithms usng updae court vedor
time are described below.

3. Distributed Commit and Rewvery

The previous sedions outlined the context in which
transations opeate ard argued for the desgn chaces
made The following sedions descibe the algorithms as-
sodated with commit and recovery, usng an adapation of
convertiond se notation. The algorithms together with the
page cohaercy algorithms (sedion 4) guaartee the ACID
properties of transadions in the distributed store architec
ture.

3.1 Commit

This sedion describes the commit algorithm. Important
chaaderistics of this algorithm are:

e By using asafe, the log data is written contiguousy to
disk, minimising seek time overhead, thereby reducing
disk latency.

e Locd sdes are used avoiding the need for any syn-
chronisation of safe writes.

e By loggng ddtas rather than updaed pages the co-
herercy of referene pagescan berelaxed and the need
for propagaing changsto all workspa@andreference
copesof the page at comnit time isremoved.

e Updaesmay be sern lazly to nodesholding magers.

e The updde vedor suppied by the saialisaion sever
isusalto ensueupdde coheercy by guaanedngup-
date ordering.

CR  ~Ceraisation
ﬁ server

N
=)

[ WelM — BFELHN _ Kol |
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Figure 3. Commi t protocol.

The agorithm involves the following six steps We as-
sune a transation, t is committing the set of pagesit has
updded Pw.

Createlog A log L; assocated with transation t is cre-
ated. The log is a set of deltas defined as follows:
Lt = {d(p)|p € Pw}, where d(p), a ddta assotated
with page p, is deived by XORing p with the corre-
spondng reference pace r(p), and Pw is the set of
pages written by t.

Start logwrite Thelog, L;, isappendd to a sde, acircu-
lar onrdisk log file. If necessy the sde is flushed to
ensuesuficien spaceby requeting the write-bad to
store of pagesin the sethat havenot alread/ been op-
portunisticadly written badk. By using a non-blocking
disk write, the write to safe may be overlapped with
other steps of the commit algorithm.

Serd timegamp reque$s A messag cortaining MN; is
sent to the seriali sation server. MN; is the se of nodes
that hold magers of pagesin Pw: MN; = {mn(p)|p e
Pw}, where mn(p) is the node where the (unique)
mager of the page p resdes.

Recavetimegamp A vedor of commuricaion sequence
numbes C§ is receved from the seaialisaion saver.
C§ refleds the place of transation t in a global or-
dering of upddes by capuring for ead node to which
upddes are ser, the numbe of upddes ser or about
to be sert to tha node induding thoseto be sert by t.

Complete safewrite Onaethe asynchonowslog write has
comgdeted the s&e map is atomicdly updded to re-
flect the state of the sde. For ead ddta d(p) written
to the safe, the page number of p and the commurni-
caion sequene numbe at the corresponihg mager
node (CS[mn(p)]) are written into the safe map slot
correspondhg with the sde page usal for the ddta
d(p). The atomic updde of the s&e map atomicaly
completes the commit.

Distribute deltas An updde U, is sert to ead node n €
MN;. Uy, isthe set of al of t's ddtas assocated with
thenoden: Uy, = {d(p)|p € R,mn(p) = n}. Eact up-
date message is tagged with C§[n], where n is the re-
ceving node.

3.2 Receipt of Deltas

The page coheercy algorithm (sedion 4), is dependant
on the coherent appli cation of deltas to master pages. The
following algorithm for the recept of ddtas ensues that
ddtas are recaved in the sane order tha the correspond-
ing comnits are macke (accading to globd time, as defined
by the updde vedor issuel by the saialisaion saver). The
ddtarecapt algorithm for any nodeniis:

Establish recave A receave is edalishel for an updae
messag taggal with CS,, the recaving nodés com-
muricéion sequene numbe. Upon recept of the
appopriately taggel messagethe next step is com-
menced.



Receive update.For each deltad(p) in the update mes-
sage, the corresponding master pag®) is updated
(m(p) := m(p) XOR d(p)), the source node is in-

3.4. Recovery

Before closing the store, each node writes back all up-
serted in the update s for the page,, := nUUy), dated master pages that have not already been written back.

and the update sequence for that page is s&@Sp By coordinating the close of the store, a successful close

