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ABSTRACT

Persistent Application Systems (PASs) are of increasing social and
economic importance. They have the potential to be long-lived,
concurrently accessed and consist of large bodies of data and
programs. Typical examples of PASs are CAD/CAM systems, office
automation, CASE tools, software engineering environments and
patient-care support systems in hospitals. Orthogonally persistent
object systems are intended to provide improved support for the
design, construction, maintenance and operation of PASs. The
persistence abstraction allows the creation and manipulation of data in
a manner that is independent of its lifetime thereby integrating the
database view of information with the programming language view.
This yields a number of advantages in terms of orthogonal design and
programmer productivity which are beneficial for PASs.

Design principles have been proposed for persistent systems. By
following these principles, languages that provide persistence as a
basic abstraction have been developed. In this paper the motivation for
orthogonal persistence is reviewed along with the above mentioned
design principles. The concepts for integrating programming
languages and databases through the persistence abstraction and their
benefits are given. The technology to support persistence, the
achievements and future directions of persistence research are then
discussed.

1 Introduction
This paper presents a broad review of current research and achievements in
orthogonally persistent object systems. It provides an advanced tutorial for those
commencing research or advanced study in persistence, databases or database
programming languages and a survey of the persistent language community’s
contribution to this growing research area. A particular goal is to summarise the
existing achievements and to identify the current research issues.

Orthogonally persistent object systems support a uniform treatment of objects
irrespective of their types by allowing values of all types to have whatever longevity
is required. The motive for establishing this uniform treatment is presented first.

Subsequent sections of the paper present definitions, integration concepts, technology
to support persistence and achievements. The penultimate section suggests some of
the crucial areas of further research. Table 1 identifies the major topics covered.
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Table 1: Location of Major Topics in this Paper

Topic Section
Problems with Conventional Technology 1.1&1.2
Principles of Persistence & Definition of Orthogonal Persistence 2
Benefits of Orthogonal Persistence 2.3
Integration of Databases & Programming Languages 3
Types & Data Models 3.1
Persistent Type Systems 3.1.1
Binding Mechanisms 3.2
Concurrency and Transactions 3.3
Technology to Support Orthogonal Persistence 4
Implementation Architectures 4.1
Implementing Persistence by Reachability 4.2
Type-Safe Linguistic Reflection 4.3
Incremental Persistent Application System Construction 5.1
Hyper-Programming 5.2
Persistent Software Engineering 5.3&5.4
Research Directions 6
Extensions of Persistence 6.1
Exploitation of Persistence 6.2
Delivering Persistence 6.3
Summary & Conclusions 7

1.1 Incoherence of Current Technology

The aim of persistent programming is to support the activity of applications’
construction for long-lived, concurrently accessed and potentially large bodies of data
and programs; referred to here as Persistent Applications Systems (PASs). They are
designated persistent application systems because the application often outlives its
individual components and even its implementation technology. Typical examples of
such PASs are: CAD/CAM systems, office automation, CASE tools, software
engineering environments [Teitelbaum & Reps, 1981, Akima & Ooi, 1989, Bott,
1989, Sommerville et al., 1989, Thomas, 1989], integrated hospital administration
and medical systems, large scientific databases and programs that analyse them,
geographic information systems, environmental modelling systems, object-oriented
databases [Bancilhon et al., 1988, Bretl et al., 1989] and process modelling systems
[Bruynooghe et al., 1991, Curtis et al., 1992, Han & Welsh, 1993].

Those that commission the construction of a PAS expect it to be built at reasonable
cost, to be delivered on time and to serve their organisation reliably for many years,
accommodating change as requirements change and as technology advances. They are
often disappointed since it frequently proves much harder and more expensive to
build and maintain a PAS than was expected and its evolution is invariably
problematic.

This may be illustrated with an example. In a health care management system in use
in a hospital, the medical staff were alarmed when many of the fields in the medical
records disappeared. Their local support staff diagnosed a fault in the database and
restored it from an earlier state. The problem persisted, so they made an earlier
restoration, losing more information. Still the problem persisted. The suppliers of the
PAS were called in and eventually discovered that a file containing a font used by the
user interface management system had been lost. Inconsistent behaviour by the
supporting subsystems had led to a very expensive service interruption and the loss of
information. If restoration had functioned identically for all the data, then the lost file
would have been restored. As different data was treated differently, the local staff
found the system incomprehensible and the implementors had a struggle to
understand the cause of the failure. Similar, but sometimes more detailed
inconsistencies, bedevil every stage of PAS construction and maintenance when it is
constructed using traditional technology.
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Currently the technology underlying PAS building (called “the support system” in
this paper) relies on a number of disparate mechanisms and philosophical
assumptions for support and efficient implementation [Atkinson et al., 1983]. Among
these are operating systems, communications systems (often bundled with the
operating system but designed separately), database systems, user interface systems,
command languages, editors, file systems, compilers, interpreters, linkage editors,
binders, debuggers, DBMS — DDLs and DMLs, query languages, user interface
management systems (UIMS), transaction managers, concurrency managers and
machine types. Programmers have to cope with variations such as different naming,
type and binding schemes in each of the components they use. Perhaps the hardest
challenge these programmers face is coping with different recovery, concurrency and
transactional behaviour.

The incoherence and complexity arising from utilising these many different and
diverse application and system building mechanisms increases the cost both
intellectually and mechanically of building even the simplest of systems. The
complexity distracts the application builders from the task in hand forcing them to
concentrate on mastering the multiplicity of programming systems rather than the
application being developed. Perversely the plethora of disparate mechanisms is also
costly in machine terms in that the code for interfacing them, their redundant
duplication of facilities and their contention for resources cause execution overheads.

Figure 1 illustrates the interconnection of system components and users of the system.
In moments of crisis and during peaks of activity we expect the most from our PASs.
Unfortunately, it is precisely at such moments of stress that they malfunction due to
the complexity of inter-dependencies between components.

Figure 1: The Complex Inter-dependence in Current Systems

Programs Database Users

Communication
system

Operating System

Programmers UIMS

Real World

In Figure 1, the solid lines represent data flow, translation and mappings, the dashed
lines what people (users and programmers) are required to understand. The situation
shown is ideal for the users, they are required only to understand the minimum.
However, observations of real applications show that the users find they have to learn
about aspects of the operating system and database. On the other hand, the situation is
far from ideal for application programmers as they have to deal with four subsystems
as well as the programs and the applications that are their real concern.

Individual inconsistencies between different underlying subsystems present software
engineers working on a PAS with enough problems. However, each pair of
subsystems presents these discontinuities and the composition of complexity is often
multiplicative rather than additive. Recognition of the cost of such disharmonies has
motivated the designers of orthogonally persistent object systems to propose and
support computational models that allow large scale and long-lived computation
without these unnecessary sources of complexity.

It transpires that, in many cases, the inconsistent treatments are not fundamental but
accidental [Atkinson, 1978]. The various subsystems were built at different times
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when the engineering trade-offs were different. In consequence, they provide virtually
the same services, but inconsistently as they were designed and developed
independently. By choosing to provide the total composition of services needed to
support a PAS within one coherent design, the designers of orthogonally persistent
object systems have eliminated the accidental disharmonies and exposed the few
places where it is a difficult research issue to find the integrating concepts.

It is now timely to propose new models of computation, expressed both linguistically
and architecturally, in response to the advent of new hardware technologies with
different time, space and cost trade-offs and to the development of new application
areas, such as office automation, CAD/CAM, CASE, etc. Persistent systems are one
such proposal.

In summary, it is important to distinguish carefully between a PAS and the support
system which enables it to operate and application programmers to build and maintain
it. As the cost of building the support system can be amortised over many PASs and
as the cost of application programming dominates the software industry, it is
appropriate to invest in improved support systems to reduce PAS programming costs.
Orthogonal persistence provides the design principles to guide this investment. The
desired simple relationship between a PAS and a generic support system is shown in
Figure 2.

Figure 2: Target Architecture to Support Persistent Application Systems

Persistent Application Systems
(PASs)

Generic Persistent Support Systems
(PSSs)

Proposed Architecture Simplified Context for Programming 
and Use

Programmers Real World

PSS UIMS Users

Programs

1.2 Analysis of the Causes of Incoherence

Some of the complexity in a PAS is intrinsic in that it emanates from the tasks which
the PAS sets out to support. However, as argued above, a considerable part of this
complexity is extraneous, an unfortunate artefact of the independent development of
several essential supporting technologies. Before proposing integrated design
principles which eliminate this extraneous complexity, its origins are analysed.

This analysis will focus on the relationship between programming languages and
database systems for three reasons:

• it is typical of the class of problems that arise, e.g. comparing operating
systems and programming languages would reveal similar extraneous
differences;

• it is the domain that has received most attention; and
• it matches the interests of the expected audience of this paper.

The database and programming language communities have continued to research and
develop products independently of one another despite having to provide many
similar services. Each provides the means of naming values, each allocates space in
which to store values, each provides a means of constraining those values and the
operations on them, each provides modelling and description mechanisms, each
provides mechanisms for extracting values from data structures, each provides
concurrency, and so on.
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The inconsistencies originate from different philosophies and circumstances in the
two camps. The database community were faced with severe engineering problems. It
is difficult to preserve large volumes of data reliably and to support many processes
operating against that data efficiently. It is also difficult to accommodate the design
habits of the system analyst and to allow virtually independent teams of programmers
to develop parts of a PAS independently. Consequently, technical solutions dominate.
Relations, query optimisation, serialisable transactions and views are examples of
their success.

By contrast, programming language designers have typically aspired to help
programmers be precise and to make programs understandable. They have sought
design principles that lead to languages that have regular rules. These rules should
match programmers’ intuitions, be easy to define precisely and lead to programs that
can be executed with reasonable efficiency.

Of course, there are exceptions in each camp. Relations have simple, formal and
precise rules and there is an unfortunate number of programming languages which do
not. The responses to design difficulties in each context is informative. In
programming languages, essential requirements are often ignored, for example, many
languages have had no predefined treatment of I/O and functional languages offer no
mechanism for update. In databases, a solution is often designed independently and
simply added, e.g. long-running transactions. These additions may not compose well
with the existing constructs.

The separate development and consequent inconsistencies tend to perpetuate and
grow. The intellectual and software investment in each camp militates against easy
adoption of the other’s ideas. The dichotomy between philosophies continues and
may be heightened as they view each other through caricatures. To a programming
language designer the database world looks like a mess of incomprehensible ad hoc
design with little underlying philosophy. On the other hand, database designers are
surprised that programming languages are so unhelpful with real problems such as
bulk types, persistence, concurrency and transactions.

The challenge is to show that they need not remain behind separate barricades and
that PAS builders can benefit from the resultant integrated support environment rather
than suffer the task of bridging a perpetuated and possibly widening gulf.

1.3 Introduction to Persistence

Before introducing persistence, it may be important to point out one approach to the
above incoherence that does not lead to a solution. That approach is to perpetuate the
current underlying technologies, by gluing them together with enough glue-ware and
hiding them behind sufficient “standard” interface veneers. The underlying
differences in semantics ultimately show through as, for example, in failure semantics
when the combined system is stressed. Since PAS builders wish to support near
continuous availability or at least explain to users what is happening when service
commitments are not met, they have to understand the underlying technology
including all of its different behaviours. Thus, they are still concerned with the very
complexity from which we seek to free them.

The approach that appears to minimise disharmony most effectively is that taken in
the design and provision of orthogonally persistent object systems, and particularly
persistent programming languages. In this approach, well tried language design
principles are adhered to, but they are applied to deliver a complete computational
environment.

The term persistence is used variously in common parlance, but has been defined in
this context to mean supporting data values for their full life times however brief or
long these may be. The life times of data values are the period from their creation
until they are no longer used by the persistent application. This range is illustrated in
Table 2.
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Table 2: The Various Life-times of Data Values

1 Transient results in expression evaluation
2 Local variables
3 Global variables and heap items
4 Data that lasts a whole execution of a program
5 Data that lasts for several executions of several programs
6 Data that lasts for as long as a program is being used
7 Data that outlives a succession of versions of such a program
8 Data that outlives versions of the persistent support system

Typically, rows 1 to 4 have been serviced by programming languages and rows 5 to 8
by databases and file stores. Perversely, a barrier also exists between the forms of the
data used. Short-term persistent data is often presented to the user as a collection of
base types which may be aggregated or composed into constructed forms such as
records, variants, functions and abstract data types. On the other hand, long-term
persistent data often takes the forms of byte streams if held in a file system or some
other structure such as relations in databases. Orthogonally persistent systems are
designed so that the treatment of data values is uniform and independent of their
longevity, size and type. Their goal is to achieve this uniformity for all aspects of the
system services, from data definition and operations, to integrity, concurrency and
distribution.

It should be noted that this goal for the provision of orthogonal persistence is
independent of the choice of data model, type system, concurrency control
mechanism, etc. that defines which values may occur and which operations may be
applied to them. These choices are made for other reasons guided by their
appropriateness for the application domains. However, there are some constraints on
this choice if a safe system is to be provided for the PAS builder. Also, the
engineering challenges in building such systems are such that these choices are not
entirely independent of one another. This issue is investigated in later sections of the
paper.

Similarly, the choice of programming paradigm (query language, imperative
language, logic language, object-oriented language or functional language) is also
orthogonal to the issue of providing persistence. Once again, appropriateness for the
application will guide the choice.

The simplification achieved by orthogonal persistence is summarised in Figures 3
and 4.

Figure 3: Three Mappings with Two Support Systems

Mapping 1
enterprise modelling

Mapping 2
interface between

programs and
database

Database

Program Real World

Mapping 3: simulation
(the normal programming activity)

In Figure 3, a fragment of a PAS is represented built out of a combination of
programming language and database facilities. Here the programmers have to build
and understand two models of the same external (real world) system that the PAS
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supports. Furthermore, they have to ensure that the view and behaviour of these
models remains precisely consistent when accessed directly via database facilities and
when accessed via programs using the database. This maintenance of precise
consistency under all circumstances, including stress, is extremely hard for the
application programmers to achieve. Either they achieve it with immense effort or
they fail and the end-users suffer a less comprehensible system. There are other costs
when construction is based on two subsystems. Programmers have to write
translations between the two systems and computers have to execute them. Often this
proceeds via the lowest common denominator of base types, losing structural
information and protection.

Figure 4: One Mapping on an Integrated Support System

Program Real World

Mapping 1: simulation
(the normal programming activity)

In Figure 4, the same PAS fragment is envisaged constructed in an orthogonal
persistent system. As the data is supported consistently whatever happens, the
programmers only require to understand one model and maintain one mapping. The
reduction in complexity for the programmers is obvious. It should also present a more
comprehensible PAS behaviour to end-users.

2 Principles of Persistence
In order to recognise when good design has been accomplished it is necessary to have
some design principles against which to judge the result. In constructing persistent
systems the persistence research community has taken the view that the integrated
approach pioneered by language designers should be extended to be more
computationally complete. We regard the necessity of using some subsystem that is
not specified (or specifiable) in the language as a failure of computational
completeness. For example, using a file system is such a failure, since its semantics
varies with the context of a program. These principles are developed by extending the
design principles that work well for programming languages to encompass the
requirements of persistence.

2.1 Design Principles

McCarthy [McCarthy et al., 1962], van Wijngaarden [van Wijngaarden et al., 1969],
Strachey [Strachey, 1967] and Tennent [Tennent, 1977] all observed that expressive
power in programming languages could be gained by separating the concepts and
allowing them to be combined by powerful composition rules. Strachey and later
Tennent distilled these ideas into three principles for use in the design of
programming languages:

• the principle of correspondence,
• the principle of abstraction and
• the principle of data type completeness.

The principle of correspondence states that the rules governing the use of names and
bindings in a programming language should be consistent. In particular the rules for
introducing names and bindings in declarations should have a corresponding
mechanism for abstraction parameters. This ensures that formal parameters behave
consistently with local declarations. The principle of abstraction states that for all
significant syntactic categories in the language there should be an abstraction
mechanism. This allows essential details to be ignored by concentrating on the
general structure. An abstraction consists of naming the syntactic category and
allowing it to be parameterised. The most widely used forms of abstractions are
functions and abstract data types. The principle of data type completeness states that
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any combination or construction of data should be allowed in all types. As a
consequence all data objects in a language should have the same “civil rights”.

