
This report should be referenced as:

Brown, A.L., Carrick, R., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby, G.N.C., Morrison,
R. & Munro, D.S. “The Persistent Abstract Machine Version 10 / Napier88 (Release 2.0)”.
Universities of St Andrews and Adelaide (1994).



The Persistent Abstract Machine

Version 10 / Napier'88 (Release 2.0)

A.L. Brown†, R. Carrick, Q.I. Cutts, R.C.H. Connor
A. Dearle†, G.N.C. Kirby, R. Morrison, D.S. Munro

Department of Mathematical and Computational Sciences,
University of St. Andrews,
North Haugh, St Andrews

KY16 9SS, Scotland

†Department of Computer Science,
University of Adelaide,
South Australia 5005,

Australia.



PAM v10 Abstract

In recent years, research into persistent programming systems has led to the design of sophisticated
database programming languages such as Galileo, PS-algol, and Napier. These languages provide
a wide range of abstraction facilities such as abstract data types, polymorphism and first class
procedures that are integrated within a single persistent store. The development of these systems
has required the design of a variety of new implementation techniques. For example, the
development of the Napier system required the design of reusable compiler componentry, an
intermediate language, an abstract machine and a persistent object store, all of which are integrated
into a highly modular layered architecture. Here we present a description of the Persistent Abstract
Machine.



Contents

1 Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Heap Based Storage Architecture.. . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A Low-Level Type System.................................... 2
1.3 Concurrency, Distribution and User Transactions . . . . . . . . . 3
1.4 Errors and Events .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Abstract Machine Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 ROP... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Object Formats......................................... 5

2.1.1.1 The Header.................................. 5
2.1.1.2 The Pointer Fields.......................... 5

2.1.2 The Abstract Machine Root Object . . . . . . . . . . . . . . . . . . 6
2.2 LFB ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 LMSP and LPSP ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 CP... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Scalar Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Integer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Boolean.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Pixel.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.4 Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Pointer Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Strings .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Files.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2.1 Disk Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2.2 Terminal Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2.3 Socket Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2.4 Raster Window Files . . . . . . . . . . . . . . . . . . . . 10
3.2.2.5 Errors and Equality . . . . . . . . . . . . . . . . . . . . . . 11

3.2.3 Vectors................................................ 11
3.2.4 Images .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Structures............................................. 13
3.2.6 Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.6.1 Code Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.6.2 Frames..................................... 14
3.2.6.3 Operations and Equality . . . . . . . . . . . . . . . . . 15

3.2.7 Abstract Data Types.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Mixed Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Anys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Persistent Abstract Machine Code.................................. 18

4.1 Jumps.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Stack Load and Assignment................................. 23
4.3 Polymorphic Operations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Stack Duplicate Operations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Stack Retract Operations..................................... 30
4.6 Block Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Procedure Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



4.8 Image Operations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Vector and Structure Creation Instructions . . . . . . . . . . . . . . . . 43
4.10 Vector and Structure Accessing Instructions . . . . . . . . . . . . . . 47
4.11 String Operations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.12 Load Literal Instructions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.13 Primitive I/O Interface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.14 Comparison Operations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.15 Arithmetic and Boolean Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.16 Miscellaneous .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.17 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.18 Structure Constancy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.19 Host Operating System....................................... 73
4.20 Thread Operations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Persistence............................................................. 76

5.1 The Interface to the Persistent Store .. . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Interface Functions to the Local Heap.. . . . . . . . . . . . . . . . . . . . . 76
5.3 Implementation Consequences .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Errors and Events..................................................... 79

6.1 Errors.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Events .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix I: Persistent Abstract Machine Operation Codes............. 83

Appendix II: Code File Format .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



1

1 Introduction

In recent years, research into persistent programming systems has led to the design of sophisticated
database programming languages such as Galileo[1], PS-algol[2], and Napier[3]. These languages
provide a wide range of abstraction facilities such as abstract data types, polymorphism and first
class procedures that are integrated within a single persistent store. The development of these
systems has required the design of a variety of new implementation techniques. For example, the
development of the Napier system required the design of reusable compiler componentry[4], an
abstract machine and a persistent object store, all of which are integrated into a highly modular
layered architecture[6]. Here we present a description of the Persistent Abstract Machine.

Distribution

Concurrency User Transactions

Persistent Object Store

Abstract Machine

Figure 1. The major architecture components.

The Persistent Abstract Machine is primarily designed to support the Napier programming
language. It is closely based on the PS-algol abstract machine[7], which in turn evolved from the
S-algol abstract machine[8]. Due to the modularity of its design and implementation, it may be
used to support any language with no more than the following features: persistence,
polymorphism, subtype inheritance, first class procedures, abstract data types and block structure.
Other features, such as object-oriented programming in the Smalltalk style[9] and lazy evaluation,
may be modelled at a higher level using the same support mechanisms as first class
procedures[10,11]. This covers most algorithmic, object-oriented and applicative programming
languages currently in use. The machine can thus be said to be multi-paradigm.

The Napier system is designed so that implementors wishing to use the abstract machine may
compile to an intermediate level architecture, consisting of abstract syntax trees. A code generator
is available to compile to the abstract machine level. This persistent architecture intermediate
language, PAIL[5], supports all of the abstractions listed above, and is sufficiently high-level to
ease the burden of compiler writing. Furthermore, it is possible to check at this level that correct
(i.e. consistent) PAIL code has been generated, and so output from an untrusted compiler cannot
cause a malfunction in the abstract machine. This assures that the persistent store may not be
corrupted by the generation of illegal instruction sequences, removing the onus of segmentation
protection from the store.

Many features of the design of the Persistent Abstract Machine are directly attributable to the
Napier language. The major points fall into two sections:

1. The machine is an integral part of an entire layered architecture;  in particular, it
interfaces cleanly with the persistent store, and allows an elegant implementation of
persistence in a high-level language. As another consequence of persistence, the machine
exists in a single heap-based storage architecture. This architecture directly gives a method



2

of implementing block retention, for almost no extra cost. This allows the implementation
of first class procedures and modules in programming languages with the minimum of
effort.

2. A primitive two-level type system within the machine contains enough information to
allow machine instructions whose behaviour depends on the dynamic type of their
operands. It has a fast and efficient integer encoding. In conjunction with the block
retention architecture, the type system is used to great effect to provide a fast
implementation of polymorphic procedures, abstract data types, and bounded universal
quantification.

1 .1 A Heap Based Storage Architecture

One of the most notable features of the abstract machine is that it is built entirely upon a heap-based
storage architecture. Although the machine was primarily designed to support a block-structured
language, for which a stack implementation might be the obvious choice, the heap-based
architecture was considered advantageous for the following reasons:

1. Only one storage mechanism is required, easing implementation and system evolution.

2. There is only one possible way of exhausting the store. In a persistent system this is an
essential requirement, since applications should only run out of store when the persistent
store is exhausted, and not merely when one of the storage mechanisms runs out. Although
this could be modelled in an environment with more than one storage mechanism, it would
be expensive in terms of implementation and evolution.

3. The Napier language supports first-class procedures with free variables. To achieve the
desired semantics, the locations of these variables may have to be preserved after their
names are out of scope, which would not happen conveniently in a conventional stack-
based system.

Stacks are still used conceptually, and each stack frame is modelled as an individual data object.
Stack frames represent the piece of stack required to implement each block or procedure execution
of the source language. To aid garbage collection, a stack frame contains two separate stacks, one
for pointers and one for non-pointers. The size of each frame can be determined statically, which
leads to an efficient use of the available working space.

1 .2 A Low-Level Type System

A major design decision of the system is to have non-uniform representation of different types of
objects in the machine. Some systems, particularly those which support polymorphism and other
type abstractions, have a uniform representation in which every object is wrapped in a pointer to a
heap object[12]. This allows type abstraction to be implemented easily, but has a drawback in
efficiency. The Napier system has a number of different representations for objects on the
machine's stacks, including some which have part of their value on either stack. This causes
problems with stack balancing and object addressing, solutions to which are presented below.

The abstract machine has its own type system, albeit a very low-level and unenforced system. It is
a two-level system, one level describing object layout and the other including some semantic
knowledge of the object. Most of the abstract machine instructions are typed, although no attempt
is made to ensure that the operand is of the correct type ; the type acts in effect as a parameter to the
instruction.

Many language constructs involve operations where the type of the operands is not known
statically. As equality is defined over all types in Napier, but is defined differently according to the
type of its operands, it is necessary to perform a dynamic type lookup wherever the operand type is



3

not known statically. This happens in the case of variants, anys, polymorphic quantified types, and
witnesses to abstract data types. A further need occurs when statically unknown types are assigned
into or dereferenced from other data objects, when it is necessary to find the dynamic type to
calculate the correct size and addressing information.

Both levels of the type system are finite, and contain only a small number of different types. The
first level of the type system contains information as to the location and size of the instruction's
operand. The machine supports six different types of objects, which are:

Operand shape Prefix to instruction mnemonic ( appendix 1 )

one integer word, w
two integer words, dw
one pointer p
two pointers dp
one integer word and one pointer wp
two integer words and two pointers dwdp

The instructions which are typed in this manner are those instructions which need to know only the
shape of the object upon which they operate. These are instructions such as stack load,
assignment, duplicate, and retract. The machine operations need to know nothing about the
semantic nature of the objects in these locations.

The other, slightly higher level, system is required when the operation does depend on the
semantics of the operand. These are all the operations which involve comparison of two objects, in
which case the shape of the object is not sufficient. The machine supports different types with the
same object formats. An example of this is structures and strings: they both consist of a single
pointer, but equality is defined by identity on structures and by character equality on strings. The
types supported are:

High-level type(s) Suffix to instruction mnemonic ( appendix 1 )

integer,boolean,
pixel, .ib
real .r
string . s
structure,vector,image,file
abstract data type .p
procedure .pr
variant .var
polymorphic .poly
any .any

These are the eight different classes of equivalence defined by the abstract machine.

It would be possible to do a certain amount of static checking on abstract machine code to ensure
that this type system is not broken, which could perhaps be useful if an untrusted compiler was
producing abstract machine code. However, incorrect store instructions, such as addressing off the
end of an object, could not be statically checked from abstract machine code. This is the main
danger in allowing untrusted compilers to access the abstract machine at this level. As there is only
one persistent store for all users, it is essential that untrusted machine code is not used.

1 .3 Concurrency, Distribution and User Transactions

To support concurrency the abstract machine provides lightweight threads. Threads may be created
using a thread creation operation which is supplied with a void procedure and returns an integer



4

identifier. The new thread executes the supplied procedure in parallel with the invoking thread.
Operations such as who am I, suspend, restart and kill can be performed on any thread provided its
thread identifier is known.

Interaction between threads that share data is controlled by the abstract machine. All abstract
machine operations are executed as atomic operations. Thus, conflicting operations on shared data
appear to be performed one at a time in some arbitrary order. When a Napier level logical operation
must be performed without interruption, a per thread lock word is used to mark a thread as
executing in a critical section. Until the lock word is reset to 0 the executing thread has exclusive
access to the abstract machine. Access to the lock word is controlled by an abstract machine
instruction.

Distribution is supported through the provision of a socket interface. Using the socket interface, a
Napier system is able to communicate with other Napier systems exchanging a stream of 32-bit
integers. Since all persistent objects are defined in terms of 32-bit integer values, Napier systems
may communicate with each other without regard to their architecture specific integer
representations. Given this simple building block more sophisticated protocols and distribution
mechanisms may be constructed.

No explicit support for user transactions is currently provided.

1 .4 Errors and Events

The persistent abstract machine supports the automatic execution of user defined procedures when
an error condition or asynchronous event occurs. These procedures are held in data structures
pointed to by the root object, see Chapter 6.

User defined procedures for error conditions may supply an alternate result for the erroneous
operation or report an error and abort the executing thread. With the exception of variant projection
errors, an executing thread may continue execution if the error procedure returns.

Asynchronous events handled by the abstract machine include the UNIX signals hangup, interrupt
and quit together with two timer interrupts, one for timer related tasks and one for network related
tasks. Since the handler procedures are called by the current thread, they are only invoked between
abstract machine instructions and then only if the per thread lock word is 0.



5

2 Abstract Machine Registers

The registers of the persistent abstract machine are:

ROP abstract machine root object pointer
LFB local frame base
LMSP local frame main stack top
LPSP local frame pointer stack top
CP code pointer

2 .1 ROP

A garbage collection of the persistent heap retains all objects that are reachable, by following object
addresses ( pointers ), from the root object. Since the persistent heap is the only storage
mechanism available to the persistent abstract machine, the abstract machine must arrange for all
active data objects, including its own housekeeping information, to be reachable from the root
object. This is achieved by making the root object of the persistent heap point to a special object
created for the abstract machine. The special object, known as the root object for the abstract
machine, is pointed to by the ROP register. The object contains all the housekeeping information
required by the abstract machine, including the current state of any active programs, and a pointer
field that is used as the root of persistence for user data.

2.1 .1 Object Formats

All heap objects are laid out in a consistent manner in order that the system utilities may operate on
them irrespective of their type. Thus all heap objects have the same format which is as follows: (a
word is a 32 bit integer)

word 0 header
word 1 the size in words of the object
word 2..n the pointer fields
word n+1.. the non pointer fields

2.1.1 .1 The Header

Word 0 has the following interpretation:

bits 0-23 the number of pointer fields in the object
bit 24 trace bit for use by procedure return instructions  or

constancy bit for validating updates to vectors
bit 25-31 reserved for implementation experiments

where bit 0 is the least significant bit of the word.

2.1.1 .2 The Pointer Fields

The pointer fields within an object are a single word in length. Since the persistent heap uses object
level addressing, all pointers must address the start of an object. That is, a pointer may never
directly address the contents of an object. Individual fields are addressed by a pointer to an object
and an index within the object.



6

2.1 .2 The Abstract Machine Root Object

The root object for the abstract machine may be logically viewed as having the following fields:

word 0,1 object header and size
word 2 the pointer literal nil
word 3,4 the closure for the startup procedure
word 5 the logical root of persistence
word 6 the file literal nilfile
word 7 the string literal ""
word 8 a pointer to the vector of all 128 single character strings
word 9 the image literal nilimage
word 10,11 closure for a procedure that compares the types of two anys
word 12 a pointer to the vector of event handling procedures
word 13 a pointer to the structure of error handling procedures
word 14 a pointer to the vector of open files
word 15,16 the closure for the type checking procedure, nil's if not in use
word 17 a pointer to the types module, nil if not in use
word 18 the error number for the last I/O instruction executed
word 19 the integer literal maxint
word 20,21 the real literal maxreal
word 22,23 the real literal pi
word 24,25 the real literal epsilon
word 26 the abstract machine magic number: the second last word in the root object
word 27 the compiler magic number: the last word in the root object

In practise, the abstract machine root object may be significantly different and in fact may be
distributed among multiple thread context objects. However, all implementations of the abstract
machine will provide the logical view presented above by suitably interpreting the root object
accessing instructions.

2 .2 LFB

The persistent abstract machine implements a stack using a separate heap object for each stack
frame, described in section 3.2.6. A stack frame is created whenever a procedure is called or a
block is executed. The LFB register is used to point to the stack frame for the currently executing
procedure or block ( the local frame ) and must be updated on every procedure call, procedure
return, block entry and block exit. All local data may be accessed by indexing the LFB.

2 .3 LMSP and LPSP

In order to conform to the single object format described above, each object representing a stack
frame actually contains two distinct stacks. One stack contains pointers ( the pointer stack ) and the
other contains non-pointers ( the main stack ). Within the local frame, pointed to by the LFB
register, the LMSP register points to the top of the main stack and the LPSP register points to the
top of the pointer stack. In fact the LMSP and LPSP registers point to the word following the last
word on the appropriate stack. It should be noted that the LMSP and LPSP directly address the
contents of a heap object. However, these registers are never stored in the persistent heap and are
always recalculated whenever the LFB register is updated.