(US, :=CS). CS, is incremented and a new update will allow all nodes to flush their safes. The recovery pro-
receive is established. cess is initiated if, on start up, ampde finds a non-empty

safe. For this reason, the recovery process is closely linked
to the opportunistic write back algorithm 3.3, which is the
only means of freeing safes during normal processing. Once
the recovery (if any) is complete, each node itéhses its
shadow file before commencing normal store operations.
Because the ordering of opportunistic write-backs need
not coincide with update message ordering, deltas to be re-
The opportunistic write-back algorithm must update the covered will not, in general, correspond exactly to a con-
store and allow for the freeing of redundant safe pages. Insecutive subset of the updates received prior to the crash.
the DataSafe, this operation is straight forward: the out of For this reason, during the recovery process updates are re-
date store page is overwritten with the new version and thenceived in any order and receipt of all messages is guaranteed
the safe map is atomically updated so that the store pageby establishing that all messages have been sent and assum-
is valid and the safe page is freed. This situation is com-ing that no messages have been lost or are in transit. Until
plicated in our distributed store because the safes contairall messages have arrived, no updates can be guaranteed to

This algorithm was implemented efficiently by using the
MPI-2 hrecv() function (section 1.2.4) to emulate a pre-
emptive server thread which handled the receipt of deltas.

3.3. Opportunistic Write-back.

deltasrather tharupdated pageso the store page is always

be coherent. So ensuring that write-backs only occur after

necessary for recovery (the updates held in the safe must behe delta receipt phase maintains the recoviétambf the
applied to the store page to reestablish the page). A solutiorrecovery process itself.
is to use shadowing to ensure that store pages are updated The recovery algorithm consists of four steps:

atomically.

Each master node has a shadowing file. The shadowingre.gistribute deltas For each deltal(p) in the safe, the

file consists of a number of pages that may be used for shad-

ows and an update array An[]) which is used to record the
progress of a write-back. There is a one-word entry in the

delta and the communication sequence number stored
in the safe map entry corresponding witfp) are sent
to the corresponding master naue( p).

update array for each master page managed by the node.

Update array entries are initially set to NULL.

The following algorithm is dependant on its implemen-
tation being robust with respect to the arrival of update mes-
sages during the write-back operation.

Make shadow A shadow,s(p') is made of the page to be
overwritten,p'.

Write update The store pagep’, is overwritten by the
masterm(p) and the relevant update array entry is
atomically set tdJ S, (UAq[p] ;= US;). The shadow
s(p') is then removed.

Notify clients Each node in the update set for the updated
pagen € Uy, is notified of the update. The notification
message consists pfandU S,, allowing the recipient
to free the safe page or pages relating to updatgs of
up to timeU S,,.

Complete write-back The update set for the page is set to
null Up :={}).

The write-back operation may be batched to reduce disk

I/O costs and also to allow client notifications to be batched,
reducing communications traffic.

Receive updatesBefore receipt of any update messages,
the update sequence for each page managed by the
recipient is set to the corresponding value in the up-
date array {p|(mn(p) = n).US, := UAy[p]). Dur-
ing the recovery process, update messages may be re-
ceived in any order. For each delt#p) in an up-
date message, the source nodes inserted in the
update set, for the pagelp := nUUy), and if the
delta’s sequence numbstd(p)) is greater than the
page’'s update sequent£S,, the corresponding mas-
ter pagem(p) is updated ifi(p) := m(p) XOR d(p))
and the update sequence for that pad&,, is set
to maxUS,,s(d(p))). Write-backs are not permitted
during the delta re-distribution and receipt phases.

Write-back Once all updates have been received (a barrier
synchronisation can be used to enforce this), all update
pages are written baaccording to the write-back al-
gorithm outlined in section 3.3.

Completion of recovery The write-back operations will
result in clients being able to free their safes. Once all
nodes have emptied their safes, the recovery process is
complete.



4. Coherency 5.1. A Flexible Test Harness

The decision to replicate reference pages (section 2.4) As stated earlier in this paper, the focus of the work was
led to the need for coherency to be maintained betweenon recovery and coherency. The full development of a mul-
each master page and the corresponding reference pageticomputer object store was beyond the scope of the project.
As argued in section 2.7, the assumption of object isolation For this reason, it was important to develop a test harness
means that coherency need only be maintained at a transthat could reasonably emulate the load of a working store
action grain (rather than operation grain) for a given trans- and associated applications. It was also important that the
action. The coherency mechanism must therefore guarantest harness stress the behaviour of our system under scala-
tee that all pages seen by a transaction are consistent wittbility and speedupanditions, as these are seen as important
all transactions committed prior to the start of the transac- characteristics of multicomputer object stores.
tion (according to their ordering in global time). The ob-  The test harness developed for this project allows vari-
jectisolation property ensures that we need not worry aboutous synthetic transaction loads to be run against the system.
whether a transaction sees the effects of transactions comThe harness issuesad, write, begin, commit, abort, and

mitted after that transaction began. switch instructions to the distributed store layer, simulating
This scenario leads to a relatively simple coherency al- an application running nitiple concurrent transactions on
gorithm. top of a concurrency control layer, which in turn runs on top