The overall goal of the above principles is to design languages that are both simple
and powerful. They are simple in that there are a minimum of defining rules with no
exceptions, since for every exception to a rule the language becomes more
complicated in terms of understandability and implementation. The minimisation of
defining rules without exceptions also contributes to the power of the language since
every exception makes the language less powerful in that it introduces a restriction.
The expressive power therefore comes from ensuring that the composition rules are
complete and minimal with no exceptions.

In persistent systems there are three design rules which have their origins in the above
work. They are parsimony of concepts, orthogonality of concepts and completeness of
the computational environment. The combination of these three rules yields the
integrated persistent systems alluded to earlier.

Constructs are required that match well the application domain. The required
parsimony of concepts focuses attention on to those essential constructs. The absence
of extra features ensures simplicity. Orthogonality ensures that the system is
composed of atoms, including persistent data, that may be combined in powerful
ways to yield the appropriate abstractions. The case for completeness is that if the
language is not computationally complete then the implementors and designers will
need to combine the language with other facilities to build a PAS. This re-introduces
the problems of disharmony.

Constructing persistent systems is made considerably easier when the whole
computational environment is persistent. In such an environment programs and
processes may be regarded as data and manipulated in the same manner, allowing
transformations traditionally regarded as being performed by a separate mechanism to
be executed within the persistent environment. For example, in the case of
procedures, the persistent store may be used to provide a uniform library structure in a
manner similar to providing a library of data parts [Atkinson & Morrison, 1985,
Atkinson et al., 1993, Kirby et al., 1994].

2.2 Persistence Principles

The general principles presented above lead to specific principles concerning
persistence.

2.2.1 Definition of Persistence

The persistence of a data object is the period of time for which the object exists and is
usable [Atkinson, et al., 1983]. We aspire to systems where the use of data is
orthogonal to its persistence.

2.2.2 Orthogonal Persistence

There are three principles of persistence that may be used to achieve the above design
goals. They are:

The Principle of Persistence Independence
The form of a program is independent of the longevity of the data that it
manipulates. Programs look the same whether they manipulate short-term or
long-term data.

The Principle of Data Type Orthogonality
All data objects should be allowed the full range of persistence irrespective of
their type. There are no special cases where objects are not allowed to be
long-lived or are not allowed to be transient.
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The Principle of Persistence Identification
The choice of how to identify and provide persistent objects is orthogonal to
the universe of discourse of the system. The mechanism for identifying
persistent objects is not related to the type system.

The application of these three principles yields Orthogonal Persistence.

2.2.3 Persistence Independence

Persistence independence frees the programmer from the burden of having to
explicitly program the movement of data among the hierarchy of storage devices and
from coding translations between long-term and short-term representations. As an
example of persistence independence consider a sorting procedure that takes as input
an array of objects to be sorted. The parametric array may be small or large and held
in main store or disk. Beyond having to identify the correct array the programmer
need not be concerned with the size or storage details of the arrays. Thus the user
does not have to, indeed cannot, program to control the movement of data between
long-term and short-term store; this is performed automatically by the system. The
mechanical cost of performing the movement of data does not disappear but the
intellectual cost does. That is, the programmer need not specifically write code for it,
making the application code smaller and more intellectually manageable. The
implementor of the support system now has the challenge of automating that data
movement and any translation efficiently.

2.2.4 Data Type Orthogonality

Data type orthogonality is an aid to data modelling in that it ensures that the data
model can be complete and independent of the persistence of the data being modelled.
For example, bulk data types abstract over size and are therefore commonly used in
persistent programming languages to aid the manipulation of massive collections of
data such as scanned data from satellites or insurance policies sold by a company.
Where such data is only considered long-term then the data model has to allow
explicit conversion between long and short-term forms to allow creation of new bulk
data and the manipulation of extracts from the long-term bulk data as short-term data.

Data type orthogonality also includes the language design principle of type
completeness. For example, for bulk data this means that the elements of the bulk
constructor are independent of the persistence of the data. Thus the programmer is not
faced with a system where a set of one particular element type is allowed to be
persistent whereas another element type is not.

2.2.5 Identification of Persistent Objects

A number of methods have been investigated to identify persistence of data. Some
involve associating persistence with the storage allocator, variable name or the type in
the declaration. Under the rule of persistence independence these are disallowed.
They are also inappropriate for other reasons [Atkinson et al., 1986].

In languages where the extent of a data object can differ from its scope, a limited
form of persistence already exists. Such objects are normally kept on a heap and
whether they can still be used depends on the availability of legal names. That is, they
are kept available as long as the program and execution environment contains enough
information to refer to them. This limited persistence can be extended to allow objects
to persist beyond the activation of the program.

The technique which extends the above and is now widely used to implement this
principle is identification by reachability. In this, the identification of persistent
objects is performed by the system automatically by computing the transitive closure
of all objects reachable (by following pointers) from some persistent root or roots
[Atkinson et al., 1982, Atkinson et al., 1983, Cockshott et al., 1984, Brown &
Cockshott, 1985, Brown & Morrison, 1992]. Such data can then persist over
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activations of the programs that operate on them. The analogy with automatic garbage
collection is obvious.

2.2.6 Loss of Orthogonality

Loss of orthogonality of persistence occurs by disregarding any of the three principles
given above. Most serious is persistence independence, as if it is broken it is hard to
see how the persistence in the system is orthogonal in any way.

Some programming language designers have taken a very pragmatic approach to
persistence and disregarded data type orthogonality for specific types. Pascal/R
[Schmidt, 1977], DBPL [Schmidt & Matthes, 1992] and RAPP [Hughes & Connolly,
1990] are persistent programming languages based on Pascal where only first-order
relations that contain no pointer types may be persistent. This corresponds to
relational database practice but causes difficulty when other modelling techniques are
used. The restrictions imposed are not necessary as it has been shown elsewhere that
persistence can be added orthogonally to Pascal [Berman, 1991].

Where reachability is not used, languages often associate persistence with type. This
immediately violates the principle of persistence identification and as a side effect,
the other two principles as well. It also gives rise to dangling reference problems, or
at least invalidated references, for persistent objects that point to non-persistent
objects. The E programming language [Richardson & Carey, 1989, Richardson &
Carey, 1990] most persistent extensions to C++ and the PGraphite language [Wileden
et al., 1988] all use this technique. Figures 5 and 6 illustrate this problem.

Figure 5: Persistent Objects before being sent to the Persistent Store
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Database
Type

Non-database Type

Value Value

Figure 5 shows an object before being preserved in the persistent store. It has a type
which permits its residence in the database and it holds two references to other objects
whose types are such that they may also be stored in the database and another value
which has a type for which database residence is not supported.

Figure 6: The Same Objects as in Figure 5 in the Persistent Store
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Figure 6 shows the result of saving Figure 5’s structure in the persistent store. Only
some of the structure is preserved and the remaining, non-database value is lost, being
replaced by a dangling references or nil values if they are available.

Here the persistent store model of data is not consistent with the main store model, a
position we wish to avoid since this adds complexity to the system for the
programmer to master. For example, to overcome this loss of data when data is
required to exist between program executions, programmers would need to do the
following:

1 define a surrogate structure to the one shown that only used types that are
supported by the database;

2 write code to translate the non-database values to equivalent database-values
in this surrogate; and

3 write code to perform the inverse translation.
They would then have to ensure that this code was run at appropriate times and that
the combined translation was exactly consistent.

The lack of completeness in the persistent computational environment can be seen in
some C++ OODBMS. In these, the methods are held in a traditional program library
and linked into C++ programs using a standard linker. The data values of the objects
are held in the database. Garbage collection of unwanted data now becomes a
problem in this model, since it is not known whether methods contain references to
objects or whether any objects still exist that require the methods.

Some systems do not provide garbage collection of the data at all: a solution which
will eventually lead to grief. Other systems allow explicit deletion of an object or
recursive deletion from a root. In either case methods may still exist in the program
library which now do not have any data; this usually causes run-time failures.

2.3 Savings with Persistence

The benefits of orthogonal persistence have been described extensively in the
literature [Atkinson, 1978, Atkinson, et al., 1982, Atkinson et al., 1984, Atkinson et
al., 1985, Atkinson and Morrison, 1985, Morrison et al., 1985, Morrison et al., 1986,
Atkinson & Buneman, 1987, Morrison et al., 1987, Atkinson et al., 1988b, Dearle &
Brown, 1988, Brown, 1989, Connor et al., 1990, Cooper, 1990a, Cooper, 1990b,
Albano et al., 1993, Connor et al., 1993, Morrison et al., 1993, Morrison et al., 1995].
They can be summarised as:

• improving programming productivity from simpler semantics;
• avoiding ad hoc arrangements for data translation and long-term data storage;
• providing protection mechanisms over the whole environment;
• supporting incremental evolution; and
• automatically preserving referential integrity over the entire computational

environment for the whole life-time of a PAS.
The first saving of persistent systems is in the reduced complexity for application
builders. Traditionally, the programmer has to maintain three mappings among the
database model, the programming language model and the real world model of the
application, as was shown in Figure 3.

The intellectual effort in maintaining the mappings and overcoming the complexity of
the support system distracts programmers from mastering the inherent complexity of
the application. In a persistent system the number of mappings is reduced from three
to one (see Figure 4), thereby simplifying considerably the tasks undertaken during
PAS maintenance and construction.

Corresponding to the intellectual savings of persistence, there is also a saving in the
amount of code required to maintain the mappings. This has been estimated to be at
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least 30% of the total code for a typical database application [King, 1978]. The code
that is unnecessary is concerned with the explicit movement of data between main
and backing store, and that required to change the representation of the data for
preservation and restoration. An example of the former is input and output code, and
of the latter is code to flatten and reconstruct a graph before output and after input.
Thus the size of the application code is reduced thereby producing savings throughout
the software life cycle of the application.

The third benefit of persistent systems is that a single model of protection may
operate over the whole environment [Morrison et al., 1990]. In most programming
languages the simplest way to break the protection system is to output a value as one
type and input it again as another. Thus security is lost over the persistent store. Using
a single enforceable model reduces complexity while increasing the protection as its
type-checking prevents disallowed operations and hence misuse.

Database programmers often build large systems by incrementally designing sub-
systems and then by adding data and schema to the existing system. Initially a schema
is defined, then the database is populated with data, and finally the programs (queries)
are added. This is a powerful software engineering technique — that of incremental
design and implementation. In persistent systems the paradigm is preserved but with
rather more flexibility in the roles of the schema, data and programs. In particular, the
schema is no longer considered to be relatively static and small, with the data and
programs being dynamic and large. In persistent systems the schema, data and
programs are all considered equally and may be static or dynamic, large or small,
depending on the PAS under construction.

The final saving with persistence is that referential integrity of objects is
automatically enforced. The referential integrity of an object means that, once a
reference to an object in the persistent environment has been established, the object
will remain accessible via that reference for as long as the reference exists.
Furthermore, the identities of the objects are unique, and comparison of identity
yields the same result independently of when it is performed. In a strongly typed
persistent environment this also means that the type correctness of all such references
is maintained, that is once a reference has been established, the type of the object
referenced will not change. As will be seen later (section 5.2) this has a number of
consequences for using references in source descriptions in PASs.

The provision of orthogonal persistence has several consequences for support
systems. For example, much that is done explicitly by programmers in a non-
persistent system has to be automated by the implementors of persistent support
systems. The abstraction over longevity also requires the accommodation of
schemata, programs and data of any size, since these may grow unpredictably during
the lifetime of a PAS. An important aspect of such systems is the mechanisms which
are used to construct sub-systems. Because of the reliability of control that is
guaranteed by the persistent environment, such control can be delegated to tools
without loss of safety [Connor et al., 1994b].

Considerable research has now been devoted to the concept of persistence and its
application in the integration of database systems and programming languages
[Atkinson, 1978, Atkinson, et al., 1983]. A number of persistent systems have been
developed including: PS-algol [Atkinson, et al., 1983, PS-algol, 1988], Abstract Data
Store [Powell, 1985], Flex [Currie, 1985, Stanley, 1986, Stanley & Drummond,
1988], Galileo [Albano et al., 1985], Amber [Cardelli, 1986], Trellis/Owl [Schaffert
et al., 1985], TI Persistent Memory System [Thatte, 1986], Tycoon [Matthes &
Schmidt, 1992], Napier88 [Morrison et al., 1994] and Fibonacci [Albano et al., 1995].
The underlying goal in this work is to achieve engineering that is of sufficiently high
quality to ensure that the orthogonal persistence abstraction performs well irrespective
of the longevity and type of data and programs so that application programmers can
program without having to think about data transfers and similar issues.
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3 Integration Concepts
The integration of programming languages and databases into a single computational
entity involves a number of challenges for researchers in identifying and unifying the
concepts used for similar purposes in each domain. Of particular interest are: the
unification of type systems and data models, binding mechanisms, techniques for
identifying persistent data, system architectures and concurrency control, and taking
advantage of the controlled environment. Progress in these areas is discussed below.

3.1 Types and Data Models

The long-term goal of research into persistent type systems is to unify type systems
and data models by developing an adequate model of type that meets the
computational needs of persistent systems [Connor, 1990]. Ideally we would like a
simple set of types, and a type algebra, so that by a succession of operations and the
provision of parameters, any data model or conceptual data model can be defined.
This we have called the type alchemist’s dream [Atkinson & Morrison, 1986].

Type systems provide both data modelling and protection facilities within databases
and programming languages. Data modelling is performed in databases using data
models, which have types to describe the form of the data, and in programming
languages by using a classical type system. In both cases the universe of discourse of
the system is defined by the set of allowable types which in turn are denoted by the
set of legal expressions in the language. Data protection is provided by enforcing
explicit and implicit integrity constraints in databases and by type checking in
programming languages.

As a first step in the unification of data models and type systems some approximate
equivalences can be recognised. These are summarised in Table 3.

Table 3: Equivalences between Data Models and Type Systems

Databases Programming Languages

data models type systems

schema type expression

database variable

database extent value

While the equivalences are only approximate they do provide some insight into why
integration may be possible at a conceptual level.

The issue of type checking is central to a type system that will provide data modelling
and protection for persistent systems. Generally, data models in databases are
concerned with the manipulation of the data that is consistent with the constraints
imposed by the data model. In some cases these constraints may depend upon values
calculated during the computation. As such they can be dynamic in nature and require
dynamic integrity constraint checking for enforcement. By contrast classical type
systems for programming languages are concerned with static checking which allows
assertions to be made and even proved about a computation before it is executed.
Static checking therefore provides a level of safety within the system. It also allows
more efficient code since type checking code is not required at run-time.

At first the dichotomy between the checking times in databases and programming
languages appears to be beyond resolution. One way forward is to pursue the limits of
static checking while still accommodating the dynamic checking required in
particular instances. This retains the safety and efficiency of static typing provided in
programming languages in most cases while accommodating the dynamic flexibility
of data modelling.
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There are two approaches currently used to provide static checking for persistent type
systems. The first is constraint specification where constraints over the data for a
particular computation are expressed in some language. The checking requires a
powerful theorem prover sometimes beyond the limits of those currently available.
Such systems are usually undecidable and an unsuccessful check may be caused by
the limitations of the theorem prover rather than inconsistent constraints. However,
where the theorem prover fails it may sometimes provide useful information that can
be used to form minimal dynamic checks [Sheard & Stemple, 1989]. This clearly
delimits the points of dynamic checking while retaining as much static checking as
possible.

The second approach is to extend classical type systems with specific types. As will
be demonstrated later, points of dynamic checking are required to bind to persistent
objects where programs and data are prepared separately and combined dynamically.
The goal is to provide for some dynamic type checking while retaining as much static
checking as possible.

Both of these approaches need to be pursued but only the latter is presented here in
the next section.

One final difference is the semantics associated with the time of checking. In
programming languages, the type checks, both static and dynamic, precede operations
whereas dynamic database integrity constraint checks may be performed after
operations but before commitment. In all cases, however, the strength of the checking
is not compromised by the time at which it is performed.

3.1.1 Persistent Type Systems

The major challenges for type systems for persistent programming are to provide the
richness of expression of data models and the completeness of protection required, in
a mostly static form. These two goals are pursued in this section.

3.1.1.1 Programmer-defined Type Constructors

An important innovation in type systems has been the provision of programmer
defined type constructors [Milner, 1978, Cardelli & Wegner, 1985, Cardelli, 1989].
This allows programmers to identify and introduce new and succinct notations
corresponding to frequently used structures. Perhaps, more importantly, it also gives
those structures a name that signifies their meaning to other programmers thereby
fulfilling one requirement of types or DDLs: to describe data effectively.