2 .4 CP

The next abstract machine instruction to be executed is directly addressed by the CP register. The
CP register is similar to the LMSP and LPSP registers in that it is never stored in the persistent
heap. Its contents are always recalculated whenever the object containing the abstract machine code
is changed or moved.



7

3 Data Types

The persistent abstract machine supports a range of data types that may be classified as scalar data
types, pointer data types, and mixed data types. The scalar data types represented by integer words
are: integer, boolean, pixel and real. The pointer data types represented by the addresses of data
objects ( pointers ) are: string, file, vector, image, structure, procedure and abstract data type. The
mixed data types represented by a combination of integer words and pointers are: variant and any.

3 .1 Scalar Data Types

3.1 .1 Integer

Integers are represented by a single 32 bit word using two's complement, i.e. the range of integer
values is -2147483648 to +2147483647. The bits within an integer word are numbered from 0 to
31 with bit 0 being the least significant and bit 31 the most significant.

The following operations are permitted on an integer, described in chapter 4:

equals, not equals, less than, less than or equals, greater than, greater than or equals,
negate, plus, minus, multiply, quotient on division, remainder on division
bitwise and, bitwise or, bitwise not, arithmetic shift right, arithmetic shift left and
translate into the floating point representation ( real ).

Any arithmetic operation on integers whose result is outwith the supported range of values, or
requires division by 0, is treated as an error.

3.1 .2 Boolean

The boolean data type has two values, true and false. true is represented by the integer value 1
and false is represented by the integer value 0.

The following operations are permitted on a boolean, described in chapter 4:

Two booleans are equal if they have the same integer value.

3.1 .3 Pixel

The pixel data type supports pixels of up to 24 planes in depth. A pixel is represented as an integer
value. The depth of the pixel is held as an 8 bit integer in the most significant 8 bits of the integer
value with each of the remaining 24 bits representing an individual plane. Plane 0 of the pixel is
represented by the least significant bit of the integer, bit 0, plane 1 of the pixel is represented by bit
1, and so on.

The following operations are permitted on a pixel, described in chapter 4:

equals, not equals and not. equals, not equals,
concatenate pixels and
subpixel selection.

An attempt to create a pixel whose depth is not in the range 1 to 24 or an attempt to select non
existent planes from a pixel are both treated as errors. Two pixels are equal if they have the same
integer value.



8

3.1 .4 Real

The real  data type supports floating point numbers with magnitudes in the range
4.94065645841246544e-324 to 1.79769313486231470e+308. A real is represented as a pair of
integer words that make up a 64 bit floating point number conforming to the IEEE 754
standard[13]. The integer word with the lower address is referred to as word 0, and the other word
as word 1. The address of word 0 is used as the address of the real. Bit 31 of word 0 contains the
sign bit, with the signed exponent being held in bits 20 to 30 of word 0. The remaining 52 bits
form the fraction, the higher numbered bits are more significant than the lowered number bits and
the bits of word 0 are more significant than the bits of word 1.

The following operations are permitted on a real, described in chapter 4:

equals, not equals, less than, less than or equals, greater than, greater than or equals,
negate, plus, minus, multiply, divide,
translate into the integer representation ignoring the fractional part,
sine, cosine, arctangent, square root, log to base e and e raised to a given power.

Any floating point operation that causes a floating point overflow or underflow or whose result is a
NaN ( not a number ) is treated as an error. Similarly, an attempt to translate a real into an integer
whose value cannot be represented by the integer data type is also an error. All comparison
operations on reals conform to the IEEE standard.

3 .2 Pointer Data Types

All pointer data types are represented by either one or two object addresses.

3.2 .1 Strings

The string data type is represented by a single pointer to a heap object with the following object
format:

word 0,1 object header and size
word 2 number of characters in the string
word 3.. the characters 4 per word, the last word is padded with zero characters.

Within each word of 4 characters, the first character is encoded in the most significant byte, the
second character in the next most significant byte, the third character in the next most significant
byte and the fourth character is encoded in the least significant byte.

The following operations are permitted on a string, described in chapter 4.

equals, not equals, less than, less than or equals, greater than, greater than or equals,
concatenate strings and
substring selection.

An attempt to select a non existent section of a string, or a section of negative length is treated as an
error. Two strings are equal if they are the same length and all the corresponding characters in each
string are equal. Two characters are equal if they have the same ascii code. A string, A, is less than
a string, B, if all the characters in A with a corresponding character in B are the same as the
corresponding character in B and A is shorter or if the first character in A that differs from the
corresponding character in B is less than its corresponding character in B.



9

3.2 .2 Files

There are several kinds of files that are supported by the persistent abstract machine, disk files,
terminals, raster windows and sockets. All file descriptor objects have four pointer fields, the first
of which is the file's name, and at least 2 integer words. The first integer word contains an internal
file number and associated flag bits and the second integer is a datestamp set when the file is
opened. The datestamp indicates whether the file was opened in this invocation of the system.

The internal file number and associated flag bits are represented as follows:

if a socket bit 21
if a terminal bit 20
if a disk file bit 19
if a window bit 18
if writable bit 17
if readable bit 16
file number bits 0-15

The filename may specify a particular file type and attributes. If no recognised prefix is given the
prefix "DISK:" is assumed.

3.2.2 .1 Disk Files

word 0,1 object header and size
word 2 a pointer to the file's name
word 3 a pointer to the working directory when the file was opened
word 4 unused, a nil pointer
word 5 unused, a nil pointer
word 6 an internal file number and associated flag bits
word 7 a datestamp set when the file is opened
word 8 the current position in the disk file ( byte offset from the start )

Disk file objects are created whenever a file is opened or created in an external file system. The
filename prefix for a disk file is "DISK:". The operations permitted on a disk file are:

equals, not equals
create, open, close, reopen,
read bytes, write bytes and
position the next read or write.

3.2.2 .2 Terminal Files

word 0,1 object header and size
word 2 a pointer to the file's name
word 3 unused, a nil pointer
word 4 unused, a nil pointer
word 5 unused, a nil pointer
word 6 an internal file number and associated flag bits
word 7 a datestamp set when the file is opened
word 8..n the terminal modes currently selected

The terminal modes are implementation dependent and should only be accessed via the ioctl
instruction interface described in 4.13.

Terminal file objects are created whenever a terminal device is opened. The filename prefix is
"TTY:". If the filename prefixes "STDIN:", "STDOUT:" or "STDERR:" are specified then file



10

objects are created for the Napier system's standard input, output and error. These files are
permanently open and are assumed to be terminal devices.

The operations permitted on a terminal file are:

equals, not equals
open, close, reopen,
read bytes, write bytes and
get/ set the terminal modes.

3.2.2 .3 Socket Files

word 0,1 object header and size
word 2 a pointer to the file's name
word 3 unused, a nil pointer
word 4 unused, a nil pointer
word 5 unused, a nil pointer
word 6 an internal file number and associated flag bits
word 7 a datestamp set when the file is opened

A socket file object is created whenever an incoming network connection is accepted or a
connection to a remote Napier system is successful. The filename prefixes for a socket are
"ACCEPT:", "CONNECT:" and "SHELL:".

"ACCEPT:" is used to accept a connection from a remote Napier system.

"CONNECT:" is used to connect to a named Napier system. The connection name is in the form of
a host identifier and the directory name of a persistent store separated by a double colon, ::. The
host identifier may be either a symbolic or numeric internet address.

"SHELL:" is used to specify a socket connected to a command line interpreter. The command line
interpreter is started when the Napier system is invoked. In a UNIX system the interpreter is a
shell.

The operations permitted on a socket are:

equals, not equals,
open, close, reopen,
read bytes, write bytes and
get/ set the socket modes.

3.2.2 .4 Raster Window Files

word 0,1 object header and size
word 2 a pointer to the file's name
word 3 an image representing the raster device's screen
word 4 an image representing the screen's cursor
word 5 unused, a nil pointer
word 6 an internal file number and associated flag bits
word 7 a datestamp set when the file is opened
word 8 the X position of the cursor on the screen
word 9 the Y position of the cursor on the screen
word 10 the X position of the cursor hot spot
word 11 the Y position of the cursor hot spot
word 12 the raster rule used to display the cursor on the screen ( see rasterop )
word 13 the millisecond datestamp of the last locator event read



11

word 14+n state of the nth button, numbered from 0
a value of 0 indicates that the nth button is up,
a value of 1 indicates that the nth button is down.

A window file object is created whenever a raster window is opened. The filename prefix for a
window is "WINDOW:". If no window name is given a default window is opened in the host
environment. For example, a shell variable DISPLAY may have been set to specify an X display to
use. Alternatively it may be possible to access the local frame buffer and use that to simulate a
window.

A window filename may include specifications of the x,y and z dimensions of the window as well
as its initial x and y positions. The specifications are encoded by prefixing a number by either
"XDIM:", "YDIM:","ZDIM:", "XPOS:" or "YPOS:" respectively. Each of these attributes is
prefixed by a space character to separate them from the rest of the filename. If possible these
specifications will be used. If no z dimension is specified a default of 1 is assumed.

The operations permitted on a window file are:

equals, not equals
open, close, reopen, read bytes,
get the screen image, get/ set the colour map
read the position of the window's pointer
get/ set the cursor image and get/ set the cursor information.

Data read from a window file is made up of pairs of 32 bit integers. The first integer is a
millisecond datestamp for a keyboard event and the second integer is the X11 Key Symbol for the
keyboard event. Only multiples of 8 bytes will be supplied by read bytes. If there are no unread
keyboard events, read bytes will fail.

3.2.2 .5 Errors and Equality

An attempt to perform an invalid operation on a given file kind, such as writing to a closed file or
obtaining a raster image from a socket, is treated as an error. The particular mechanisms for
indicating an error are described in chapter 4. A file is only equal to itself, this is checked by
comparing pointer values.

3.2 .3 Vectors

The vector data type is used to implement linear arrays of values with the same type. A vector value
is represented by a pointer to an object with the following format:

word 0,1 object header and size
word 2..n the elements
word n+1 lower bound
word n+2 upper bound

The following operations are permitted on a vector, described in chapter 4.

equals, not equals,
create a vector, read the lower bound, read the upper bound,
read an element, assign to an element,
mark the vector as constant and mark the vector as variable.

An attempt to use an index outwith the vector bounds, to assign to an element of a constant vector
or to create a vector with an upper bound less than the lower bound, are all treated as errors. Two
values of type vector are equal if they are pointers to the same vector.



12

3.2 .4 Images

The image data type is used to represent an aliased area of a rectangular array of pixels. The aliased
area is itself represented by a pointer to an object with the following format:

H
E
A
D
E
R

S
I
Z
E

File
Descriptor

X-
O
F
F
S
E
T

Y-
O
F
F
S
E
T

Z-
O
F
F
S
E
T

X

D
I
M

@
Bitmap
Vector

Y

D
I
M

Z

D
I
M

word 0,1 object header and size
word 2 pointer to the bitmap vector
word 3 pointer to the file descriptor ( if a cursor or screen of a raster device

otherwise nilfile )
word 4 X offset into the bitmap vector
word 5 Y offset into the bitmap vector
word 6 Z offset into the bitmap vector
word 7 X dimension of the image
word 8 Y dimension of the image
word 9 Z dimension of the image

There are 3 kinds of raster image supported by the Persistent abstract machine, raster displays,
cursors of raster displays and memory rasters. Each bitmap vector contains a flag word to indicate
which kind of raster it represents. This enables the abstract machine to propagate changes to
displayed images to the corresponding physical devices. The flags have the following values:

if a raster display bit 0
if a cursor bit 1
if a memory raster bit 2

To support colour raster displays a bitmap vector for a raster display includes a colour map. The
size of the colour map is implementation dependent but would normally include an entry for each
pixel value that can be displayed. For example, a colour map for an image of depth 8 would
contain 256 entries in its colour map. A different strategy must be employed for true colour
displays which have pixels with 24 or more planes. The bitmap vector for an image is laid out as
follows:

word 0,1 object header and size
word 2 X dimension of the bitmap
word 3 Y dimension of the bitmap
word 4 Z dimension of the bitmap
word 5 length of a scan line in 32 bit words
word 6 type flags for the bitmap
word 7..n-1 bits that represent the image's pixels
word n..m the colour map if the raster image is for a raster display
word m+1 lower bound
word m+2 upper bound

The pixels of an image are laid out as follows. The image is separated out into its planes. The first
plane in the representation is plane 0 of the image, the second plane is plane 1 of the image and so
on. Each plane is separated into scan lines. The first scan line in a plane is the top scan line of the
image and the last scan line is the bottom scan line of the image. Each scanline is separated into 1



13

bit pixels since a plane is only 1 bit deep. A scanline consists of an integral number of 32bit words
with the first 32 pixels in the first word, the second 32 pixels in the second word and so on.
Within a 32bit word the first pixel is represented by bit 31 and the last pixel by bit 0.

The operations permitted on a raster image are as follows, described in chapter 4.

create an image, equals, not equals,
copy pixels from another image using a raster combination rule,
draw a line of pixels using a raster combination rule,
select an area of pixels in the X and Y dimensions,
select a range of planes in the Z dimension,
mark the bitmap vector as constant and
mark the bitmap vector as variable.

An attempt to create an image with any non positive dimensions, select an non existent part of an
image, or update an image whose bitmap is constant, are all treated as errors. Two values of type
image are equal if they have the same pointer value, that is they both point to the same alias object.

3.2 .5 Structures

The structure data type supports objects containing an arbitrary collection of data types. A structure
value is represented by a pointer to an object with the following format:

word 0,1 object header and size
word 2..m the pointer fields
word m+1..n the nonpointer fields
word n+1.. constancy bitmap

Every structure is assumed to contain a constancy bitmap of one bit per word. It should be checked
whenever a word in a structure is to be updated. However updates to the words containing the
bitmap are not checked to allow the constancy of fields to be altered. For structure fields consisting
of more than one word, only the constancy bit for the first word of the field is used. For a structure
of length L the starting word ( S ) of the bitmap can be calculated as follows:

S = L - ( L + 32 ) div 33

The word ( W ) within the bitmap containing the bit for a given field index ( I ) and the field's bit (
B ) within that word can be calculated as follows:

W = I div 32
B = I rem 32

To test if a field is constant bit B in word S + W of the structure is tested. The field is constant if
the bit is set. Note that the bits are numbered in increasing significance from bit 0 to bit 31.



14

The operations permitted on a structure are as follows, described in chapter 4.

equals, not equals,
create a structure,
read a structure field, assign to a structure field and
mark a structure field as constant.

An attempt to assign to a structure field that is marked as constant is treated as an error. Two values
of the structure data type are equal if they have the same pointer value, that is they both point to the
same structure object.

3.2 .6 Procedures

Procedures are the only pointer data type that  is represented by two object addresses. The first is a
pointer to an object containing executable code ( a code vector ) and the other is a pointer to the
procedure's static environment ( a stack frame ). Together the two pointers form the closure of the
procedure. A closure is formed when a procedure declaration is executed by taking the pointer to
the code vector and combining it with a pointer to the current frame ( LFB ). The first pointer in a
closure is the code vector and the closure is always addressed by addressing the first pointer.

3.2.6 .1 Code Vectors

A code vector contains the executable code for a procedure, any scalar, pointer or mixed data type
literals used by the procedure, a PAIL description of the procedure and the size of stack frame
required when the procedure is executing. The format of a code vector is as follows:

H
E
A
D
E
R

S
I
Z
E

P
A
I
L

A

C
V
E
C

Pointer
Literals

C

T
Y
P
E

F

S
I
Z
E

F

M
S
B

Code Non-
pointer
Literals

word 0,1 object header and size
word 2 a pointer to the pail tree for the code vector's procedure ( PAIL )
word 3 a pointer to an alternative code vector ( A CVEC ), this has the same

functionality but contains different code
word 4..l any pointers to objects that are used by the code vector's procedure
word l+1..m the code to be executed
word m+1..n any non-pointer literals that are used by the code vector's procedure
word n+1 the type of code, 0 if the code is Napier code ( C TYPE )
word n+2 the size of the frame ( in words ) to be created when the code vector's

procedure is applied ( F SIZE )
word n+3 the offset to the main stack ( in words ) for the frame ( F MSB )

The code to be executed is in the form of a byte stream with 4 bytes per word. Within a word the
most significant byte is the first byte of code, the next most significant byte is the second byte of
code, the next most significant byte is the third byte of code and the least significant byte is the
fourth byte of code.

