
Recovery and Page Coherency for a Scalable Multicomputer Object Store

Stephen M. Blackburn, Robin B. Stanton,
Christopher W. Johnson

Department of Computer Science
Australian National University
Canberra ACT 0200 Australia

fsteveb,rbs,cwjg@cs.anu.edu.au

Stephan J. G. Scheuerl

Division of Computer Science
University of St Andrews

Fife UK KY16 9SS
stephan@dcs.st-and.ac.uk

Abstract
This paper presents scalable algorithms for recovery and
page coherency in multicomputer object stores. Recov-
ery and coherency are central to object store engineering
and distributed memory multicomputers are fundamental
to scalable computation. Efficient recovery is implemented
through a combination of local logging and a localisation
of the transactional workspace model. A vector of update
counts is used to efficiently represent global time.

The algorithms have been successfully implemented and
tested on a 128 node Fujitsu AP1000 distributed memory
multicomputer. Thepaper presents performance results
which indicate good performance and scalability for these
algorithms under a range of situations. The work is seen as
a step in the continuing development of high performance
multicomputer object stores.

1. Introduction
This paper reports on scalable recovery and page co-

herency algorithms for distributed memory multicomputer
object stores (MOS). Recovery and coherency are central to
ensuring the durability and consistency of data held in ob-
ject stores, while scalability is of primary importance to the
design of multicomputer software infrastructure.

Section 1.1 introduces multicomputer object stores, dis-
cusses their role in the high performance object store world
and explains the importance of scalability in MOS design.
Because this paper is limited to addressing the issues of re-
covery and page coherency, the context in which the work
is presented is significant. The assumptions and limitations
imposed by that context are spelt out in section 1.2.

Section 2 outlines the store architecture designed as part
of this project, and explains the role the recovery and co-
herency algorithms play in making that architecture scal-
able. Section 3 discusses the recovery algorithm and section
4 outlines the page coherency algorithm. Results and the ap-
proach to validation and performance analysis are outlined
in section 5.

1.1. Multicomputer Object Stores

This research was conducted in the context of a broader
objective of creating a software environment which facil-
itates the integration of high performance computers into
networked computer systems. Distributed memory multi-
computers are central to the project because of their key
role in the quest for scalable high performance computa-
tion. This factor together with the increasing importance
of object orientation in computation and data management
gives rise to our focus on Multicomputer Object Stores.

Many of the important factors in MOS design are com-
mon to the design of conventional object stores, however
their relative importance is changed because of the unique
architectural properties of multicomputers. Key concerns
are problems associated with distribution, concurrency and
issues of scalable performance. Multicomputers are distin-
guished from more general distributed computing environ-
ments by their low latency, high bandwidth, high reliability
interconnections and their provision for computational iso-
lation (typically through such mechanisms as gang schedul-
ing or physical partitioning).

Scalable memory bandwidth, scalable processing power
and scalable I/O are fundamental to scalable computation.
Distributed memory multicomputers seek to deliver these
characteristics and so play an important role in achieving
scalable performance. The development of scalable soft-
ware for such machines depends on that software not in-
hibiting scalability through contention and non-locality of
data. The objective of scalabilityunderpins many of the
design decisions reported in this paper, and is central to
the challenge of developing efficient multicomputer object
stores.

1.2. Project Context and Assumptions

The goal of this project was to further our understand-
ing of multicomputer object stores, by building on lessons
learnt from the Multicomputer Texas [1] experiment and
by exploring elements of the DataSafe [2] recovery mech-

anism that might be relevant to multicomputer object store
design. To this end, an efficient multicomputer analogue of
the DataSafe recovery mechanism was designed and imple-
mented. The target machine, a Fujitsu AP1000, is typical of
distributed memory multicomputers.

In taking DataSafe as a starting point for the design of
the recovery mechanism, a number of DataSafe characteris-
tics are adopted. The following sections describe the impact
various aspects of the DataSafe design had on this project.
Relevant characteristics of the exemplar multicomputer, the
AP1000, are also discussed.

1.2.1. DataSafe Architecture and Recovery Mechanism
The DataSafe recovery mechanism has been implemented
in the framework of the Flask [3] object store architecture.
The Flask architecture promotes modular implementation
of various store components through a layered software ab-
straction with well defined interfaces. A property of the
Flask architecture is that conflict detection is undertaken by
the upper layers. This frees, to a large extent, the lower lay-
ers from interference management and increases flexibility
in the choice of concurrency model in the upper layers. This
is in contrast to systems where concurrency control and re-
covery mechanisms are more tightly integrated.

There are many approaches to recovery documented in
the literature. The DataSafe architecture is based on the DB
cache [4], which uses contiguous writes to a circular log file
called the “safe” to reduce write time, while using a ran-
dom access file for the main store. All pages updated in the
course of a transaction are written contiguously to the safe.
The updated pages are migrated to the store opportunisti-
cally, freeing up the safe and updating the store. If insuffi-
cient space is available in the safe, the migration of pages to
the store may be forced. Although the safe may be thought
of as a fixed size circular log file, with minor sophistication
to the design, it may be implemented as an adaptable size
log. On re-start the safe is checked for data not propagated
to the store. A safe map is used to record the location and
status of pages in the safe, and by implication, the status
of pages in the store. By ensuring atomicity of safe map
operations, all store and safe operations are atomic.

