
Using C as a Compiler Target Language for
Native Code Generation in Persistent Systems

S.J. Bushell, A. Dearle, A.L. Brown & F.A. Vaughan
Department of Computer Science

University of Adelaide
South Australia, 5005

Australia.
email: jsam, al, fred, francis@cs.adelaide.edu.au

Abstract

Persistent programming languages exhibit several requirements
that affect the generation of native code, namely: garbage
collection; arbitrary persistence of code, data and processes;
dynamic binding; and the introduction of new code into a running
system.  The problems of garbage collection are not unique to
persistent systems and are well understood: both code and data
may move during a computation if a compacting collector is
employed.  However, the problems of garbage collection are
exacerbated in persistent systems which must support garbage
collection of both RAM resident and disk resident data.  Some
persistent systems support a single integrated environment in
which the compiled code and data is manipulated in a uniform
manner, necessitating that compiled code be stored in the object
store.  Furthermore, some systems assume that the entire state of a
running program is resident in a persistent store; in these systems
it may be necessary to preserve the state of a program at an
arbitrary point in its execution and resume it later.  Persistent
systems must support some dynamic binding in order to
accommodate change.  Thus code must be capable of binding to
arbitrary data at a variety of times.  This introduces the additional
complexity that code must be able to call code contained in the
persistent store produced by another compilation.  In this paper
native code generation techniques using C as a target language for
persistent languages are presented.  The techniques described
solve all of the problems described above.  They  may therefore
be applied to any language with these or a subset of these features.
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1 Introduction

When orthogonal persistence is introduced to a programming
language, several requirements emerge which affect code generation:

a. data in the system may persist,
b. code in the system may persist, and
c. the dynamic state of the system may persist.

Since all data may potentially persist, it must be held in a suitable
form.  Typically, a persistent object store will support one or more
object formats onto which all data must be mapped.  For example,
objects must be self-describing to support automatic garbage
collection and persistent object management.  In particular, it must be
possible to discover  the location of all inter-object pointers contained
in an arbitrary object.  As a consequence, the code generation
techniques employed must ensure that the objects constructed by the
code conform to the appropriate object formats.

In languages that support first class functions and procedures, a
further consequence of persistence is that these values may also
persist.  This implies that executable code must be mapped onto
persistent objects.  This requirement would defeat most traditional
code generation techniques since the traditional link phase links
together all the procedural values contained in a single compilation
unit using relative addresses.  If all code resides in relocatable
persistent objects then the compiler/linker cannot determine the
relative positions of code segments at run-time.  Furthermore,
facilities such as garbage collection and persistent object management
may result in code segments moving during execution.

Persistent systems support potentially long-lived applications whose
functionality may evolve over time.  To accommodate this, many
persistent systems provide facilities to dynamically generate new
source code which is compiled and linked into the running system.
This facility may be provided by making the compiler a persistent
procedure [6, 7] .

In order to provide resilience to failure, many persistent systems
periodically take snapshots.  A system snapshot contains at least the
passive data within the system but may also include the dynamic state
of all executing programs.  If a failure should occur, the data is
restored from the last snapshot and if the dynamic state was saved, the
system resumes execution.  To support this, it is necessary to
automatically preserve the state of a program at some arbitrary point
in its execution and resume it later.  This can give rise to problems in
determining what constitutes the dynamic state of a program.  For
example, a traditional code generation technique includes a run-time
stack containing return addresses, saved register values and
expression temporaries.  The task of saving state must establish what
information on the stack should be saved and how it should be saved
in order to support rebuilding the stack when the system is restarted.

In summary, code generation for a persistent programming language
must address the following issues:

• mapping generated code onto relocatable persistent objects,
• linking generated code to the necessary run-time support,
• linking generated code to other generated code,
• preserving pointer values, including code linkage, over

garbage collections,
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• run-time compilation and execution of dynamically generated
source, and

• preserving the dynamic state over checkpoint operations.
In this paper, the techniques employed to generate native code for the
persistent programming language Napier88 [11] are presented.
Napier88 is a persistent programming language which supports first
class procedures, parametric polymorphism and abstract data types.
The Napier88 system provides an orthogonally persistent integrated
mono-lingual programming environment.  The techniques described
may be applied to any language with the features described above or a
subset of these features.