3.2.6 .2 Frames

A stack frame contains a pointer stack, a main stack, the relative positions of the stack tops with
respect to the start of the frame and the relative position of the next instruction with respect to the



15

start of the code vector. The relative positions are used to calculate the values of LMSP, LPSP and
CP when a frame becomes the local frame. Similarly, the relative positions are recalculated
whenever a frame ceases to be the local frame or a store operation is performed that may move the
local frame or the code vector. The format of a stack frame is as follows:

R
A

M
S
P

Pointer

Stack

Main

Stack

D

L
I
N
K

C

V
E
C

S

L
I
N
K

H
E
A
D
E
R

S
I
Z
E

word 0,1 object header and size
word 2 the dynamic link ( D LINK )
word 3 a pointer to the code vector for the frame's procedure ( C VEC )
word 4 the static link for the frame's procedure ( S LINK )
word 5..m the pointer stack for the frame's procedure
word m+1..n the main stack for the frame's procedure
word n+1 the resume address for the frame's procedure ( RA ), the saved offset ( in

bytes ) of CP from the start of the procedure's code vector
word n+2 the saved offset ( in words ) of the LMSP from the LFB ( MSP )

3.2.6 .3 Operations and Equality

The operations permitted on a procedure are as follows, described in chapter 4.

create a closure,
equals, not equals,
procedure application and procedure return.

Two procedure values are equal if they describe the same procedure closure.

3.2 .7 Abstract Data Types

Abstract data types are similar to structure types but they may contain special fields of witness type
whose actual type is not known at compile time. Each of these special fields is represented by two
pointers and two non pointers to enable any of the scalar, pointer or mixed data types to be present.
In addition, for each witness type a pointer field records a type representation for the witness type
and a non-pointer field is records a dynamic tag for the witness type. The format of an abstract data
type is as follows:

word 0,1 object header and size
word 2..k the pointer fields
word k+1..l the type representations for the witness types
word l+1..m the non-pointer fields
word m+1..n the dynamic tags for the witness types
word n+1.. constancy bitmap

The operations permitted on abstract data types are the same as for structures.

3 .3 Mixed Data Types

The mixed data types are used to support union types whose values may be one or more of the data
types supported by the abstract machine. The variant data type is used to support finite



16

discriminated unions whose range of data types are known at compile time whereas the any data
type is used to support the infinite union of all data types.

3.3 .1 Variants

A variant consists of three parts, a value, a label and a type encoding. The value is represented by a
single pointer. However, if the value is not a single pointer then it is wrapped in a heap object and
the pointer to the heap object is used. The format of the wrapper object is as follows:

word 0,1 object header and size
word 2.. the value, pointers before non-pointers

The label and type encoding are held in an integer word. Thus a variant consists of an integer word
and a single pointer each of which is addressed separately. The label is represented by a branch
number assigned by the compiler and is held in bits 8-31 of the integer word. A branch number
may be any integer in the range 0 to 224 - 1.

The type encoding, known as a dynamic tag, is used to differentiate each of the data types that are
supported by the abstract machine. It describes the size of the value, in integer words and pointers,
and includes an additional number to differentiate data types of the same size. The type encoding
forms an 8 bit number held in bits 0-7 of the integer word. It is encoded as follows ( lower
numbered bits are less significant ):

bit 0,1 number of integer words
bit 2,5 used to distinguish data types of the same size
bit 6,7 number of pointers

This results in the following encoding for the dynamic tags of Napier objects:

object bit pattern integer code

integer 00000001 1
boolean 00000101 5
pixel 00001001 9
real 00000010 2
string 01000100 68
vector, structure,
abstract data type,
file, image 01000000 64
procedure 10000000 128
variant 01000001 65
any 10000010 130
witness 10000110 134

The operations permitted on a variant are as follows, described in chapter 4.

equals, not equals,
inject a value into a variant and project a value from a variant.

Two variant values are equal if their integer words have the same value and if the values
represented by their pointers are equal. The dynamic tag contained in the integer words describes
how the values should be compared.



17

3.3 .2 Anys

Values of the data type any are held as two integer words and two pointers. The address of an any
value is the address of its first integer word and the address of its first pointer. The actual value
injected into an any is held in the form of a variant value with a branch number of -1. This variant
occupies the first integer word and the first pointer. The second pointer points to the type of the
injected value and is supplied by the compiler. The second integer word is padding to permit an
any to be manipulated as if it were a double word double pointer value.

The operations permitted on an any are as follows, described in chapter 4.

equals, not equals,
inject a value into an any and project a value from an any.

Two any values are equal if the variant representations of their values are equal and the type
representations supplied by the compiler are equivalent. It should be noted that the type checking
phase of comparing two any values must be performed by the comparison procedure held in the
abstract machine's root object.



18

4 Persistent Abstract Machine Code

The Persistent abstract machine code, PAM-code, is designed to support languages that map into
PAIL. The code generated for each PAIL construct may be found in [5]. Here the individual
instructions are described. They fall naturally into groups.

Typed instructions have an encoded name with the following convention.

ib integer,pixel or boolean
r real
s string
p file, vector, image, structure, abstract data type
pr procedure
var variant
any any
poly polymorphic object

The Persistent abstract machine supports polymorphic operations. These operations consult a word
on the main stack with encoded information about the concrete type on which they operate. This
information allows polymorphic operations to delay the decision about which actions to perform
until runtime. The polymorphic instructions use the type encoding given in section 3.3.1. Note that
the encoding is referred to as the dynamic tag in the instruction descriptions.

Non type dependant instructions are encoded according to the size of the objects on which they
operate and on which stack they reside. These instructions are encoded using the following
convention.

w word on main stack
dw double word on main stack
p word on pointer stack
dp double word on pointer stack
wp word on main stack and word on pointer stack
dwdp double word on main stack and double word on pointer stack

Some instructions have special forms that allow for cases which deserve optimisation. These
instructions are appended with the letter S.

The length of instruction parameters are in the following units:

byte 8 bits
short 2 bytes

The interpretation of instruction parameters is as the follows:

byte an 8 bit integer, unsigned unless used with the literal integer
instruction

short an unsigned 16 bit integer, the first byte is most significant

All instruction codes are one byte long.



19

4 .1 Jumps

All the jump offsets are relative to the location following the jump offset. The jump offset is
measured in bytes.

fjump( l : short )

Op-Code 1

Description

Jump forwards l bytes.

jumpf( l : short )

Op-Code 2

Description

if the top main stack element is false
do Jump forwards l bytes.
Pop the main stack.

bjump( l : short )

Op-Code 3

Description

Jump backwards l bytes.

bjumpt( l : short )

Op-code 4

Description

if the top main stack element is true
do Jump backwards l bytes.
Pop the main stack.

jumpff( l : short )

Op-Code 5

Description

if the top stack element is false
then Jump forwards l bytes
else Pop the main stack.



20

jumptt( l : short )

Op-Code 6

Description

if the top element is true
then Jump forwards l bytes
else Pop the main stack.

fortest( fs : short, msb : short, l : short )

Op-Code 7

Parameters

fs: frame size
msb main stack base offset
l label

Description

The for loop increment is on top of the main stack,
The for loop limit is below the increment on the main stack and
The control constant is below the limit on the main stack.
if the increment is negative and the control constant is less than the limit or
    the increment is positive and the control constant is greater than the limit
then Pop the top 3 stack elements and jump forwards l bytes.
else Perform a block enter instruction with parameters fs and msb.

Push a copy of the control constant onto the new frame's main stack.

forstep( l : short )

Op-Code 8

Description

Perform a block.exit.v.
Add the for loop increment to the for loop control constant.
Jump backwards l bytes, ( to the fortest instruction ).

fortestS( l : short )

Op-Code 9

Description

The for loop increment is on top of the main stack,
The for loop limit is below the increment on the main stack and
The control constant is below the limit on the main stack.
if the increment is negative and the control constant is less than the limit or
   the increment is positive and the control constant is greater than the limit
do Pop the top 3 stack elements and jump forwards l bytes.



21

forstepS( l : short )

Op-Code 10

Description

Add the for loop increment to the for loop control constant.
Jump backwards l bytes, ( to the fortestS instruction ).

cjump.ib,r,s,p,pr( l : short )

Op-Codes

cjump.ib 11 cjump.r 12
cjump.s 13 cjump.p 14
cjump.pr 15

Description

if the top two values of the relevant stack are equal
then Pop both values from the stack and jump forwards l bytes
else Pop the value at the top of the stack.

The rules for comparing two values are given in section 4.15.

cjump.var,any( l1 : short, l2 : short )

Op-Codes

cjump.var 16 cjump.any 18

Description

if the top two values on the stacks are equal
then Pop both values and jump forwards l2 bytes.
else if the top two values on the stacks are not equal

then Pop the value at the top of the stacks and jump forwards l1 bytes.
else if equality cannot be determined because one or more pairs of anys must

be
    type checked
do Pop the value at the top of the stacks

Call the any comparison procedure held in the root object.
The first pair anys to be type checked are passed as parameters.

The rules for comparing two stack elements are described in section 4.15.
The cjump.var and cjump.any instructions should be immediately followed by the following
abstract machine instructions:

Comparing variants anys

jumpf( l1 ) jumpf( l1 ) jump to l1 if false.
retract( 1,1 ) retract( 2,2 ) pop the value on top of stacks.
fjump( l2 ) fjump( l2 ) jump to l2 - true.



22

cjump.poly( l1 : short, l2 : short )

Op-Code

cjump.poly 17

Description

The dynamic tag for the values being compared on top of the main stack.
The values to be compared are at the top of both stacks, but below the dynamic tag.
They are both padded to be two integer words and two pointers each.
Pop the dynamic tag from the main stack.
Compare the values using the rules determined by the dynamic tag,
if the values are equal
then Pop both values from the stacks and jump forwards l2 bytes.
else if the values are not equal

then Pop the value at the top of the stacks and jump forwards l1 bytes.
else if equality cannot be determined because one or more pairs of anys must

be
    type checked
do Pop the value at the top of the stacks

Call the any comparison procedure held in the root object.
The first pair anys to be type checked are passed as parameters.

The cjump.poly instruction should be immediately followed by the following abstract machine
instructions:

jumpf( l1 ) jump to l1 if false.
retract( 2,2 ) pop the value on top of stacks.
fjump( l2 ) jump to l2 - true.



23

4 .2 Stack Load and Assignment

Stack Load

These instructions are used to push the field of an object onto the top of a stack. The object may be
the root object, local frame or any object with a pointer on the local frame's pointer stack. A
separate instruction exists for each form. Different instructions are also used for the separate
stacks. These instructions have a parameter ( d ) which is the displacement ( in words ) of the field
from the base of its object. If the field is in separate pointer and non pointer parts then there are two
displacements ( d1 and d2 ) which are the displacements ( in words ) of each part of the field from
the base of its object. The root form of these instructions uses the root object. The local form of
these instructions uses the local frame. The load form of the instruction has an additional parameter
( f ) which is the offset ( in words ) from the local frame base to the pointer to the object.

Stack Assignment

These instructions are used to assign to the field of an object. The value being assigned is always
on the top of the appropriate stack and is always popped after the assignment. The object assigned
to may be the root object, local frame or any object with a pointer on the local frame's pointer
stack. The addressing modes are the same as the stack load instructions described above.

root( d : short )

Op-Codes

wroot 19 dwroot 20
proot 21 dproot 22

Description

Push word d of the root object onto the appropriate stack.
if the instruction is dwroot or dproot
do Push word d + 1 of the root object onto the appropriate stack.

root( d1 : short, d2 : short )

Op-Code

wproot 23 dwdproot 24

Description

Push word d1 of the root object onto the main stack.
Push word d2 of the root object onto the pointer stack.
if the instruction is dwdproot
do Push word d1 + 1 of the root object onto the main stack.

Push word d2 + 1 of the root object onto the pointer stack.



24

root.ass( d : short )

Op-Code

wroot.ass 25 dwroot.ass 26
proot.ass 27 dproot.ass 28

Description

if the instruction is dwroot.ass or dproot.ass
do Copy the word on top of the main stack to word d + 1 of the root object.

Pop the word from the main stack.
Copy the word on top of the appropriate stack to word d of the root object.
Pop the word from the appropriate stack.

root.ass( d1 : short, d2 : short )

Op-Code

wproot.ass 29 dwdproot.ass 30

Description

if the instruction is dwdproot.ass
do Copy the word on top of the main stack to word d1 + 1 of the root object.

Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 + 1 of the root object.
Pop the word from the pointer stack.

Copy the word on top of the main stack to word d1 of the root object.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the root object.
Pop the word from the pointer stack.

local( d : short )

Op-Codes

wlocal 31 dwlocal 32
plocal 33 dplocal 34

Description

Push word d of the local frame onto the appropriate stack.
if the instruction is dwlocal or dplocal
do Push word d + 1 of the local frame onto the appropriate stack.



25

local( d1 : short, d2 : short )

Op-Code

wplocal 35 dwdplocal 36

Description

Push word d1 of the local frame onto the main stack.
Push word d2 of the local frame onto the pointer stack.
if the instruction is dwdplocal
do Push word d1 + 1 of the local frame onto the main stack.

Push word d2 + 1 of the local frame onto the pointer stack.

local.ass( d : short )

Op-Code

wlocal.ass 37 dwlocal.ass 38
plocal.ass 39 dplocal.ass 40

Description

if the instruction is dwlocal.ass or dplocal.ass
do Copy the word on top of the main stack to word d + 1 of the local frame.

Pop the word from the main stack.
Copy the word on top of the appropriate stack to word d of the local frame.
Pop the word from the appropriate stack.

local.ass( d1 : short, d2 : short )

Op-Code

wplocal.ass 41 dwdplocal.ass 42

Description

if the instruction is dwdplocal.ass
do Copy the word on top of the main stack to word d1 + 1 of the local frame.

Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 + 1 of the local frame.
Pop the word from the pointer stack.

Copy the word on top of the main stack to word d1 of the local frame.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the local frame.
Pop the word from the pointer stack.



26

load( f : short, d : short )

Op-Code

wload 43 dwload 44
pload 45 dpload 46

Description

The source object is pointed to by word f of the local frame.
Push word d of the source object onto the appropriate stack.

load( f : short, d1 : short, d2 : short )

Op-Code

wpload 47 dwdpload 48

Description

The source object is pointed to by word f of the local frame.
Push word d1 of the source object onto the main stack.
Push word d2 of the source object onto the pointer stack.
if the instruction is dwdpload
do Push word d1 + 1 of the source object onto the main stack.

Push word d2 + 1 of the source object onto the pointer stack.

assign( f : short, d : short )

Op-Code

wassign 49 dwassign 50
passign 51 dpassign 52

Description

The destination object is pointed to by word f of the local frame.
Copy the word on top of the appropriate stack to word d of the destination object.
Pop the word from the appropriate stack.



27

assign( f : short, d1 : short, d2 short )

Op-Code

wpassign 53 dwdpassign 54

Description

The destination object is pointed to by word f of the local frame.
if the instruction is dwdpassign
do Copy the word on top of the main stack to word d1 + 1 of the destination object.

Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 + 1 of the destination object.
Pop the word from the pointer stack.

Copy the word on top of the main stack to word d1 of the destination object.
Pop the word from the main stack.
Copy the word on top of the pointer stack to word d2 of the destination object.
Pop the word from the pointer stack.