A sequence of examples of declarations is given to convince readers that programmer
defined types provide a convenient notation and an extensible descriptive system of
comparable power to many data models.

The examples are written in a style close to the Napier88 notation [Morrison et al.,
1989, Morrison et al., 1990] with the assumption that structural equivalence checking
is in operation [Connor et al., 1990]. A new type name is introduced with a notation
such as the following:

type Count is int

which declares Count as a type name and makes it a synonym for the type int
assumed already defined. Similarly, the following might define a Date type.

type Date is record (day, month, year : int)

These definitions become more interesting when type parameters are introduced:
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type Pair [T] is record (first, last : T)
type DateStampedValue [T] is record (value : T; date : Date)

The first definition, Pair[T], describes an infinite class of record types with two
labels, first and last, both of the same type. The definition of Pair may be
parameterised by a type to yield a concrete type such as Pair[int].

Strictly these latest definitions are not types but type operators that when
parameterised by a type yield a type constructor. We will make little of this
distinction at the moment.

The second type definition illustrates how a type defined earlier may be used in
another definition to build up a succession of more complex (more semantically
meaningful) names of structures. In this case, DateStampedValue will generate record
types that combine a date stamp and a value, for example:

type DateStampedImage is DateStampedValue [image]
type DateStampedCount is DateStampedValue [Count]

declares the type DateStampedImage whose instances would hold images and the date
on which they were captured whilst instances of the type DateStampedCount would
hold Counts and the date on which the count was made.

As a further illustration, the next two statements define co-ordinate types in integer
and real spaces.

type IntXY is Pair [int]
type RealXY is Pair [real]

Regular structures such as those that occur in bulk types can also be defined. For
example:

type Sequence [Element] is ...
type Ring [Element] is ...
type Set [Element] is ...
type Bag [Element] is ...
type Map [Domain, Range] is ...
type Tree [Key, Value] is ...

Readers have been spared the details of the definitions, typically they would involve
abstract data types as described in the next section. These definitions can themselves
be composed.

type MultivaluedFunction [Dom, Range] is Map [Dom, Set [Range]]
type Forest [Key, Value] is Sequence [Tree [Key, Value]]

They can then be used with more conventional definitions.

type Student is record (matric: int; fname, sname: string; dateOfBirth: Date; ...)
type Course is record (title : string; prerequisites : Set [Course])
type Enrolment is record (student : Student; course : Course)
type Curriculum is record (student : Student; completed : Sequence [Course])
type Class is Set [Student]

All the type operator names defined above: Pair, DateStampedValue, Set, Bag, ...,
MultivaluedFunction and Forest can be used just like those supplied by existing data
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models or those supplied initially in the language. Similarly, the types and
constructors that have been produced and named, vis: Count , Date ,
DateStampedImage, DateStampedCount and Class can be used to produce instances
just like types in a traditional data model.

It is therefore easy to envisage persistent support systems being shipped with few
built-in types and constructors, but with extensive libraries of additional types and
corresponding manipulation functions. Like traditional libraries of procedures they
are then available for those who want them. This gives a simple starting point for
application builders, but a potentially rich repertoire of additions which can be
augmented further when needs have been identified, either by persistent support
system suppliers or by the application builders themselves.

Use of all of the parametric type constructors described in this section is made much
easier if associated libraries of generic procedures are provided [Atkinson, et al.,
1993]. This is only possible if the language provides appropriate forms of
polymorphism such as those described below [Morrison et al., 1991].

3.1.1.2 Information Hiding using Existentially Quantified Types

The parameterised type operators introduced in the previous section define an infinite
class of types. However, values can only be created with a specific type and the
information contained in them is only available to those parts of programs that have
the correct type descriptions, i.e. those type descriptions which are structurally
equivalent. Two values created using a type operator are only type equivalent if they
are created using equivalent parametric types.

The type operator mechanism can also be used to provide information hiding or
abstract data types. By encapsulating the structure of the data behind a published
interface, the type of the data, and thus its internal structure, may be hidden. In
consequence, two abstract data types with equivalent interfaces are equivalent
irrespective of their internal type (or structure). This is best illustrated by an example.
We start from a record type defining counters as a value and an increment operation.

type Counter [t] is record (value : t ; inc : proc (t → t))

let intInc = proc (x : int → int) ; x + 1

let intCounter = Counter [int] (0, incInt) !create a Counter
...

intCounter.value := intCounter.inc (intCounter.value) !increment it

This creates a record with two fields, an integer value, and a function inc to increment
the value. The type of the record is equivalent to

record (value : int ; inc : proc (int → int))

While the record is useful for aggregation it does not protect the data from outside
interference. For example, both of the fields may be accessed and perhaps updated by
any other part of the system that can specify an equivalent type. The final statement in
the above example shows the value being updated by using the fields consistently as
intended. However the type Counter does not restrict the use of the value to the
function inc.

Second-order information hiding [Cardelli and Wegner, 1985] may be used to
abstract over the type of the data and thereby the required consistent usage can be
statically enforced. An abstract data type may be formed from a parametric type
operator in the same manner as is used to create a concrete value. In this case,
however, the parametric type (or witness type as it called in this context) once
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instanciated becomes abstract. Consider for example the following revised creation of
a counter.

let absIntCounter = abstract Counter [int] (0, intInc)

This creates an abstract data type, absIntCounter, where the two fields both operate
over the same type but once the abstract data type is created, that type (the witness
type) may never be re-discovered. As a consequence, only the functions within the
abstract data type may operate on the value, for they are the only ones with the
witness type. Since the witness type is abstracted over, but is known to exist, the type
of absIntCounter can be written more formally as

∃ t.record (value : t ; inc : proc (t → t))

A second advantage is that all abstract data types formed in the same manner are type
equivalent. For example

let absRealCounter = abstract Counter [real] (0, incReal)

also has the type

∃ t.record (value : t ; inc : proc (t → t))

since the witness type is abstracted over. These types may be used as follows, where
absCounter is the type of all Counters as written in the above two examples.

let updateValue = proc (aCounter : absCounter)
aCounter.value := aCounter.inc (aCounter.value)

...
updateValue (absIntCounter)
updateValue (absRealCounter)

One final problem remains for abstract data types. In order to preserve static type
checking it is necessary to create a context in order to use the components of the
abstract data type. The necessary restriction is that it must be possible to identify by
static analysis that when the interface components are used, then they are only used in
a manner that ensures that they all belong to the same abstract witness. Once this has
been achieved with an appropriate syntactic mechanism, the requirement that the
hidden information be only used consistently can be enforced by static analysis of the
program text during type checking. This provides safety as it allows programmers to
place precise limits on the ways in which long-lived data may be used. The details of
models of witness types can be found in [Cardelli & MacQueen, 1988].

3.1.1.3 Generic Re-usable Persistent Polymorphic Procedures

The introduction of a statically typed universe trades the power of expression for
static safety. How much the system designer is willing to trade depends upon the
application domain.

In [Albano et al., 1989] and its companion papers, an analysis of what constitutes a
persistent type system is given. For modelling purposes it is generally agreed that
some form of polymorphism is required to capture the expressiveness of data models
and to increase component re-use [Morrison, et al., 1987] as has already been
demonstrated by abstract data types. The most favoured forms of polymorphism are
universal polymorphism: parametric or inclusion.

Parametric polymorphism describes the polymorphism found in ML [Milner, 1978]
and its derivatives whereas inclusion polymorphism is the style of polymorphism
found in object-oriented languages such as Simula67 [Dahl & Nygaard, 1966]. An
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interesting hybrid may be found in the database programming language Galileo
[Albano, et al., 1985], which is a derivative of ML but utilises inclusion
polymorphism to implement part of the Semantic Data Model [Hammer & McLeod,
1981]. Cardelli [Cardelli and Wegner, 1985] has shown separately how the parametric
and inclusion forms of polymorphism may be integrated, as bounded quantification,
to yield forms of abstraction not available to either one.

Since parametric and inclusion polymorphism give similar power [Cardelli and
Wegner, 1985] only parametric polymorphism is described here. In parametric
polymorphism, functions may be defined that work for all types. Consider a function
that counts the number of elements in a list. Since it does not use the values in the
elements of the list itself then the function should work for all lists. It is said to be
universally quantified and its type may be written as:

∀ t.(List [t] → int)

To extend this example a little, consider functions that maintain an index. The index
would store values of any type and use keys of any type which has (at least) equality
defined over it. The functions therefore require to be polymorphic over the value and
key types. This is relatively easily specified using parametric polymorphism. For
example, if the index is implemented by a list of pairs, one element for the key and
one for the value, then the type of the function to enter a value in the index is

∀ Key.∀ Value.(Key × Value × List [Key × Value] → List [Key × Value])

The advantage of this type of abstraction is that the functions can be placed in the
persistent store and used later to operate over indexes of all types. The software
engineering advantages of writing concise code that is generally applicable are well
known.

Further abstraction can be obtained by observing that the functions should be able to
abstract over the structure of the data as well as its base type. The above function can
be written since the polymorphic procedure heading specifies that the index is
implemented by a list. Thus it may be implemented using the operations on a list. It is
possible to implement the index using other structures such as arrays or B-trees. For
example the type using a B-tree is:

∀ Key.∀ Value.(Key × Value × Btree [Key × Value] → Btree [Key × Value])

Combining the functions requires that the parametric types are equivalent. Abstract
types may also be used to yield a combination of universal and existential
quantification. Note that with universal quantification one abstract polymorphic form
can be written and special cases generated, whereas with existential quantification
existing values are described by a more general type allowing more general
abstraction over that type.

Polymorphism is one technique for retrieving some of the expressive power that is
lost by the introduction of the type system in the first place. By abstracting over the
types more general computations can be expressed than in monomorphic systems.
Polymorphism does not regain all of the power lost by the introduction of a statically
checked type system. Relational systems are highly polymorphic but depend upon the
dynamic evaluation of types for their expression. For example, the specification and
implementation of a generic natural join function provides an example of abstraction
over types that is beyond the capabilities of most statically typed polymorphic type
systems. This is because the details of the input types, particularly the names of the
tuple components, significantly affect the algorithm and the output type.

Type systems that can accommodate functions such as natural join are generally
higher order and dynamically checked. An interesting exception in this case is the
Machiavelli type system [Ohori et al., 1989]. In general, however, in order to retain
static checking and still write these higher-order functions a different technique is
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required. One such technique is linguistic reflection [Stemple et al., 1992b] discussed
later in this paper.

3.1.1.4 Persistent Type Checking

We first demonstrate the need for some form of dynamic type checking in persistent
systems and then show how it is provided.

The novelty of a persistent type system is that it must provide type checking over the
whole of the computational activity including the use of persistent data. Within a
traditional file system, the use of persistent data is achieved by programs having
textual descriptions of how to find data within the file system. For type checking, a
static description of the file data within the program is used by the compiler to assert
that the data will be of the specified type when it is provided from the file. For
implementation, the run-time system must perform dynamic type checks to enforce
these assertions. Figure 7 illustrates the point.

Figure 7: Dynamic File Access

type Address is record (name : string ; age : int ; gender : bool)

var fileDescriptor : file [Address]

fileDescriptor := open ("/user/ron/addresses")
! At this point the system accesses the file ensuring that it exists and
! checks that the type of the data in the file is of the specified type

if fileDescriptor = nil then error ... else
begin

while ~eof (fileDescriptor) do
begin

let this = read (fileDescriptor)
...

end
end

In Figure 7, a type Address is declared to be a record with three fields name, age and
gender of types string, integer and boolean respectively. A variable fileDescriptor is
declared as having the type of a file of Address. It is initialised to the file at path name
"/user/ron/addresses" by the open statement. If the file exists, then a dynamic type
check is performed to ensure that the data contained in the file is of the correct type,
namely Address. Note that the interpretation of the path name string during the open
operation is an example of the failure of computational completeness described above
as it is not determined by the semantics of the language.

It should be noticed that in Figure 7 there is only one point of dynamic typing, that is
during the open statement. The program is compiled with the assertion that the file
will have the correct type and all other type checking can therefore be performed
statically. Thus the program may read values from the file without performing
subsequent dynamic type checks. In this form of persistence each file can be
considered as a persistent root. Notice also that the type of the values in the file must
be guaranteed by the file system. Thus, overwriting the data with values of a different
type is forbidden for a strongly-typed file system.

The nature of the open statement in Figure 7 is worthy of closer inspection. The
statement has different types depending upon the values contained within the file. In
the above case it returns the type file of Address but in another case may return, for
example, the type file of Employee. The most general type for open is one that can be
coerced into the specific type dynamically, during the open statement. Thus open can
be said to have a dynamic type.
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Changing the type of the values in a file entails deleting the file and replacing it with
a file of a different type. This appears to the program as if the old values have been
coerced to a new type. Notice however that the coercions are all performed as a side
effect of another operation and that there need not be an explicit dynamic type nor
coercion facilities within the language. In a typical implementation, for example an
Ada APSE, these operations depend on two systems with independent semantics
which can be changed independently. A deus ex machina may therefore change the
type or existence of the file under the feet of the programmer.

As the number of typed files in the persistent space grows, then programs will
inevitably wish to access more than one file and to have inter-file references. This is
the major difference between a typed file store and a typed object store in that the
files are self contained with no inter-file references, whereas objects are highly inter-
connected.

Let us assume for a moment that typed files could be extended to accommodate inter-
file references. As a consequence of inter-connection from a file, that file’s type must
have knowledge of the types of all the files to which it connects. Over time the
persistent space becomes highly connected necessitating every program to have a near
complete description of the types of all the files.

The second problem with the typed file approach to persistence is that the file types
are fixed at file creation time. Files cannot refer to newer files whose type has not yet
been determined and this restricts evolution of the system. At a programming level,
inheritance partially overcomes this by yielding additive evolution [Atkinson et al.,
1993], which allows values to be replaced by more specialised forms. Thus in
Figure 7 the file could be one that provided an extra address field, like postcode. The
processing system must be set up so that it ignores this to achieve correct execution.
To accommodate evolution completely it is necessary to allow arbitrary changes in
the data model, at least at some well defined points.

Both problems outlined above: partial specification of the type structure (schema) and
the evolution of the data model can be solved by the same mechanism that performs
the dynamic type checking of persistent data. The integrated solution involves an
infinite union type of which type pntr of PS-algol [PS-algol, 1988], dynamic of
Amber [Cardelli, 1986], any and env of Napier88 [Morrison, et al., 1994] are
examples. Persistent roots have the infinite union type and values are injected into
these objects with a type and projected dynamically onto a type for re-use. It is at the
points of projection that the dynamic type checking occurs. Figure 8 illustrates this
point using type any and the Napier88 notation.

Figure 8: Projection from an Infinite Union

type Address is record (name : string ; age : int ; gender : bool)

let ps = PS () !This is the only standard function in Napier88
! It returns a persistent root of type any
! Before the value can be used with its specific type
! it must be projected onto that type

project ps as X onto
Address : write X (age) ! X has type Address here
...
default : ! This is a “catch all” and ps has type any here

In Figure 8, the standard function PS is called. It returns the value of the persistent
store which has the dynamic type any. The use of a dynamic type allows the
persistent store to change its specific type between activations of particular programs.
In order to use the value with its most specific type, ps is projected by the project
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clause onto that type. It is during the projection that the dynamic type check occurs.
Within the projection context, the value may be used with its most specific type, in
this case Address. The above program writes out the age field of the record. Any
number of types may be specified in the projection; the first correct one is used. A
catch all default clause is used to trap all the cases where none of the specified types
match. Within this context the value only has the type any.

Thus the mechanism is that the persistent store has a most general dynamically
checked type. To use the values within the store the dynamic type must be projected
onto the specific type for the store. The method by which the store may change its
type, by injection of a value with a different type, is not of interest here except for the
fact that it can be performed.

This mechanism occurs implicitly in standard database interfaces. When a program
opens a database it specifies a schema or view. During the opening operation the
schema or view used during the program’s compilation is compared with the
database’s current schema or view. Arbitrary changes may have been made to the
database using a schema editor between the compilation and this execution. If the
schema or view no longer matches the expectations established at compilation-time
then an error is signalled. Thus, internally the run-time system is able to treat the
database as having a dynamic type and to perform a dynamic verification that the
expected and actual types match.