The lower half of Figure 1 illustrates the key components
of the recovery mechanism. The state depicted in the il-
lustration reflects the following sequence of events: Pages
C, F, B, G, H, D, and J were updated by earlier committed
transactions. Subsequently, pages B, C and D were oppor-
tunistically written back to the store. These events resulted
in pages F, G, H, and J residing in the safe, with all other
pages residing in the store.

The DataSafe recovery mechanism is not suitable for a
scalable implementation because access to a single safe and
safe map would become a bottleneck for committing trans-
actions. Section 2.6 explains how local safes are used to

store

B

G
D

H

J

C F

safe

safe map

AEFD

A ED FA

no
n-

vo
la

tile
vo

la
tile

reference pages

workspaces

transactions

A EDCB F
KI LJG H

Figure 1. The DataSafe architecture.

provide a scalable recovery mechanism.

1.2.2. Workspaces for Optimistic Computation The
DataSafe employs workspaces as a means of isolating un-
committed transactionupdates. This mechanism helps to
ensure the transactional properties of atomicity, coherency,
isolation and durability (ACID) properties [5].

Workspaces are separate address space contexts through
which each transaction sees the store. Until a transaction
modifies a page, it has read-only access to a sharedrefer-
ence page(cached store page). When a transaction attempts
to write to a page for the first time, a copy is made of the
reference page. The transaction’s address map is modified
so that further references by the transaction to that page will
see the workspace copy rather than the reference page. By
comparing workspace pages with the corresponding refer-
ence pages, updates to the workspace pages can be deter-
mined. When a transaction commits, all updates made by
that transaction are propagated from the workspace to the
reference pages which are atomically written to the safe and
then opportunistically written to the store. Updates are dis-
carded on abort. For a more complete discussion of the
workspace model see [6], and [7].

The upper half of Figure 1illustrates the workspace con-
cept. The two transactions underway are accessing the
pages D, F, E, and A, so reference copies of these pages are
in memory. The pages being updated by each of the trans-
actions have been copied into their respective workspaces.

The concurrency control layer assumed by DataSafe as-
sures object isolation (section 1.2.3), a property that is ex-
ploited in the implementation of the following mechanism,
which ensures that updates generated from workspace pages
are coherent with respect to other updates to the same store
page. In the absence of update logging or any other such
means of identifying which part of a page has been mod-
ified, delta (update) pages are generated by bitwise XOR-
ing each committing workspace page with the correspond-
ing reference page.

Each committed workspace page becomes the new refer-
ence page and the delta is applied to each workspace copy
of the original reference page – maintaining the invariant
that the only difference between each workspace page and
its corresponding reference page is the updates made by the
transaction running in that workspace.

The application of deltas to all other workspace pages
requires thesynchronouscooperation of the corresponding
transactions. This is acceptable in a uniprocessor context
as only one transaction can be executing at a time. How-
ever, it is inappropriate in a multiprocessing context where
the cost of synchronisation would grow with the number
of concurrently executing transactions, making the system
fundamentally unscalable.

Section 2.4 describes a scalable approach to distributed
workspaces, and section 4 describes algorithms that main-
tain page level coherency in that environment.

1.2.3. Object Isolation The approach to page coherency
described in section 1.2.2 assumes a concurrency control
layer that enforces object isolation. Object isolation is also
assumed in our distributed architecture. For this reason, ob-
ject isolation is defined here:

Given a history, H, representing the ordering of events in
the concurrent execution of a set of transactions, a transac-
tion ti 2H will only commit if for all overlapping committed
transactions tj 2 H the read set of ti does not intersect the
write set of tj .

This definition of object isolation is predicated on a to-
tal ordering on transaction initiation and termination events,
with only a partial ordering of other events. In this con-
text the concept of “overlapping transactions” is intuitive.
A less strong definition of object isolation may be made in
the context of a total ordering on all events.

1.2.4. AP1000 Distributed Memory Multicomputer
The platform for this work was the Fujitsu AP1000 mul-
ticomputer [8]. The AP1000 is a distributed memory ma-
chine consisting of a number of SPARC 1 nodes connected
via a high speed, low-latency network, with memory and
possibly other resources such as disk attached to each of
the nodes. The machine used in this project was config-
ured with 128 nodes, each with 16MB of RAM. 32 of these
nodes had an option board with an I/O processor, 2MB of
RAM, and a 2MB/sec peak throughput disk of 512MB – an
aggregate 16GB with 64MB/sec theoretical peak through-
put. The HiDIOS parallel file system[9] on the AP1000
provides all nodes with a single file system image, the dis-
tribution of the disks being transparent to the user. Files
are striped across the 32 disks in 128KB stripes. Reads or
writes that span multiple stripes can exploit the parallelism
of the file system, with multiple disks serving the request
in parallel. While the HiDIOS file system readily delivers

more than 50MB/sec for large writes, under the test condi-
tions reported in section 5 (80KB write per commit), only
about 20MB/sec was seen.