28

4 .3 Polymorphic Operations

Two instructions are provided to convert a value on a stack to and from a uniform double-word,
double-pointer representation. The uniform representation is used within polymorphic procedures.

contract.poly( ms : short, ps : short )

Op-Code 55

Description

The dynamic tag for the value being contracted is on top of the main stack.
The polymorphic value is at either word ms and ps of the local frame.
Word offset ps is for the pointer stack and word offset ms is for the main stack.
Pop the dynamic tag from the main stack.
From the tag, calculate where the padding words reside on both stacks.
Slide the contents of the stacks above the padding downwards to overwrite the padding.
Decrement the main stack pointer by the size of the main stack padding.
Decrement the pointer stack pointer by the size of the pointer stack padding.

expand.poly( ms : short, ps : short )

Op-Code 56

Description

The dynamic tag for the value being expanded is on top of the main stack.
The value is at either word ms and / or ps of the local frame, according to its type.
Word offset ps is for the pointer stack and word offset ms is for the main stack.
Pop the dynamic tag from the main stack.
From the tag, calculate where the padding words should be in both stacks.
Slide the contents of the stacks above the value to be expanded upwards to make room for the
padding.
Insert the padding - padding nils on the pointer stack and 0s on the main stack
Increment the main stack pointer by the size of the main stack padding.
Increment the pointer stack pointer by the size of the pointer stack padding.



29

4 .4 Stack Duplicate Operations

These are used to duplicate the element on top of a stack.

dup

Op-Codes

wdup 57 dwdup 58
pdup 59 dpdup 60
wpdup 61 dwdpdup 62

Description

Push a copy of the value at the top of the appropriate stack onto the same stack.
Note that in the wp and dwdp cases this involves copying both stack tops.



30

4 .5 Stack Retract Operations

These are used for non-retentive block exits and stack erases.

retract( ms : short, ps : short )

Op-Codes

wretract 63 dwretract 64
pretract 65 dpretract 66
wpretract 67 dwdpretract 68

retract 70

Description

If non-void copy and then pop the item on top of the appropriate stack.
Pop ms words from the main stack.
Pop ps words from the pointer stack.
If non-void push the copied value onto the appropriate stack.
Note that in the wp and dwdp cases this involves copying both stack tops.



31

4 .6 Block Entry and Exit

These instructions are used for each block that may require a stack frame to be retained by virtue of
containing a nested procedure declaration. In effect, each block is treated as an in-line procedure
call.

block.enter( fs : short, msb : short )

Op-Code 71

Parameters

fs: frame size
msb: main stack base offset

Description

Save the offset ( in words ) of LMSP from LFB in the current frame.
Set the number of pointers in the current frame to be LPSP - LFB - 2 ( in words )
Create an object of size fs ( in words ), this is the new frame.
Set LMSP to the main stack base of the new frame, msb is the offset to the start of main stack (
in words ) from the base of the new frame.
Set LPSP to the word following size field.
Push the dynamic link ( the current frame LFB ) onto the new pointer stack.
Push the pointer to the current code vector onto the pointer stack.
Push the static link ( the current frame ) onto the new pointer stack.
Set LFB to point to the new frame.

block.exit

Op-Codes

wblock.exit 72 dwblock.exit 73
pblock.exit 74 dpblock.exit 75
wpblock.exit 76 dwdpblock.exit 77

block.exit 79

Description

Copy and pop the result of the block at the top of the appropriate stack.
Set the number of pointers in the current frame to be LPSP - LFB - 2 ( in words ).
if the trace bit is set,
then Set the trace bit in the frame pointed to by the dynamic link.
else Free the heap space allocated to the exiting block's frame.
Set LFB to the dynamic link of the current frame, the new current frame.
Set LMSP to be LFB + the saved offset for LMSP held in the current frame.
Set LPSP so that the last pointer in the current frame is at the top of the pointer stack ( LFB +
#pntrs + 2 )
Push the result of the block onto the appropriate stack.
Note that in the wp and dwdp cases this involves copying both stack tops.



32

4 .7 Procedure Entry and Exit

The instruction sequence to call a procedure is:

1. load closure
2. evaluate the parameters
3. apply

apply( ms : short, ps : short )

Op-Code 80

Description

Save the offset ( in bytes ) of CP from the start of the current code vector, in the current frame (
the resume address ).
The main stack parameters start at word ms in the current frame.
The code vector for the procedure being applied, the new code vector, is at word ps in the
current frame.
Above the new code vector on the pointer stack is the static link for the procedure being
applied, the new static link.
Above the new static link on the pointer stack are the pointer stack parameters.
Create an object to be the frame for the procedure being applied, its size is held in the new code
vector ( in words ), this is the new frame.
Save the offset ( in words ) of LMSP from LFB in the current frame as ms,( forces the main
stack parameters to be removed ).
Set the number of pointers in the current frame to be ps - 2,( forces the procedure closure and
pointer stack parameters to be removed ).
Set LMSP to the main stack base of the new frame, the offset to the start of the main stack ( in
words ) from the base of the new frame is held in the new code vector.
Set LPSP to word following size field.
Push the dynamic link ( the current frame ) onto the new pointer stack.
Push the pointer to the new code vector onto the pointer stack.
Push the new static link onto the new pointer stack.
Push the pointer stack parameters onto the new pointer stack.
Push the main stack parameters onto the new main stack.
Set LFB to point to the new frame.
Set CP to the start of the abstract machine code in the new code vector.



33

return

Op-Codes

wreturn 81 dwreturn 82
preturn 83 dpreturn 84
wpreturn 85 dwdpreturn 86

return 88

Description

if the instruction is return and the dynamic link is nil
then halt the abstract machine.
else Copy and pop the result of the procedure at the top of the appropriate stack.

Set the number of pointers in the current frame to be LPSP - LFB - 2 ( in
words ).
if the trace bit is set
then Set the trace bit in the frame pointed to by the dynamic link.
else Free the heap space allocated to the returning procedure's frame.
Set LFB to the dynamic link of the current frame, the new current frame.
Set LMSP to be LFB + the saved offset for LMSP held in the current frame.
Set LPSP so that the last pointer in the current frame is top of the pointer stack.
if the trace bit is set
do Set the dynamic link in the returning procedure's frame to be nil.
Push the result of the procedure onto the appropriate stack.
Set CP to be the start of the current code vector + the saved offset for CP held
in the current frame.

return.poly

Op-Code 87

Description

Pop the dynamic tag for the value being returned from the top of the main stack.
Contract the value on the top of the stacks from two integer words and two pointers to its actual
size as determined by the dynamic tag.
Perform the return operation applicable to the value's actual size.

current.frame

Op-Code 97

Description

Push a pointer to the current frame ( LFB ) onto the pointer stack.
Set the trace bit in the current frame.



34

4 .8 Image Operations

These instructions manipulate raster images and raster windows.

makepixel( n : byte )

Op-Code 98

Description

Sum the depths of the n pixels on top of the main stack.
Create a new pixel of the combined depth.
Copy the planes of the pixels on the main stack into the new pixel.
The lowest pixel on the main stack represents the first planes of the new pixel.
The pixel on top of the main stack represents the last planes of the new pixel.
Pop the n pixels from the main stack.
if the total depth of the new pixel is greater than 24
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g02PixelOverflow in the error structure.

The pixel formed by the first 24 planes is passed as a parameter.
else Push the new pixel onto the main stack.

subpixel

Op-Code 99

Description

Pop the depth of the new pixel from main stack
Pop the start plane of the new pixel from the main stack.
The subscripted pixel is now on top of the main stack.
Compare the start plane and depth of the new pixel with the subscripted pixel.
if the bounds are illegal
then if the error structure in the root object is nil

then Halt the abstract machine
else Pop the subscripted pixel from the main stack.

Call the procedure g03SubPixel in the error structure.
The subscripted pixel, start plane and depth are passed as parameters.

else if the depth of the new pixel is less than the depth of the subscripted pixel
do Create the new pixel and set its depth.

Copy the selected planes from the subscripted pixel to the new pixel.
Pop the subscripted pixel from the main stack.
Push the new pixel onto the main stack.



35

makeimage

Op-Code 100

Description

Pop the initialising pixel for the image from the main stack.
Lookup the depth of the pixel, Z.
Pop the Y dimension of the image from the main stack.
Pop the X dimension of the image from the main stack.
if either X or Y dimension is less than or equal to 0
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g04MakeImage in the error structure.

The X dimension, Y dimension and initialising pixel are passed as parameters.
else Create an image descriptor for an image with dimensions X by Y by Z.

Create a vector of integers to hold the image's pixels.
Initialise the vector of integers by replicating the initialising pixel.
Place a pointer to the vector of integers in the image descriptor.
Push a pointer to the image descriptor onto the pointer stack.

subimage

Op-Code 101

Description

The image descriptor being subscripted is on the pointer stack.
Pop the number of planes from the main stack.
Pop the start plane of the new image ( numbered from 0 ) from the main stack.
Compare the start plane and depth with the bounds of the subscripted image.
if the bounds are illegal
then if the error structure in the root object is nil

then Halt the abstract machine
else Pop the subscripted descriptor from the pointer stack.

Call the procedure g05SubImage in the error structure.
The image, start plane and depth are passed as parameters.

else
if the bounds are a subset of the subscripted descriptor
do Create a copy of the subscripted descriptor.

Pop the subscripted descriptor from the pointer stack.
Push the created copy onto the pointer stack.
Increment the copy's depth offset by the start plane.
Set the copy's depth to be the number of planes.



36

limAt

Op-Code 102

Description

Pop the new X offset from the main stack.
Pop the new Y offset from the main stack.
The subscripted image descriptor is on top of the pointer stack.
Compare the new X and Y offsets with the dimensions of the subscripted image.
if the new X and Y offsets are outwith the dimensions of the subscripted image
then if the error structure in the root object is nil

then Halt the abstract machine
else Pop the subscripted image descriptor from the pointer stack.

Call the procedure g06LimitAt in the error structure.
The image, X offset and Y offset are passed as parameters.

else Create a copy of the subscripted image descriptor.
Pop the subscripted image descriptor from the pointer stack.
Push the copy onto the pointer stack.
Decrement the X dimension of the copy by the new X offset
Add the new X offset to the copy's X offset.
Decrement the Y dimension of the copy by the new Y offset
Add the new Y offset to the copy's Y offset.

limAtBy

Op-Code 103

Description

Pop the new X offset from the main stack.
Pop the new Y offset from the main stack.
Pop the new X dimension from the main stack.
Pop the new Y dimension from the main stack.
The subscripted image descriptor is on top of the pointer stack.
Compare the new offsets and dimensions with the dimensions of the subscripted image.
if the new offsets and dimensions are outwith the dimensions of the subscripted image or
    either of the dimensions is less than or equal to 0
then if the error structure in the root object is nil

then Halt the abstract machine
else Pop the subscripted image descriptor from the pointer stack.

Call the procedure g07LimitAtBy in the error structure.
The image, X offset, X dimension, Y offset and Y dimension are passed as
parameters.

else Create a copy of the subscripted image descriptor.
Pop the subscripted image descriptor from the pointer stack.
Push the copy onto the pointer stack.
Set the X dimension of the copy to be the new X dimension
Add the new X offset to the copy's X offset.
Set the Y dimension of the copy to be the new Y dimension
Add the new Y offset to the copy's Y offset.



37

rasterOp

Op-Code 104

Description

Pop the destination image descriptor from the top of the pointer stack.
Pop the source image descriptor from the top of the pointer stack.
Pop the rasterop rule to be used from the top of the main stack.
The size of the destination image dictates the clipping area for the source image.
if the destination bitmap is marked as constant
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g08ConstantImage in the error structure.

The destination image is passed as a parameter.
else Perform the raster.op from source onto destination using the specified rule.
if the destination image is part of a cursor or screen
do if the image's file descriptor is open

then propagate the changes to the cursor or screen
else if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure x1ClosedWindow in the error structure.

The file descriptor and destination image are passed as parameters.

Notice that the image may be a cursor or screen to which any operations must be propagated.
Such an image contains an open file descriptor in its image descriptor.

The interpretation of the raster rules is as follows: the rules are encoded as integers:

0 S and ~S 8 S and D
1 ~( S or D ) 9 ~S xor D
2 ~S and D 10 D
3 ~S 11 ~S or D
4 S and ~D 12 S
5 ~D 13 S or ~D
6 S xor D 14 S or D
7 ~( S and D ) 15 S or ~S



38

raster.line

Op-Code 105

Description

Pop destination image descriptor from the top of the pointer stack.
Pop rasterop rule to be used from the top of the main stack.
Pop the pixel value to be used to draw the line from the top of the main stack.
Pop the Y coordinate of the last point of the line from the top of the main stack..
Pop the X coordinate of the last point of the line from the top of the main stack..
Pop the Y coordinate of the first point of the line from the top of the main stack..
Pop the X coordinate of the first point of the line from the top of the main stack..
if the destination bitmap is marked as constant
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g08ConstantImage in the error structure.

The destination image is passed as a parameter.
else Raster the supplied pixel onto the pixels forming the specified line using the specified

rasterop rule.
if the destination image is part of a cursor or screen
do if the image's file descriptor is open

then propagate the changes to the cursor or screen
else if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure x1ClosedWindow in the error structure.

The file descriptor and destination image are passed as parameters.

Notice that the image may be a cursor or screen to which any operations must be propagated.
Such an image contains a file descriptor in its image descriptor.

get.screen

Op-Code

get.screen 106

Description

Pop the file descriptor from the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g09GetScreen in the error structure.

The file descriptor is passed as a parameter.
else Push the screen field of the descriptor onto the pointer stack.



39

locator

Op-Code 107

Description

Pop the pointer to the destination vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g10Locator in the error structure.

The file descriptor and the vector are passed as parameters.
else Copy the locator information for the file into the vector.

The elements of the vector are filled in as follows:
element 1: the X dimension of the window,
element 2: the Y dimension of the window,
element 3: the locator X position,
element 4: the locator Y position,
element 5: the millisecond datestamp of the event being reported,
element 6: the state of button 1,
element n: the state of button n-4,
if the vector has more elements than the information available the extra are ignored,
if it has too few elements only the ones supplied are filled in,
if there are no unread locator events the datestamp is -1 and the previous event is reported.
The X and Y positions are relative to the lower left of the window.

colour.map

Op-Code 108

Description

Pop the colour map entry from the top of the main stack.
Pop the pixel from the top of the main stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g11ColourMap in the error structure.

The file descriptor, pixel and colour map entry are passed as parameters.
else Set the colour map entry for the specified pixel to be the specified entry.

If the pixel parameter has more planes than the window, the additional planes are ignored.
Alternatively, if the pixel has fewer planes than the window, the missing planes are treated as
off. If the window has no colourmap then the instruction is a non operation.



40

colour.of

Op-Code 109

Description

Pop the pixel from the top of the main stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g12ColourOf in the error structure.

The file descriptor and pixel are passed as parameters.
else Push the colour map entry for the specified pixel onto the main stack.

If the pixel parameter has more planes than the window, the additional planes are ignored.
Alternatively, if the pixel has fewer planes than the window, the missing planes are treated as
off. If the window has no colourmap the result placed on the stack is undefined.

get.cursor

Op-Code 110

Description

Lookup the type of the file descriptor on top of the pointer stack.
Pop the file descriptor from the pointer stack.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g13GetCursor in the error structure.

The file descriptor is passed as a parameter.
else Push the cursor field of the file descriptor onto the pointer stack.

set.cursor

Op-Code 111

Description

Pop the image descriptor from the pointer stack.
Pop the file descriptor from the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g14SetCursor in the error structure.

The file descriptor and image descriptor are passed as parameters.
else Set the cursor field of the file descriptor to be the specified image descriptor.



41

get.cursor.info

Op-Code 112

Description

Pop the pointer to the destination vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g15GetCursorInfo in the error structure.

The file descriptor and the vector are passed as parameters.
else Copy the cursor information for the device into the vector.