From Figure 8 it can be seen that dynamic checking is limited to the points of
projection from the type any. Values of these dynamic types are first class and may
also be a constituent part of any other type. Thus, a graph of objects in the object store
may have one root of type any as well as other values of type any that are
components of other objects. Before they can be used with their specific type they
also have to be projected onto that type. This allows programs to specify only the part
of the schema that they require up to a point of dynamic checking. As a consequence
a schema, which is represented by an arbitrarily large collection of mutually
referencing types, may scale well since the schema specification is bounded by the
dynamic types. Incremental schema changes inject new values into an any and the
type of the rest of the specification remains unchanged. In addition, where an any
encapsulates the type, type checking is postponed until required. Hence excessive
type checking costs on start-up are avoided. This is illustrated in Figure 9. To
implement this delayed checking it is necessary to store, potentially large and
complex types with the any value.
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Figure 9: A Partial Specification of Types

type Address is record (name : string ; age : int ; gender : bool ; extra : any)

let ps = PS ()

project ps as X onto
Address :

begin
let this = X (extra) ! this is of type any
type extraInfo is record (idNo : int ; spouse : Address)

! Programs not using the extra field do not need to specify
! extraInfo

project this as Y onto
!type check using extraInfo only happens when this is
! executed

extraInfo : write Y (idNo) !write out the id number
...

default : ...
end

default : ...

In Figure 9, where the extra field is used the specification of the extraInfo type is
required. Where programs do not use the extra field the type extraFieldInfo does not
have to be declared. Thus only part of the type structure need be specified, the part of
interest to the program, as shown in Figure 10.

Figure 10: A Partial Use of Types

type Address is record (name : string ; age : int ; gender : bool ; extra : any)

let ps = PS ()

project ps as X onto
Address : begin

write X (name) !write out the name
end

default : ...

The use of dynamic types allows the data model to evolve without recompiling all the
programs that refer to the data. For example, if the extraInfo type is altered, then only
programs that used that type need be altered.

To summarise, explicit dynamic types allow partial specification of the overall
structure of the data (schema) and facilitate the evolution of the data, without having
to alter programs that do not make use of the evolutionary changes.

3.1.1.5 The Range of Type Checking Times

The addition of the infinite union type any facilitates incremental dynamic checking
in persistent systems. Thus the range of checking times includes just-before-use
dynamic checking. At the other end of the spectrum the presence of the persistent
store allows persistent values to be bound to programs during program construction.
Where the programs themselves are persistent objects, this leads to the concept of
hyper-programming [Kirby et al., 1992] that will be discussed later. For the present it
is sufficient to realise that persistent values are available to the type checker allowing
types to be value based. This leads to persistent systems being able to support some
dependent types (i.e. types which require tests on values to establish their
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equivalence) similar to static constraints based on values in traditional database
systems.

To introduce the usefulness of dependent types, a motivating example of dependent
bulk types taken from [Connor, et al., 1993] is given. The semantics of many bulk
type data models depends on user-defined attributes such as definitions of element
equality, ordering, and other domain predicates. While these attributes are an intrinsic
part of the data model, they are not normally treated as part of the type description.
This may lead to the occurrence of data modelling errors such as a union operator
accidentally being applied to two sets which have different semantics for the equality
of their elements.

Directories indexed by Scottish names provide an example where the inclusion of
element attributes in the type may be a requirement. People may take a different view
as to whether the names “MacFarlane”, “Macfarlane”, and “McFarlane” are really
different names, but their owners are usually protective of their different forms. If
they are used to retrieve data however, it is unlikely that the retriever will wish to
distinguish between them. There is therefore a requirement for different types of
directory dependent upon the domain equality semantics. For two directories to have
the same type they must have (depend on) the same equality operator, which is a
value. If it is a persistent value then they can depend on the same value even if they
were formed on different occasions.

For dependent types to be structurally equivalent it is necessary for the values upon
which they depend to be equal. For the equivalence of dependent types to be statically
decidable it is therefore necessary for the values upon which the types depend to be
statically available to the type checker.

The essential requirement is that any values upon which a type depends are evaluated
before any equivalence testing is performed upon the type. This restriction of the
general type description can be enforced by restricting the dependencies to being
existing persistent values.

A full description of such a language mechanism, including the explanation of the
necessary restrictions and an introduction to the subject of polymorphism over
dependent types, is given in [Connor, et al., 1993].

3.2 The Range of Binding Mechanisms

Binding mechanisms present the user with a trade-off between safety and flexibility
[Morrison et al., 1987, Morrison et al., 1990]. Dynamic binding is the most flexible
since the binding is delayed until the latest possible time at which a choice can be
made. In contrast, static binding is safer, in that static checking may be used to give
advice to a person better able to understand it (a programmer) and to eliminate run-
time binding errors. The programmer has to choose the mechanism most suitable for a
particular application from the range of binding available within the construction
system. Persistent systems extend the range of binding by presenting the user with the
possibility of using persistent objects during the construction of an application.

Traditionally, in programming languages and database systems, a binding occurs
between a name and a value [Strachey, 1967]. That is, a value is bound to a name for
some period during the evaluation of a program or query. This has been extended by
Burstall & Lampson to include a type [Burstall, 1984] and further by Atkinson &
Morrison to mutability [Atkinson & Morrison, 1987]. A binding mechanism,
therefore, has four components: a name, a value, a type and an indication as to
whether the value is mutable or not. To complicate the issue further, bindings may be
performed statically by the compiler or dynamically by the run-time system or indeed,
as is often the case, at intermediate stages.

3.2.1 The Nature of Binding Mechanisms

As indicated above, the binding mechanism has four components:
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• Is the binding to a mutable (L-value) or immutable (R-value) value?
• When is the binding performed?
• What scoping is involved?
• When is type checking performed?

Bindings may be made to immutable values, that is, constant values that do not alter
during the period of the binding, or to mutable values (locations) where the binding
does not change although the value referred to by that location may change. These
kinds of bindings are traditionally known in programming language parlance as R-
value (for immutables) and L-value (for mutables) bindings [Strachey, 1967]. The
manifest constants of BCPL [Richards & Whitby-Strevans, 1979] or Pascal [Wirth,
1971] are examples of R-value bindings. On the other hand, Pascal variables are
examples of L-value bindings where the compiler may bind the name to a location but
not to a particular value since that may vary at run-time.

A binding is always performed with reference to a particular environment. That is, a
binding will be part of a particular environment and may use other bindings in that
environment to establish its own. The scope of the binding determines where it may
be used. There are two common forms of scoping in programming systems, static and
dynamic. In static scoping, the scope of the bound name can be detected by static
analysis of the program. Algol 60, and all derived languages such as Pascal, Ada, etc.,
utilise a static scoping rule that allows duplicate bindings to be detected statically. In
dynamic scoping, the binding in scope is the one that was last defined in the dynamic
evaluation of the program. Dynamic scoping can be seen in Lisp [McCarthy, et al.,
1962], the binding of file names and in the segment binding mechanism of Multics
[Organick, 1972] and all derived operating systems.

Type checking can be performed statically by a compiler or by the run-time system.
Dynamic type checking occurs when the run-time system executes code to ensure that
the data is of the correct type. This typically occurs even in so called statically
checked languages when external data is brought into the computation e.g. in read
statements and, as has been shown earlier, during projections out of infinite unions.

A categorisation of binding is given in Table 4.

Table 4: A Categorisation of Binding

Static
R-value

Static
L-value

Dynamic
R-value

Dynamic
L-value

Static Typing
Static Scoping 1 5 9 13

Static Typing
Dynamic Scoping 2 6 10 14

Dynamic Typing
Static Scoping 3 7 11 15

Dynamic Typing
Dynamic Scoping 4 8 12 16

There are 16 different methods of binding based on the four binding choices given
above. The most static form is a static R-value binding with static type checking and
static scoping. The most dynamic form is a dynamic L-value with dynamic type
checking and scoping. It is interesting to note that even within one particular language
there is often more than one binding category. For example, in Pascal category 1
describes const values, category 13, variables, category 15, variant projections (cases
in Pascal) and category 16, file names.
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In determining the appropriate binding mechanisms for a particular system, the
designer is faced with the problem of balancing safety against flexibility in a similar
manner to type checking. The safety in the system is derived from being able to say
(even prove) something about the program before it runs (i.e. statically) in order to
improve confidence that it is correct.

An aspect of static checking that is often overlooked in programming systems is that
the source code then acts as better program documentation. If a compiler can
statically check a program then so can a programmer. Thus statically checked
programs have better documentation properties and consequently better cost
properties throughout the life cycle of the programs.

3.2.2 The Range of Persistent Binding Times

It may be argued that the whole spectrum of binding mechanisms is required in
persistent systems to facilitate the needs of prospective programmers. From
observations the uses of bindings are:

• the creation of new objects (and binding into the persistent store);
• the reuse of existing objects (program and data) by new objects;
• new combinations of existing and/or new objects; and
• incremental construction of objects.

For example, the programmer may wish to bind statically to a combination of objects
in the persistent store in which case the objects are assembled into a new object and
bound together. On the other hand, the programmer may wish to obtain the latest
version of the object by delaying the binding until the object is about to be used.

The presence of a persistent environment in which programs are compiled and where
programs may refer to persistent objects gives rise to three new perspectives in
binding. They are:

• the extended scoping of bindings;
• the need to break bindings; and
• the separation of names and values in persistent bindings.

The presence of a persistent environment in which programs are composed, compiled,
linked and run extends the scoping of bindings to persistent values. Where the source
programs themselves are values, static R and L-value bindings may be made in the
program source to persistent values. Thus the source programs may contain already
evaluated values that have been placed in the persistent store. These are manifest to
the program and as such belong to category 1 which up until now in not much used in
programming systems. The advantage of this style of binding has already been shown
in dependent types and will be shown later to lead to the concept of hyper-
programming: a new technology only available in orthogonally persistent systems
[Kirby, et al., 1992].

Persistent systems also highlight the need to break bindings and to recreate them later
or in some other context. Consider the problem of releasing systems. In order to ship
a system from one environment to another it is often sensible to ensure that the
system fits in with the new environment. In Unix this often involves redefining shell
variables or late binding the system calls to the new environment. For example, an
application that uses the Unix malloc system call is both unlikely and unwise to take
its local copy of the command with it when it is shipped to a new environment.

The environment of a persistent value includes the graph of values which can be
reached from it and shipping values from one persistent system to another may
involve copying the complete graph. This is not usually desirable for the semantics of
the value, the utility of the value in its new environment nor from an efficiency point
of view. In order to accommodate this rebinding, bindings must first be broken which
is in itself a dangerous activity. One proposal for achieving such rebinding in a safe
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manner is that of Octopuses given in [Farkas & Dearle, 1993]. This allows the
bindings within a value to be broken, producing a wiring diagram of the broken
bindings. This wiring diagram may then be rebound in the new environment when the
value is moved. Since the wiring diagram is effectively an abstract data type it may be
programmed to achieve a number of varied rebindings. The mechanism is a special
case of linguistic reflection addressed specifically to this problem.

Flexible binding is only possible where there is a separation of the concepts of names
and values. For flexibility a value may participate in many bindings and have many
names (aliases). More importantly, in persistent systems, the name space is separate
from the value space allowing the graph of persistent values that constitutes the
persistent store to have any number of name spaces layered on it. Application specific
naming schemes are supported by this arrangement.

It should be noted that polymorphism allows the separation of values and types,
structural type equivalence allows the separation of names and types, and dynamic
typing the separation of names and values. This is another example of the power of
orthogonal design.

Some of the skill in using a persistent system will be in deciding which objects are
statically composed and never changed and which objects are dynamically composed.
A judicious mixture of mechanisms has to be provided by the system and eager
binding is expected to be the preferred style of usage, in that, when it is appropriate to
perform the binding, then it is done for safety and not delayed unnecessarily.

3.3 Concurrency

Traditionally the database and programming language communities have taken
different approaches to concurrency control. In programming languages, concurrency
control is based upon the concept of the co-ordination of a set of co-operating
processes by synchronisation. Language constructs such as semaphores [Dijkstra,
1968b], monitors [Hoare, 1974], mutual exclusion [Dijkstra, 1968a], path expressions
[Campbell & Haberman, 1974] and message passing [Brookes et al., 1980] have been
provided to support this concept. By contrast, in databases, concurrency is viewed as
a system efficiency activity which allows parallel execution and parallel access to the
data. However, each database process may have to suffer the indignity of abortion in
order to sustain the illusion of non-interference. The key concept in databases is that
of serialisability [Eswaran et al., 1976] which has led to the notion of atomic
transactions [Eswaran, et al., 1976, Kung & Robinson, 1982] supported by locking
[Eswaran, et al., 1976] or optimistic concurrency control methods [Kung and
Robinson, 1982].

In both cases the user must attempt to understand the computations in terms of some
global cohesion. In programming languages the emphasis is on synchronisation and
the overall cohesion is understood in terms of the conflation of all the
synchronisations. A number of techniques, including CCS [Milner, 1980] and the π-
calculus [Milner, 1991] have been developed to help with this. In database systems,
global cohesion is understood in terms of the concept of serialisability [Eswaran, et
al., 1976] but includes failure semantics such as abortion.

Figure 11, taken from [Munro et al., 1994], illustrates a spectrum of understandability
from the points of view of programming language and database users.
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Figure 11: A Spectrum of Understandability
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Figure 11 illustrates that databases tend to use atomic transactions to enforce isolation
rather than co-ordinated sharing. Programming languages promote co-operation. Thus
in integrating databases and programming languages, the designer must unify these
established and provenly useful positions. The impetus does not altogether come from
persistence however, since languages that support atomic transactions and databases
that require non-serialisable and designer transactions [Ellis & Gibbs, 1990, Sutton,
1990, Nodine & Zdonik, 1992] have been identified as necessary by their respective
communities.

Both camps agree that co-ordinating a set of computations that share data is a
complex undertaking and that it is difficult to characterise the power and behaviour of
the mechanisms and even more difficult to compare them with each other.

Previous attempts to provide concurrency in orthogonally persistent systems either
have focused on a single model [Morrison et al., 1988, Morrison et al., 1989],
provided a mechanism for extending synchronisation or provided basic persistent
threads. The work of Krablin’s CPS-algol [Krablin, 1987b, Krablin, 1987a] is perhaps
the most notable. CPS-algol added constructs to PS-algol to support processes and
hence persistent threads. The concurrency model is co-operative based on
synchronisation by conditional critical regions. Concurrency is provided by executing
procedures as separate threads. Using these primitives and the higher-order functions
of PS-algol, a range of concurrency abstractions can be constructed including atomic
and nested transactions as well as more co-operative models. This work has been re-
visited recently in [Munro, 1993] and [Matthes & Schmidt, 1994].

Given that the overall goal is for the user to understand the computations in terms of
some global cohesion, the CACS system [Stemple & Morrison, 1992, Morrison et al.,
1993] proposes a mechanism for integrating concurrency control in programming
languages and databases. It takes the point of view that the difficulty stems from both
the low-level nature of the mechanisms and the inherent complexity of the problem.

The goal of the CACS approach is to control the coherence of sequences of operations
on shared data in an understandable and flexible manner. The essence of the system
is: understandability; the separation of concurrency control from data; formal capture;
and a path to implementation. The global cohesion of an action in CACS is visualised
as the movement of data among access sets. The visibility of the data to other users
then becomes an issue of synchronisation. Where the visibility coincides with commit
time, atomic transactions may be obtained, and where the visibility is immediate then
synchronisation is present. By viewing the co-ordination of the use of data as the co-
ordination of the movement of the data among access sets, then the same data may be
used in a different manner at different times. Thus the data may take part in an atomic
transaction one day, a saga the next and may be in a co-operative computation the
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next. A future goal of the work is to allow interaction of the concurrency control
methods.

4 Technology to Support Persistence
An overview is now presented of some crucial aspects of the technology needed to
support orthogonally persistence systems. The explanation below is not intended to be
sufficient for someone trying to implement persistence though the citations are
intended to give an entry to the pertinent literature. It is intended to make readers
aware of what is involved and convince them that orthogonal persistence is feasible.

4.1 Implementation Architectures

To support persistent applications a stable and reliable store to hold the data and an
execution mechanism to execute programs are required. The principal categories of
supporting architecture are discriminated by the way in which these major
components are provided and the way that they interwork. Four architectures are
recognised in order of increasing commitment to the persistence philosophy. Not
every reported system fits precisely into these categories and their state of
development varies between commercial products and research prototypes.