2 Choosing A Compiler Target Language

Perhaps the most obvious method of code generation is to generate
native code directly.  This has the advantage that the writer of the
code generator has complete control over:

• the mapping of code onto objects,
• linkage to the run-time support, and
• the location of pointers in data structures and registers.

Generating native code directly is also extremely costly since the
compiler produced is architecture-dependent.  An alternative to
generating native code directly is to utilise existing code generation
tools.  Some advantages of this approach include:

• reuse of existing code generation technology,
• sophisticated optimisers are available, and
• the compilers can abstract over architecture-specific features.

The ability to reuse existing code generation technology is a
significant advantage.  For example, even low level tools such as
assemblers include optimisers which relieve the compiler of the
complexities of generating and backpatching instruction sequences.
Higher level tools, such as compilers, incorporate more sophisticated
optimisers which have been the subject of considerable research and
development effort.  Thus, this approach is a potentially cost-effective
method of generating high quality code.

The range of tools investigated included assembly language, RTL
and C [9].  Register Transfer Language, RTL, is an intermediate form
used by the GNU C compiler [14].  RTL provides a rich set of abstract
operators to describe a computation in terms of data flow between an
arbitrary number of virtual registers.  The GNU C compiler parses C
source to produce a parse tree decorated with RTL.  A range of
optimisation techniques are applied to the parse tree which include the
allocation of virtual registers to physical registers.

It was originally thought that a Napier88 compiler could generate an
RTL representation of a program and have the GNU C code generator
produce architecture-specific native code.  However, RTL proved to
be a poor choice since it does not completely define the program
semantics without a parse tree, and it depends on machine specific
descriptions.  The developers of the GNU C compiler suggested the
generation of C code followed by invoking the full GNU C
compiler [16].  C is an excellent target language since it is:

• low level,
• easy to generate,
• can be written in an architecture-independent manner,
• highly available, and
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• has good optimisers.
The C system chosen was GNU C, since it provides two very useful
extensions over ANSI C.  Firstly, it allows arithmetic on goto labels.
This feature may be used to support saving and restoring state over
checkpoints and garbage collections.  Secondly, it is possible to
explicitly map global variables onto fixed registers.  This feature may
be used to efficiently link generated code with the run-time support.
A further advantage is that GNU C is freely available for most
architectures, thus the use of GNU specific C extensions need not
limit portability.

3 Seven Tricks for Compiling Persistent Languages

In this section, seven tricks are described which may be employed to
efficiently solve the problems described in Section 1.  They are:

1. the introduction of native code into a running system,
2. the ability to call other native code,
3. linking to persistent data and environment support code,
4. linking to the static environment,
5. reducing memory accesses,
6. the ability to run programs that cope with garbage collection

and snapshot, and
7. reducing memory allocation overhead by allocating frames

lazily.

3.1 The Introduction of Native Code Into a Running System

In order to support both integrated programming environments and
run-time reflection, the Napier88 system contains a compiler that is
callable at run-time.  Various compiler interfaces exist and are
described elsewhere [5].  All the interfaces take a description of the
source text and environment information as parameters and produce
an executable procedure injected into an infinite union type.

This functionality requires that the code generation technology be
capable of supporting the dynamic generation of native code and its
introduction into the persistent system.  This may be achieved in four
steps:

1. the compiler generates a C program,
2. the resulting C program is compiled in the normal manner to

produce an object or executable file,
3. the executable native code is extracted from the object or

executable file, and
4. the compiler creates one persistent object per compiled

procedure and copies the instruction sequence for each
procedure into the object.

Two techniques may be used to extract native code from the
executable file produced by the C compiler: writing a utility based on
the C linker or by generating self extracting code.

Object files generated by the C compiler contain linkage information
that is used by the C linker.  This information could be extracted by
other programs capable of reading the object code format.  However,
the format of object files is operating system and/or architecture-
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dependent and therefore a separate utility needs to be written for each
host environment.  A viable alternative is to generate self extracting
code, i.e.  a program which, when run, will output all or some of its
executable code.  In our system, native code for the compiled program
is placed into temporary files in a known format, independent of the
host architecture.