The communications network of the AP1000 supports
inter-node message passing as the main internal commu-
nications mechanism. MPI-1, a widely accepted portable
message passing interface [10], is implemented on the
AP1000 [11] and was used in this project. Under our
test conditions MPI delivered a latency of 125µsec (3125
SPARC IU cycles) and 2.69MB/sec bandwidth for a one-
way trip — ann1=2 value of 336 bytes.

Handling messages asynchronously would enable the ef-
ficient implementation of responsive servers by avoiding
the need to poll. Such a mechanism is not available un-
der MPI-1. However the handled-receive (hrecv()) oper-
ation, an enhancement proposed in the draft MPI-2, is lo-
cally implemented. The operation allows a handler to be
asynchronously invoked on arrival of a matching message
(much like an interrupt handler). This powerful mecha-
nism provides a means of emulating preemptively sched-
uled server threads in processes that are otherwise single-
threaded clients.

2. A Distributed Stable Store Architecture

A distributed store architecture based loosely on the
DataSafe is the framework within which distributed recov-
ery and page coherency experiments were conducted. Un-
der this distributed architecture, transactions and their asso-
ciated workspaces are distributed across nodes, with access
to a shared store. The following sections outline key aspects
of this design.

2.1. Client-Server Architecture

Following the Multicomputer Texas work [1], we have
adopted a client-server architecture where servers run as
threads within client processes. A product of this approach
is dynamicmaintenence of client/server resource usage ra-
tios. By contrast, in a conventional client-server architec-
tures, resources are normallystaticallydistributed between
client and server nodes, precluding dynamic client/server
resource usage. Another advantage of this approach over
other client server architectures is that the work load is phys-
ically more distributed as the number of nodes that are serv-
ing is increased. As a result, the communications network
is less likely to suffer from bottlenecks produced by con-
gestion at individual nodes. By having the client and server
share the same address space, greater caching opportunities
exist and the cost of a request to the local server is very
low. We use the MPIhrecv() facility (see section 1.2.4) to
emulate preemptive daemon server threads.

2.2. Single Store Image

Multicomputers are distinguished from more general dis-
tributed computing systems by their relatively low latency,
high bandwidth, high reliability interconnect. For this rea-
son we choose to introduce a high degree of distribution
transparency and present a single store image to all nodes.
In this environment, all nodes see the same PID (persistent
identifier) address space and access objects in the same way,
regardless of any notion of the object’s location.

2.3. Global Concurrency Control

Following the Flask architecture, we assume a layered ar-
chitecture including theassumed existenceof a concurrency
control layer. By adopting such an architecture we are free
to independently develop the lower layers of the store, main-
taining a focus on distributed page coherency and recovery
mechanisms. As with the DataSafe implementation, we as-
sume the concurrency control layer enforces object isolation
(section 1.2.3). In this context a transaction runs ononly
one node. Each node may concurrently execute a number
of transactions.

2.4. Distributed Workspace Model

Section 1.2.2 describes the workspace concept and the
DataSafe implementation of workspaces. The key imple-
mentation issue is maintaining coherency between multi-
ple workspaces sharing a common reference page so that
at commit time the changes made by the transaction owning
the workspace can be readily detected and applied to the
store.

The DataSafe’s workspace model is modified here bylo-
calising the management of coherency between workspace
pages to each node. Rather than using workspaces to pro-
videup to date versions of pagesfor writing at commit time,
workspaces are used to derivedeltas(updates) associated
with the committing transaction. It is sufficient to record
deltas at commit time to ensure recoverability.

To derive a delta, all that is needed are two versions of the
page which differ only in terms of those changes made by
the executing transaction. This is achieved in our distributed
store by having local reference pages andonly maintain-
ing inter-workspace coherency between workspaces shar-
ing that reference page, thereby avoiding inter node syn-
chronisation (section 1.2.2).

Figure 2 illustrates the distributed DataSafe store. For
clarity, only the activity associated with transactions on the
first node isillustrated. The sequence of events that led to
the depicted state are the same as those for Figure 1 (see
section 1.2.1). Although the reference pages for the other
nodes are not shown, those for the first node (pages D, F,
E, and A) are shown as being local to that node. If any of

the other nodes were accessing any of these pages, it would
have its own reference page.

2.5. Distributed Page Management

Although inter-workspace coherency is relaxed, co-
herency must still be maintained. The approach taken in
our distributed store architecture is to delegate page man-
agement responsibilities to nodes on a per-page basis. The
delegation can be implemented with a simple hash function
(as illustrated in Figure 2).

Each node manages a set of pages (according to the dele-
gation algorithm), maintaining a master copy for each page
in that set that is accessed by any node in the system. All
committedupdates to a page are propagated to the corre-
sponding master page by the committing node. The owner
(manager) of a master page is responsible for coherently
applying updates to the page and opportunistically writing
pages back to the store. The algorithms involved are dis-
cussed in detail in sections 3 and 4.