4.1.1 Combined Existing Systems

The designers may start from an existing data model (e.g. relational, object-oriented,
etc.) and combine it with an existing language (e.g. C, Fortran, C++, Cobol, etc.). The
combination proceeds by arranging a notation to perform bindings. This involves
identification of types and data via databases, schemata, views and queries and
component use in programs or methods. The database component operations are
made manifest by extending the language or providing some library.

The resulting combination may be sympathetic to the original language to varying
degrees. Difficulties are often met because of the limited overlap between the two
universes of discourse. Besides the type and conceptual differences to be overcome,
syntactic noise is often introduced by attempting such a combination. There are,
however, obvious advantages: capitalising on training, utilising well polished existing
system code, continuing the use of legacy code or data with relatively little re-coding
and permitting multi-lingual working against the database.

Where the language and data model are reasonably sympathetic, an acceptable quality
of integration can be obtained, for example the integration of O2 with C++ [Deux,
1990, Deux, 1991]. However, it would be unrealistic with this architecture to expect
that all the features of the programming language would work directly on persistent
data and that data of all types could be stored. The storage of large collections of
objects within a standard relational system is an interesting example of this approach
[Reinwald et al., 1994]. There, the programmer can use the full facilities of C++ to
build and operate on an arbitrary group of objects and use the full relational facilities
to store and retrieve such groups. However, programmers are not permitted to store
persistent references between groups.

Implementations taking this approach attempt to leave both the language run-time
system and the DBMS unchanged. Typically they are run as separate processes that
communicate via messages.

4.1.2 Extended Existing Systems

This approach takes place in one of two directions. Designers may start with an
existing database and extend it to have more complete type and computational
facilities, or they may start with a language and add persistence. Postgres is a good
example of the former [Stonebraker & Kemnitz, 1991]. Commercial systems, such as
Microsoft ACCESS [Microsoft Corporation, 1994a, Microsoft Corporation, 1994b]
also fall in this category as they start with a relational model, and expand its
computational facility by adding program and interface generation facilities. The
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development of object-oriented facilities in the SQL3 standard [Kulkarni, 1994]
corresponds to this approach.

The first version of PS-algol [Atkinson, et al., 1983] was an example of this second
approach, as it began by extending S-algol [Morrison, 1979]. Similarly, Pascal-R was
initially described as the addition of relational capabilities and long-term storage to
Pascal [Schmidt, 1977]. There are, however, fundamental differences between these
two examples: the former set out to leave the language’s type system unchanged and
hence to achieve orthogonal persistence, the latter set out to extend the type system,
but made no attempt at data type complete persistence.

Many persistent systems continue to be developed using this second approach.
Typically they are persistent versions of C or of C++ [Richardson and Carey, 1989,
Shapiro et al., 1989, Richardson and Carey, 1990, Reinwald, et al., 1994] but
persistent versions of SmallTalk [Straw et al., 1984], ML [Matthews, 1985,
Matthews, 1989, Nettles & Wing, 1992] and Ada [Wileden, et al., 1988] have also
been reported. Where the persistent language takes this form, there is the advantage of
converting existing software to have persistent behaviour with minimal effort.

Construction of a persistent system by extension of an existing system usually
requires significant modifications to the original system’s run-time system.
Discussion here focuses on the case where a programming language is extended.
There are four tasks to automate:

• obtaining the type information from programs and accumulating it as a
schema;

• storing, using a representation that will always be interpretable, any values
that future programs may use, in a stable transactional store;

• identifying which values should be promoted to longevity and detecting when
they can no longer be used so that their resources can be re-used;

• arranging to load into a program’s active store any persistent data that it is
about to be used.

Often the implementation involves new persistent store technology, including
recovery, transactions and space management. There are variations regarding the
extent to which the store technology is tuned to the requirements of the particular
language supported [Brown et al., 1992] and the extent to which the store builds-in
clustering, indexes, bulk types, etc. [Cluet & Delobel, 1991, Matthes & Schmidt,
1991, Zezula & Rabitti, 1992, Cluet & Moerkotte, 1993].

Some persistent extensions to languages accept that they cannot implement all four of
the tasks listed above. For example, the Texas store [Singhal et al., 1992] provides a
stable checkpointable memory in which C and C++ programs run. In consequence it
provides orthogonal persistence for those languages as the programs run unchanged in
this store, but the representation would not carry data across changes to parts of the
support system and no automatic management of object lifetimes (task 3 above) is
supported. These limitations are an ineluctable consequence of supporting any
language that happens to be run in the store, as it means that there isn’t a complete
and reliable type system from which to derive the required information to provide
these services.

4.1.3 Systems Based on an Integrated Design

Recently, several systems have been developed that are based on an integrated design,
which tries to equitably use experience from both programming languages and
databases, but starts afresh to develop a single system that provides the functionality
of both systems. Examples are: Napier88 [Morrison, et al., 1994], Fibonacci [Albano,
et al., 1995] and Tycoon [Matthes et al., 1994] (all products of the ESPRIT Basic
Research Action 6309: FIDE2).
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These generally have the advantage of being conceptually simple compared with the
preceding approaches. However, they usually do not manage to provide full database
facilities — that is, few can actually demonstrate a complete repertoire of
incrementality, transactions, recovery, concurrency, distribution and scalability. (It
appears that this is more a consequence of teams being unable to muster the effort to
tackle all of these issues together rather than of fundamental limits.) These support
systems have to provide an interface to legacy code as they are typically monolingual
and have a unique data model or type system. Their implementation still has to
achieve the four tasks identified above.

4.1.4 Persistent Worlds

All three of the categories discussed above are typically implemented above standard
operating systems (UNIX, Windows NT, etc.). This has the advantage that it is easier
to export the research to other sites. It has the disadvantage that it is extremely
difficult to obtain entirely consistent behaviour and reasonable efficiency on these
platforms.

This leads to an alternative line of research where a totally new computational
platform is constructed. This may be a persistent operating system (on top of which,
all languages achieve persistence automatically, and with which all data has
consistent persistent behaviour) or even new hardware architectures with associated
operating systems. Typical of the former are: Grasshopper [Dearle et al., 1994], EOS
[Gruber, 1992, Daynès & Gruber, 1994] (also a FIDE2 product) and of the latter are:
Rosenberg’s proposals [Rosenberg, 1990] and DAIS [Russell et al., 1994].

The pay-off from investing in good persistent technology is only apparent when a
large application is used over a long period. Hence it is difficult to properly evaluate
this technology without further investment in building up a realistic load, writing a
reasonable volume of application software and conducting the evaluation over a long
period [Atkinson, 1992, Atkinson, et al., 1993]. Currently, none of the systems that
build up persistence from the operating system kernel have received enough
developmental effort to enable them to support such experimentation.

4.2 Implementing Persistence by Reachability

Support systems conforming to the last two architectures and many that are
essentially extended systems implement:

• persistence by reachability;
• automated data movement; and
• re-use of space.

The basic algorithms for these three crucial tasks, which are applicable in all three
architectures, are now presented. This is followed by a brief introduction to some of
the ways in which the algorithms may be refined.

4.2.1 Incremental Loading and Swizzling

The persistent system will provide some means of naming and loading persistent
roots — in the kernel one root will suffice, since other naming schemes and multiple
roots can be implemented with persistent data structures and code accessed by this
primitive root. The persistent root will contain references to other objects which will
themselves contain references to further objects. Data movement into the active store
(that against which code operates) is initiated when such references are de-referenced
in an attempt to use the object to which they refer. These objects on which transfers
are based may not correspond exactly to those which the programmers think about, as
compilers may introduce mappings.

When a value is accessed, the support system arranges that it is loaded before
computation is allowed to continue. Typically, there are two forms of address that
refer to a value:
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• a Persistent IDentifier (PID) that has long-term reliability — e.g. it is some
logical identification of the object, interpreted through a mapping or index, or
(with less flexibility and permanence) it is a machine, device and disk
address; and

• a Local Address (LA) which is the form used by the executing process on the
current hardware — e.g. a virtual memory address.

Different stores utilise different means of discriminating these two forms and some
operate with only one performing both roles, these issues are discussed later. It is
desirable to arrange that if a LA is encountered, the evaluation is not interrupted.
However, if a PID is de-referenced (an attempt is made to use the value to which it
refers), then the action in Table 5 is taken.

Table 5: Action Taken on De-referencing a PID

1 discover whether the referend is already resident
2 if it is (false object-fault), overwrite the PID with the corresponding LA

(swizzle [Moss, 1990, Wilson, 1990]), so that future de-references occur at
normal computational speed

3 if it isn’t (object-fault), read in the object, and keep a record of this PID to
LA mapping to support steps 1 and 2, and then swizzle, i.e. overwrite the
PID with the LA.

This algorithm will arrange that any long-lived data required by an application is
automatically made available to that program. Note that in step 3 of the above
algorithm, it is necessary to record the relationship between a PID and its current
local address in this process. This information is stored in a two-way accessible table,
called here the PIDLAM (PID to Local Address Map). It is called the “Resident
Object Table” in [Kemper & Kossmann, 1995]. It has to be accessed by PID in step 1
of the above algorithm to preserve sharing of substructures and by LA during de-
swizzling (see 4.2.2).
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Figure 12: Lazy Incremental Loading Algorithm
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Figure 12 is used to illustrate this automatic incremental loading process. It shows an
intermediate store state during the execution of a persistent program. The boxes
represent objects which may be in the long-term or short-term stores or in both. The
lines denote references with the hook at the end corresponding to the referend. Thus,
if we consider them attached to the object that holds them, the persistent objects are
all those obtained by starting at each persistent object and pulling on all the hooks that
emanate from those objects.

The relevant steps in the program execution that leads to the store state shown in
Figure 12 are given in Table 6.

Table 6: Steps in Incrementally Loading Data in Figure 12

0 Obtain persistent root E as E'
1 Attempt to de-reference PID to D — object-fault
2 Copy D as D' into active store and Swizzle: replace PID to D with LA of D'
3 Attempt to de-reference PID in D' to C — object-fault
4 Copy C as C' into active store and Swizzle: replace PID to C with LA of C'
5 Obtain persistent root A as A'
6 Attempt to de-reference PID in A' to B — object-fault
7 Copy B as B' into the active store and Swizzle: PID to B with LA of B'
8 Attempt to de-reference PID in B' to C — false object-fault
9 Find PID of C from 4 and Swizzle: PID to C with LA of C'

4.2.2 Promotion to Persistence on Checkpoint

Data flow from the active store to the long-term store also has to be automated.
Application programs from time to time will request checkpoint, often as part of
commit. At this point any objects that have been brought from long-term store and
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then changed must be written back. In addition, new objects that are now reachable
from the persistent root(s) must now be written to the long-term store, after they have
been allocated space and a PID. As each object is written out, all of the LAs in the
object must be de-swizzled, so that they now refer to PIDs. PIDs have to be allocated
in advance of the transfers to correctly implement common sub-structures and cycles.

It should be noted that an object can only be promoted to longevity if some already
persistent object has been updated to hold a reference to it, or if it is referenced by an
object that itself is being promoted to longevity. The promotion algorithm is shown as
Table 7.

Table 7: Algorithm to Promote Objects to Longevity

1 Mutated := {all the mutated persistent objects}

2 Promotions := {every new object directly reachable from Mutated}

3 Promotions := Promotions union {every new object directly reachable from 
Promotions}

4 repeat step 3 until no more additions

5 allocate PIDs for all objects in Promotions

6 transfer all members of Mutated union Promotions to long-term storage

The effect of this algorithm is illustrated with the aid of Figure 13.

Figure 13: Part of the Active Store after Mutation
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Figure 13 shows part of the active store after a computation has continued from the
incremental loading shown in Figure 12. It has mutated D' and C', and has created
three new (transient) objects J, K and L. It has overwritten the reference in D' to G
with a reference to J which contains a reference to L which contains a reference to B'.
The object K references L but is not referenced by any persistent or newly formed
object.

The steps in the checkpoint on the store in this state are shown in Table 8.



35

Table 8: Checkpoint of Store in Figure 13

1 Discover Mutated = { D', C' }

2 Set Promotions = { J }

3 Set Promotions = { J, L }

4 Allocate PIDs for J and L

5 De-swizzle pointers in D', C', J and L

6 Copy D', C', J and L to long-term storage

7 If processing is to continue, swizzle pointers in D', C', J and L

Carrying out these steps both efficiently and precisely without unduly slowing the
execution before the checkpoint requires careful engineering (see below). The
copying in step 6 is usually performed in such a way that recovery is possible after a
machine failure during checkpoint. For example, logs are written [Agrawal & De
Witt, 1985, Moss & Sinofsky, 1988, Ruffin, 1992, Scheuerl et al., 1995] or shadow
pages are used [Brown, 1987, Munro, et al., 1994].

4.2.3 Garbage Collection and Object Termination

Persistence based on reachability implies that when an object becomes unreachable it
is no longer useful — no future program execution can access it. However, it will still
occupy space in the long-term store and an opportunity exists to reclaim that space.
An obvious method, also based on reachability, is garbage collection.

Since the long-term store is usually held on devices such as disk and may grow very
large, these garbage collections may be infrequent and incremental. The implementor
trades space and perhaps density of useful data against garbage collection costs.

Garbage collection is traditionally used solely to recover space [Wilson, 1992].
Garbage collections of the active store interact with the preceding algorithms in
several important ways.

• When they fail to recover sufficient space by normal methods, they can
release space by discarding unmodified objects that were previously loaded —
this requires that pointers that once referenced these discarded objects are de-
swizzled (a major issue in [Kemper and Kossmann, 1995]).

• When, even after discards of unmodified objects, there is still insufficient
space, they can copy out modified objects or prematurely (and possibly
falsely) promote new objects (steps 4 to 7 of the checkpoint algorithm must be
applied) — this increases the complexity of the subsequent checkpoint
algorithms and is best avoided if at all possible.

• They can incrementally copy data to log files for recovery purposes
[Kolodner, 1987, Kolodner et al., 1989].

These additional operations may also be invoked during garbage collection because
the density of objects still in use has fallen to a level where thrashing has set in
[Fenichel & Yochelson, 1969]. Alternatively, dynamic clustering may be used to
reduce thrashing [Benzaken et al., 1991].

4.2.4 Engineering Issues

Implementing the preceding algorithms with the support of conventional operating
systems and hardware presents several challenges for store designers. A few of the
choices are illustrated here.

The long-term form of the data may be exactly the same as that required for the active
store. This avoids the costs and complexity of translation, swizzling and maintaining
a PIDLAM. It has the disadvantage of not scaling very well and of not guaranteeing
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that the data (which normally includes code) can be moved to a new platform as
hardware architectures change [Atkinson, et al., 1993].

If the same representation prevails, then for small, single-user systems a total copy
into virtual memory will be fast and adequate. For larger and shared systems of this
kind, memory mapping techniques can be used [Koch et al., 1990, Rosenberg et al.,
1990, Brown, et al., 1992, Singhal, et al., 1992, Munro, et al., 1994].

Object-faults (and false object-faults) can be detected by using the address translation
unit’s (ATU) protection or by in-line code before each de-reference. The former
normally has the overhead of several transitions across the operating system boundary
and the later has costs even after the objects have been loaded.

Data movement can be on parts of objects, on objects or on physical divisions (e.g.
pages or groups of disk blocks) that match the hardware. The first has the advantage
of accommodating very large objects, but has the disadvantage of increasing the
complexity of object-fault detection (e.g. the next part of an image may need loading
as a raster operation traverses it). The first and second have the advantage of not
cluttering the working set with co-resident objects, but they require intermediate
buffering and hence additional copying (Kemper and Kossmann show this has
performance benefits [Kemper and Kossmann, 1995]). These two methods avoid
phantom locking and checkpointing of co-resident objects, but complicate the
implementation of resilience. The third method has the advantage that the actual
transfer exploits the disk and channel well, and may even gain from optimisations
made to support paging. It suffers because it brings into active memory co-resident
objects that are not used. This detrimental effect will increase as a PAS ages unless a
good dynamic clustering algorithm is operational.