The use of self-extracting code makes the compiler independent of
the architecture-dependent structure of executable programs.  Using
this approach, the C compiler is directed to produce an executable
program which is immediately executed.  This program copies the
executable code for each function into a temporary file.  Function
pointers are used to find the start of each instruction sequence.  It is
assumed that all memory between function pointers is code.  This may
result in extra data being copied, but guarantees that all the
instructions of each function are copied.

This technique relies on specific assumptions about the C compiler.
In particular, each compiled C function is assumed to contain no non-
local references and all the local references are relative.  That is, the
compiled code is individual pure  code sequences.

  

executableGCC

myproc()
{
      int a;
      /* ... */
}
myfollow() { ... }

dump( file,&myproc,&myfollow )

Napier
Compiler

Persistent Store

10110010110111
10101101100101

READ

EXECUTE

COMPILE

GENERATE

START of myproc
10110010110111
10101101100101
END of myproc

New Napier object

Figure 1: Introducing code into the persistent store

3.2 The Ability to Call Other Native Code

Since Napier88 supports first class procedures, a piece of native code
must be able to call arbitrary compiled Napier88 procedures.  These
procedures may either be in the static environment of the caller,
extracted from a data structure in the store, or passed as a parameter.
When C is used as a target language, procedure call conventions may
be based on jumps (gotos) or C function calls.

A major reason for using C as an intermediate form is to obtain
access to the considerable optimisation technology already in
existence.  This optimisation technology is given more scope when
Napier88 procedures are encoded as C functions with all invocation
performed using C function calls.  This presents the C compiler with
independent compilation units over which its optimisers may operate.
However, due to the presence of first class procedures, many global
optimisations such as in-line expansions are not possible.  For
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example, the C compiler is unable to trace execution between
functions.  Indeed, some functions may not exist at the time of
compilation.

Utilising C functions has the advantage that calls to and from the
run-time support can pass parameters, get results and save return
addresses automatically.  On some processors such as the SPARC
[17], this is optimised by the use of windowed register sets.  Native
code-generated procedures can also use this mechanism to call each
other.

C function calls have one major disadvantage: the C stack contains
compiler and architecture-dependent data such as return addresses and
saved register values.  These addresses include object pointers that
may be modified by the garbage collector and addresses which must
be rebound over a snapshot and system restart.  In both cases, some
mechanism is required that allows both pointers and dynamic state
information to be accessed and relinked to the appropriate addresses
following a garbage collection or system restart.  Ideally this
mechanism should be architecture independent.  This problem is
addressed in Section 3.6.

An alternative is made possible by a GNU C extension called
computed gotos.  GNU CC lets you obtain the address of a goto label
using the prefix operator “&&”.  Such an address may be stored in a C
variable and later used as the target for a jump instruction with a
statement of the form “goto *(expression)”.

The Napier88 run-time system can call arbitrary generated code by
computing an address within the code object and jumping to it.  When
generated code requires some support code to be executed, it jumps to
an address within the run-time system.  (How this address is
calculated is discussed in Section 3.3.)  Before jumping, it saves the
address at which its execution should continue in a global variable.

Implementing source level procedure calls using jumps requires the
provision of a mechanism to enable parameter passing.  This may
make procedure calling inefficient since any hardware support for
procedure calling cannot be employed.  This technique does have two
advantages: it is extremely easy to implement and the location of all
data is entirely under the control of the code generator.

A final point is that the decision to use jumps or C procedure calls
affects the form of the generated code.  If jumps are to be used, the
code is structured as a collection of blocks, with each block
corresponding to a source level procedure.  If C function calls are
employed, the generated code consists of a collection of C function
definitions.

3.3 Linking to Persistent Data and Environment Support Code

By definition, programs written in persistent programming languages
access persistent data held in some persistent object store.  Programs
may be statically bound to persistent data, as is the case in languages
such as Galileo [1] or DBPL [10].  However, the exclusive use of
static binding precludes system evolution.  For this reason, many
persistent languages, including Napier88, permit dynamic binding to
persistent data.  This requirement necessitates that native code be
capable of dynamically binding to data in the persistent object store.
In addition to user level code, compiled code must be capable of
invoking the run-time support system.  The support system contains
functions such as the persistent object management code and garbage
collector that would be extremely space inefficient to include in every
piece of compiled code.  The linking mechanism employed to link to
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persistent data naturally influences the mechanism used to invoke the
run-time support.

