An Approach to Extending the Lifetime of Wireless
Sensor Networks

Alan W. F. Boyd, Dharini Balasubramaniam, Alan Dearle, Ron Morrison
School of Computer Science, University of St Andrews, Fife KY16 9SX, Scotland
Email: {alanb, dharini, al, ron}@cs.st-and.ac.uk

Abstract—Wireless Sensor Networks (WSNs) are energy con-
strained. Every operation, particularly the use of radio, reduces
the energy reserves of nodes. The aim of this work is to improve
the useful network lifetime of a WSN, which we define as being
from the time when the network is activated to the time at
which it is no longer able to carry out its assigned task. Routing
protocols try to preserve lifetime by being energy-aware or
load-balancing. However, these approaches tend to behave non-
cooperative across multiple sources. We present a heuristic known
as node reliance, which indicates the degree to which nodes
are relied upon in routing messages from sources to sinks. We
hypothesise that by using this heuristic and avoiding nodes of
high reliance, the useful network lifetime of the network can be
extended.

Index Terms—ad-hoc routing, networking, sensor networks,
resource allocation techniques

I. INTRODUCTION

We define a Wireless Sensor Network (WSN) to be a
network of autonomous, battery-powered devices in which
data is generated by one or more source nodes and routed to
one or more sink nodes. It is envisioned that these networks
may be deployed in hostile or remote environments, making
redeployment of an expired network infeasible. The software
installed on wireless sensor networks, therefore, should aim to
preserve the lifetime of the network. This is especially true of
routing protocols as radio use is several orders of magnitude
more expensive than processor use [1].

Every action taken by a node uses some proportion of the
node’s energy reserves. The type of actions carried out by
each node, and the frequency with which those actions are
executed therefore affect the lifetime of a node. We consider
route selection to be the most significant factor in determining
a node’s lifetime, because radio usage is expensive and must
occur in order to effect routing between sources and sinks.

The vast majority of routing protocols in WSNs aim to ex-
tend the lifetime of a network through the intelligent selection
of a path or the enforcement of some topology, typically to
aid in data aggregation and compression. However, many of
these protocols measure network lifetime in ways that are
meaningless in real world applications. Furthermore, where
paths are intelligently selected, they are typically optimal only
for a single source and do not consider the requirements of
other sources, nor the fact that one node may lie on the optimal
path for multiple sources and be overused.

The rest of this paper is organised as follows: Section
IT presents the problem statement. Section III examines the

literature and demonstrates the limit of current approaches.
Section IV presents a new heuristic for solving the problem
and provides an implementation of an algorithm that makes
use of the new heuristic. Section V gives an example of how
the algorithm operates under a particular network topology.
Section VI discusses how the algorithm may be affected by
certain properties of WSNs. Finally, Section VII explores
future work.

II. PROBLEM STATEMENT

We consider a WSN such as that shown in Fig. 1. The task
of this network is to route generated data from the source
nodes (A and B) to the sink node (X). The generation of data
at the sources is assumed to be random.

Routing protocols typically identify the optimal path from
a source to a sink, based on some heuristic with the ultimate
aim of maximising the lifetime of the network. For example,
an energy-aware routing protocol might determine which path
uses the smallest amount of energy in routing a message from
a source to a sink. However, these route selections are rarely
(if ever) co-operative. Taking the example of Fig. 1, the path
ADX might be optimal for source A and the path BDX might
be optimal for source B when used independently. When used
simultaneously, node D may experience twice as much traffic
as any other node. Being energy constrained and using its
energetically expensive radio more than other nodes, node D
is likely to expire quickly and the previously optimal routes
are no longer available for use. Furthermore, with node D lost,
source B is unable to route messages to the sink and resources

Fig. 1. An example network. Circles represent nodes and a directed edge
indicates that communication can occur in the direction of the arrow.

9

Rod

are wasted.