Whenever a coherent version of a page is required by
any node, a request for that page is sent to the owner of the
master copy and the owner returns a coherent version of the
page, reading it in from disk if necessary. This approach
to page management has the side effect of introducing a
layer of page caching, reducing the number of disk reads.
Performance results (section 5) show that cache effects are
significant, contributing to super-linear speedup.

2.6. Local Logging

While the argument for a single store image suggests a
need for coordinated access to the store, there is no need for
globally coordinated access to a single safe. On the con-
trary, by localising safe use, the need for coordination is
significantly reduced, thereby enhancing the scalability of
the system. Our architecture therefore uses local logging.
At commit time, the committingnode writes deltas to itslo-
cal safe and propagates the updates to the relevant master
nodes.

The combination of local logging and the use of deltas
rather than updated pages significantly reduces the coordi-
nation overhead at commit time, thereby greatly improving
the scalability of the system. The side effects of this ap-
proach are two-fold. By committing deltas rather than up-
dated pages, store pages are always necessary for recovery
(deltas are applied to the original to produce the updated
pages). This means that a technique such as shadowing must
be used to atomically update store pages. The second con-
sequence is that the recovery process is more complex. The
details of the recovery process are elaborated in section 3.4.
Figure 2 illustrates the local safes and safe maps necessary
for local logging. Note that in contrast to Figure 1, the safes
containdeltas(denoted by a prime), and the corresponding

store

no
n-

vo
la

tile
vo

la
tile

F' B' G'
D'

H
'

J'

 C'

AEFD

A ED FA

MIEA

NJFB

OKGC

PLHD

EB D FCA H JIG L NMK PO

master pages

Figure 2. A distributed DataSafe-like store.

store pages are required for recovery (even though they are
not valid for reading).

Further work needs to be done in determining whether
it is better to localise safes on a per-disk basis (maximising
write locality) or to distribute safes across multiple disks
(maximising opportunities for write parallelism).

2.7. Transaction Grain Page Coherency

The assumed concurrency control layer’s enforcement of
object isolation, as defined in section 1.2.3, does not enforce
page isolation. The replication of reference pages across
different nodes (section 2.4) requires page coherency among
reference pages to be enforced by the lower layers of the
system. This is achieved by maintaining coherency of mas-
ter pages (section 2.5), and ensuring that cached reference
pages are invalidated appropriately.

The object isolation property is transaction grained, in
the sense that conflict is defined in terms of transaction ini-
tiation and termination rather than in terms of conflict event
and transaction termination (see section 1.2.3). The coher-
ence of an object is therefore guaranteed by the concurrency
control layer from the point when a transaction begins until
that transaction commits. Therefore coherency need only be
established at a transaction grain rather than at the activity
grain. As a consequence, the level of communication asso-
ciated with maintaining page coherency is greatly reduced.
Section 4 describes the page coherency algorithm.

2.8. Centralised Serialisation Server

Maintenance of coherency demands some degree of syn-
chronisation between nodes. As far as possible the respon-
sibility for coherency is left to individualnodes, in order
to minimise communications. Centralisation of services is
usually avoided in distributed systems because of the po-
tential bottlenecks as the system scales up. Centralisation

can, however, have the advantage of significantly reducing
communication costs. For example an N to N communica-
tion may be reduced to an N to 1 communication followed
by a 1 to N communication by centralising the procedure.
A resolution to the question as to whether it is best to cen-
tralise or not may be helped by contrasting the likelihood
of the target machine’s overall message passing bandwidth
being swamped with the likelihood of the centralised server
overloading a node to the point where that service becomes
a bottleneck.

A centralised server is adopted here to provide a global
serialisation service. The requirement of only providing
transaction grain coherency, coupled with the use of an up-
date count vector as a global clock (section 2.9), enables the
development of very efficient coherency algorithms (sec-
tions 3 and 4). Our performance results support the argu-
ment that the server is efficient and does not become a bot-
tleneck to scalability (section 5.4).

2.9. Update Count Vector Time

Cheaply obtaining a global time against which (partial)
ordering of distributed events can be made is a long standing
problem in distributed computing. The role of global time
in our system is to place a total ordering on transactionstart
andcommitevents.

Our solution to the problem is to use a vector ofupdate
countsto represent global time. The key temporal refer-
ence events are transaction commits. Each commit cor-
responds with the transmission of updates to one or more
master nodes. Global commit orderings can therefore be de-
scribed in terms of the count of updates at each node. The
commit that sent node 0 its first update and node 2 its fourth
would be identified by the vector [1,0,4,2], where nodes 1
and 3 had received none and two updates respectively prior
to the commit.

A transaction that started immediately after that commit

would be issued the same updatevector to identify its start.
When requesting datafrom node3 it would quotean update
count of two, allowing node3 to ensure that it had received
its second updatebefore responding to the request.