Dynamic linking may be achieved in one of three ways:
1. by performing a linkage edit on compiled code,
2. through register indirection, and
3. through parameter passing.

The requirements of dynamic linking may be met by performing a
linkage edit on generated code whenever the addresses it contains may
have changed.  This approach requires that code objects be modified
dynamically and that all code objects include symbolic information
which are architecture/operating system dependent.

/* declare a structure containing */

/* the address of an object creation function */

struct global_data {

int (*create_object)(int) ;

} the_globals ;

/* declare a  fixed register */

/* %g7 is a sparc global register */

register struct global_data *fixed_register asm( "%g7" )

;

void init_table(void)

{

/* the store's object creation function */

extern int SH_create_object( int ) ;

fixed_register = &the_globals ;

fixed_register->create_object = &SH_create_object ;

}

Figure 2:  Register indirection.

An alternative strategy is to note that many systems address global
data by indexing through a fixed global register.  BCPL employed this
technique by providing a data structure called the global vector.
Dynamic linking by register indirection can be easily encoded in GNU
C since specific registers can be treated as C variables.  The
implementation of this technique requires that, upon initialisation, the
support code construct a data structure containing the addresses of
persistent data and support code.  A pointer to this data structure is
placed in some register.  Whenever generated code wishes to address
global data or the run-time support, it simply dereferences the
allocated register variable.  Figure 2 illustrates the initialisation of a
fixed register and a global table with the address of an object creation
function.  Figure 3 illustrates how a C function could use dynamic
linking via the fixed register to create an object of size 7.
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struct global_data {

int ( *create_object )(int) ;

} ;

register struct global_data *fixed_register asm( "%g7" )

;

void Cfunction(void)

{

int object_id ;

/* create an object of size 7 */

object_id = fixed_register->create_object( 7 ) ;

}

Figure 3:  Dynamic linking.

The advantage of this technique is that it allows the persistent store
and run-time support to be freely re-implemented as long as they
retain their specified interfaces.  The disadvantages are that it
permanently reserves a register for this purpose and cannot be
implemented on some architectures.

An alternative to the fixed register approach is available if generated
code is structured as C functions as describe in Section 3.2.  A pointer
to the global data structure may be passed as parameter.  The invoked
procedure passes this pointer to any procedures it calls and so on.  The
advantage of this technique is that it is architecture independent.  The
disadvantage is that a pointer must be passed as a parameter on every
procedure call; although this overhead is not onerous on architectures
such as SPARC that support register windows.

3.4 Linking to the Static Environment

Napier88 is a block structured Algol-like language with nested
scope.  Although C is block structured, it does not support nested
functions and therefore some mechanism must be provided in the
generated code to support scope.  The interpreted version of Napier88
executes on a machine known as the Persistent Abstract Machine
(PAM) [2].  In this implementation, procedure values or closures  are
implemented as a pair of pointers: one to an object containing code,
the  code vector , the other to the activation record of the defining
procedure, the  static link.  Since procedures are first class values, they
may escape the scope in which they were declared, therefore an
activation record may be retained beyond the execution of the
procedure which created it.  Consequently, some stack activation
records may not be deleted on procedure return and may only be
reclaimed by garbage collection.  Consequently activation records
must be allocated on a heap rather than a conventional stack.

This run-time architecture may be reused in a system that generates
native code by implementing each closure in the same manner as
PAM and presenting each procedure call with a pointer to a heap
object containing the activation of the lexicographically enclosing
procedure.  This pointer is placed in the activation record of the
invoked procedure so that it may be dereferenced by the native code
in order to access variables that are in scope.

A disadvantage of this technique is that, if C functions are
generated, two stacks need to be maintained: a heap based Napier88
stack and the C stack.  However, it has the advantage that object
pointers are automatically rebound if the objects they address are
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moved by garbage collection since the pointers to them all reside in
the heap.