A better solution would be for source A to use the path
ACX, even though it may not be optimal. In this case,
node D will not expire as quickly, allowing source B to
remain connected for longer, reducing wastage. We identify
the problem as being to extend the useful network lifetime, by
which we mean the length of time the network can complete
its task for. In this case the task is to route data that is
generated from source nodes to sink nodes. Individual nodes
are permitted to expire as long as this task can continue.

Solving this problem requires a means of identifying how
important each node is in meeting the aims of the network.
Any energy expenditure that takes place should then be carried
out on the less important nodes in preference to the important
nodes as this will allow the network to continue to function.
We introduce a heuristic known as Node Reliance which
identifies how important each node is in meeting the aims
of the network. We demonstrate how this can be calculated
and used in route selection to maximise the useful network
lifetime.

III. LITERATURE REVIEW
A. Energy-Aware Routing

In explaining the difficulties of shortest path routing, Singh
[2] presents five energy-aware heuristics that optimise for node
and network lifetime. However, Singh does not address the
difficulty of collecting energy heuristics and maintaining them.
Singh’s solution makes use of techniques such as “minimising
variance in node power levels”. However, the heuristics are
hard to synchronise as they constantly fluctuate; energy must
be expended to collect the heuristics. It is also hard to predict
how this data changes over time due to the non-deterministic
cost of radio transmissions. External factors that cannot be
accounted for also make such predictions difficult, such as
several sources using the same node for routing.

B. Load Balanced Routing

Dai [3] proposes a system in which a balanced routing tree
is iteratively constructed, starting at the sink. Once complete,
workload experienced by each node from routing should be
balanced. However, this solution assumes that each node
shares information about how much data it generates, which
may not be known. Lee [4] presents a solution in which routes
are formed on demand from sources to sinks, based on the
path of minimum workload. As intermediate nodes route data
from sources to sinks, they periodically attach their current
workload. If the sink considers one node to be overloaded, it
can cause path discovery to begin again from the source. If
a path of lower workload exists, then it may be selected. Lee
appears to assume that a path of lower routing load is always
available, which may not be true. Tran’s congestion adaptive
routing [5] allows nodes to bypass a downstream neighbour
that is heavily loaded by forming a bypass around that node.
A proportion of all data is then sent down the bypass rather
than the original path. This protocol has the advantage that
global data is not required. However, as with other protocols,

this solution does not anticipate how a downstream node may
be used in the future.

C. Flow Control

Chang [6], [7] examines how energy aware routing might be
better carried out by modelling the network as a network flow
problem, with edges representing the capacity of links between
each pair of nodes. Lin [8] demonstrates a static routing
system which uses traffic patterns and energy replenishment
statistics, rather than instantaneous energy heuristics of nodes.
The authors claim that this solution “outperforms leading
dynamic routing algorithms in the literature, and is close to the
optimal solution when the energy claimed by each packet is
relatively small compared to the battery capacity”. However, it
may not even be feasible for energy scavenging to take place,
let alone have statistics on the process. Kalpakis [9] allows
the use of data aggregation from multiple sources to reduce
the amount of communication required in a network flow
diagram. Once a suitable network flow has been established,
a schedule can be produced. The schedule dictates how every
future packet should be routed. The author’s measurement of
network lifetime (time until the first node expires) would not
seem to reflect any particular goal of the network and so may
not be appropriate.

IV. NODE RELIANCE
A. Assumptions

o The network toplogy is initially unknown.

o At least one forward and one reverse path connect the
sources and the sinks.

« Each node has a unique identifier.

o Each node can determine whether it acts as a source
and/or a sink or neither.

The random nature of radio transmission ranges makes
it unreasonable to statically configure a moderately sized
network such that the connectivity can be exactly predefined.
Environmental conditions mean that radio transmission ranges
fluctuate over time, causing new links to form and old links
to vanish. Dense networks have a larger number of potential
links and so are more prone to this randomness in topology.
Furthermore, it seems unreasonable to expect a large number
of preconfigured nodes to be placed by hand in exact locations,
particularly when so many applications of WSNs involve the
placement of nodes in hostile or inaccessible locations.

Without a forward path, routing is impossible from sources
to the sinks and the network is incapable of operating. Without
a reverse path, no reinforcement is possible and the only
mechanism for reliably routing messages from the sources to
the sinks is flooding.