Thecentralised serialisation server isemployed to main-
tain theupdatevector. It updatesthe relevant entriesat each
commit time (uniquely identifying each commit) and pro-
videstransactionswith thevector, allowing them to identify
their start time. The algorithms using update count vector
time are described below.

3. Distributed Commit and Recovery

The previous sections outlined the context in which
transactions operate and argued for the design choices
made. The following sections describe the algorithms as-
sociated with commit and recovery, using an adaptation of
conventional set notation. Thealgorithms, together with the
page coherency algorithms (section 4) guarantee the ACID
properties of transactions in the distributed store architec-
ture.

3.1. Commit

This section describes the commit algorithm. Important
characteristicsof this algorithm are:

� By using asafe, the log data iswritten contiguously to
disk, minimising seek timeoverhead, thereby reducing
disk latency.

� Local safes are used, avoiding the need for any syn-
chronisation of safewrites.

� By logging deltas rather than updated pages, the co-
herency of referencepagescan berelaxed and theneed
for propagatingchangesto all workspaceandreference
copiesof thepageat commit time is removed.

� Updatesmay besent lazily to nodesholding masters.

� The update vector supplied by the serialisation server
isusedto ensureupdatecoherency by guaranteeingup-
dateordering.

KFAC

K FC

MIEA NJFB OKGC

({j, k})

(CSt)

node i node j node k

serialisation
server

(CSt[k], {d(C), d(K)})(CSt[j], {d(F)})

Figure 3. Commi t protocol.

The algorithm involves the following six steps. We as-
sume a transaction, t is committing the set of pages it has
updated, Pwt .

Create log A log Lt associated with transaction t is cre-
ated. The log is a set of deltas defined as follows:
Lt = fd(p)jp2 Pwtg, where d(p), a delta associated
with page p, is derived by XORing p with the corre-
sponding reference page r(p), and Pwt is the set of
pageswritten by t.

Start log wr ite The log, Lt , is appended to a safe, a circu-
lar on-disk log file. If necessary the safe is flushed to
ensuresufficient space, by requesting thewrite-back to
storeof pagesin thesafethat havenot already beenop-
portunistically written back. By using a non-blocking
disk write, the write to safe may be overlapped with
other stepsof thecommit algorithm.

Send timestamp request A message containing MNt is
sent to the serialisation server. MNt is the set of nodes
that hold mastersof pages in Pwt : MNt = fmn(p)jp2
Pwtg, where mn(p) is the node where the (unique)
master of thepage p resides.

Receive timestamp A vector of communication sequence
numbers ~CSt is received from the serialisation server.
~CSt reflects the place of transaction t in a global or-
dering of updatesby capturing for each node to which
updates are sent, the number of updates sent or about
to besent to that node, including thoseto besent by t.

Completesafewr ite Once theasynchronouslog write has
completed, the safe map is atomically updated to re-
flect the state of the safe. For each delta d(p) written
to the safe, the page number of p and the communi-
cation sequence number at the corresponding master
node (~CSt [mn(p)]) are written into the safe map slot
corresponding with the safe page used for the delta
d(p). The atomic update of the safe map atomically
completesthecommit.

Distri butedeltas An update Utn is sent to each node n 2

MNt. Utn is the set of all of t’s deltas associated with
thenoden: Utn = fd(p)jp2 Pt ;mn(p) = ng. Each up-
date message is tagged with ~CSt [n], where n is the re-
ceiving node.

3.2. Receipt of Deltas

The page coherency algorithm (section 4), is dependant
on the coherent application of deltas to master pages. The
following algorithm for the receipt of deltas ensures that
deltas are received in the same order that the correspond-
ing commitsare made(according to global time, asdefined
by theupdatevector issued by theserialisation server). The
delta receipt algorithm for any noden is:

Establish receive A receive is established for an update
message tagged with CSn, the receiving node’s com-
munication sequence number. Upon receipt of the
appropriately tagged message, the next step is com-
menced.

Receive update.For each delta,d(p) in the update mes-
sage, the corresponding master pagem(p) is updated
(m(p) := m(p) XOR d(p)), the source node is in-
serted in the update setUp for the page (Up := n[Up),
and the update sequence for that page is set toCSn

(USp := CSn). CSn is incremented and a new update
receive is established.

This algorithm was implemented efficiently by using the
MPI-2 hrecv() function (section 1.2.4) to emulate a pre-
emptive server thread which handled the receipt of deltas.

3.3. Opportunistic Write-back.

The opportunistic write-back algorithm must update the
store and allow for the freeing of redundant safe pages. In
the DataSafe, this operation is straight forward: the out of
date store page is overwritten with the new version and then
the safe map is atomically updated so that the store page
is valid and the safe page is freed. This situation is com-
plicated in our distributed store because the safes contain
deltasrather thanupdated pages, so the store page is always
necessary for recovery (the updates held in the safe must be
applied to the store page to reestablish the page). A solution
is to use shadowing to ensure that store pages are updated
atomically.