3.5 Reducing Memory Accesses

As described in Section 3.4, in order to support block structure, all
Napier88 variables may be placed in an activation record contained in
a heap object.  In the interpreted system, in order to perform a
computation such as “a := a + b”, the PAM pushes the values of a and
b onto the stack, incrementing a stack pointer each time. Then the plus
instruction pops both values, adds them and pushes the result.  Finally,
the result is removed from the stack, the stack pointer decremented
and the result written to its destination.  Such computation is
expensive because it dynamically maintains stack pointers and
operates on memory rather than in registers.  This expense can be
reduced in three complementary ways: the elimination of stack
pointers, the transformation of source expressions into C expressions
and the use of local C variables.

In an interpretative system, many memory accesses are due to stack
top relative addressing.  In practice, there are very few cases where
the stack top cannot be statically determined by the compiler's internal
stack simulation.

In a system that generates C code, many simple sequences of stack-
based PAM instructions may be directly replaced by C expressions.
In order to implement “a := a + b”, a C sequence may be generated
such as:

local_frame[ a_index ] =

local_frame[ a_index ] + local_frame[ b_index ]

Such optimisations must be applied with care if the semantics of the
high level programming language are to be preserved.  In general, C
does not guarantee the order of evaluation whereas Napier88 specifies
left to right evaluation order.  For this reason, expressions which
cannot be guaranteed to be free from side-effects (including function
calls) are not permitted in the generated C expressions.  Nevertheless,
this class of optimisation has a dramatic effect on the speed of
generated code, largely due to optimisation possibilities.

In Section 3.4 we describe why a heap based Napier88 stack is
required in addition to the C stack if Napier88 procedures are mapped
onto C functions.  Whilst many Napier88 expressions may be
translated into C expressions, they still contain a performance
bottleneck: all the data is referenced relative to the current Napier88
activation frame base.

A solution to this problem is to declare C variables, local to each
generated function, which corresponded to locations in the PAM
activation record.  However, it is not always possible to represent
source-level variables as C variables.  For example, local procedures
must be able to access variables in outer scope levels.  Thus these
variables must be stored in PAM objects when other procedures need
to see them.  On the other hand, leaf procedures (those that do not
contain any other procedures) can keep their local variables in C
variables with impunity, provided that they are still able to save their
data into PAM frames when it is necessary to checkpoint the store or
perform garbage collection.

This problem was solved by dividing generated code for procedures
into two groups: the easy cases and the harder cases.  The easy
procedures, like leaf procedures, use C variables and are prepared to
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copy their values into PAM stack frames when necessary.  The harder
cases always keep their data in PAM stack frames.  Since simple leaf
procedures are a common case (akin to class methods in object-
oriented languages) this yields a significant performance
improvement.

3.6 Surviving Garbage Collection and System Snapshots

As described in Section 3.2, some mechanism is required that allows
both pointers and dynamic state information to be accessed and
relinked to the appropriate addresses following a garbage collection or
system restart.  The mechanism described in this section explicitly
encodes source-level procedures as restartable C functions which are
parameterised with a restart point  and return a scalar status value.
The restart point is used to indicate where in the procedure the code
should start executing.  The first call to a Napier88 procedure is
performed by a C function call with a 0 restart point.  The status value
indicates if the procedure executed to completion or encountered
some hindrance such as a request to make a system snapshot to invoke
a garbage collection.

The PAM stack of persistent activation records, described in Section
3.4, is utilised by the restartable C functions.  When a Napier88
procedure is called, a persistent object is created to represent its
activation record.  This object provides a repository in which data may
be saved over garbage collections and checkpoints.

3.6.1 Garbage Collection and Checkpointing

In the Napier88 system, all garbage collection is performed
synchronously with the computation: that is the computation stops
when the garbage collector is running.  Napier88 procedures recognise
the need for garbage collection when heap space is exhausted.
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struct global_data{

int (*create_object)(int);

int *local_frame;

};

register struct global_data *fixed_register asm( "%g7" )

;

int Nproc(int restart_point)

{

int x ; /* the variable x */

int *S ; /* object id for structure S */

/* restart using label arithmetic */

goto *(&&start + restart_point);

start:

x = 7 ;

create:

S = fixed_register->create_object( SIZE_OF_S ) ;

if ( S == NULL ) /* did the create fail */

{ /* YES, garbage collect */

/* save x in current stack frame */

   fixed_register->local_frame[ x_offset ] = x ;

/* save restart point in stack frame

*/

   fixed_register->local_frame[ ResumeAddress ]

      = &&restart-&&start ;

/* return garbage collect request*/

   return unwind_and_continue ;

restart: /* restore x */

   x = fixed_register->local_frame[ x_offset ] ;

   goto create ; /* repeat attempt to create S

*/

}

S[ 2 ] = x ; /* initialise S */

.....