Unique identifiers can be based on the MAC address of the
radio interface. Alternatively, they may be based on a pseudo-
random number generator on each node, but the probability of
collision must be negligible.

Source nodes and sink nodes have different behaviour to
regular nodes, therefore it seems reasonable that any node can
determine what its role is in the network.

B. Overview

We define:

o the relative reliance of a node B to a node A as being
an indication of how important node B is to node A in
routing messages to the sink; and

o the absolute reliance of a node to be an indication of how
important that node is in routing messages to the sink.

A simple path is a sequence of nodes in which no node is
repeated. The measure of a source A’s relative reliance on a
node B is the proportion of simple paths from A to any sink
that B lies on. The maximum relative reliance of 1 indicates
that a node is on all simple paths between a source and the
sinks and is therefore a bottleneck for that source. The absolute
reliance of a node is the average relative reliance for that node
across all sources.

To determine which paths are used to route messages
from sources to sinks, we use a modification of Chang’s
lexicographic ordering [7]. A path P is said to have a higher
lexicographic order than a path Q if the reliance of the highest
reliance node in P is greater than the reliance of the highest
reliance node in Q. If the reliance values are the same, then
the second highest reliance node from each path is compared,
and so on.

A source selects the path to the sink with the lowest
lexicographic order. The nodes on the selected path will cause
the least disruption should they expire. This moves the focus
away from keeping workload balanced across all nodes and
means potentially flawed techniques involving comparing only
energy levels or predicting future data generation are avoided.

Table I shows the absolute reliance and relative reliance of
each node at each of the sources A and B. Node D lies on all
paths from source B to the sink and on 50% of simple paths
from source A to the sink. It is therefore given an absolute
reliance value of 0.75, which is higher than any other non-sink
node. In determining routes, sources A and B should ideally
select paths with the lowest lexicographic order. In this case,
ACX and BDX.

C. Algorithm

We present an algorithm capable of routing messages from
sources to sinks along paths of lowest lexicographic order. In
describing our algorithm, we define a subpath of a path P to
be any valid path Q with the same origin and destination as P

Relative Reliance
Node | Source A | Source B Absolute Reliance
A 1.00 0.00 0.50
B 0.00 1.00 0.50
C 0.50 0.00 0.25
D 0.50 1.00 0.75
E 0.00 0.50 0.25
X 1.00 1.00 1.00
TABLE I

ABSOLUTE AND RELATIVE RELIANCES FOR EACH NODE FROM FIG. 1

that can be produced by removing nodes from P. For example,
LMN is a subpath of LEMON.
1) Overview:

o The first phase is the path discovery phase. Messages are
flooded through the network from sources to sinks. Each
message keeps track of the nodes it has travelled through.
If a node has already forwarded a message containing a
subpath of a received path P, then path P is stored and
not forwarded. This leaves small fragments of network
topology data scattered throughout the network.

o The second phase is the path response phase and behaves
similarly to the path discovery phase, except that mes-
sages are flooded from sinks to sources and each message
also contains paths from the path discovery phase which
arrived at the sinks.

o During the third (data) phase, data is generated at sources
and routed to sinks. En route, any stored topology data
may be attached to messages and collected at the sink
nodes. In this manner, the sinks iteratively learn all simple
paths between sources and sinks.

2) Messages: Three types of message are exchanged:

Route messages are used in the path discovery phase. They
contain the sequence of nodes through which that particular
message instance has travelled.

RouteReply messages are used in the path response phase.
They are sent in response to a Route message arriving at a sink.
They contain the sequence of nodes through which that partic-
ular message instance has travelled and the adjacencyMatrix
(described below) of the sink at which the Route message
arrived.

Data messages are exchanged during the data phase of the
algorithm. They are used to send generated data from a source
to a sink along a predefined route. Each messages contains;

« the route to use to send the message from the source to
the sink;

« the generated data from the source;

¢ an adjacencyMatrix field which stores topology data that
is collected as the message is routed from the source to
the sink and;

e an updateNeeded field which is used to request that the
sink sends the source an updated adjacencyMatrix.