Swizzling can be carried out at various times. Swizzling every time a PID is
dereferenced has the advantage of avoiding the need to overwrite and later de-
swizzle, but costs a look-up in the PIDLAM at every de-reference. This might be
feasible if there was associative hardware supporting the PIDLAM [Russell, 1994].

Swizzling only on the first de-reference of a PID has the advantage of speed where
algorithms repeatedly traverse the objects once they are loaded, but it involves
updates to objects which may interfere with the use of hardware protection to
discover the Mutated set or to record references to more recent generations (in
generational garbage collectors [Cook et al., 1993]).

As an object is loaded all its PIDs can be swizzled. Wilson uses memory mapping to
do this a whole page at a time [Wilson, 1990]. Wilson’s scheme has the advantage of
avoiding the costs of detecting any false object-faults, and it avoids system initiated
writes to objects. It has the cost of allocating virtual address space more rapidly and
of restricting the variation between PID and LA to the page number part of the
address, thus preventing objects from expanding as they are translated.

Translation of objects permits much longer longevity — they can be held in a
canonical form that does not derive from a particular architecture. This translation
may be combined with decompression (on load) and compression on transfer to
longer-term storage. This can be performed on a page or on an object at a time.

Discovering the Mutated set at checkpoint may be achieved by generating code
during compilation that will insert objects into the Mutated set or by using the ATU’s
protection system to detect an update dynamically. The former has the disadvantage
that it incurs execution penalties on subsequent updates of the object (unless the
compiler did some clever optimisation) as in [Moss & Hosking, 1994]. The latter has
the disadvantage that it is only approximate (there are likely to be other objects in the
same protected region) and interacts with other uses of the ATU’s protection and the
system initiated updates.

The above list is not exhaustive. Other major issues include whether to allow objects
to span pages, whether to cluster and prefetch, where to allocate space and PIDs on
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promotion, whether to use shadow paging or logging, should a PID encode a store
location, etc. Designing a good persistent object store is still a considerable challenge,
as the interaction of this plethora of choices is only understood where it has been
sampled.

4.3 Type Safe Linguistic Reflection

Type safe linguistic reflection is defined in [Stemple, et al., 1992b] as the ability of a
running program to generate new program fragments and to integrate these into its
own execution. This is the basis for system evolution which itself is necessary to
achieve adequate PAS longevity. For safety reasons only strongly typed reflection
will be considered.

Linguistic reflection has the goal of allowing a program’s behaviour to adjust
dynamically in order to provide flexibility and high productivity. It thus extends the
data modelling of the type system and it should not be surprising therefore to find a
tension between type systems and reflection. The possibility that a program may
significantly change its behaviour decreases the opportunity for static type checking
and thus compromises some of the benefits of typing. Thus the reflective facilities are
controlled in a manner designed to retain as much static type checking as possible
without the control being so severe as to remove all the benefits.

The two techniques for type-safe linguistic reflection that have evolved are: compile-
time linguistic reflection and run-time linguistic reflection. Compile-time linguistic
reflection [Stemple et al., 1990, Stemple et al., 1992a] allows the user to define
generators which produce representations of program fragments. The generators are
executed as part of the compilation process. Their results are then viewed as program
fragments, type checked and made part of the program being compiled.

Run-time linguistic reflection [Dearle and Brown, 1988, Kirby, 1992a, Kirby et al.,
1994] is concerned with the construction and binding of new components with
existing components in an environment. The technique involves the use of a compiler
that can be called dynamically to compile newly generated program fragments, and a
linking mechanism to bind these new program fragments into the running program.
Type checking occurs in both compilation and binding.

The benefits of type safe linguistic reflection in database and persistent programming
consist mainly of two capabilities. The first is the ability to implement highly abstract
specifications, such as those used in query languages and data models, within a
strongly typed programming language. The second is the ability to accommodate
some of the continual changes in data-intensive applications without resorting to ad
hoc restructuring methods. Both capabilities involve reflective access to the types of a
system that is changing itself and both approaches avoid introducing extra levels of
interpretation.

Both compile-time and run-time reflection have been provided in previous languages.
Compile-time reflection appears in the macro facilities of Scheme [Rees & Clinger,
1986] and POP-2 [Burstall et al., 1971]. Run-time reflection appears in the eval
functions of Lisp [McCarthy, et al., 1962] and SNOBOL4 [Griswold et al., 1971]  and
the popval function of POP-2 [Burstall, et al., 1971].

Type safe linguistic reflection is different for the following reasons.

• More information is available to the reflective computation, in the form of
systematically acquired types. This information can be used to automatically
adjust to implementation details and system evolution. Linguistic reflection
without strong typing has little systematic information available about the
structures involved in computation.

• The type safety of all newly generated program fragments is checked before
they are allowed to be executed. Such type discipline is highly advantageous
in a database programming environment in which the integrity of long-lived
data must be maintained.
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It is somewhat ironic that strong typing, which makes it difficult to integrate
reflection with typed programming languages, is what makes linguistic reflection
effective as an amplifier of productivity.

Type safe linguistic reflection has been used to attain high levels of genericity
[Stemple, et al., 1990, Sheard, 1991] and accommodate changes in systems [Dearle
and Brown, 1988, Dearle et al., 1990]; two examples of these are given below. It has
also been used to implement data models [Cooper, 1990a, Cooper, 1990b, Cooper &
Qin, 1992], optimise implementations [Cooper et al., 1987, Fegaras & Stemple, 1991,
Cutts et al., 1994] and validate specifications [Fegaras et al., 1992, Stemple, et al.,
1992a]. The importance of the technique is that it provides a uniform mechanism for
software production and evolution. A formal description of linguistic reflection is
given in [Stemple, et al., 1992b], here we concentrate on the uses.

4.3.1 Uses of Type Safe Linguistic Reflection

Two examples of type safe linguistic reflection are presented, in order to show how
the reflection mechanisms appear at the level of a programming language. The
examples are abstraction over types and accommodating evolution in strongly typed
persistent systems.

4.3.1.1 Abstraction Over Types

As indicated earlier a generic natural join function provides an example of abstraction
over types that is beyond the capabilities of most polymorphic type systems. The
details of the input types, particularly the names of the tuple components,
significantly affect the algorithm and the output type of the function, determining:

• the result type;
• the code to test whether tuples from both input relations match on the

overlapping fields; and
• the code to build a relation having tuples with the aggregation of fields from

both input relations but with only one copy of the overlapping fields.
The type of a polymorphic natural join function would be

∀ a.∀ b.∀ c.(set [a] × set [b] → set [c])

That is the function takes as parameters two sets and returns a third set as a result.
This function cannot be written as a statically-typed polymorphic procedure since it
requires knowledge of the type structure of a, b and c and they are explicitly
abstracted over here. However the type structure is known for any particular call.
Linguistic reflection allows a metafunction to be written, the generic natural join, that
can interrogate the structure of the input types. At the point of use of the natural join,
the metafunction is called by the compiler and given as input the type structure. This
compile-time invocation will compute the specific natural join function for these
input types and a call to the specific natural join. All of this generated code is then fed
into the compiler for checking and code generation.

The writing of the metafunction involves computing over the representations of the
input types. Thus the language must provide facilities for this. Indeed it is this ability
that contrasts the reflective language with other polymorphic systems. When using
run-time reflection it is also possible to examine the size and representation of the
input sets and to generate an optimised algorithm.

4.3.1.2 Evolution in Strongly Typed Persistent Systems

Type safe linguistic reflection may also be used to accommodate evolution within
strongly typed persistent object stores. A characteristic of such stores is that the set of
types of existing values in the store evolves independently from any one program.
This means that when a program is written or generated some of the values that it
may have to manipulate may not yet exist, and their types may not yet be known for
inclusion in the program text.
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An example of such a program is a persistent object store browser [Dearle and
Brown, 1988] which displays a graphical representation of any value presented to it.
The browser may encounter values in the persistent store for which it does not have a
static type description. This may occur, for example, for values that are added to the
store after the time of definition of the browser program. For the program to be able
to denote such values, they must belong to an infinite union type, such as type any
described earlier.

However, the program cannot contain static type assertions for all the types that may
be encountered as their number is unbounded. There are two possibilities for the
construction of such a program: it may either be written in a lower-level technology
using interpretation [Kirby & Dearle, 1990] or else be written using linguistic
reflection.

To allow a reflective solution the program must be able to discover dynamically the
specific type of a value of the union type. Such functionality may be provided in a
strongly typed language, without compromising type security, by defining
representations of types within the value space of the language.

Figure 14 illustrates the use of linguistic reflection to define programs that operate
over values whose type is not known in advance. The generic browser takes a
specification of the object type and generates a program to browse over it. It may also
store that program in the knowledge base for future use should it encounter an object
of the same type again. These programs potentially perform different operations
according to the type of their operands but without endangering the type security of
the system or invoking an extra layer of interpretation. The requirement for such
programs is typical of an evolving system where new values and types must be
incrementally created without the necessity to re-define or re-compile existing
programs.

Figure 14: A Persistent Store Browser
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5 Achievements
The progress of persistence research can be charted by examining the proceedings of
the regular workshops held by its practitioners. There are two series of international
workshops: the POS — on persistent object systems — and the DBPL — on database
programming languages — and several ad hoc events such as persistence tracks at
HICSS — the Hawaii International Conference on System Sciences. These are
tabulated in Table 9 for those who wish to scan this literature.
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Table 9: Major International Meetings of Persistence Researchers

Date Venue Organisers
POS 1 Aug. 1985 Appin, Scotland Atkinson, Buneman and Morrison

[Atkinson, et al., 1988b]

POS 2 Aug. 1987 Appin, Scotland Atkinson and Morrison
[Atkinson et al., 1987]

DBPL 1 Sept. 1987 Roscoff, France Bancilhon and Buneman
[Bancilhon & Buneman, 1990]

HICSS 22 Jan. 1989 Hawaii, USA Atkinson and Morrison
[Atkinson & Morrison, 1989]

POS 3 Jan. 1989 Newcastle, Australia Koch and Rosenberg
[Rosenberg and Koch 1989]

DBPL 2 June 1989 Salishan, Oregon, USA Hull, Morrison and Stemple
[Hull, et al. 1989]

Security May 1990 Bremen, Germany Rosenberg and Keedy
[Rosenberg & Keedy, 1990]

POS 4 Sept. 1990 Martha’s Vineyard, USA Dearle, Mitchell and Zdonik
[Dearle et al., 1990]

DBPL 3 Aug. 1991 Nafplion, Greece Kanellakis and Schmidt
[Kanellakis & Schmidt, 1991]

HICSS 25 Jan. 1992 Hawaii, USA Morrison and Atkinson
[Morrison & Atkinson, 1992]

POS 5 Sept. 1992 San Miniato (Pisa), Italy Albano and Morrison
[Albano & Morrison, 1992]

DBPL 4 Aug. - Sept. ‘93 Manhattan, NY, USA Beeri, Ohori and Shasha
[Beeri, et al. 1993]

POS 6 Sept. 1994 Tarascon, France Atkinson, Benzaken and Maier
[Atkinson et al., 1995]

HICSS 28 Jan. 1995 Hawaii, USA Rosenberg and Dearle
[Rosenberg & Dearle, 1995]

From the contents of the proceedings cited in Table 9 it is apparent that a large
community of researchers are addressing persistence. This section reports some of
their achievements. The persistent languages that have been developed are displayed
in Table 10.
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Table 15: Milestones in Persistent and Database Programming Languages

1977 Pascal/R [Schmidt, 1977]

1980 SmallTalk [Goldberg & Robson, 1983], PS-algol [Atkinson, et al., 1983], Plain
[Wasserman et al., 1981], Taxis [Mylopoulos et al., 1980]

1981 Daplex [Shipman, 1981], Adaplex [Smith et al., 1981, Chan et al., 1987]

1983 Galileo [Albano, et al., 1985], Modula/R [Koch et al., 1983], Persistent procedures
[Atkinson and Morrison, 1985]

1984 Amber [Cardelli, 1986], Persistent Prolog [Bocca & Bailey, 1987]

1985 CPS-algol experiment [Krablin, 1987b], Poly [Matthews, 1982], OPAL [ServioLogic
Ltd, 1987]

1986 DBPL [Matthes & Schmidt, 1989], RAPP [Hughes and Connolly, 1990]

1987 Quest [Cardelli, 1989], E [Richardson and Carey, 1989], Χ [Hurst & Sajeev, 1990]

1988 DPS-algol [Wai, 1989], Napier88 [Morrison, et al., 1989]

1991 P-Quest [Matthes et al., 1992], Staple [Davie & McNally, 1990], P-Galileo [Brown,
et al., 1992], O2 [Deux, 1990]

1992 Hyper-programming [Kirby, et al., 1992], Commercial Persistent C++

1993 Tycoon [Matthes & Müßig, 1993], Fibonacci [Albano, et al., 1995]

1994 Napier88 version 2 [Morrison, et al., 1994]

A few aspects of the use of these languages are presented below.

5.1 Incremental Construction

Because PASs are long-lived their construction usually takes place incrementally. As
each requirement is recognised or as resources become available, new suites of
software and collections of data are added to the operational system. Databases have
supported well the incremental addition of programs to the operational PAS via their
dynamic binding to schemata or views. They have made less provision for the
incremental growth of schemata taking the unrealistic view that the entire schema can
be designed at the outset and that only minor modifications need be made using a
schema editor. In reality, use of the schema editor is frequent, but there is little
support for change in data models.

The persistence technology so far developed makes adequate provision for the
incremental addition of collections of programs by providing dynamic binding
constructs [Atkinson et al., 1988a]. This is widely exploited in the prevalent persistent
programming style [Dearle, 1988, Connor, 1990, Cutts, 1992, Sjøberg, 1993].
Incremental addition and replacement of program parts tends to use smaller
incremental units than are used with the traditional database technology. This is
because the retention of types and structure and the provision of persistent bindings
reduces the complexity and cost of using smaller units.

Persistence technology takes a different view over the construction of schema. It is
normal to consider the design of types at the same time as the programs that will use
them. The technology itself therefore, has no bias towards programs either being more
or less incremental than types. This freedom from bias appears to have pay-offs. The
outline design of the data can be completed early and stored as a set of type
definitions, but much of the detail can be postponed using the dynamic checking
points. Then, as programs are required, they and their associated detailed types are
designed together. This has the advantage of requiring less perturbation of the
existing types and of allowing designers and programmers to concentrate on a
particular subsystem’s types. To facilitate this, persistent systems have developed
mechanisms for collecting types together to record and hopefully preserve this
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modularity, for example, Quest has modules [Cardelli, 1989] and Napier88
declaration sets [Kirby, et al., 1994].

5.2 Hyper-programming

As mentioned earlier, the presence of a persistent environment in which programs are
composed, compiled, linked and run extends the scoping of bindings to persistent
values. This means that objects accessed by a program may already be available at the
time that the program is composed. Where the source programs are themselves
values, static R and L-value bindings may be made in the program source to persistent
values. Thus these bindings, called links in this case, can be included in the program
instead of the more traditional textual descriptions of where to find persistent values.
The source text of the program now contains some text and some links to persistent
values and as such it is a non-flat representation of the program. By analogy with
hyper-text, a program containing both text and links to persistent values is called a
hyper-program [Kirby, et al., 1992].

Figure 16, taken from [Kirby, et al., 1992], shows an example of a hyper-program.
The links embedded in it are represented by non-textual tokens to allow them to be
distinguished from the surrounding text. The first link is to a first-class procedure
value writeString which writes a prompt to the user. The program then calls another
procedure readString to read in a name, and then finds an address corresponding to
that name. This is done by calling a procedure lookup to look up the address in a table
data structure linked into the hyper-program. The address is then written out. Note
that code objects (readString, writeString and lookup) are denoted using exactly the
same mechanism as data objects (the table). Note also that the object names used in
this description have been associated with the objects for clarity only, and are not part
of the semantics of the hyper-program.

Figure 16 : A Hyper-program
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Figure 17, again taken from [Kirby, et al., 1992], shows an example of the user
interface which might be presented to the programmer by a hyper-program editing
tool. The editor contains embedded light-buttons representing the hyper-program
links; when a button is pressed the corresponding object is displayed in a browser
window. The browser is also used to select persistent objects for linking into hyper-
programs under construction.
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Figure 17 : User Interface to a Hyper-program Editor

The benefits of hyper-programming are discussed in [Farkas et al., 1992, Kirby,
1992b, Kirby, et al., 1992] and include:

• being able to perform program checking early — access path checking and
type checking for linked components may be performed during program
construction;

• being able to enforce associations from executable programs to source
programs — links between source and compiled versions may be used;

• support for source representations of all procedure closures—free variables in
closures may be represented by links, thus allowing hyper-programs to be
used for both source and run-time representations of programs; and

• increased program succinctness—access path information, specifying how a
component is located in the environment, may be elided.