/* update local_frame */

/* to point at caller */

fixed_register->local_frame

   = fixed_register->local_frame[ DLink ] ;

return OK ; /* normal completion*/

}

Figure 4:  The C function implementing the
Napier88 procedure shown in Figure 5.

When they start executing, all Napier88 procedures  register the
address of the heap object containing the activation record in a global
data structure.  Before a garbage collection or checkpoint is executed,
the generated code must ensure that their entire dynamic call chain is
stored in PAM heap objects over which the garbage collector can
operate.  This is achieved by each procedure saving its entire state in
the corresponding PAM stack frame.  The saved state includes a
resume address which may be passed to the function when it is
restarted to indicate where it should continue computation.  After
saving its state, each procedure returns a status value to its caller
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indicating that it too should save its state and return the same status
value to its caller.

Eventually, the flow of control returns to the run-time support which
services the request by reading the global data structure and applying
the appropriate function.  Since each executing C function has saved
its state in a heap object and returned, there is no data on the C stack.
The mechanism is therefore architecture independent.  Figure 4 shows
a restartable C function for the Napier88 procedure shown in Figure 5.

proc()

begin

let x := 7 ! declare an integer x

let S := struct( a := x ) ! declare a structure S

!intialised using x

.....

end

Figure 5:  Napier88 procedure.

In the code generation system which we constructed, the status value
is an enumeration containing three labels:

OK: which indicates that the procedure ran to completion,
unwind_and_reapply: which indicates that something abnormal

occurred in the procedure so the caller should save state and
unwind and that the procedure should be reapplied  when
computation re-commences, and

unwind_and_continue: which indicates that something abnormal
occurred in the procedure so the caller should save state and
unwind, but that the procedure has completed therefore the
caller's next instruction should be executed when computation
of the caller re-commences.

3.6.2 Restarting a Napier88 Program

Restarting a saved Napier88 program execution is performed in 3
steps.  The first step is to find the PAM stack frame for the currently
executing procedure; the address of this frame is held in the global
data structure.  Secondly, a pointer to the code object for the currently
executing procedure is read from the stack frame.  Finally, the C
function in the code object is called and passed the restart point saved
in the stack frame.

When a restarted procedure returns, it returns to the run-time support
rather than its original caller.  It will also have copied its Napier88
result, if any, into the caller's stack frame.  This frame is found by
following the dynamic link information stored in the stack frame.
Since the caller's state has been stored in its stack frame together with
an appropriate resume address, it can also be restarted.

3.7 Lazy Frame Allocation

The final trick employed was to avoid allocating stack frames for
procedure unless absolutely necessary.  As described in Section 3.5,
many procedures are leaf procedures and as such only require their
state to be saved in a heap object if a garbage collection or system
snapshot is required.  A considerable performance increase in
performance may be obtained by only creating heap objects for stack



13

frames when required to do so.  This trick needs to be applied with
care.  Garbage collections are usually only invoked when the system
has run out of space.  The creation of objects at such times can be
counter-productive!

In our system, when a Napier88 procedure call is made, space is
reserved in the heap for the frame that may be required.  When the
procedure returns the reserved space is released.  This ensures that
there is always space available for dumping procedure state even
when a garbage collection is required.

4 History

The techniques described above were not all conceived or
implemented at once, but at different stages in continuous
development.  The compiler and run-time system to support native
code were built from a working compiler that generated PAM code
and PAM code interpreter written in C.  The run-time system still
contains the interpreter code; interpretative and native code may
coexist and call one another in our implementation.

4.1 Threaded Code

The first step was to utilise the PAM abstract machine architecture by
generating C code which replaced PAM instructions with explicit
calls to the C functions that interpret them.  This kept the changes to
the compiler and interpreter manageable.  Where the compiler
previously generated PAM instruction n, it would now generate an
instance of a C macro called “Pam_n”; this macro expanded into a call
to the C function that implemented instruction n.