The elements of the vector are filled in as follows:
element 1: the cursor's X position,
element 2: the cursor's Y position,
element 3: the rasterop rule used to display the cursor
if the vector has more than 3 elements the extra are ignored,
if the vector has less than 3 only the ones supplied are filled in.

set.cursor.info

Op-Code 113

Description

Pop the pointer to the source vector from the pointer stack.
Pop the file descriptor from the top of the pointer stack.
Lookup the type of the file descriptor.
if the file is not an open window
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g16SetCursorInfo in the error structure.

The file descriptor and the vector are passed as parameters.
else Copy the cursor information for the device from the vector.

The elements of the vector are used as follows:
element 1: specifies the cursor's X position,
element 2: specifies the cursor's Y position,
element 3: specifies the rasterop rule used to display the cursor.
if the vector has more than 3 elements the extra are ignored,
if the vector has less than 3 only the ones supplied are used.



42

get.pixel

Op-Code 114

Description

Pop the image descriptor from the pointer stack.
Pop the X position of the pixel being looked up.
Pop the Y position of the pixel being looked up.
Compare the pixel's position with the dimensions of the image descriptor.
if the pixel is outwith the dimensions of the image descriptor
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g00GetPixel in the error structure.

The image, X position and Y position are passed as parameters.
else Push the pixel at position X,Y in the image onto the main stack.

set.pixel

Op-Code 115

Description

Pop the image descriptor from the pointer stack.
Pop the new value for the pixel being set.
Pop the X position of the pixel being set.
Pop the Y position of the pixel being set.
Compare the pixel's position with the dimensions of the image descriptor.
if the pixel is outwith the dimensions of the image descriptor
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure g01SetPixel in the error structure.

The image, X position, Y position and new pixel are passed as parameters.
else Set the pixel value at position X,Y to be the pixel value specified.
if the image is part of a cursor or screen
do if the image's file descriptor is open

then propagate the changes to the cursor or screen
else if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure x1ClosedWindow in the error structure.

The file descriptor and image are passed as parameters.

Notice that the image may be a cursor or screen to which any operations must be propagated.
Such an image contains an open file descriptor in its image descriptor.



43

4 .9 Vector and Structure Creation Instructions

These instructions take information off the stacks to create and/or initialise heap objects.

subconst

Op-Codes

wsubconst 116 dwsubconst 117
psubconst 118 dpsubconst 119

Description

Pop the word offset, W, to the field to be made constant from the main stack.
Pop the pointer to the structure from the pointer stack.
Set the constancy bit for word W in the structure.

subconst

Op-Codes

wpsubconst 120 dwdpsubconst 121

Description

Pop the word offset, W1, to the pointer field to be made constant from the main stack.
Pop the pointer to the structure from the pointer stack.
Set the constancy bit for word W1 in the structure.
Pop the word offset, W2, to the non pointer field to be made constant from the main stack.
Set the constancy bit for word W2 in the structure.

subconst.poly

Op-Code 122

Description

The dynamic tag for the field to be made constant is at the top of the main stack.
Below the dynamic tag is the offset to use if the field to be made constant is a pointer.
Below this offset is the offset to use if the field to be made constant is a non pointer.
Both offsets are used if the field to be made constant contains pointers and non-pointers.
Pop the dynamic tag from the top of the main stack.
Contract the main stack to eliminate the unnecessary offset, as determined by the dynamic tag.
Perform the appropriate subconst instruction.



44

makeobject( m : short, n : short )

Op-Code 123

Description

Create an object of size m ( in words ) with n pointer fields.
Initialise the n pointer fields to the value nil.
Initialise the remaining m - n - 2 words with the integer value 0.
Push the pointer to the new object onto the pointer stack.

makeobject.poly

Op-Code 124

Description

Pop the number of pointer fields n from the main stack.
Pop the size m of the object from the main stack.
Create an object of size m ( in words ) with n pointer fields.
Initialise the n pointer fields to the value nil.
Initialise the remaining m - n - 2 words with the integer value 0.
Push the pointer to the new object onto the pointer stack.

makestruct( m : short, n : short )

Op-Code 125

Description

Create an object of size m ( in words ) with n pointer fields.
Copy n words from the top of the pointer stack to the object, preserving their order.
Pop n words from the pointer stack.
Copy ( m - n - 2 ) words from the top of the main stack to the object, preserving their order.
Pop ( m - n - 2 ) words from the main stack.
Push the pointer to the new object onto the pointer stack.

polystructaddress( nfields : short )

Op-Code 126

Description

This instruction is used to calculate the field addresses and size information for a structure
whose specialised type is not known at compile time.
The main stack contains a word for the size of the structure.
Above the size is a word for the number of pointers in the structure.
Above the number of pointers is a pair of words for each field of the structure, the fields are
ordered alphabetically with the last field at the top of the main stack.
Each pair of words consists of an offset to the non pointer part of the field and an offset to the
pointer part of the field.
The non pointer offset is initialised to 0.
The pointer offset is initialised to the field's dynamic type.
The parameter nfields is the number of fields in the structure to allow the size word to be
found.
The algorithm for calculating the correct field offsets is as follows:



45

1. create a variable to hold the pointer offset for the next field, initially 3 - this is to
allow for the 2 word header and the pointer to the type.

2 create a variable to hold the non pointer offset for the next field, initially 0 - the non
pointer offsets are patched later since they must allow for all the pointer fields.

3. for each field of the structure in alphabetic order of field name:
a. lookup the pointer offset, the field's dynamic type
b. overwrite the pointer offset with the next pointer offset.
c. increment the next pointer offset by the pointer size in the dynamic type.
d. overwrite the non pointer offset with the next non pointer offset.
e. increment the next non pointer offset by the non pointer size in the dynamic

type.
4. for each field of the structure increment the non pointer offset by the next pointer

offset, the non pointer fields come after the pointer fields in a structure.
5. overwrite the number of pointers in the structure by the next pointer field offset - 2,

the 2 allows for the 2 word header on the structure.
6. overwrite the size of the structure with the next pointer offset + the next non pointer

offset + the size of the constancy bitmap required.

makev

Op-Codes

wmakev 127 dwmakev 128
pmakev 129 dpmakev 130
wpmakev 131 dwdpmakev 132

Description

Pop the initialising value from the top of the appropriate stack.
Pop the upper bound from the top of the main stack.
Pop the lower bound from the top of the main stack.
if the lower bound is greater than the upper bound
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v4MakeVector in the error structure **.

The lower bound, upper bound and initialising value are passed as parameters.
else Create a vector of the appropriate size.

Initialise the vector's elements with the initial value.
Push a pointer to the vector onto the pointer stack.

It should be noted that before the error procedure v4MakeVector can be called it must first be
specialised. This is also the case with calls to the other vector error procedures
v1ConstantVector, v2VectorIndexAssign and v3VectorIndexSubs. In the vector indexing
instructions listed below the calls requiring special attention are market with **. The following
steps are required to specialise and call one of these procedures:



46

Create a code vector that contains the following:
the parameters to the specialised form of the procedure,
literal instructions to load the parameters for the specialised procedure onto the stacks,
an apply instruction to call the specialised procedure and
a return instruction to return the result of the specialised procedure.

Call the procedure formed by the new code vector and a static link of nil, do not execute it.
Call the unspecialised error procedure parameterised by a dynamic tag describing the size of the
vector's elements, the error procedure will appear to have been called by the newly created
procedure. When the error procedure returns, its result ( the specialised procedure ) will be
placed on the new procedure's pointer stack and then called with the appropriate parameters.

makev.poly

Op-Code 133

Description

Pop the dynamic tag for the vector's elements from the top of the main stack.
Contract the initialising value to its actual size, as determined by the dynamic tag.
Perform the above makev operation appropriate to the value's actual size.



47

4.10 Vector and Structure Accessing Instructions

These instructions are generated by the compiler to index a vector or a structure. Note that the
index of the vector must be checked against the bounds before the indexing is done.

subs

Op-Codes

wsubs 134 dwsubs 135
psubs 136 dpsubs 137

Description

Pop the word offset, W, to the field being looked up from the main stack.
Pop the pointer to the structure from the pointer stack.
Push word W of the structure onto the appropriate stack.
if the instruction is dwsubs or dpsubs
do Push word W + 1 of the structure onto the appropriate stack.

subs

Op-Code

wpsubs 138 dwdpsubs 139

Description

Pop the word offset, W1, to the pointer being looked up from the main stack.
Pop the pointer to the structure from the pointer stack.
Push word W1 of the structure onto the pointer stack.
Pop the word offset, W2, to the non pointer being looked up from the main stack.
Push word W2 of the structure onto the main stack.
if the instruction is dwdpsubs
do Push word W1 + 1 of the structure onto the pointer stack.

Push word W2 + 1 of the structure onto the main stack.

subs.poly

Op-Code 140

Description

The dynamic tag for the value being loaded is on top of the main stack.
Below the dynamic tag is the offset to use if the value being indexed is a pointer value.
Below this offset is the offset to use if the value to be assigned is a non pointer value.
Both offsets are used if the value to be assigned contains pointers and non-pointers.
Pop the dynamic tag from the main stack.
Contract the main stack to eliminate the unnecessary offset, as determined by the dynamic tag.
Perform the subs instruction appropriate to the value's actual size.
Expand the value on the top of the stack, as determined by the dynamic tag.
Remember pointer stack must be padded with nil, and the main stack with 0s.



48

subv

Op-Codes

wsubv 141 dwsubv 142
psubv 143 dpsubv 144

Description

Pop vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector.
if index is outwith the bounds
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v3VectorIndexSubs in the error structure **.

The vector and vector index are passed as parameters.
else Modify the index to be the word offset to the indexed element.

Push the first word of the indexed element onto the appropriate stack.
if the instruction is dwsubv or dpsubv
do Push the second word of the indexed element onto the appropriate stack.

subv

Op-Code

wpsubv 145 dwdpsubv 146

Description

Pop vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector.
if index is outwith the bounds
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v3VectorIndexSubs in the error structure **.

The vector and vector index are passed as parameters.
else Modify the index to be the word offset to the indexed pointer element.

Push the first word of the indexed pointer element onto the pointer stack.
if the instruction is dwdpsubv
do Push the second word of the indexed pointer element onto the pointer stack.
Modify the index to be the word offset to the indexed non pointer element.
Push the first word of the indexed non pointer element onto the pointer stack.
if the instruction is dwdpsubv
do Push the second word of the indexed non-pointer element onto the main stack.



49

subv.poly

Op-Code 147

Description

Pop the dynamic tag for the value being loaded from the top of the main stack.
Perform the appropriate subv instruction, as determined by the dynamic tag.
Expand the value on the top of the stack, as determined by the dynamic tag.
Remember the pointer stack must be padded with nil, the main stack with 0s.

subsass

Op-Codes

wsubsass 148 dwsubsass 149
psubsass 150 dpsubsass 151

Description

Pop the value to be assigned from the appropriate stack.
Pop the word offset, W, to the field being assigned from the main stack.
Pop the pointer to the structure from the pointer stack.
Copy the first word of the value to be assigned to word W of the structure.
if the instruction is dwsubs or dpsubs
do Copy the second word of the value to be assigned to word W + 1 of the structure.

subsass

Op-Codes

wpsubsass 152 dwdpsubsass 153

Description

Pop the value to be assigned from the stacks.
Pop the word offset, W1, to the pointer field being assigned to, from the main stack.
Pop the word offset, W2, to the non pointer field being assigned to, from the main stack.
Pop the pointer to the structure from the pointer stack.
Copy the first word of the pointer value to word W1 of the structure.
Copy the first word of the non pointer value to word W2 of the structure.
if the instruction is dwdpsubs
do Copy the second word of the pointer value to word W1 + 1 of the structure.

Copy the second word of the non pointer value to word W2 + 1 of the structure.



50

subsass.poly

Op-Code 154

Description

The dynamic tag for the value being assigned is on top of the main stack.
Below the dynamic tag are the two integer words of the polymorphic value.
Below the two words on top of the main stack there are two field offsets.
The top offset is the offset to use if the value to be assigned is a pointer value.
The bottom offset is the offset to use if the value to be assigned is a non pointer value.
Both offsets are used if the value to be assigned contains pointers and non-pointers.
Pop the dynamic tag from the main stack.
Contract the main stack to eliminate the unnecessary offset, as determined by the dynamic tag.
Contract the value on the top of the stack, as determined by the dynamic tag.
Perform the appropriate subsass instruction.

subvass

Op-Codes

wsubvass 155 dwsubvass 156
psubvass 157 dpsubvass 158

Description

Pop the value to be assigned from the appropriate stack.
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector.
if index is outwith the bounds
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v2VectorIndexAssign in the error structure **.

The vector, vector index and the value to be assigned are passed as parameters.
else if the vector's constancy bit is set

then if the error structure in the root object is nil
then Halt the abstract machine
else Call the procedure v1ConstantVector in the error structure **.

The vector, vector index and the value to be assigned are passed as
parameters.

else Modify the index to be the word offset to the indexed element.
Copy the first word of the value being assigned to the first word of the indexed
element.
if the instruction is dwsubv or dpsubv
do Copy the second word of the value being assigned to the second word of

the indexed element.



51

subvass

Op-Codes

wpsubvass 159 dwdpsubvass 160

Description

Pop the value to be assigned from the appropriate stack.
Pop the vector index from the main stack.
Pop the pointer to the vector from the pointer stack.
Compare the index with the lower and upper bounds of the vector.
if index is outwith the bounds
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v2VectorIndexAssign in the error structure **.

The vector, vector index and the value to be assigned are passed as parameters.
else if the vector's constancy bit is set

then if the error structure in the root object is nil
then Halt the abstract machine
else Call the procedure v1ConstantVector in the error structure **.

The vector, vector index and the value to be assigned are passed as
parameters.

else Modify the index to be the word offset to the indexed pointer element.
Copy the pointer value being assigned to the indexed pointer element
Modify the index to be the word offset to the indexed non pointer element.
Copy the non pointer value being assigned to the indexed non pointer element.

subvass.poly

Op-Code 161

Description

Pop the dynamic tag for the value being assigned from the top of the main stack.
Contract the value on the top of the stack, as determined by the dynamic tag.
Perform the appropriate subvass instruction, as determined by the dynamic tag.

makeconst

Op-Code 162

Description

Set the constancy bit in the vector whose pointer is on top of the pointer stack.

makevar

Op-Code 163

Description

Clear the constancy bit in the vector whose pointer is on top of the pointer stack.



52

4.11 String Operations

These instructions create a new string object either by copying two strings or copying a contiguous
selection of characters from a string.

concat.op

Op-Code 164

Description

Pop the second string from the pointer stack.
Pop the first string from the pointer stack.
if the total length of the two strings is greater than the longest possible string
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure s0Concatenate in the error structure.

The two strings are passed as parameters.
else Push a new string which is the characters of the first string immediately followed by

the characters of the second string.

substr.op

Op-Code 165

Description

Pop the length of the new string from the main stack.
Pop the starting position of the new string from the main sack.
The subscripted string is on the top of the pointer stack.
Compare the new string's start and length with the length of the subscripted string.
if the new string is not a substring of the subscripted string or has a negative length
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure s1SubString in the error structure.

The string, start position and length are passed as parameters.
else if the new string is shorter than the subscripted string

do Create the new string.
Copy the new string's characters from the subscripted string, starting at the start
position.



53

4.12 Load Literal Instructions

These are used to load the value of a literal onto the appropriate stack.

ll.int( n : byte )

Op-Code 166

Description

Push the signed integer value n onto the main stack.
The byte is an 8 bit twos complement number.

ll.char( n : byte )

Op-Code 168

Description

Lookup the vector of single character strings in the root object.
Use n as an index into the vector.
Push the indexed string element onto the pointer stack.



54

4.13 Primitive I/O Interface

These instructions provide a primitive interface to the host operating system's I/O facilities.

create.file

Op-Code 170

Description

Pop the file name from the pointer stack.
Pop the file's protection mask from the main stack.
Create a file in the underlying system with the specified name and protection mask.
if the file was created
do Discover the type of file that was created, a disk file, terminal file, mouse file,

tablet file or raster file.
if the file is of the expected type
then Create a file descriptor for the type of file opened.