5.3 Persistent Workshop and Methodologies

Persistent programmers need virtually all the tools in a programming environment
that are required by other programmers (editors, compilers, build-managers, version-
managers, etc.). There are, however, some important differences in their requirements
and by exploiting persistent technology to provide this environment, their needs can
be met in novel ways.

An experiment is underway in building such an environment called the persistent
workshop. The experiment has three purposes:

• to demonstrate the ease of construction and new functionality afforded by
developing the workshop using orthogonal persistence;

• to provide a good programming environment for persistent programmers; and
• to set up an example of an operational PAS so that its usage and behaviour

may be studied.
All the source and operational code and any design material are held in the persistent
store. All the tools communicate via the persistent store. Dynamically typed interfaces
are used where independent tool evolution requires flexibility. The workshop
provides a set of tools and an extensive library of components [Atkinson, et al., 1993,
Kirby, et al., 1994]. Examples of subtly changed requirements on these tools arising
from persistence include:

• tools that provide a means of configuring a workbench, establishing a style of
working and a particular view of the persistent store — these enable
programmers to limit the complexity of data and choices open to them to
those relevant to their task [Waite, 1995];
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• tools to examine the relationship between the persistent store and programs —
these enable programmers to more quickly appreciate the existing structures
and to verify the results of their work [Lavery, 1995a, Lavery, 1995b];

• tools to organise and build libraries of program parts and data, and to search
these libraries using information retrieval techniques — which are intended to
improve component re-use both within a PAS and among PASs [Brown,
1993];

• tools to manage the large number of incremental units, including providing
aids for building and installing subsystems and to verify that the parts comply
with a methodology [Sjøberg et al., 1995] and

• tools to assist with change management [Sjøberg, 1991].
These tools already exploit properties of persistence. For example, they leave data
structures in the persistent store to accelerate subsequent operations. As another
example, the build manager, the store analysers, the methodology checker and the
change management aids all rely on being able to scan the store and on knowing that,
unlike many systems, all external information, vital for its construction, is explicitly
connected to the PAS’s representation.

Two methodologies are supported in the workshop at present. One is closely allied to
traditional database practice. In that, the PAS construction proceeds via the design of
a system in some conventional data model [Cooper & Qin, 1994]. The types and
programs are then automatically derived. This works reasonably well on a small scale,
but will not yet scale up as incremental construction via automated generation is still
a research issue. The other uses a methodology called SPASM [Sjøberg, et al., 1995]
and sets out to delimit dependencies between incremental components accurately.
This involves the choice of particular ways of using the persistent technology but has
the advantage that more of the build and change processes can be automated.

5.4 Persistent Software Engineering

The concept of the hyper-program, containing links to persistent objects and made
possible by the provision of strong typing and referential integrity has a number of
applications in software engineering environments. Three examples of such usage are:
the Napier88 system, the Flex system [Currie, 1985, Stanley, 1986, Stanley and
Drummond, 1988] and the Vesta Configuration Management System [Chiu & Levin,
1993, Levin & McJones, 1993].

The Napier88 system contains a fully functional hyper-programming system and in
addition contains prototype versions of the following further uses of hyper-links in
the software engineering context [Morrison, et al., 1995]:

• simplification of the programming model via hyper-code;
• version control;
• configuration management; and
• documentation.

One of the advantages of hyper-programming is the ability to use the hyper-program
representation for both source and run-time representations of programs. At program
composition time, the programmer may construct a hyper-program using a tool which
is a combination of an editor and a browser. At run-time the hyper-program
representation may also be used to represent an active computation. This is possible
due to the non-flat nature of that representation. Free values, that is, non-local
references to objects and procedures, may be represented as links and the inherent
sharing of values and locations referred to by links is preserved. This is not possible
with textual representations of programs since the sharing is lost.

The hyper-code abstraction allows a single program representation, the hyper-
program, to be presented to the programmer at all stages of the software development
process. In constructing a program, the programmer writes hyper-code. During
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execution, during debugging, when a run time error occurs or when browsing existing
programs, the programmer is presented with, and only sees, the hyper-code
representation. Thus the programmer need never know about those entities that the
system may support for reasons of efficiency, such as object code, executable code,
compilers and linkers. These are maintained and used by the underlying system but
are merely artefacts of how the program is stored and executed, and as such are
completely hidden from the programmer. Only one set of tools is required for
manipulating the hyper-code thereby simplifying the user interface and the
complexity of the system implementation. This permits concentration on the inherent
complexity of the application rather than on that of the support system.

Software environments are made safer but less flexible whenever a name binding can
be replaced by a hyper-link. The replacement of name bindings found in traditional
software systems by links and reverse links ensures that a given software component
and the objects to which it links remain accessible from one another, as a
consequence of persistence defined by reachability. Thus in version control,
configuration management and documentation systems, the software items can refer
directly to the components to which they relate. Program and documentation may be
directly linked together with hyper-links, a particular configuration may have a hyper-
link to a configuration script and a version may have direct links to related versions.

By using similar methods, the same advantages accrue to other activities supported by
software environments which are not discussed here, such as debugging, profiling and
optimisation [Cutts, 1992].

The Flex system [Currie, 1985, Stanley, 1986, Stanley and Drummond, 1988]
consists of a programming language supported by a persistent file store that contains
structured data. Since the Flex language is a complete version of algol-68 it has all the
ingredients required for the exploitation of strongly typed persistent linkage, namely:
persistent links (capabilities in this case), higher-order functions and strong typing.
Flex also has the concept of hyper-links, called cartouches after their user interface
representation. Source code may contain cartouches which point to persistent objects,
in this case typed files. The notion of pairing source code with executable code so that
they can only be updated in lock-step is also present in Flex.

The Vesta configuration management system [Chiu and Levin, 1993, Levin and
McJones, 1993] is based on a file system that does not allow overwriting in place.
Since the system is Unix based, this means that there is no write permission on any
file and that inodes are unique. By this means, configurations are guaranteed to refer
to the same file every time since the file system ensures the integrity of the inode. To
support this, the implementors re-wrote the Unix file system to remove update in
place and thereby support configuration management by persistent links with
referential integrity.

6 Future Directions
An overview of the current state of persistent system research has been presented.
There are commercial applications [Greenwood et al., 1992] and many experimental
ones [Grossman et al., 1994, Reinwald, et al., 1994]. These indicate the promise of
orthogonally persistent object systems and that the technology is already usable.
However, much remains to be done to achieve the full potential of persistence and to
establish this approach as one which can be safely adopted by industry. These further
avenues of research and development are presented under three headings:

• Extensions of Persistence. Developments that will make the facilities
integrated within orthogonally persistent systems more complete;

• Exploitation of Persistence. Persistent methodologies, evaluation and use of
the existing persistent technology; and

• Delivering Persistence. Continuing improvement to the engineering of
persistent support systems.
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6.1 Extension of Persistence

Extensions of persistence fall into two categories: those which are necessary to
facilitate PAS design, construction, maintenance and operation already well
established in the database context and those which meet new needs currently unmet
by any technology.

To meet the first requirement, which is here called “database completeness” the
facilities for data modelling, bulk types, transactions, distribution, autonomy and
evolution all deserve further attention. The second requirement overlaps with the first,
in that better data models informed by research into types, more varieties of
transactions, complex transactions that integrate well with recovery, etc. are required
in both contexts. New extensions in the second category include seeking the
conceptual simplicity of persistence in the combination of programming languages
with other sub-systems, such as: user-interface management systems, operating
systems and communication systems.

6.1.1 Conceptual Modelling and Generic Interfaces

The use of types to describe data was illustrated earlier in the paper. Some would
argue, however, that these type notations are insufficiently descriptive or fail to
exploit the body of knowledge regarding database design using: E-R models,
relational models, semantic models, object modelling, etc. There will always remain
application domains where a new group of data modelling constructs will be useful.
The utility of providing extensible libraries of type constructors requires validation in
a realistic PAS development environment.

New type constructors can be defined and named using the pre-existing or pre-defined
constructors. Cooper has extensively explored the process of mapping traditional data
models to types in several different languages and has used reflection to build aids to
performing this mapping automatically [Cooper, 1990a, Cooper and Qin, 1992,
Cooper and Qin, 1994]. His systems automatically generate all the types that match
some data model and both a text-based and diagram-based schema editor. They also
generate the usual interface components (e.g. forms generators, etc.), skeleton
application programs and a relevant library of persistent components. These should
aid the transfer of existing system design skills to the new technology, migration of
designs, rapid prototyping and application construction. That expectation needs to be
validated via real applications.

Others have developed more specific mappings from models to persistent type
systems [Stemple, et al., 1992a, Sheard & Hook, 1994, Wetzel, 1994, Albano, et al.,
1995]. It is likely that this approach of mapping to type systems using reflection will
prove widely applicable and will relieve the pressure on type systems to develop to
the levels of complexity where they are difficult to understand and expensive to
implement.

It remains to be seen whether the code and constructs to accommodate changes
specified in terms of such higher-level models can be automatically generated and
applied. If this is achieved then the provision of high levels of data independence can
be automated for a wide range of modelling styles [Atkinson, et al., 1993].

It is probable that there are considerable benefits to be gained by generating code
from many high-level notations into a common orthogonally persistent system. The
composite would have consistent behaviour under stress (e.g. recovery). It is expected
that the use of reflective generation will allow such a persistent target language to be
simplified. The authors do not know of any exploration of this potential.

6.1.2 Bulk Types, Query Languages and Optimisation

An important component of data models is bulk types [Atkinson and Buneman, 1987,
Atkinson et al., 1991]. Their value is three-fold:

• they abstract over the size of collections they represent;
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• they allow the description of important regularities in the data; and
• they permit exploitation of the regularity, e.g. in query notations and in

optimisation of operations and data movement.
Recent work shows that certain classes of bulk types can be treated consistently
[Ohori, et al., 1989, Trinder & Wadler, 1989, Breazu-Tannen et al., 1991, Buneman
et al., 1994]. It has also been shown that these bulk types can be implemented by
mapping them to the underlying system [Cooper and Qin, 1992, Ghelli et al., 1992,
Matthes, 1992]. If this target system has orthogonal persistence, then the bulk values
inherit that persistence. It has long been argued that during this mapping, the
traditional database optimisations can be accomplished [Cooper, et al., 1987]. These
optimisation techniques have yet to be convincingly demonstrated, though it still
seems a valid proposition. A potential problem is whether the “standard” primitives
are the appropriate target and whether their cost models are well enough developed to
support optimisation.

The issue of whether to build-in or add-on bulk types is often posed [Matthes and
Schmidt, 1991]. The resolution is unlikely to be simple. The addition of new bulk-
types will always be required as it is inconceivable that all potential requirements
could be anticipated. However, their definition in terms of primitives will remain a
skilled craft. In an attempt to de-skill it to some extent and to provide a more
appropriate target onto which all bulk-types could be mapped, a generic primitive has
been suggested [Atkinson, et al., 1991].

Languages continue to be designed with built-in bulk types, e.g. Fibonacci. One
reason for this is the issue of query notations. An alternative approach that is worth
further exploration, is to support appropriate notations by using reflection to generate
code from a suitable query notation.

Query languages and bulk types are intimately interrelated in the context of object
models and persistent type systems. Queries can only be effectively expressed over
collections of values or objects, which may be represented by bulk types. But aspects
of the query, e.g. selection expressions, may require expressions based on any
operation of any other type in the language, including other bulk types.

6.1.3 Transactions and Recovery

Typical persistent systems implement recovery well. Similarly typical database
systems implement recovery effectively in the context of serialisable transactions.
However, both show limitations when any more sophisticated form of transaction or
concurrency is required.

Research is needed to validate the primitives and constructors that will allow a range
of transaction types and concurrency models to be used with the same system
[Krablin, 1987b, Stemple and Morrison, 1992, Munro, et al., 1994]. Again, generation
and translation technology is anticipated to prevent the target becoming over-
complicated and to relieve programmers from mechanisable detail. It remains a
challenge to develop a recovery mechanism that has comprehensible behaviour in the
context of the full range of transactions.

6.1.4 Evolutionary Constructs and Mechanisms

Infinite union or dynamic types, such as type any, provide the basic requirements to
permit incremental changes to types. Reflection permits software to change its
environment and to accommodate change in ways that are otherwise impossible
without recourse to expensive interpretation of all operations. Exploration of how
these may be combined to support system evolution has already made some progress.

The mechanisms for changing program parts are well developed in orthogonally
persistent systems [Connor, 1990, Cutts, 1992, Sjøberg, 1993], as the executable code
values can be transactionally replaced via store updates [Connor, et al., 1994b]. There
are, however, many challenges that remain here.
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• To provide configuration and version managers: the challenges here are, in
part more complex than with traditional technology, since all types of data
and associated types and programs need to be consistently versioned or
configured. However, persistent technology may also come to our aid here. Its
provision for all types of data and its support for reliable references, as well as
its programming benefits combine to assist in the construction of these tools
[Morrison et al., 1994, Morrison, et al., 1995].

• To provide convenient notations for specifying change: One line of attack
is to schema edit the higher-level data and process models and to generate the
underlying changes. This runs into difficulties as programmers have often
provided extra information during these mappings which it is infeasible to
expect them to re-supply for each change. Another strategy is to support type
editing on the types defined in the orthogonally persistent system itself. This
pre-supposes that the mappings are comprehensible or it abandons generation
from high-level notations.

• To provide efficient propagation of change to the existing instances of
types: One strategy that works is to use a stable anchor for each type and
accommodate extensions. This is very similar to the method commonly used
for implementing object specialisations as fragments. However, it has costs of
indirection and type projections. It can, in principle, be automated apart from
generating new values and can be operated either in batch or incremental
mode [Clamen, 1994]. But the trade-offs and implementation have yet to be
explored in this context.

• To assist programmers in managing change: This requires recording or
discovering dependencies, performing impact analysis and identifying the
localities that need to be changed. Orthogonally persistent systems often hold
the source code within the same regime as the types, data and executable
code. It is therefore possible to search for these dependencies, and to present
them as demonstrated by [Sjøberg, 1993]. The development of change
management tools and methodologies for organising persistent object stores
so that handling the consequences of change is tractable, is still in its infancy.

• To provide appropriate change absorbers: View mechanisms in databases
act as change absorbers. That is, they are (usually manually) revised to
prevent the propagation of change and the explicit use of a view also
identifies very rapidly the cases where a program cannot possibly be affected
by a schema change. The parsimonious use of explicit bindings between
programs and stores, as typified by Napier88, also provides the rapid
elimination of the unaffected programs, and abstract data types can, in
principle, provide manually maintained change absorbers [Connor, et al.,
1990]. Automated change absorption should be possible in many cases, and
the relevant methods and mechanisms need development before they can be
used for large scale applications [Atkinson, et al., 1993].

It would be unwise for any enterprise to seriously commit to a technology purporting
to support persistence if they were not confident that it could adequately support
schema change. Where persistent systems have imprecise type knowledge (e.g. those
based on C and C++) it is doubtful whether there is enough information to safely
support change.

6.1.5 Distribution and Autonomy

Persistent systems abstract over the locality of data, that is, the programmer does not
need to be aware of whether it is on disk or in RAM. One approach to distributed
orthogonally persistent systems is to continue this location transparency [Wai, 1989,
Koch, et al., 1990, Gruber et al., 1992, Daynès and Gruber, 1994, Dearle, et al.,
1994]. This abstraction may eventually satisfy those that use distribution to achieve
reliability and performance through distributing computation and migrating
computation or data, but it depends on the discovery of adequate algorithms for
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automating data and program movement. Although this approach offers desirable
semantic simplicity it does not scale indefinitely, fails to accommodate change and
does not have a realistic approach to failures [Mira da Silva et al., 1995].

Others however wish to exploit their knowledge about processes and the network to
write efficient distributed persistent systems. This requires that the locality of data be
exposed [Liskov, 1988, Liskov et al., 1990, Munro, 1993, Mira da Silva, 1995]. As
yet, no tidy resolution of these conflicting requirements is in sight, and different
researchers are pursuing the two models. Obliq is an interesting compromise
[Cardelli, 1995] as it allows its programmers to indicate whether data or method
should migrate but does not explicitly specify locations.