The structure of the code generation mechanism and the
communication between generated code and the run-time system was
established and tested prior to the development of efficient code
generation patterns.

4.2 Simple Macros

The second step was to replace calls to the simpler interpreted
instructions with equivalent in-lined C code.  This was accomplished
by rewriting the C macros for these instructions.

The net effect of this step was to produce a working Napier88
system where most of the interpretative decoding overhead had been
removed.  However, the generated code still followed the PAM stack
model, explicitly manipulating a persistent activation record through
stack pointers.  Since the C compiler cannot determine the global
effects of assignments to the frame, it will ensure they are all
performed.  This effectively defeats an optimiser since it cannot elide
superfluous frame assignments.

4.3 C Expressions

The first attempt to diverge from the PAM stack model was to
translate simple Napier88 expressions like “(a + b * c) > 5” into
isomorphic C expressions.  This optimisation was only peformed
where the semantics were guaranteed to be faithful to the defined
Napier88 semantics; no side-effects were permitted except for those in
assignment statements, and neither were Napier88 procedure calls.
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Where appropriate this allowed the C compiler to perform constant
folding and avoided unnecessary memory references.  This resulted in
excellent optimisation of this class of Napier88 expressions.

4.4 Removing Run-time Stack Pointers

The next stage was to take advantage of the fact that the locations of
the stack tops are statically known.  Stack-based operations were
rewritten so that they read and wrote directly to known offsets into
stack frames rather than incrementing and decrementing stack pointers
and performing stack loads.  Run-time stack pointers are still needed
to handle polymorphism [12], but only during short and well-defined
windows of uncertainty.  Extra parameters were supplied to the C
macros to indicate the relative stack locations.

Although this technique simplified the C code produced, it still
encoded calculations as manipulations of stack locations in main
memory and so inhibited effective use of an optimiser.

4.5 Local Variables

The next major stage was to declare C variables, local to the generated
function, which corresponded to locations on the PAM stack.  The
word at location n, previously accessed as Frame[n], was now treated
as the variable F_n.  As described earlier, this optimisation is only
applied to leaf procedures.  Code was also generated to save and
restore the variables, where necessary.

4.6 Lazy Frame Allocation

Having decided to keep local data in C variables, we realised that
many leaf procedures do not actually need to have PAM frame objects
allocated at all, and that we could reduce the time overhead of
function call by omitting this allocation.  However, as described
above, it is sometimes necessary to have a frame later in the execution
of the procedure – for example, if a garbage collection is imminent.
We therefore implemented lazy frame allocation for non-polymorphic
leaf procedures.  This required that the native code calling mechanism
be modified so that the callee allocated the activation record.
Arguments to Napier88 procedure calls were passed as C arguments.

5 Performance

To indicate the relative merits of some of the above code generation
techniques, timing results for the following simple benchmarks are
provided:

• nfib – a recursive, function call intensive program, listed in
appendix 1.

• dhrystone – an Ada benchmark [19].
• quicksort – sorting a 10,000 element array of integers, listed in

appendix 1.
Measurements were made on a Sun Sparcstation 2 with 64 megabytes
of main memory.  The native code generation experiments were
conducted using a Napier88 system based on a single user, page based
(CASPER [18]) object store held on a local disk.  Computation-
intensive benchmarks are used for two reasons.  Firstly, the
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performance characteristics of the persistent object store cannot
significantly affect the results.  Secondly, a C implementation of the
benchmarks can be used to give an upper bound on our performance
expectations.
The graph in Figure 6 shows the speedup relative to the CASPER
PAM achieved by the incremental application of the code generation
techniques.  For comparison the graph includes the performance of the
benchmarks written in GNU C when optimised and un-optimised.
Note that procedure calls are relatively infrequent in the quicksort
algorithm; hence the flat spot on the quicksort curve.
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Figure 6:  Performance increase relative to interpreted system.
One drawback of the generated code is its size.  It is only fair to
expect that native code be significantly larger than PAM code, since
PAM instructions can describe complex operations in a single byte,
while the smallest machine instruction available on the SPARC
architecture occupies four bytes.