3) Data Structures: Each node maintains a paths table
consisting Route messages that have been forwarded.

Each node also maintains an adjacencyMatrix, which rep-
resents fragments of network topology and any known node
roles. At the sinks, this matrix is iteratively grown as more
topology data is gathered. Eventually it will represent all
simple paths between sources and sinks, and it can be used to
calculate the proportion of simple paths between any pair of
nodes that a node lies on.

Sources also maintain a usedNodes array, which lists nodes
that Data messages have been sent through by that source.

4) Description: Below we show the pseudo code for the
first two phases of the algorithm. The function id() returns the
unique identifier of a node and role() returns the role of the

node, represented as an integer. The same code runs on each
node.
On_Startup () {
if (role() source)
sendRouteMsqg (id())

}

path) {

1
2
3
4
5
¢ On_Receive_RouteMsqg (Node|]
7
8
9

if (path contains id())
return

10 Node[] newPath = path.add(id())
11
12 if (role() != sink
13 && !paths.containsSubpathOf (newPath)) {
14 if (role() == source)
15 adjacencyMatrix.add (newPath, source)
16
17 paths.add (newPath)
18 broadcastRouteMsg (newPath)
19 return
20 }
21
2 adjacencyMatrix.add (newPath, source)
23 if (role() == sink)
24 broadcastRouteReplyMsg (id (),
25 adjacencyMatrix)
2% }
27
23 On_Receive_RouteReplyMsg (Node[] path,
» AdjacencyMatrix data) {
30 if (path contains id())
31 return
32
33 Node[] newPath = path.add(id())
34
35 if (role() == source || role() == sink) {
36 adjacencyMatrix.add (newPath, sink)
37 adjacencyMatrix.merge (data)
38 if (role() == sink)
39 return
40 unicastDataMsg (adjacencyMatrix.pathTo (
41 path.origin()), null,
2 false, adjacencyMatrix)
13 }
44 if (paths.containsSubpathOf (newPath)
45 adjacencyMatrix.add (newPath, sink)
46
47 paths.add (newPath)

48 broadcastRouteReplyMsg (newPath, data)
19 }

Route messages are flooded from the source nodes. Nodes
discard incoming messages if the path contains their ID (lines
7-8). A path P is stored in a node’s adjacencyMatrix if the
node has forwarded a message containing a subpath of P,
or if the node is a sink (line 22) or if a subpath of P
has not been forwarded and the node is a source (lines 14-
15). If none of these conditions are met, P’ is formed by
adding the node’s ID and P’ is then stored in the paths table
and rebroadcast (lines 10, 17, 18). Whenever a sink receives
a Route message, it broadcasts a RouteReply message. The
RouteReply message operates in a similar manner to the Route
message. The contents of RouteReply messages are always
stored by sources and sinks (lines 36-37) and nodes that have

already forwarded a message containing a subpath of the path
in the incoming RouteReply message (lines 44-45). Sources
respond to RouteReply messages by sending a Data message
back to the origin of the RouteReply (lines 40-42).

The remaining code is used for the third phase of the
algorithm.

5o On_DataGenerated (int data) {

51 if (adjacencyMatrix.numPathsToSinks == 0)
52 return

53

54 Matrix unused =

55 adjacencyMatrix.removeNodes (usedNodes)
56

57 if (unused.numPathsToSink () == 0)

58 useMinReliancePath (data)

59 elsif (unused.numPathsToSink == 1)

60 useRandomPath (data, unused, true)

61 else

62 useRandomPath (data, unused, false)

63 }

64

6s On_useMinReliancePath (int data) {

66 Node[] route =

67 adjacencyMatrix.getPathMinReliance ()
68

69 unicastDataMsg (route, data, false, null)
70 }

71

7 On_useRandomPath (int data, AdjacencyMatrix
73 unused, bool update) {

74 Node[] route =

75 unused.getRandomPath ()