Each master node has a shadowing file. The shadowing
file consists of a number of pages that may be used for shad-
ows and an update array (UAn[]) which is used to record the
progress of a write-back. There is a one-word entry in the
update array for each master page managed by the node.
Update array entries are initially set to NULL.

The following algorithm is dependant on its implemen-
tation being robust with respect to the arrival of update mes-
sages during the write-back operation.

Make shadow A shadow,s(p0
) is made of the page to be

overwritten,p0.

Write update The store page,p0, is overwritten by the
masterm(p) and the relevant update array entry is
atomically set toUSp (UAn[p] := USp). The shadow
s(p0

) is then removed.

Notify clients Each node in the update set for the updated
page,n2Up is notified of the update. The notification
message consists ofp andUSp, allowing the recipient
to free the safe page or pages relating to updates ofp
up to timeUSp.

Complete write-back The update set for the page is set to
null (Up := fg).

The write-back operation may be batched to reduce disk
I/O costs and also to allow client notifications to be batched,
reducing communications traffic.

3.4. Recovery

Before closing the store, each node writes back all up-
dated master pages that have not already been written back.
By coordinating the close of the store, a successful close
will allow all nodes to flush their safes. The recovery pro-
cess is initiated if, on start up, anynode finds a non-empty
safe. For this reason, the recovery process is closely linked
to the opportunistic write back algorithm 3.3, which is the
only means of freeing safes during normal processing. Once
the recovery (if any) is complete, each node reinitialises its
shadow file before commencing normal store operations.

Because the ordering of opportunistic write-backs need
not coincide with update message ordering, deltas to be re-
covered will not, in general, correspond exactly to a con-
secutive subset of the updates received prior to the crash.
For this reason, during the recovery process updates are re-
ceived in any order and receipt of all messages is guaranteed
by establishing that all messages have been sent and assum-
ing that no messages have been lost or are in transit. Until
all messages have arrived, no updates can be guaranteed to
be coherent. So ensuring that write-backs only occur after
the delta receipt phase maintains the recoverability of the
recovery process itself.

The recovery algorithm consists of four steps:

Re-distribute deltas For each deltad(p) in the safe, the
delta and the communication sequence number stored
in the safe map entry corresponding withd(p) are sent
to the corresponding master nodemn(p).

Receive updatesBefore receipt of any update messages,
the update sequence for each page managed by the
recipient is set to the corresponding value in the up-
date array (8pj(mn(p) = n):USp := UAn[p]). Dur-
ing the recovery process, update messages may be re-
ceived in any order. For each deltad(p) in an up-
date message, the source node,n is inserted in the
update setUp for the page (Up := n[Up), and if the
delta’s sequence numbers(d(p)) is greater than the
page’s update sequence,USp, the corresponding mas-
ter pagem(p) is updated (m(p) := m(p) XOR d(p))
and the update sequence for that page,USp, is set
to max(USp;s(d(p))). Write-backs are not permitted
during the delta re-distribution and receipt phases.

Write-back Once all updates have been received (a barrier
synchronisation can be used to enforce this), all update
pages are written backaccording to the write-back al-
gorithm outlined in section 3.3.

Completion of recovery The write-back operations will
result in clients being able to free their safes. Once all
nodes have emptied their safes, the recovery process is
complete.

4. Coherency

The decision to replicate reference pages (section 2.4)
led to the need for coherency to be maintained between
each master page and the corresponding reference pages.
As argued in section 2.7, the assumption of object isolation
means that coherency need only be maintained at a trans-
action grain (rather than operation grain) for a given trans-
action. The coherency mechanism must therefore guaran-
tee that all pages seen by a transaction are consistent with
all transactions committed prior to the start of the transac-
tion (according to their ordering in global time). The ob-
ject isolation property ensures that we need not worry about
whether a transaction sees the effects of transactions com-
mitted after that transaction began.

This scenario leads to a relatively simple coherency al-
gorithm.

Send invalidation request At the start of each transaction,
send an invalidation request with a list of all locally
cached pages to the centralised serialisation server.

Process invalidation requestThe centralised serialisation
server consults a table of update timestamps and by
comparing the time of the last invalidation request for
the client node with the update timestamp for each of
the pages in the request message, establishes a list of
invalidated pages. The server responds to the client
with a list of invalidated pages and a timestamp corre-
sponding to the time of the invalidation request.

Invalidate cache On receiving the invalidation message,
the client marks each of the invalid pages as invalid.

Request pageWhen the client faults on a page, it sends
a request to the node holding the master, asking for
a copy of the page at least as recent as the transaction
start time. This is done efficiently by quoting the trans-
action timestamp vector element corresponding with
the node holding the master.

Update pageOn receiving the new page, a check is done
to see if there are any workspace copies of the page in
use. If so, the differences between the new page and
the stale reference page are applied to each workspace
page. The object isolation property guarantees that
this operation will not lead to inconsistency. Once
any workspace pages have been updated, the stale ref-
erence page is overwritten with the new one and the
cache page is marked valid.

5. Performance

The objective underlying this project was the develop-
ment of efficient architectures and algorithms for multicom-
puter object stores, drawing on the experience of DataSafe
and Multicomputer Texas. The following sections outline
our approach to performance analysis and its results.