Perform any initialisation necessary to use the created file.
Push the file descriptor onto the pointer stack.
Set the I/O error number in the root object to 0.

else Push the value nilfile onto the pointer stack.
Set the I/O error number in the root object to indicate why the create failed.

Note that in the first UNIX implementation of the persistent abstract machine, the I/O error
numbers used to indicate failure conditions correspond exactly to the UNIX error numbers.

open

Op-Code 171

Description

Pop the file name from the pointer stack.
Pop the file's access mode from the main stack, the mode can be 0 for read only, 1 for write
only or 2 for read and write.
Open a file in the underlying system with the specified name and access mode.
if the file was opened
do Discover the type of file that was opened, a disk file, terminal file, mouse file,
if the file is of the expected type
then Create a file descriptor for the type of file opened.

Perform any initialisation necessary to use the opened file.
Push the file descriptor onto the pointer stack.
Set the I/O error number in the root object to 0.

else Push the value nilfile onto the pointer stack.
Set the I/O error number in the root object to indicate why the open failed.



55

close

Op-Code 172

Description

Pop the file descriptor from the pointer stack.
if the file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate an attempt to close a closed file.
else Close the open file.

if the file was closed
then Push the integer value 0 onto the main stack.

Set the I/O error number in the root object to 0.
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why the close
failed.

Note that the files for standard input, output and error and the socket connection to the shell are
never closed.

seek

Op-Code 173

Description

Pop the seek key from the main stack, 0 seek from the start of file, 1 seek from the current file
position or 2 seek from the end of the file.
Pop the byte offset that the file position should be modified by.
Pop the file descriptor from the pointer stack.
if the file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate an attempt to seek within a closed
file.

else if the file is not a disk file
then Push the integer value -1 onto the main stack.

Set the I/O error number to indicate an attempt to seek on a non disk file.
else Set the current file position as indicated by the byte offset and seek key.

if the file position was set
then Push the integer value 0 onto the main stack.

Set the I/O error number in the root object to 0.
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why the
seek failed.



56

ioctl

Op-Code 174

Description

Pop the ioctl command number to be performed from the main stack.
Pop the vector of integers holding the command's data from the pointer stack.
Pop the file descriptor from the pointer stack.
if the file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate ioctl was passed a closed file.
else if the file is not a terminal file, a disk file, a window file or a socket file

then Push the integer value -1 onto the main stack.
Set the I/O error number to indicate ioctl was not passed a terminal file.

else execute the specified ioctl command using the data vector.
if the command was successful
then Push the integer value 0 onto the main stack.

Set the I/O error number in the root object to 0.
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why the
requested ioctl command failed.

The ioctl commands for the UNIX implementation correspond to a subset of those supported
by the UNIX ioctl system call and use the same command numbers. An implementation
independent command number may also be used. The ioctl instruction will not execute the
specified command unless it is applicable to the file type and the vector of integers contains
sufficient integer elements to hold the parameters or results of the specified command. The
supported commands ( described in section 4 of the 4.2BSD manual set ) and their alternatives
in brackets are:

TIOCSETP (1), TIOCSETN (2), TIOCSETC (3), TIOCSLTC (4), TIOCSETD (5),
TIOCFLUSH (6), TIOCSTI (7), TIOCSPGRP (8), TIOCLBIS (9), TIOCLBIC (10),
TIOCEXCL (11), TIOCNXCL (12), TIOCHPCL (13), TIOCSBRK (14), TIOCCBRK (15),
TIOCSDTR (16), TIOCCDTR (17), TIOCSTOP (18), TIOCSTART (19), TIOCGETP (20),
TIOCGETC (21), TIOCGLTC (22), TIOCGETD (23), TIOCGPRG (24), TIOCOUTQ (25),
FIONREAD (26) and FIONBIO (27).

In order to preserve the state of a terminal over a checkpoint, the terminal file descriptor records
the 4 state structures used by 4.2BSD. These are the sgttyb structure, the tchars structure, the
ltchars structure and a word of local flags. Whenever a specified command updates one of these
state structures, the change is also recorded in the file descriptor.

One abstract machine specific ioctl command is provided to reopen a closed file. Command
number 28 reopens a closed file using the name held in the file descriptor. For disk files, the
open is performed from the same working directory as the original open. All other reopens are
performed in the new working directory and host machine context.



57

read.bytes

Op-Code 175

Description

Pop the number of bytes to be read from the main stack.
Pop the byte offset into the vector of integers from the main stack.
Pop the vector of integers into which the bytes will be read from the pointer stack.
Pop the file descriptor from the pointer stack.
if the file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate read.bytes was passed a
closed file.

else if the file is not a disk file, a terminal file, a window file or a socket file
then Push the integer value -1 onto the main stack.

Set the I/O error number to indicate read.bytes was not passed a disk file,
a terminal file, a window file or a socket file.

else Read at most the number of bytes specified into the vector of integers,
starting at the specified byte offset, from the file.
if no error occurred
then Push the number of bytes read onto the main stack.

Set the I/O error number in the root object to 0.
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why read.bytes
failed.

Note that the bytes within each integer of the vector are temporarily converted to big-endian
order during the I/O. That is, the most significant byte in an integer is the first byte read and the
least significant byte is the last byte read.

write.bytes

Op-Code 176

Description

Pop the number of bytes to be written from the main stack.
Pop the byte offset into the vector of integers from the main stack.
Pop the vector of integers from which the bytes will be written from the pointer stack.
Pop the file descriptor from the pointer stack.
if the file descriptor is for a closed file
then Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate write.bytes was passed a
closed file.

else if the file is not a disk file, a terminal file or a socket file
then Push the integer value -1 onto the main stack.

Set the I/O error number to indicate write.bytes was not passed a disk file or
a terminal file.

else Write at most the number of bytes specified from the vector of integers,
starting from the specified byte offset, to the file.
if no error occurred
then Push the number of bytes written onto the main stack.

Set the I/O error number in the root object to 0.
else Push the integer value -1 onto the main stack.

Set the I/O error number in the root object to indicate why  write.bytes
failed.



58

Note that the bytes within each integer of the vector are temporarily converted to big-endian
order during the I/O. That is, the most significant byte in an integer is the first byte written and
the least significant byte is the last byte written.

get.byte

Op-Code 177

Description

Pop the byte offset to the desired byte in the word to be indexed.
Pop the word to be indexed from the main stack.
if the byte offset is less than 0 or greater than 3
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a4GetByte in the error structure.

The word to be indexed and the byte offset are passed as parameters.
else Push the unsigned integer value of the indexed byte onto the main stack.

The byte index of 0 reads the most significant byte in the integer and a byte index of 3 reads the
least significant byte in the integer.

set.byte

Op-Code 178

Description

Pop the integer value of the byte to be assigned to.
Pop the byte offset to the desired byte in the word to be indexed.
Pop the word to be modified from the main stack.
if the byte offset is less than 0 or greater than 3
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a5SetByte in the error structure.

The word to be modified, the byte offset and byte to be assigned are passed as
parameters.

else Set the value of the indexed byte to be the least significant byte of the specified value.
Push the modified word value onto the main stack.

The byte index of 0 sets the most significant byte in the integer and a byte index of 3 sets the
least significant byte in the integer.



59

4.14 Comparison Operations

The comparison operations act on the top two elements of the appropriate stack. They are
compared and removed. The boolean result true or false is left on the main stack.

eq.ib,r,s,p,pr

Op-Codes

eq.ib 179 eq.r 180
eq.s 181 eq.p 182
eq.pr 183 eq.var 184

eq.any 186

Description

Compare the two elements at the top of the appropriate stack.
Pop the two elements off the appropriate stack.
if the two elements are equal
then Push the boolean value true onto the main stack.
else if the two elements are not equal

then Push the boolean value false onto the main stack.
else if equality cannot be determined because one or more pairs of anys must

    be type checked
do Call the any comparison procedure held in the root object.

The first pair anys to be type checked are passed as parameters.

Equality of the stack elements is defined as follows:
eq.ib: the elements are single words on the main stack, they must have the

same integer value.
eq.r: the elements are pairs of words on the main stack, they must be

compared by the floating point implementation.
eq.s: the elements are pointers to strings on the pointer stack, they must be the

same pointer or they must have exactly the same characters.
eq.p: the elements are single words on the pointer stack, they must have the

same integer value.
eq.pr: the elements are pairs of words on the pointer stack, their first words are the

code vectors for the procedures being compared and their second words are the
corresponding static links. The code vectors must be identical and the static links
must be identical. If the alternate code vector field of a code vector is not nil it is
used to test code vector identity. If an alternate code vector field points to its own
code vector the static link field of the corresponding static link is used to test static
link identity.

eq.var: the elements are a single label word on the main stack and a single
pointer on the pointer stack, they must have the same labels, if the
labels are equal the least significant byte of the label is the dynamic tag of the
injected values, if the values to be compared are single pointers compare the two
pointers otherwise the two pointers point to objects containing the values to be
compared, in that case the values start immediately after the size field.

eq.any: the elements are both two integer words and two pointers, the first integer word
and the first pointer of each element form a variant, the two variants are compared
as described above, if the variants are not equal the anys are not equal, if the
variants are equal then the types of two anys must be checked by the compiler's
type checker.



60

eq.poly

Op-Code 185

Description

Pop the dynamic tag for the values being compared from the top of the main stack.
The values being compared are both padded to form two integer words and two pointers and
are now at the top of both stacks.
Perform the comparison appropriate for the data type indicated by the dynamic tag.
Pop four words from each stack and push the result onto the main stack.
It should be noted that this instruction may be required to call the any comparison procedure.

neq.ib,r,s,p,pr

Op-Codes

neq.ib 187 neq.r 188
neq.s 189 neq.p 190
neq.pr 191

Description

Compare the two elements at the top of the appropriate stack.
Pop the two elements off the appropriate stack.
if the two elements were equal
then Push the boolean value false onto the main stack.
else Push the boolean value true onto the main stack.

It should be noted that there are no neq.var, neq.any or neq.poly instructions. These
comparisons are implemented by performing the appropriate eq.var, eq.any or eq.poly
instruction followed by a not instruction.

l t . i ,r ,s

Op-Codes

lt.i 195 lt.r 196
lt.s 197

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack.
if the element A was less than the element B
then Push the boolean value true onto the main stack.
else Push the boolean value false onto the main stack.



61

Less than between two stack elements A and B is defined as follows:
lt.ib: the elements A and B are single words on the main stack, element A

must have a smaller integer value than element B
lt.r: the elements A and B are pairs of words on the main stack, element A

must have a smaller floating point value than element B.
lt.s: the elements A and B are pointers to strings on the pointer stack, the

characters in A's string are compared with the characters at the same
position in B's string until either all the characters in one string have
been compared or two characters being compared differ, if all of a
string's characters have been compared A's string must be shorter than
B's string, if two characters differ the character from A's string must
have a smaller ascii code than the character from B's string.

le . i ,r , s

Op-Codes

le.i 198 le.r 199
le.s 200

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack.
if the element A was less than or equal to the element B
then Push the boolean value true onto the main stack.
else Push the boolean value false onto the main stack.

gt . i ,r ,s

Op-Codes

gt.i 201 gt.r 202
gt.s 203

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack.
if the element A was less than or equal to the element B
then Push the boolean value false onto the main stack.
else Push the boolean value true onto the main stack.



62

ge . i , r , s

Op-Codes

ge.i 204 ge.r 205
ge.s 206

Description

Compare the two elements at the top of the appropriate stack.
Pop the element, B, off the appropriate stack.
Pop the element, A, off the appropriate stack.
if the element A was less than the element B
then Push the boolean value false onto the main stack.
else Push the boolean value true onto the main stack.



63

4.15 Arithmetic and Boolean Operators

These instructions operate on the data types real and integer. The top two elements of the stack are
replaced by the result. The real ( floating-point ) operations are preceded with the letter f.
Remember that each real number is two stack elements long.

plus,fplus

Op-Codes

plus 207 fplus 219

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine.
else Call the procedure a1Int or a3Real in the error structure, as appropriate.

The string "+", the value A and the value B are passed as parameters.
else Push the value of A added to B onto the main stack.

times,ftimes

Op-Codes

times 208 ftimes 220

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine.
else Call the procedure a1Int or a3Real in the error structure, as appropriate.

The string "*", the value A and the value B are passed as parameters.
else Push the value of A times to B onto the main stack.

minus,fminus

Op-Codes

minus 209 fminus 221

Description

Pop the value B from the top of the main stack.
Pop the value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine.
else Call the procedure a1Int or a3Real in the error structure, as appropriate.

The string "-", the value A and the value B are passed as parameters.
else Push the value of A minus B onto the main stack.



64

div

Op-Code 210

Description

Pop the integer value B from the top of the main stack.
Pop the integer value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a1Int in the error structure.

The string "div", the value A and the value B are passed as parameters.
else Push the quotient of A divided by B onto the main stack.

fdivide

Op-Code 222

Description

Pop the floating point value B from the top of the main stack.
Pop the floating point value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a3Real in the error structure.

The string "/", the value A and the value B are passed as parameters.
else Push the floating point value of A divided B onto the main stack.

neg,fneg

Op-Codes

neg 211 fneg 223

Description

Pop the value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a0UnaryInt or a2UnaryReal in the error structure, as

appropriate.
The string "-" and the value A are passed as parameters.

else Push the negated value of A onto the main stack.



65

rem

Op-Code 212

Description

Pop the integer value B from the top of the main stack.
Pop the integer value A from the top of the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a1Int in the error structure.

The string "rem", the value A and the value B are passed as parameters.
else Push the remainder of A divided by B onto the main stack.

shift.r

Op-Code 213

Description

Pop the number of bits, S, to shift from the main stack
Pop the integer value to be shifted from the main stack.
if S is positive do

Shift the bits of integer value so that bit at position B is at position B - S, the least 
significant S bit positions are ignored, the most significant S bit positions are cleared.
Push the shifted integer value onto the main stack.

shift.l

Op-Code 214

Description

Pop the number of bits, S, to shift from the main stack.
Pop the integer value to be shifted from the main stack.
if S is positive do

Shift the bits of integer value so that bit at position B is at position B + S, the most 
significant S bit positions are ignored, the least significant S bit positions are cleared.
Push the shifted integer value onto the main stack.

b.and

Op-Code 215

Description

Pop the integer value, B, from the main stack.
Pop the integer value, A, from the main stack.
Construct a new integer value whose bits are set only if the corresponding bits in A and B are
both set.
Push the new integer value onto the main stack.



66

b.or

Op-Code 216

Description

Pop the integer value, B, from the main stack.
Pop the integer value, A, from the main stack.
Construct a new integer value whose bits are set only if either of the corresponding bits in A
and B are set.
Push the new integer value onto the main stack.

b.not

Op-Code 217

Description

Pop the integer value from the main stack.
Set all the bits in the integer value that are clear and clear all the bits that are set.
Push the not'd integer value onto the main stack.

not

Op-Code 218

Description

Pop the boolean value A from the top of the main stack.
if A is true
then Push the boolean value false onto the main stack.
else Push the boolean value true onto the main stack.

sin

Op-Code 224

Description

Pop the floating point value R from the main stack, R is an angle in radians.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "sin" and the floating point value R are passed as parameters.
else Push the value of the sine of R onto the main stack.



67

cos

Op-Code 225

Description

Pop the floating point value R from the main stack, R is an angle in radians.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "cos" and the floating point value R are passed as parameters.
else Push the value of the cosine of R onto the main stack.

exp

Op-Code 226

Description

Pop the floating point value R from the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "exp" and the floating point value R are passed as parameters.
else Push the value of e raised to the power of R onto the main stack.

ln

Op-Code 227

Description

Pop the floating point value R from the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "ln" and the floating point value R are passed as parameters.
else Push the value of the natural logarithm of R onto the main stack.

sqrt

Op-Code 228

Description

Pop the floating point value R from the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "sqrt" and the floating point value R are passed as parameters.
else Push the value of the square root of R onto the main stack.