76

77 unicastDataMsg (route, data, update, null)
78 usedNodes.add (route)

79 }

80

si On_ReceiveDataMsg (Node[] route, int data,

22 bool updatedNeeded, AdjacencyMatrix matrix) {

83 matrix.add (adjacencyMatrix)

84

85 if (role() == source || role() == sink)
86 adjacencyMatrix.merge (matrix)

87 else

88 adjacencyMatrix.erase()

89 if (role() == sink && updateNeeded)

9% unicastDataMsg (adjacencyMatrix.pathTo (
91 path.getOrigin()), null,

%2 false, adjacencyMatrix)

93 elsif (role() != sink)

94 unicastDataMsg (route, data,

95 updateNeeded, matrix)

9% }

Data messages are sent from sources to sinks when data
is generated. An initial Data message is also sent when a
source receives a RouteReply. Sources select a random path
containing nodes that they have not used for Data messages
before. If they have exactly one such path, they request an
update from the sink (line 60), if they have no such paths
they select the path of minimum node reliance (line 58)
as considered by lexicographic ordering. Data messages are
unicast along the predefined route. Nodes not on that route
do not receive the message. At each hop, nodes copy their

adjacencyMatrices in to the message (line 83). If a node
is not a source or sink, it then deletes its adjacencyMatrix
(line 88). Sinks send back a Data message containing their
adjacencyMatrix if the updateNeeded flag is set (lines 89-92).

V. EXAMPLE

This example considers the network represented by Fig.
1. For the purposes of this example in demonstrating the
transactions between nodes we assume that communication
is perfect and always takes exactly 1 unit of time. Table II
shows the sequence of actions that takes place at each time
unit during the path discovery and path response phases.

When execution of the algorithm begins, Route messages
are broadcast by sources A and B containing their node IDs
and roles. As the messages are received at each node Z, the
node checks the path, P. If it finds id(Z) then the path is not
simple and the message is therefore discarded. This happens
in time period 2 when node A receives the path "AC” from
node C. A node Z then forms a new path P’ by adding id(Z)
to P. It searches its paths table for a subpath of P’.

o If a subpath is found, the incoming path is stored in the
node’s adjacencyMatrix and it is not forwarded.

o If a subpath is not found, the incoming path is stored in
the node’s paths table and it is forwarded.

In time period 2, node D received the path "BE” so it
forms the path "BED” by adding its id. Node D already has
the path "BD” which is a subpath of "BED”. Therefore, the
path "BED” is stored in the adjacencyMatrix at D and not
forwarded. When the Route messages are received at a sink,
it responds by sending a RouteReply message. This operates
in exactly the same way as the Route message but operates
from sinks to sources and contains the adjacencyMatrix of
the sink from where the message originated. As the number
of nodes in the network is finite and each node can only appear
on each path once, the first and second phases eventually
terminate. A source can begin its second (data) phase once it
receives a RouteReply message. Table III shows the sequence
of transactions that occurs each time unit during the data
phase, starting at time period 4, immediately after sources
A and B receive RouteReply messages. Note that the first
Data message is sent by a source in response to a RouteReply
message, it contains null data and the adjacencyMatrix stored
at the source. Also, node D is the only intermediate node to
have any data stored in its adjacencyMatrix.

Fig. 2 shows the adjacencyMatrices matrix1, matrix2, etc.,
which are stored and transferred during the three phases.

In time unit 4, the sources respond with their adjacen-
cyMatrices. Source B knows of only one path to the sink,
so sets the updateNeeded flag in its Data message. Both A

Fig. 2. Matrices exchanged during the three phases of the example.
matrix1 matrix2 matrix3 = matrix4 matrix5
C |D|X B|D |E A |C|D|X B |C|D [E [X A|B[CID|E