5.1. A Flexible Test Harness

As stated earlier in this paper, the focus of the work was
on recovery and coherency. The full development of a mul-
ticomputer object store was beyond the scope of the project.
For this reason, it was important to develop a test harness
that could reasonably emulate the load of a working store
and associated applications. It was also important that the
test harness stress the behaviour of our system under scala-
bility and speedup conditions, as these are seen as important
characteristics of multicomputer object stores.

The test harness developed for this project allows vari-
ous synthetic transaction loads to be run against the system.
The harness issuesread, write, begin, commit, abort, and
switch instructions to the distributed store layer, simulating
an application running multiple concurrent transactions on
top of a concurrency control layer, which in turn runs on top
of our distributed store layer. The harness ensures that the
object isolation property is enforced.

The harness doesnot simulate application-level compu-
tation, so the simulations represent an I/O bound applica-
tion. One could expect decreased disk and network con-
gestion if application-level computation was added. In this
sense, the tests are worst-case in nature.

5.2. Scalability

Scalability is a measure of the capacity to efficiently
scale resources with increasing problem size. With the
above test harness, this can be tested by increasing the test
load in proportion to the number of nodes used while keep-
ing all other parameters static. Ideally, the time to com-
plete the problem would remain static or even decrease as
the number of nodes increased in proportion to the load.
However, distribution usually brings with it overheads, so
in practice the goal is to approach the ideal as closely as
possible.

We tested the system under a range of loads, with dif-
ferent read and write ratios, different transaction lengths,
varying commit-abort ratios, etc. The results indicate good
scalability, evenunder worst-case loadings. The graph in
Figure 4 illustrates the scalability of the systemunder a
loading of 10 transactions per node, each involving 20 write
operations, where each write results in commiting one 4K
page. The transactions operated over an object space of
1024 pages, sufficient for the parallel file system to stripe
across all disks. The points on the graph indicate the av-
erage completion times per node and the error bars indicate
the standard deviation. The results are averaged over several
runs.

For 16 and 32 processors, cache effects bring the per-
formance close to ideal (5.44 sec). In the worst case, 128
nodes take an average of just under 11 seconds to complete
128 times the workload of the one node case.

0

2

4

6

8

10

12

20 40 60 80 100 120 140

Se
co

nd
s

Number of processors, load

APSS Write Transaction Scalability - Increasing Load (20 x 10 x N x 4K writes)

Execution time (avg per cell)
Perfect scaling (5.438)

Figure 4. Scalability results.

Analysis of various cost components, such as the cen-
tralised server and disk performance suggest that the key
performance bottleneck is the machine’s I/O capacity (com-
munications network and disk).

5.3. Speedup

Speedup is a measure of the extent to which the exe-
cution time for a fixed size problem decreases as more re-
sources are made available to solve that problem.

1

10

100

1000

1 10 100

Se
co

nd
s

Number of Processors

APSS Write Transaction Speedup - Constant Load (20 x 1024 x 4K writes)

Execution time (avg per cell)
Ideal speedup (787/x)

Figure 5. Speedup results.

Speedup tests were performed by setting a large work-
load and measuring the completion time as the number of
nodes assigned to the problem increased. The graph in Fig-
ure 5 represents the results of a typical experiment involv-

ing 1024 transactions, each comprising 20 write operations
which each result in committing one 4K page. The line of
ideal speedup from the single node case is shown. These
results indicate that the system exhibits very good speedup
characteristics. The better than ideal results for 16, 32 and
64 node cases can be accounted for by cache effects out-
weighing any bottlenecks introduced by the increased de-
gree of distribution.

5.4. Cost of Centralised Serialisation

The decision to centralise a key aspect of the architec-
ture, the serialisation service, was based on the assumption
that other elements of the system would become bottlenecks
before the cost of the centralised server became significant
and that by centralising the server, major savings would be
made in the recovery and coherency algorithms. The mea-
surement of the cost associated with the centralised server
was therefore of particular interest to us.

0

0.01

0.02

0.03

0.04

0.05

0.06

20 40 60 80 100 120 140

Se
co

nd
s

Number of processors, load

APSS Write Transaction Scalability - Increasing Load (20 x 10 x N x 4K writes)

Centralised server time (avg per cell)
Perfect scaling (.049)

Figure 6. Average time spent waiting for centralised
serialisation server under proportionately increas-
ing loads.

Figures 6 and 7 indicates the costs associated with the
centralised server under the same test loads as those de-
picted in Figures 4 and 5 described in the above sections.
The graphs indicate clearly that the centralised server scaled
very well. They also indicate that the cost of the centralised
serialisation server was negligible (about 1/1000th of the
transaction execution time), and as expected, further testing
showed no measurable gain from using an additional node
as a dedicated server.

0.001

0.01

0.1

1

10

1 10 100

Se
co

nd
s

Number of processors

APSS Write Transaction Speedup - Constant Load (20 x 1024 x 4K writes)

Centralised server time (avg per cell)
Ideal speedup (.5/x)

Figure 7. Average time spent waiting for centralised
serialisation server under constant load.