Code files containing native code can exceed the size of their PAM
code counterparts by a factor of ten, or more.  As the graph in Figure
7 illustrates, code file sizes have varied significantly during our
experiments with code generation techniques.
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Figure 7:  Sizes of the code files for the benchmark programs (kb).
The other drawback is that compilation to native code is relatively
slow.  The native code compiler takes between three and fifteen times
as long as the PAM-code generating compiler on which it is based.
For instance, compiling the Dhrystone benchmark into PAM code
takes about 10 seconds; compiling it with the native code compiler
takes about 35 seconds, or 105 seconds with GNU C optimisation
level 2.

The extra time is spent almost entirely in GNU CC.  This is not
surprising, since large amounts of C code are generated.  Compiling
Dhrystone produces 100K of macros which are expanded into 480K
of C source by the pre-processor.

We have endeavoured to reduce code size and compilation time by
making the code generation patterns as simple as possible, factoring
out common segments of code into new run-time support calls.

6 Conclusions

This paper presenta techniques for generating native code for
persistent programming languages.  C is used as a compiler target
language resulting in a portable and efficient code generation
technique whose performance approaches that of equivalent C
programs.  The full functionality of a strongly typed persistent object
store is freely available without the undesirable aspects of
programming in C.  The code generation techniques presented permit:

• the co-existence of interpreted and native code,
• code to be mapped onto relocatable persistent objects,
• linked to the necessary run-time support and other generated

code,
• the use of compacting garbage collectors,
• the run-time compilation and execution of dynamically

generated source, and
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• the preservation of dynamic state over system snapshots.
We have recently re-implemented the code generator's C macros to
abstract over address sizes.  This enhanced portability permits the
code generation technology to be employed on the latest 64 bit RISC
architectures such as the DEC Alpha [15].  We expect to have a robust
native code generator running on an Alpha platform by the time this
paper is published.

7 Future Work

We are currently investigating the use of boxed values [13] as
implemented in the interpreted Napier88/Octopus system [8].  We
believe that the use of boxed values will permit lazy code, as
described in Section 3.7, to be generated in many more cases than is
currently possible.  Whether or not this proves to be an optimisation
remains to be seen.

We are currently assembling Napier88 systems that will permit us to
compare swizzled and directly mapped store technologies.  The
system under construction will support independent configuration of
the following options:

• whether the store is directly mapped with page granularity, or
swizzed with object granularity;

• whether the code in the store is native code or interpreted
PAM code;

• whether the code in the store uses the Octopus model [8] or
the original PAM frame model [4]; and

• whether the system will run on the Sun SPARC architecture
or the DEC Alpha AXP architecture.

We plan to measure the performance of the OO7 benchmark [3] under
all combinations of the above options, comparing object-swizzled and
page-mapped stores.
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Appendix 1 Benchmark Sources

A1.1 Nfib Napier88 Source

rec let nfib = proc( n: int -> int )

if  n < 2 then 1 else  1 + nfib( n-1 ) + nfib( n-2 )

A1.2 Quicksort Napier88 Source

let partition = proc ( A : * int; l,r : int -> int )

begin

let k = ( l + r ) div 2

let al = A( l ) ; let ar = A( r ) ; let ak = A( k )

let t = case  true  of

al < ar :

if  ak < al then  al else

if  ak < ar then  { A( k ) := al ; ak }

else  { A( r ) := al ; ar }

ak < ar : { A( r ) := al ; ar }

ak < al : { A( k ) := al ; ak }

default  : al

let v := l ; r := r + 1

let notdone := true

while notdone do

begin

repeat l := l + 1 while l < r and A( l ) < t

if  l = r then notdone := false else

begin

repeat r := r - 1 while l < r and t < A(

r )

if  l = r then  notdone := false else

begin

A( v ) := A( r ) ; A( r ) := A(

l )

v := l

end

end

end

l := l - 1

A( v ) := A( l ) ; A( l ) := t

l

end

rec let quicksort = proc( A : * int ; l,r : int )

while l < r do

begin

let k = partition( A,l,r )

if  k - l > r - k then {quicksort( A,k + 1,r ) ; r := k

- 1}

else  {quicksort( A,l,k - 1 ) ; l := k +

1}

end