A|l1|1jo/|B|O]1/1][AJOJ1[1/O|A]Of1]1]0/O (A|OjO[1]1]0]O
B|O|/1|/O/(E|1]1|0[|B|OfO] 1|0 (B|OJOj1/0jO |B]|OjOfO]1]1]0
clojol1j(x|[ofoj1f|c|1fojoj1(c|ofjofjojOoj1|C|1]0JOjOfjO]1
D{OofO]1 D|0f0jO]1[D|OJO[OfO]1 |D]|Oj]OfO]O|O]1
X|O0j1]0ofO0 |E|1]/0JO[OfO (E|OJ1]0]1]/0]0

X|ojojofifo (Xx]oOjoj1joOf1]0

and B randomly select a path (ADX and BDX respectively).
In time unit 5, these messages travel through D. We have
arbitrarily indicated that ADX arrives first and node D adds
its adjacencyMatrix to the message. D’s adjacencyMatrix is
consequently deleted. The messages are then forwarded to X,
which merges the adjacencyMatrices with its own. In the case
of the Data message from source B, an update was requested.
Node X therefore sends a Data message back to B, which is
routed during time periods 6 and 7.

At the end of time period 7, all simple paths between
sources and sinks are known at the sink and source B, although
they do not know this fact. Future transactions depend on data
being randomly generated at the sources. Each source will
attempt to route a message through previously unused nodes.
When only one path with unused nodes remains, the outgoing
Data message has the updateNeeded flag set and the sink
responds by sending its adjacencyMatrix. When no unused
nodes remain, the source sends future Data messages along
the path of minimum reliance using the previously mentioned
lexicographic ordering.

VI. DISCUSSION

Stojmenovic [10] examines the packet reception probability
between pairs of nodes as a function of distance. The work
questions what it means for two nodes to be “neighbours” if
the link between them is largely random. In the node reliance
algorithm described in Section IV, the simple paths between
sources and sinks are determined. It is possible that during
this stage, one or more transmissions will be lost, resulting in
an inaccurate estimate of the simple paths.

This feature of wireless communications is not detrimental
to our algorithm. The user may specify the number of retrans-
mission attempts (x) made by the MAC layer. During the path
discovery phase, each message is rebroadcast x times. This
method reduces the problem to finding all stable simple paths
between the sources and sinks, where the stability of a link is
specified by the user in terms of the number of retransmission
attempts required for the link to be used.

VII. STATUS AND FURTHER WORK

The algorithm has been implemented in Java, using a unit
disk graph (UDG) model. Although it is not realistic for a
wireless physical layer [10], we have used it to determine a
proof of correctness for this algorithm, specifically that all
topology data is collected, simple paths can be enumerated
and that node reliance values are correctly calculated. Work
is currently ongoing to port the algorithm to C++ for use in
the Castalia [11] simulator which claims to have the most
realistic radio models for WSN simulations. Once complete, it
will be possible to fully compare this algorithm against energy
aware and network flow based routing protocols to determine
whether the node reliance heuristic is usable and whether an
appreciable saving in terms of network lifetime can be made.

Work is also ongoing to determine whether the algorithm is
optimal in collecting network topology data.

T | From | To || Message Receiver Action
1 1A C Route(A) AC stored in paths
1 A D Route(A) AD stored in paths
1 B D Route(B) BD stored in paths
1 | B E Route(B) BE stored in paths
2| C X Route(AC) ACX stored in adjacencyMatrix (matrix1)
2 | C A Route(AC) Ignored (ACA not simple path)
2 | D X Route(AD) ADX stored in adjacencyMatrix (matrix1)
2 | D X Route(BD) BDX stored in adjacencyMatrix (matrix1)
2 | E D Route(BE) BED stored in adjacencyMatrix (matrix2) Not forwarded due to subpath BD
3 | E B Route(BE) Ignored (BEB not simple path)
31X C RouteReply(X, matrix1) XC stored in paths
31X E RouteReply(X, matrix1) XE stored in paths
3 1C A RouteReply(XC, matrix1) XCA stored in adjacencyMatrix (matrix3) and matrix1 added to matrix3
3 | E D RouteReply(XE, matrix1) XED stored in paths
3 |E B RouteReply(XE, matrix1) XEB stored in adjacencyMatrix (matrix4) and matrix1 added to matrix4
4 | A D RouteReply(XCA, matrix1) XCAD stored in paths
4 | D X RouteReply(XED, matrix1) Ignored (XEDX not simple path)
4 | B D RouteReply(XEB, matrix1) XEBD stored in adjacencyMatrix (matrix2). Not forwarded due to subpath XED
5| D X RouteReply(XCAD, matrix1) | Ignored (XCADX not simple path)
TABLE II
MESSAGE TRANSACTIONS DURING THE FIRST TWO PHASES OF THE ALGORITHM.
T | From | To || Message Receiver Action
4 | A D Data(ADX,null,matrix3,false) | D’s adjacencyMatrix (matrix2) is merged with matrix3 and deleted.
4 B D Data(BDX ,null,matrix4,true)
5|D X Data(ADX,null,matrix5,false) | X merges its adjacencyMatix with matrix5 to give matrix5. X does not reply.
5| D X Data(BDX,null,matrix4,true) X merges its adjacencyMatrix with matrix4 to give matrix5. X is asked to reply.
6 X E Data(XEB,null,matrix5,false)
7 | E B Data(XEB,null,matrix5,false) | B merges its adjacencyMatrix with matrix5 to give matrix5. B ignores the update flag.