68

atan

Op-Code 229

Description

Pop the floating point value R from the main stack, R is an angle in radians.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure a2UnaryReal in the error structure.

The string "atan" and the floating point value R are passed as parameters.
else Push the value of the arctangent of R onto the main stack.

truncate

Op-Code 230

Description

Pop the floating point value R from the main stack.
if an arithmetic error occurs
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure x0Truncate in the error structure.

The floating point value R is passed as a parameter.
else Push the value of the integer part of R onto the main stack.

float

Op-Code 231

Description

Pop the integer value I from the main stack.
Push the floating point number with the same value as I onto the main stack.



69

4.16 Miscellaneous

These instructions provide a date/time interface and the ability to explicitly invoke a stabilise and a
persistent store garbage collection.

no.op

Op-Code 0

Description

Do nothing.

date

Op-Code 232

Description

Push a pointer to a string containing the current date and time in the form :
"Thu Apr 23 17:16:11 1987"
onto the pointer stack.

time

Op-Code 233

Description

Push the number of one sixtieth second ticks since the Napier system started onto the main
stack.

stabilise

Op-Code 234

Description

Perform the checkpoint_heap operation provided by the stable store interface.

diskgc

Op-Code 235

Description

Perform the garbage_collect operation provided by the stable store interface.



70

4.17 Variants

These instructions manipulate the uniform representation of values as variants.

inject.op

Op-Code 236

Description

The label word for the injected value is on top of the main stack.
The value to be injected is below the label word on the appropriate stack.
Pop the label word on top of the main stack and inspect its dynamic tag.
if the dynamic tag does not represent a single pointer value
do Create an object just large enough to contain the injected value.

Pop the injected value from the appropriate stack and copy it into the object.
Push a pointer to the object onto the pointer stack.

Push the label word onto the main stack.

project.op

Op-Code 237

Description

A variant value is on top of the two stacks.
Pop the variant's label word from the main stack and inspect its dynamic tag.
if the dynamic tag does not represent a single pointer value
do Pop the pointer to the object containing the variant's value from the pointer stack.

Push the variant's value onto the appropriate stack.

index.jump( n : short, offsets : n shorts )

Op-Code 238

Description

Pop the index on top of the main stack ( I ).
Compare the index with the number of supplied offsets ( n ).
i f i < 0 or i >= n
then Read the n - 1th offset parameter ( O ).
else Read the ith offset parameter ( O ).
Jump forwards O bytes from the location following the chosen offset.



71

4.18 Structure Constancy

These instructions test structure fields for constancy violations immediately prior to the execution
of a structure assignment. These instructions must be immediately followed by the corresponding
structure assign. They do not alter the stacks unless an error is detected. On an error the stacks are
cleared of the parameters to the assign instruction and an error handler is called. If the handler
returns, execution is resumed at the instruction following the structure assign.

subtest

Op-Codes

wsubtest 239 dwsubtest 240
psubtest 241 dpsubtest 242

Description

The stacks are set up to perform the corresponding subsass instruction.
if the next instruction is not the corresponding subsass instruction
do Halt the abstract machine
Read the word offset, W, to the field being assigned from the main stack.
Read the pointer to the structure from the pointer stack.
Test the constancy bit for word W in the structure.
if the instruction is dwsubs or dpsubs
do Test the constancy bit for word W+1 in the structure.
if either of the constancy bits is set
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v0ConstantField in the error structure.

There are no parameters.
The resume address is after the next instruction.



72

subtest

Op-Codes

wpsubtest 243 dwdpsubtest 244

Description

The stacks are set up to perform the corresponding subsass instruction.
if the next instruction is not the corresponding subsass instruction
do Halt the abstract machine
Read the word offset, W1, to the pointer field being assigned to, from the main stack.
Read the word offset, W2, to the non pointer field being assigned to, from the main stack.
Read the pointer to the structure from the pointer stack.
Test the constancy bit for word W1 in the structure.
Test the constancy bit for word W2 in the structure.
if the instruction is dwsubs or dpsubs
do Test the constancy bit for word W1+1 in the structure.

Test the constancy bit for word W2+1 in the structure.
if any of the constancy bits is set
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v0ConstantField in the error structure.

There are no parameters.
The resume address is after the next instruction.

subtest.poly

Op-Code 245

Description

The stacks are set up to perform the subsass.poly instruction.
if the next instruction is not subsass.poly
do Halt the abstract machine
Read the dynamic tag from the main stack.
Read the word offset, W1, to the pointer field being assigned to, from the main stack.
Read the word offset, W2, to the non pointer field being assigned to, from the main stack.
Read the pointer to the structure from the pointer stack.
if the value to be assigned contains pointers
then Test the constancy bit for word W1 in the structure.

if two pointers are to be assigned
Test the constancy bit for word W1+1 in the structure.

if the value to be assigned contains non pointers
then Test the constancy bit for word W2 in the structure.

if two non-pointers are to be assigned
Test the constancy bit for word W2+1 in the structure.

if any of the constancy bits is set
then if the error structure in the root object is nil

then Halt the abstract machine
else Call the procedure v0ConstantField in the error structure.

There are no parameters.
The resume address is after the next instruction.



73

4.19 Host Operating System

These instructions provide access to the host operating system environment and details of the
persistent abstract machine execution.

host.environment

Op-Code 167

Description

Create a vector of strings for the command line arguments passed to the Napier system.
Create a vector of strings for the shell environment passed to the Napier system.
Create a two field structure with the command line arguments as the first field and the shell
environment as the second field.
Push the pointer to the two field structure onto the pointer stack.

The precise contents of the vectors is implementation dependent. If the host operating system is
not UNIX based then the contents of these vectors is undefined.

statistics

Op-Code 169

Description

A vector of vector of integers is on top of the pointer stack.
The first vector of integers should be overwritten with PAM statistics.
The second vector of integers should be overwritten with stable heap statistics.
The third vector of integers should be overwritten with stable storage statistics.
The fourth vector of integers should be overwritten with operating system statistics.

The operation of this instruction is implementation dependent. It is intended to supply
performance statistics to a system implementor attempting to measure the system. Only the
system implementor will be aware of the significance of all of the data written to the vectors.

The elements of the PAM statistics vector are as follows:
element 1: total user time for this execution of the Napier system in seconds.
element 2: the number of microseconds to be added to element 1.
element 3: total system time for this execution of the Napier system in seconds.
element 4: the number of microseconds to be added to element 3.
element 5: time of day expressed in seconds since 00:00, Jan 1, 1970.
element 6: the number of microseconds to be added to element 5.
if the vector has more than 6 elements the extra elements are implementation dependent,
if the vector has less than 6 elements only the ones supplied are used.



74

4.20 Thread Operations

Concurrency is supported by lightweight threads. Each thread has some private state information
including a pointer to the stack frame for the procedure it is executing, the status of its last I/O
operation and a lock word. Access to the I/O status is made through root instructions which
automatically access the thread context object rather than the abstract machine's root object. Access
to the lock word is made via the modlock instruction, a positive value in the lock word indicates a
Napier level logical operation is in progress. Executing threads are only subject to context
switching between abstract machine instructions, at the end of Napier level logical operations or by
executing an appropriate thread operation. Napier level logical operations are executed as atomic
operations as are abstract machine instructions that operate on shared data.

thread.op

Op-Code 248

Description

Pop a procedure closure from the pointer stack.
Pop a pointer to a vector from the pointer stack.
Perform the specified thread operation.

The first element of the vector contains the thread operation code.
The second element of the vector contains the thread identifier.
If there is only one element in the vector, thread operations requiring a thread identifier are
treated as no-ops.

The thread operation code has the following interpretation:

0 Start Thread:
Create a new thread to execute the specified procedure.
Assign the new thread's identifier to the first element of the vector.

1 Get Thread Identifier:
Assign the executing thread's identifier to the first element of the vector.

2 Get All Threads:
Assign the current number of threads to the first element of the vector.
Assign the identifiers of the existing threads to successive elements of the vector.  If the 
vector has too few elements only the ones supplied are filled in.

3 Kill Thread:
Mark the specified thread as killed.
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.
if the executing thread is marked as killed
do Clear the thread lock word.

Perform a context switch.

4 Restart Thread:
Mark the specified thread as runnable.
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.



75

5 Suspend Thread:
Mark the specified thread as suspended.
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.
if the executing thread is marked as suspended
do Clear the thread lock word.

Perform a context switch.

6 Kill All Threads:
Mark all threads in the system as killed.
Assign 1 to the first element of the vector.
Clear the thread lock word.
Perform a context switch.

7 Suspend and Unlock Thread:
Mark the specified thread as suspended.
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.
Clear the thread lock word.
if the executing thread is marked as suspended
do Perform a context switch.

8 Restart and Unlock Thread:
Mark the specified thread as runnable.
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.
Clear the thread lock word.

9 Live Thread?:
if the specified thread does not exist or has already been killed
then Assign 0 to the first element of the vector.
else Assign 1 to the first element of the vector.

modlock

Op-Code 249

Description

Pop an integer value from the main stack.
Increment the thread lock word with the popped integer.
if the result of the increment is negative
do Set the lock word to be 0.
Push the final value of the lock word onto the main stack.



76

5 Persistence

5 .1 The Interface to the Persistent Store

A program module within the abstract machine's implementation provides a main memory heap.
The heap is in fact an optional layer of the persistent store that is used to cache objects held in the
persistent heap. The main memory heap, hereafter referred to as the local heap, is accessed via 12
interface functions that will now be described. A full description of the layers within the stable
store can be found in [14]. It is assumed that the local heap is implemented in a byte addressed
RAM.

5 .2 Interface Functions to the Local Heap

Initialise_heap:

This function will cause the local to be initialised and the persistent heap to be opened. As a part of
the open, the disk store to be used will be locked to prevent interference. The function is called
each time the persistent abstract machine is invoked.

Shutdown_heap:

This function causes the local and persistent heaps to be shutdown and so release any system
resources they may be using. This is the converse of initialise_heap.

Create_object:

This function is used to create a new object in the local heap. It is parameterised by the size of the
new object in words. When the object is created it is initialised as an object of the required size but
with no pointer fields. The act of inserting pointers into the object and setting the count of the
number of pointers is left to the abstract machine. Once the object has been created the function will
return its address. The address will be a byte address in RAM. If for some reason the object cannot
be created the address returned will be 0.

Destroy_object:

This function is used to release the store allocated to an object. It is parameterised by the RAM byte
address of the object. The function will not release the storage if the particular organisation of the
local heap does not support this operation.

Illegal_address:

This function is used to move objects from the persistent heap into the local heap. It is
parameterised by the address of the object in the persistent heap and returns the byte address it was
copied to in RAM. When illegal address is called the persistent heap address is looked up in a
mapping table. The mapping table records all persistent heap objects that currently have a copy in
RAM. If the persistent heap address is present then the corresponding RAM address is returned.
However if the persistent heap address is not present the object being addressed must first be
copied into RAM and then its RAM address returned. An object is copied into RAM in four steps:

a . create_object is called to create an object in the local heap the same size as the
addressed object.

b. the addressed object is then copied from the persistent heap overwriting the newly
created heap object.

c . all the pointers held within the copied object are negated since they are persistent heap
addresses and must be distinguished from RAM addresses.



77

d . finally the address of the newly created object is entered in the mapping table together
with the persistent heap address.

If at step a, an object cannot be created in the local heap, the result of illegal address will return the
address 0. Until a successful garbage collection of the local heap has been performed the illegal
address may not be translated.

All persistent heap addresses are distinguished from RAM addresses by being negative values and
hence invalid RAM addresses. Therefore it is necessary to translate these addresses before using
them. To minimise the number of translations the following rules should be applied:

a . Once a persistent heap address has been translated it is overwritten by its RAM
address. Note this overwriting is most effective if it is done at the source of the
address, that is in the field of a structure rather than on the pointer stack.

b . All the pointers in the following objects must be RAM addresses:
the current frame,
the root object,
the vector of single character strings,
the vector of event handling procedures,
the structure of error handling procedures,
the vector of open files and
the open files.

c . Whenever a pointer value is found in an object other than those listed in b it must be
checked and if necessary translated into a RAM address.

d . Whenever control is transferred, the new current frame must have all its pointers
checked and if necessary translated into RAM addresses.

e . When the local heap is initialised its root object must be copied from the persistent heap
and the requirements of rule b enforced.

To support these rules every object is tagged, with a single bit,when it is first copied into the heap
and subsequently when a RAM address it contains is overwritten by the corresponding persistent
heap address. The tag bit is reset if an object has become the current frame and had all its pointers
translated into RAM addresses.

These rules are sufficient to guarantee no persistent heap addresses are encountered by instructions
that operate solely on the current frame. Hence they need never deal with persistent heap
addresses. In addition, a current frame can be tested to see if it conforms to the above rules by
simply testing a tag bit. Thus a procedure return need only test one bit when transferring control to
an existing frame object.

First_object:

This function returns the RAM address of the first object in the local heap. The first object in the
local heap is the root object of the persistent heap.

Checkpoint_heap:

This function causes all the new or changed objects within the local heap to be copied to the
persistent heap. The persistent heap then performs its own checkpoint operation so that the
persistent heap changes to a new stable state.

The act of copying any local heap object to the persistent heap is done in two steps. First any RAM
addresses it contains must be translated into persistent heap addresses. A RAM address is given a
persistent heap address by creating a new object of the same size in the persistent heap and then
adding a mapping between the RAM address and the new persistent object to the mapping table.
The object  is then copied to the persistent heap translating any RAM addresses as it is copied.



78

Garbage_collect:

This function performs a garbage collection on the local heap destroying any unreachable objects
that were not copied from the persistent heap.

Garbage_collect_the_persistent_heap:

This function performs a checkpoint operation followed by a garbage collection of the persistent
heap. On completion of the garbage collection the local heap must be reinitialised since the
addresses of the persistent heap objects may have changed  The checkpoint is necessary to ensure
that the persistent heap is in a self consistent state prior to the garbage collection and to ensure that
no information is lost when the local heap is reinitialised.

Can_create:

This function indicates whether or not an object of a given size can be created by the persistent
heap and that the creation will not cause a checkpoint of the persistent heap to fail. The function
must always be called before attempting to create a new object. If the object cannot be created, the
persistent abstract machine must initiate a checkpoint_heap operation, possibly followed by a
garbage_collect_the_persistent_heap operation, and restart the current instruction. NB: this
requires any abstract machine instruction that may create an object to be restartable.

Can_modify:

This function indicates whether a particular object, identified by its key, can be modified without
causing a checkpoint of the persistent heap to fail. The function must always be called before
modifying an object. If the object cannot be modified, the persistent abstract machine must initiate a
checkpoint_heap operation and restart the current instruction. NB: this requires any abstract
machine instruction that may modify an object to be restartable.

Uncreate:

This function indicates to the persistent heap that an object created in the local heap, following a
successful call to can_create, has been deleted. The deleted object is then disregarded for the
purposes of calculating the result of calls to can_create and can_modify.

5 .3 Implementation Consequences

As a direct consequence of the can_modify, can_create and uncreate interface functions, an
implementation of the Persistent Abstract Machine must support restartable instructions. In
addition, it is also necessary to mark those housekeeping objects that may be changed, such as the
current frame, open files vector and root object, as modified before executing any PAM code. In
this way, any operation involving an update to a housekeeping object is guaranteed to succeed.



79

6 Errors and Events

The persistent abstract machine supports the automatic execution of user defined procedures when
an error condition or asynchronous event occurs. The procedures associated with error conditions
are held in a structure whereas the procedures associated with asynchronous events are held in a
vector. Both data structures are pointed to by the root object.