6. Conclusion
We sought to build from our experiences with DataSafe

and Multicomputer Texas and develop an efficient multi-
computer analogue of the DataSafe. In doing so, we did not
attempt to build a complete multicomputer object store, but
concentrated on the recovery and page coherency problems.
By restricting our focus, it was necessary to make assump-
tions about the behaviour of the rest of the store. To the
extent that that was necessary, we tried to base our assump-
tions on the behaviour of the existing DataSafe implemen-
tation, and assume such behaviours might be implemented
in a multicomputer context.

The architectures and algorithms developed exhibit a
number of important characteristics, including:

� A client server architecture utilising new mechanisms
to implement daemon server threads which allow re-
sponsive servers to run within client processes.

� A single store image, providing a single PID space to
all nodes.

� An efficient distributed workspace model based on
replicated reference pages.

� Local logging of commits on per-node safes.

� Global time implemented through the centralised seri-
alisation server using a vector of update counts.

Performance analysis of the system has shown that the
algorithms exhibit good speedup and scalability character-
istics. The cost of the centralised serialisation server was
also shown to be negligible.

References

[1] S.M. Blackburn and R.B. Stanton, “Multicomputer ob-
ject stores: the Multicomputer Texas experiment”, in
R. Connor and S. Nettles, editors,Seventh International
Workshop on Persistent Object Systems, Cape May, NJ,
May 1996.

[2] S.J.G. Scheuerl, R.C.H. Connor, R. Morrison, and D.S.
Munro, “The DataSafe failure recovery mechanism
in the Flask architecture”,in Proceedings of the Aus-
tralian Computer Science Conference, pp. 573–581,
Melbourne, Australia, Jan. 1996.

[3] D.S. Munro, R.C. Connor, R. Morrison, S. Scheuerl,
and D.W. Stemple, “Concurrent shadow paging in the
Flask architecture”, in M. Atkinson, V. Benzaken, and
D. Maier, editors,Sixth International Workshop on Per-
sistent Object Systems, pp. 16–37, Tatascon, France,
Sep. 1994.

[4] K. Elhardt and R. Bayer, “A database cache for high
performance and fast restart in database systems”,ACM
Transactions on Database Systems, vol. 9, pp. 503–525,
Dec. 1984.

[5] T. Härder and A. Reuter, “Principles of transaction-
oriented database recovery”,ACM Computing Surveys,
vol. 15, pp. 287–317, Dec. 1983.

[6] I. Gold and H. Boral, “The power of the private
workspace model”,Information Systems, vol. 11, pp.
1–7, 1985.

[7] H. Kung and J.T. Robinson, “On optimistic methods for
concurrency control”,ACM Transactions on Database
Systems, vol. 6, pp. 213–226, June 1981.

[8] H. Ishihata, T. Horie, S. Inano, T. Shimizu, and
S. Kato, “CAP-II architecture”,in Proceedings of the
First Fujitsu-ANU CAP Workshop, Kawasaki, Japan,
November 1990. Fujitsu Laboratories Ltd.

[9] A. Tridgell and D. Walsh, “The HiDIOS file system”,
in Proceedings of the Fourth Parallel Computing Work-
shop, London, September 1995. Fujitsu Laboratories
Ltd.

[10] Message Passing Interface Forum, “MPI: A message-
passing interface standard”,in International Journal of
Supercomputing Applications, vol. 8, November 1994,
Also avialable as University of TennesseeTechnical Re-
port CS-94-230.

[11] D. Sitsky, D. Walsh, and C. Johnson, “An efficient
implementation of the message passing interface (MPI)
on the Fujitsu AP1000”, in M. Ishii, editor,Proceedings
of the Third Parallel Computing Workshop, Kawasaki,
Japan, November 1994. Fujitsu Laboratories Ltd.

	Title
	Abstract
	1. Introduction
	1.1. Multicomputer Object Stores
	1.2. Project Context and Assumptions
	1.2.1. DataSafe Architecture and Recovery Mechanism
	1.2.2. Workspaces for Optimistic Computation
	1.2.3. Object Isolation
	1.2.4. AP1000 Distributed Memory Multicomputer

	2. A Distributed Stable Store Architecture
	2.1. Client-Server Architecture
	2.2. Single Store Image
	2.3. Global Concurrency Control
	2.4. Distributed Workspace Model
	2.5. Distributed Page Management
	2.6. Local Logging
	2.7. Transaction Grain Page Coherency
	2.8. Centralised Serialisation Server
	2.9. Update Count Vector Time

	3. Distributed Commit and Recovery
	3.1. Commit
	3.2. Receipt of Deltas
	3.3. Opportunistic Write-back
	3.4. Recovery

	4. Coherency
	5. Performance
	5.1. A Flexible Test Harness
	5.2. Scalability
	5.3. Speedup
	5.4. Cost of Centralised Serialisation

	6. Conclusion
	References