Finally, it might be possible to consider other factors in
determining path selection. For example, consider two paths
P and Q. If path P is ten times more energy efficient than path
Q, but the highest reliance node of path P is only very slightly
more than that of the highest reliance node in path Q then path
P may be the better choice. Similarly the highest reliance node
on path P has an infinite energy supply then it may be perfectly
acceptable to use path P. Some cost function or weighting
might be appropriate to balance these two measurements of

path suitability.

[1] L. Doherty, B. Warneke, B. Boser, and K. Pister, “Energy and perfor-

TABLE III

MESSAGE TRANSACTIONS DURING THE THIRD PHASE OF THE ALGORITHM.

REFERENCES

[71 ——, “Routing for maximum system lifetime in wireless ad-hoc net-
works,” in 37th Annual Allerton Conference on Communication, Control
and Computing, Monticello, IL, 1999.

L. Lin, N. B. Shroff, and R. Srikant, “Energy-aware routing in sensor
networks: A large system approach,” Ad Hoc Networks, vol. 5, no. 6,
pp. 818-831, 2007.

K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” in IEEE Inter-
national Conference on Networking. Atlanta, Georgia, US: IEEE, 2002,
pp. 685-696.

I. Stojmenovic, A. Nayak, and J. Kuruvila, “Design guidelines for
routing protocols in ad hoc and sensor networks with a realistic physical
layer,” IEEE Communications Magazine (Ad Hoc and Sensor Networks
Series), vol. 43, no. 3, pp. 101-106, 2005.

H. N. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real
deployments in wsn and back,” in IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks, IEEE, Ed. Espoo,

[8]

[9]

[10]

(11]

[2]

[4]

[5]

[6]

mance considerations for smart dust,” International Journal of Parallel
Distributed Systems and Networks, vol. 4, no. 3, pp. 121 — 133, 2001.
S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware routing in
mobile ad hoc networks,” in Mobile Computing and Networking. Dallas,
Texas, United States: ACM, 1998, pp. 181-190.

H. Dai and R. Han, “A node-centric load balancing algorithm for
wireless sensor networks,” in JEEE GLOBECOM - Wireless Commu-
nications, vol. 1. San Francisco, USA: IEEE Communications Society,
2003, pp. 548 — 552.

S.-J. Lee and M. Gerla, “Dynamic load-aware routing in ad hoc net-
works,” in IEEE International Conference on Communications, vol. 10.
Helsinki, Finland: IEEE, 2000, pp. 3206-3210.

D. A. Tran and H. Raghavendra, “Congestion adaptive routing in
mobile ad hoc networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 11, pp. 1294-1305, 2006.

J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless
ad-hoc networks,” in INFOCOMM. Tel Aviv, Israel: IEEE Computer
Society, 2000, pp. 22-31.

Finland: IEEE Computer Society, 2007, pp. 1-6.