6 .1 Errors

The structure of error procedures has the following type:

type errorStructure is structure
(

! arithmetic errors
a0UnaryInt : proc( string,int -> int ) ;
a1Int : proc( string,int,int -> int ) ;
a2UnaryReal : proc( string,real -> real ) ;
a3Real : proc( string,real,real -> real ) ;
a4GetByte : proc( int,int -> int ) ;
a5SetByte : proc( int,int,int -> int ) ;
x0Truncate : proc( real -> int ) ;

! graphics errors
g00GetPixel : proc( image,int,int -> pixel ) ;
g01SetPixel : proc( image,int,int,pixel ) ;
g02PixelOverflow : proc( pixel -> pixel ) ;
g03SubPixel : proc( pixel,int,int -> pixel ) ;
g04MakeImage : proc( int,int,pixel -> pixel ) ;
g05SubImage : proc( image,int,int -> image ) ;
g06LimitAt : proc( image,int,int -> image ) ;
g07LimitAtBy : proc( image,int,int,int,int -> image ) ;
g08ConstantImage : proc( image ) ;
g09GetScreen : proc( file -> image ) ;
g10Locator : proc( file,*int ) ;
g11ColourMap : proc( file,pixel,int ) ;
g12ColourOf : proc( file,pixel -> int ) ;
g13GetCursor : proc( file -> image ) ;
g14SetCursor : proc( file,image ) ;
g15GetCursorInfo : proc( file,*int ) ;
g16SetCursorInfo : proc( file,*int ) ;
x1ClosedWindow : proc( file,image ) ;

! string errors
s0Concatenate : proc( string,string -> string ) ;
s1SubString : proc( string,int,int -> string ) ;

! structures and vector errors
v0ConstantField : proc()
v1ConstantVector : proc[ t ]( *t,int,t ) ;
v2VectorIndexAssign : proc[ t ]( *t,int,t ) ;
v3VectorIndexSubs : proc[ t ]( *t,int -> t ) ;
v4MakeVector : proc[ t ]( int,int,t -> *t ) ;

! variant errors
v5VarProject : proc( typeRep,int,int )

)



80

It should be noted that the two character prefix to each procedure's name is to ensure that the
procedures are stored in the correct order (the compiler assumes alphabetic order), a0UnaryInt first
to x1ClosedWindow last. All of the above error procedures with the exception of v5VarProject are
called when an abstract machine instruction detects an error condition. In each case they can
perform some desired action, programmed by the user, and then return allowing the running
program to continue. Alternatively, the procedures can display a suitable error message and halt the
running program or invoke an exception processing mechanism.

The procedure v5VarProject is called by the code planted by the code generator to check that a
variant projection is valid. The planted code forces the running program to halt if the error
procedure returns because the program is unable to continue after the failed projection.

When a persistent store is first used it does not contain a structure of error procedures. The root
object has nil in the field that points to the structure. Until an error structure is placed in the
persistent store any errors cause the abstract machine to halt, giving a suitable error message.

6 .2 Events

The abstract machine recognises a small number of asynchronous events. The procedures
associated with each of these events are held in a vector pointed to by the root object. The type of
the vector is *proc(). When an event occurs the persistent abstract machine sets two flags, one to
indicate that an event has occurred and one to indicate which event. The current instruction is then
resumed. Between executions of abstract machine instructions the flag indicating an event has
occurred is checked. If the flag is set, the flags associated with each recognised event are also
checked. For each event that has occurred a procedure call is set up. This is performed in the
following steps:

a . The pointer to the vector of event procedures is looked up in the root object. When a
persistent store is first used the pointer is set to nil.

b . If the pointer is nil the event is ignored.
c . If the pointer is not nil the procedure entry for the event is looked up in the vector.
d . If the procedure entry is beyond the end of the vector the event is ignored.
e . A call of the event procedure is then made: a frame is created for the procedure, the

registers LFB, LPSP and LMSP are set to point to the new frame and the register CP is
set to point to the procedure's first instruction.

The net effect of the above steps is to stack up a procedure call for each event that has occurred. On
completion of a particular event procedure, the procedure will return to the previously set up call. If
there are no previously set up calls the procedure will return to the running program which then
continues as normal.

In certain cases it is desirable to delay handling an asynchronous event. For example, if an
environment is being updated then no other code should be run which could interfere with the
update. To ensure this cannot happen the modlock instruction can be used to indicate that a Napier
level logical operation is being executed. The abstract machine will not process an asynchronous
event during the execution of a Napier level logical operation.

The events recognised by the first UNIX implementation of the persistent abstract machine are:

event 1: UNIX hangup signal,
event 2: UNIX interrupt signal ( ^C ),
event 3: UNIX quit signal ( ^\ )
event 4: Interval timer ( 30Hz ) and
event 5: Poll for network connection request (30Hz ).



81

The format of the vector of event procedures is:

word 0,1 object header and size,
word 2,3 procedure closure for the UNIX hangup signal,
word 4,5 procedure closure for the UNIX interrupt signal,
word 6,7 procedure closure for the UNIX quit signal,
word 8,9 procedure closure for the 30Hz interval timer,
word 10,11 procedure closure for the network connection poll,
word 12 lower bound for the vector,
word 13 upper bound for the vector.

If the vector contains more than five procedures the additional procedures are never used.
Similarly, if the vector contains less than five procedures no attempt will be made to call the
missing procedures.



82

7 References

1. A. Albano, L. Cardelli and R. Orsini
Galileo : a strongly typed interactive conceptual language.
ACM Transactions on Database Systems 10(2), 230-260 (1985).

2. PS-algol Reference Manual, 4th Edition.
Universities of Glasgow and St Andrews PPRR-12-87, 1987

3. R. Morrison, A. Brown, R. Carrick, R. Connor & A. Dearle
The Napier Language Reference Manual
University of St Andrews, 1988

4. A. Dearle
Constructing Compilers in a Persistent Environment
2nd International Workshop on Persistent Object Stores, Appin, August 1987

5. A. Dearle
A Persistent Architecture Intermediate Language
Universities of Glasgow & St Andrews PPRR-35-87, 1987

6. A. Brown
A Distributed Stable Store
2nd International Workshop on Persistent Object Stores, Appin, August 1987

7. PS-algol Abstract Machine Manual
Universities of Glasgow & St Andrews PPRR-11-85, 1985

8. P. Bailey, P. Maritz & R. Morrison
The S-algol Abstract Machine
University of ST Andrews CS-80-2, 1980

9. A. Goldberg & D. Robson
Smalltalk-80. The Language and its Implementation
Addison-Wesley, 1983

10. M. Atkinson & R. Morrison
Procedures as Persistent Data Objects
ACM TOPLAS 7(4) October 1985 539-559

11. D. McNally, A. Davie & A. Dearle
A Scheme for Compiling Lazy Functional Languages
University of St Andrews, Staple/StA/88/4, 1988

12. L. Cardelli
Compiling a Functional Language
Proc. 1984 LISP and Functional Programming Conference
Austin, Texas August 1984

13. A Proposed Standard for Binary Floating Point Arithmetic, Draft 8.0 of IEEE
Task P754
IEEE Computer, March 1981, pp51-62.

14. A.L. Brown
Persistent Object Stores (Ph.D. Thesis)
University of St Andrews, 1989.



83

Appendix I: Persistent Abstract Machine Operation Codes

Jumps

fjump( short ) 1 jumpf( short ) 2
bjump( short ) 3 bjumpt( short ) 4
jumpff( short ) 5 jumptt( short ) 6
fortest( short,short,short ) 7 forstep( short ) 8
fortestS( short ) 9 forstepS( short ) 10
cjump.ib( short ) 11 cjump.r( short ) 12
cjump.s( short ) 13 cjump.p( short ) 14
cjump.pr( short ) 15 cjump.var( short,short ) 16
cjump.poly( short,short ) 17 cjump.any( short,short ) 18

Stack Load and Assignment

wroot( short ) 19 dwroot( short ) 20
proot( short ) 21 dproot( short ) 22
wproot( short,short ) 23 dwdproot( short,short ) 24

wroot.ass( short ) 25 dwroot.ass( short ) 26
proot.ass( short ) 27 dproot.ass( short ) 28
wproot.ass( short,short ) 29 dwdproot.ass( short,short ) 30

wlocal( short ) 31 dwlocal( short ) 32
plocal( short ) 33 dplocal( short ) 34
wplocal( short,short ) 35 dwdplocal( short,short ) 36

wlocal.ass( short ) 37 dwlocal.ass( short ) 38
plocal.ass( short ) 39 dplocal.ass( short ) 40
wplocal.ass( short,short ) 41 dwdplocal.ass( short,short ) 42

wload( short,short ) 43 dwload( short,short ) 44
pload( short,short ) 45 dpload( short,short ) 46
wpload( short,short,short ) 47 dwdpload( short,short,short ) 48

wassign( short,short ) 49 dwassign( short,short ) 50
passign( short,short ) 51 dpassign( short,short ) 52
wpassign( short,short,short ) 53 dwdpassign( short,short,short ) 54

contract.poly( short,short ) 55 expand.poly( short,short ) 56

Stack Duplicate

wdup 57 dwdup 58
pdup 59 dpdup 60
wpdup 61 dwdpdup 62



84

Stack Retract

wretract( short,short ) 63 dwretract( short,short ) 64
pretract( short,short ) 65 dpretract( short,short ) 66
wpretract( short,short ) 67 dwdpretract( short,short ) 68

retract( short,short ) 70

Block Entry and Exit

block.enter( short,short ) 71
wblock.exit 72 dwblock.exit 73
pblock.exit 74 dpblock.exit 75
wpblock.exit 76 dwdpblock.exit 77

block.exit 79

Procedure Entry and Exit

apply( short,short ) 80
wreturn 81 dwreturn 82
preturn 83 dpreturn 84
wpreturn 85 dwdpreturn 86
return.poly 87 return 88
current.frame 97

Image Operations

makepixel( byte ) 98 subpixel 99
makeimage 100 subimage 101
lim_at 102 lim_at_by 103
raster.op 104 raster.line 105
get.screen 106 locator 107
colour.map 108 colour.of 109
get.cursor 110 set.cursor 111
get.cursor.info 112 set.cursor.info 113
get.pixel 114 set.pixel 115

Vector and Structure Creation Instructions

wsubconst 116 dwsubconst 117
psubconst 118 dpsubconst 119
wpsubconst 120 dwdpsubconst 121
subconst.poly 122
makeobject( short,short ) 123 makeobject.poly 124
makestruct( short,short ) 125 polystructaddress( short ) 126
wmakev 127 dwmakev 128
pmakev 129 dpmakev 130
wpmakev 131 dwdpmakev 132
makev.poly 133



85

Vector and Structure Accessing Instructions

wsubs 134 dwsubs 135
psubs 136 dpsubs 137
wpsubs 138 dwdpsubs 139
subs.poly 140
wsubv 141 dwsubv 142
psubv 143 dpsubv 144
wpsubv 145 dwdpsubv 146
subv.poly 147
wsubsass 148 dwsubsass 149
psubsass 150 dpsubsass 151
wpsubsass 152 dwdpsubsass 153
subsass.poly 154
wsubvass 155 dwsubvass 156
psubvass 157 dpsubvass 158
wpsubvass 159 dwdpsubvass 160
subvass.poly 161

Constancy Instructions

wsubtest 239 dwsubtest 240
psubtest 241 dpsubtest 242
wpsubtest 243 dwdpsubtest 244
subtest.poly 245

makeconst 162 makevar 163

String Operations

concat 164 substr 165

Load Literal Instructions

ll.int( byte ) 166
ll.char( byte ) 168

Host Operating System

host.environment 167 statistics 169

Primitive I/O Instructions

create 170 open 171
close 172 seek 173
ioctl 174
read.bytes 175 write.bytes 176
get.byte 177 set.byte 178



86

Comparison Operations

eq.ib 179 eq.r 180
eq.s 181 eq.p 182
eq.pr 183 eq.var 184
eq.poly 185 eq.any 186
neq.ib 187 neq.r 188
neq.s 189 neq.p 190
neq.pr 191

lt.i 195 lt.r 196
lt.s 197
le.i 198 le.r 199
le.s 200
gt.i 201 gt.r 202
gt.s 203
ge.i 204 ge.r 205
ge.s 206

Arithmetic and Boolean Operators

plus 207 times 208
minus 209 div 210
neg 211 rem 212
shift.r 213 shift.l 214
b.and 215 b.or 216
b.not 217 not 218
fplus 219 ftimes 220
fminus 221 fdivide 222
fneg 223 sin 224
cos 225 exp 226
ln 227 sqrt 228
atan 229 truncate 230
float 231

Miscellaneous

no.op 0
date 232 time 233
stabilise 234 diskgc 235

Variants

inject.op 236 project.op 237
index.jump( short,n shorts ) 238

Thread Implementation

thread.op 248 modlock 249



87

Appendix II: Code File Format

PAM Code files consist entirely of valid PAM objects except for the file header. This contains the
following pieces of information necessary to bootstrap a PAM system.

1 . PAM Magic Number
2 . Size of the File ( bytes )
3 . Number of Objects in the File
4 . Address of the Root Object
5 . Compiler Magic Number

The size of the file is relative to the end of the header information.

The header information is followed by PAM objects each of which are prefixed by a single word
containing 0. This word is used during execution by the heap manager.

All addresses in code files are byte offsets from the end of the header information.

The PAM magic number in hexadecimal is 0xFC51000A, the least significant 16 bits of which are
the PAM version number, 10.

The PAM and Compiler magic numbers are the same as in the root object. They are used to
compare the versions of PAM code in the stable store and in the code file. The two sets of PAM
code must have the same compiler and PAM magic numbers.


	PAM v10 Abstract
	Contents
	1 Introduction
	1. 1 A Heap Based Storage Architecture
	1. 2 A Low-Level Type System
	1 . 3 Concurrency, Distribution and User Transactions
	1. 4 Errors and Events

	2 Abstract Machine Registers
	2 .1 ROP
	2.1.1 Object Formats
	2.1.1.1 The Header
	2.1.1.2 The Pointer Fields

	2.1.2 The Abstract Machine Root Object

	2 .2 LFB
	2 . 3 LMSP and LPSP
	2 .4 CP

	3 Data Types
	3. 1 Scalar Data Types
	3.1.1 Integer
	3.1.2 Boolean
	3.1.3 Pixel
	3.1.4 Real

	3. 2 Pointer Data Types
	3.2.1 Strings
	3.2.2 Files
	3.2.2.1 Disk Files
	3.2.2.2 Terminal Files
	3.2.2.3 Socket Files
	3.2.2.4 Raster Window Files
	3.2.2.5 Errors and Equality

	3.2.3 Vectors
	3.2.4 Images
	3.2.5 Structures
	3.2.6 Procedures
	3.2.6.1 Code Vectors
	3.2.6.2 Frames
	3.2.6.3 Operations and Equality

	3.2.7 Abstract Data Types

	3. 3 Mixed Data Types
	3.3.1 Variants
	3.3.2 Anys


	4 Persistent Abstract Machine Code
	4. 1 Jumps
	4. 2 Stack Load and Assignment
	4. 3 Polymorphic Operations
	4 . 4 Stack Duplicate Operations
	4. 5 Stack Retract Operations
	4 . 6 Block Entry and Exit
	4. 7 Procedure Entry and Exit
	4. 8 Image Operations
	4. 9 Vector and Structure Creation Instructions
	4.10 Vector and Structure Accessing Instructions
	4.11 String Operations
	4.12 Load Literal Instructions
	4.13 Primitive I/O Interface
	4.14 Comparison Operations
	4.15 Arithmetic and Boolean Operators
	4.16 Miscellaneous
	4.17 Variants
	4.18 Structure Constancy
	4.19 Host Operating System
	4.20 Thread Operations

	5 Persistence
	5 . 1 The Interface to the Persistent Store
	5 . 2 Interface Functions to the Local Heap
	5. 3 Implementation Consequences

	6 Errors and Events
	6 . 1 Errors
	6. 2 Events

	7 References
	Appendix I: Persistent Abstract Machine Operation Codes
	Appendix II: Code File Format