) o ) of our distributed store layer. The harness ensures that the
Send invalidation request At the start of each transaction, object isolation property is enforced.
send an invalidation reques_t with a “.St O_f all locally The harness doe®t simulate application-level compu-
cached paggs o the centralised serlal|sat|o'n S_erv_er' tation, so the simulations represent an I/O bound applica-
Process invalidation requestThe centralised serialisation  tion. One could expect decreased disk and network con-

server consults a table of update timestamps and bygestion if application-level computation was added. In this
comparing the time of the last invalidation request for sense, the tests are worst-case in nature.

the client node with the update timestamp for each of

the pages in the request message, establishes a list of 2 Scalability

invalidated pages. The server responds to the client

with a list of invalidated pages and a timestamp corre-  Scalability is a measure of the capacity to efficiently

sponding to the time of the invalidation request. scale resources with increasing problem size. With the
Invalidate cache On receiving the invalidation message, above test harness, this can be tested by increasing the test

the client marks each of the invalid pages as invalid. ~0ad in proportion to the number of nodes used while keep-

Request pageWhen the client faults on a page, it sends ing all other parameters static. Ideally, the time to com-
a request to the node holding the master, asking for Plete the problem would remain static or even decrease as

a copy of the page at least as recent as the transactiof’® Number of nodes increased in proportion to the load.
start time. This is done efficiently by quoting the trans- However, distribution usually brings with it overheads, so
action timestamp vector element corresponding with I practice the goal is to approach the ideal as closely as

the node holding the master. possible.

Update page On receiving the new page, a check is done ‘ we testded tf(\je system_undzrﬁa range of 'ans’ \I’V'th ?]'f'
to see if there are any workspace copies of the page in erent read and write ratios, different transaction lengths,

use. If so, the differences between the new page andvarying commit-abort ratios, etc. The results indicate good

the stale reference page are applied to each Workspac§9alabi|ityf everunder worst—ca_sg loadings. The graph in
page. The object isolation property guarantees thatFigure 4 illustrates the scalability of the systemder a
this operation will not lead to inconsistency. Once loading of 10 transactions per node, each involving 20 write

any workspace pages have been updated, the stale refoPerations, kit egch write results in coitmg one aK
erence page is overwritten with the new one and the P29€- The trans.aptlons operated over an object space of
cache page is marked valid. 1024 pages, sufficient fo_r the parallel file s_yst_em to stripe
across all disks. The points on the graph indicate the av-
erage completion times per node and the error bars indicate
the standard deviation. The results are averaged over several
The objective underlying this project was the develop- runs.
ment of efficient architectures and algorithms for multicom-  For 16 and 32 processors, cache effects bring the per-
puter object stores, drawing on the experience of DataSafeormance close to ideal (5.44 sec). In the worst case, 128
and Multicomputer Texas. The following sections outline nodes take an average of just under 11 seconds to complete
our approach to performance analysis and its results. 128 times the workload of the one node case.

5. Performance
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Figure 4. Scalability results.

ng 1024 transactions, each comprising 20 write operations

which each result in comitting one 4K page. The line of

deal speedup from the single node case is shown. These

results indicate that the system exhibits very good speedup
characteristics. The better than ideal results for 16, 32 and
64 node cases can be accounted for by cache effects out-
weighing any bottlenecks irdduced by the increased de-
gree of distribution.

5.4. Cost of Centralised Serialisation

The decision to centralise a key aspect of the architec-

ture, the serialisation service, was based on the assumption
that other elements of the system would become bottlenecks
before the cost of the centralised server became significant
and that by centralising the server, major savings would be

made in the recovery and coherency algorithms. The mea-

surement of the cost associated with the centralised server

was therefore of particular interest to us.

Analysis of various cost components, such as the cen-

tralised server and disk performance suggest that the key

performance bottleneck is the machine’s I/0 capacity (com-
munications network and disk).

5.3. Speedup

Speedup is a measure of the extent to which the exe-
cution time for a fixed size problem decreases as more re-
sources are made available to solve that problem.
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Figure 5. Speedup results.

Speedup tests were performed by setting a large work-
load and measuring the completion time as the number of
nodes assigned to the problem increased. The graph in Fig
ure 5 represents the results of a typical experiment involv-
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Figure 6. Average time spent waiting for centralised
serialisation server under proportionately increas-
ing loads.

Figures 6 and 7 indicates the costs associated with the
centralised server under the same test loads as those de-
picted in Figures 4 and 5 described in the above sections.
The graphs indicate clearly that the centralised server scaled
very well. They also indicate that the cost of the centralised
serialisation server was negligible (about 1/1000th of the
transaction execution time), and as expected, further testing
showed no measurable gain from using an additional node
as a dedicated server.
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