Generally, providers of PASs have to provide high levels of availability. However,
distributed systems are prone to various forms of failure. It appears to be necessary to
give programmers access to failure information in order that they may program this
availability and inform users about the causes of failures and recovery expectations
since the appropriate action is highly application dependent. But, to provide this
information, the persistence abstraction has to be compromised. There is a challenge
here: how to present to programmers a model of distribution which includes
autonomy and failure but which does not leave them to handle all problems unaided.

An important reason for distribution is ownership. Different parts of the system
belong to independent organisations who retain the right to make changes as they see
fit. This autonomy is in fact independent of distribution and mechanisms that support
it also contribute to scalability and the accommodation of change [Atkinson, et al.,
1993].

The crucial input that persistence brings to the more general search for adequate
models of distribution and autonomy is a commitment to retaining simple,
combinable primitives, even if this raises additional implementation challenges.

6.1.6 Scalable Systems

Over the lifetime of a PAS it is common to experience both massive growth and
contraction, both of which may be difficult to predict. Often these variations in scale
affect only parts of the PAS; for example, meta-data, data, program and users all
accumulate around successful parts of a PAS while other parts may virtually atrophy.
Technology is required that adapts well across all possible sizes of component
collection. Although the range that can be efficiently accommodated is growing, and
specific solutions have been found for very large bodies of data [Grossman, et al.,
1994], there is always a need for better adaptive algorithms.

However, there are limits to the performance that can be expected from algorithms
that manage data on disk. For example, it is infeasible that disk garbage collection
algorithms and store re-organisation algorithms will ever work well with arbitrarily
large bodies of unconstrainably interconnected data. One suggested approach is to
introduce logical partitions that assist with scalability from design through to store
maintenance throughout the life-cycle. A complementary strategy is to utilise
replication and parallelism in distributed systems.

Persistence researchers have a particularly difficult time verifying that their
approaches to scale and evolution will actually work. It is very difficult to resource
experiments of the required scale, realism and duration.

6.1.7 Integration with other Domains

Much of the safety and simplicity of orthogonally persistent systems is achieved by
postulating a closed world, e.g. the well defined universe of discourse determined by
the type system, or the well defined extent of meta-data, data and program determined
by reachability. These totally closed worlds are unrealistic if transition is to be made
to persistence. Indeed, at present, most persistent systems have connections with the
external world (for example they can use UNIX files and UNIX shell commands).
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More sophisticated interfaces are obviously needed. It has already been remarked that
the work on mapping data models already supports some skill transfer. It could also
be used to automatically generate bulk load and unload programs that are still type
safe, for any of the data models. This could be extended to use the selective loading
developed by Abiteboul and Cluet [Abiteboul et al., 1993].

A data type complete RPC technology that uses the automatic generation of interfaces
via reflection has been developed [Mira da Silva, 1995] but there are still problems to
be overcome [Mira da Silva, et al., 1995]. This kind of RPC can be extended to
automatic translation at the interface and connection to processes in other languages.
Indeed, as long ago as 1982 Buneman demonstrated how type-safe interfaces could be
generated to external data collections [Buneman et al., 1982]. More recently, Matthes
has repeated that work in the context of a persistent system [Matthes, 1992]. Current
persistent type systems permit these external data repositories to be safely modelled
as abstract data types. Reflection allows these ADTs to be automatically generated
when they are needed avoiding the high set up costs and the large name spaces of
Buneman’s mechanism.

Similarly, standard interfaces to a persistent system, or with an external system can,
in principle, be generated. The extensive use of such generated, safe interfaces has not
yet been investigated. It is not expected to raise conceptual difficulties beyond those
raised by autonomy and distribution.

6.2 Exploiting Persistence

There are several ways in which orthogonally persistent system research may be
exploited. Methodologies and tools can be developed that enhance the utility of the
existing and envisaged systems. The concepts developed in one case can be re-applied
elsewhere; in particular, programming languages and OODBMS can be modified to
utilise the results.

6.2.1 Building and Observing Persistent Exemplars

The developers of orthogonally persistent systems believe that these systems are
ready for serious evaluation. Wider use is needed to test their utility and to provide
feedback to implementors so that the engineering issues can be better understood.
Many of the issues are only apparent when the usage involves large volumes of
program and data. It is crucial for effective evaluation and the generation of useful
characterisations of load that the usage of these systems is realistic, in the sense that
operational loads, data sets, programmers, users and changes are typical of real
applications. Therefore, experiments should have sufficient resources to explore the
critical issues at adequate scale and over sufficient elapsed time [Atkinson, 1992].

Good quality engineering depends on the systematic use of measurements. The
persistent community therefore need to develop system models and measurement
technology and practices so that PAS loads and the corresponding performance of
PASs can be accurately described and compared, and so that design trade-offs can be
based on reliable information [Atkinson et al., 1992, Scheuerl, et al., 1995].

6.2.2 Using Type-safe Linguistic Reflection

Reflection is especially significant in persistent systems as the program generation
costs can be amortised over more applications using persistent memoisation and
because it is the basis for system evolution. It has two important roles: it allows
adaptive behaviour to be programmed and it facilitates the writing of processors from
specialised notations to a target persistent language. Both techniques have already
been well demonstrated. Two lines of research are identifiable.
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• Research to improve the notations and libraries available for those writing
reflexive programs is already underway [Cooper & Kirby, 1994, Kirby, et al.,
1994]. Further elimination of the noise generated by embedding
representations of a program within programs is probably relatively easily
achieved. The more challenging task is to help the programmer think
simultaneously and accurately about two computations: the computation to
form the new code and the computation that code will eventually perform.
Part of that challenge may be to make more apparent the way the
environments of the two computations relate.

• Research is also needed to explore the full potential of reflection. Examples
that have been mentioned already are the construction of optimised strategies
for computations over bulk values based on observed properties of those
values and the simplification of target persistent languages given the ready
availability of reflection. The research into the provision of data models and
user interface generators is well underway. Research into the use of reflection
for generating safe external interfaces will continue. The use of reflection to
automate the management of the consequences of change is a new area ripe
for exploration. These are just a few of the possible applications of reflection
deserving exploration.

Given the advent of type-safe reflection and tools that assist programmers to use it,
there is likely to be an explosion of applications. While these may be important in
themselves, it is perhaps even more important to extract and identify effective
methodologies for reflection in order to enable other programmers to use it well.

6.2.3 Methodologies and Tools

Constructing application systems using orthogonal persistence allows new techniques
and new structures. For example, as structural information is neither lost nor obscured
if it is left in the store by one program to be used by another, there is a trend towards
partitioning applications into smaller units. As another example, libraries and
application programs can both be built incrementally in the persistent store using the
same transactional mechanisms as the application uses. This permits incremental
construction and replacement of small units of program and data, even while the
system is in use.

As experience is gained with writing PASs, methodologies appropriate for this new
technology are emerging [Dearle, 1989, Connor, 1990, Sjøberg, 1993]. These require
further development and need to be made accessible to application programmers in a
variety of persistent technologies including OODBMS through the provision of
tutorials, tools and exemplars.

Crucial to making these methodologies usable is the provision of an appropriate
persistent programming environment. Three experiments are underway in this
direction at present: the hyper-programming workbench [Connor et al., 1994a], the
PIPE programming environment [Dearle et al., 1992a] and the persistent workshop
[Sjøberg, et al., 1995]. The hyper-programming workbench is allowing experiments
with new construction techniques and with construction-time type-checking. The
persistent workshop already provides a set of tools to help programmers, including:

• specialised editors, automated binding resolution and compilers;
• library management tools, including aids to finding components based on

information retrieval techniques; and
• visualisers that are intended to help programmers understand the state of the

persistent store.
These tools will continue to develop as programming aids. The tools which derive
dependencies and automate re-compilations and re-executions that are under
development lie at the boundary between supporting individual programming and
supporting software engineering. If a methodology has been accurately followed,
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these tools can be more precise. Consequently, the facilities for verifying consistency
with a methodology are under development [Sjøberg et al., 1994a]. The methodology
has been chosen in the belief that it will facilitate the change processes that dominate
a PAS life-cycle. This has yet to be verified, and even the advice to the programmers
on the consequences of change is still in its infancy [Sjøberg et al., 1993, Sjøberg et
al., 1994b].

6.2.4 Influencing other Technologies

The results achieved by applying the persistent design principles can be applied in
other domains. Three such areas where persistence results could have a beneficial
influence are: programming languages, OODBMS and operating systems.

Existing commercial programming languages (C, C++, Ada, etc.) are commonly used
in building PASs. There is a natural desire to produce persistent versions. The
persistence results show that this can only be done safely if the types of each value are
known unambiguously. It is therefore probable that it will be worthwhile establishing
persistent dialects of these languages that have this safety property.

From time-to-time new programming languages emerge. The designers of those
languages will have omitted important and feasible facilities if they fail to include
orthogonal persistence.

Object-oriented databases are following a similar path to that followed by persistent
technology. The persistent experience can guide OODBMS design and
implementation. For example, basing persistence on reachability from identified
persistent roots and providing orthogonal persistence, now appears obvious and has
been adopted in O2 [Bancilhon et al., 1992]. OODBMS would also benefit from
properly incorporating the stored program (methods) into the persistent store, so that
consistent bindings between code and data can be maintained [Morrison, et al., 1995].

Operating systems already provide non-orthogonal (weakly-typed) persistence in the
form of file stores. It is apparent from the complexities of using their environments
(e.g. setenv in UNIX) that orthogonal persistence and better defined models of
binding to the persistent store would be a significant advantage. Some work is also
underway on persistent operating systems with a view to having such facilities and
supporting persistent programming generally in a much more efficient way. Certainly,
the requirements of orthogonal persistence place new demands on the low-level
mechanisms provided by operating systems. Persistence research should therefore
influence the way operating systems present their storage facilities and the facilities
they offer to system implementors. But persistence may also have another role to
play, as the harmonisation between databases and programming languages that has
been its main focus to date, could also be applied to the relationship between
programs and the operating systems they use. Why not have the same naming,
binding and typing rules when using operating system facilities (files, system calls) as
are used in the language? Of course, as was the case with databases, both would
ultimately evolve to meet their common requirements.

6.3 Delivering Persistence

Although reasonable scale and performance can be obtained from current
orthogonally persistent technology, there is a continuing search for better engineering.
The challenge is to develop persistent object stores that provide the full range of
facilities for collections of data from a few thousand bytes to terabytes.

Four models of providing persistence have been presented.

• Provision of a “library” of persistent facilities in a standard language:
This may be a useful pragmatic intermediate step but we believe it is unlikely
to lead to safe and comprehensible PAS building facilities.
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• Combination of a standard language and a separate store:  This is
commercially a most active line of attack at present as various OODBMS
vendors combine their product with various languages. In reality they often
modify the implementation of the language and adapt the provisions of their
store. This is therefore a valid intermediary process. It may be difficult for it
to give satisfactory results in the long term due to the lack of reliable type
information and inconsistent behaviour when the system is stressed. Certainly,
the potential of this approach to support PAS evolution should be investigated
before it becomes commercially critical.

• Integrated design and provision: This approach has been taken by the
persistent programming community. It is clearly a radical and therefore risky
departure from commercial practice. However, this technology is at least as
mature as relational technology was when it was first explored commercially.

• Re-building the whole support system: This approach starts with the
construction of a persistent operating system (or even hardware) and is
therefore a much longer term programme of research. Without its results,
persistent support systems will continue to conflict with operating systems at
a cost of performance and possibly of reliability. This avenue of research is
therefore important as it will develop technology which will be required as
persistent systems become prevalent.

Only by building and using operational quality systems taking one of the last two
forms above can the real potential of orthogonally persistent systems be verified
[Atkinson, 1992].

6.3.1 Efficient Object Stores

Three strategies are in wide use to provide persistent object stores:

• Constructing above standard operating systems using block transfers between
files. This has the advantage of portability.

• Constructing above standard operating systems using memory mapping
technology. This exploits paging hardware but has less locality and may suffer
from slow operating system interfaces and inappropriate protection
granularity. It can have the advantage of running programs written in a non-
persistent language in a persistent mode [Singhal, et al., 1992].

• Constructing above light-weight or specialised operating systems using
memory mapping. In some cases these experiments also exploit specialised
hardware. Very little portability is available and performance gains are as yet
unproven.

Orthogonal to the above class of design decisions is the extent to which the long-term
form of an object differs from its active-computational form. For example, pointers
can be radically different [Koch, et al., 1990, Moss, 1990, Suzuki et al., 1994,
Kemper and Kossmann, 1995], code can be target independent [Atkinson, et al.,
1993] and data may be compressed and encrypted.

There are many other variations in detail that are currently being explored, for
example, the mechanisms for recovery [Scheuerl, et al., 1995]. It is clear that the
space of alternative store designs is very large and is, as yet, poorly charted. Research
is needed to develop reliable information to guide store implementors and to provide
high-performance stores with predictable behaviour over a range of loads.

The situation is much more complex when forms of distributed persistent store are
attempted. There are some experiments in client-server technology [Dearle et al.,
1992b, Dearle, et al., 1994] but there is, as far as the authors know, little work yet on
generally distributed stores on a cluster of well-connected machines.



54

6.3.2 Efficient Bulk Types

The requirements for bulk types is well established [Atkinson and Buneman, 1987]
and their implementation has received much attention from the database community.
Their key achievements should be transferable to the persistent context. However, this
may result in pressure to change aspects of the store implementation and even
language primitives. Some compromise between totally add-on and totally built-in
provision is likely to prevail eventually. Full scale optimisation cannot be
implemented without better mathematical models of store behaviour. These need to
be vigorously sought and experimentally validated.

6.3.3 Code Generation for Reflexive Higher-Order Persistent Languages

There are several difficulties with code generation for higher-order languages. For
example, it is convenient to use some intermediate target language such as C to avoid
computer architecture specificity. This requires techniques for handling higher-order
procedures such as those in [Appel, 1992]. But orthogonal persistence requires that
the generated code reside in the transactional stable store. Consequently code (or
more precisely, procedure closures) must be represented as objects that can be
shipped in and out of store, garbage collected and stabilised [Atkinson and Morrison,
1985]. Furthermore, these procedures may be generated during execution as a
consequence of run-time reflection. Once distribution or longer-term persistence is
required, these procedures must be loadable onto any architecture. This combination
of requirements is challenging. Consequently, only prototype code generators exist at
present that meet all these requirements [Bushell et al., 1994].

6.3.4 Pre-populated Stores

A persistent store can be shipped in pre-populated form, just as many object-oriented
languages and OODBMS are (a good example is the SmallTalk persistent virtual
image). The challenge is to determine what should go into this initial population and
also to find ways of organising it and accessing it that enable the majority of
programmers to make good use of its facilities. Not only will this pre-population
contain an extensive library of useful code but it can also contain useful data
structures (e.g. tables of unit conversion constants, cartographic images, pictures,
etc.). Furthermore, the range of code that can be usefully shipped includes access
algorithms (B+-trees, R*-trees, etc.) which can be already tuned to match the
properties of the shipped store. The development and consideration of these issues
can be conducted by a wide community of researchers and eventually we should have
the PAS equivalent of good numerical algorithms libraries with much more
convenient mechanisms for using them.

Typically new releases of these store populations are built, and users who are already
using an earlier version may want to preserve their work but also avail themselves of
the new libraries. This is just one example of a collection of problems concerned with
merging, replacing and shipping subsets of the objects in one store to other stores.

7 Summary and Conclusions
An overview of orthogonally persistent systems has been presented starting from their
motivation and design principles. These achieve simplicity from consistency and
regularity. The lack of exceptions enhances the power while the reduction of issues to
be dealt with by programmers reduces application design, construction and
maintenance costs.

Languages and systems that achieve orthogonal persistence have been reported.
Crucial to their achievement of integrating database and programming requirements is
the recognition of the close relationship between schema and types. The challenge of
obtaining the correct balance between precision and description is addressed by the
introduction of type operators and the concomitant use of polymorphism. This allows
adaptable type systems to be developed with power similar to existing data models
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and an extensibility necessary for long-term service [Connor et al., 1991, Connor &
Morrison, 1992].

The introduction of dynamic checking points within the type system serves three
purposes: it allows type checking to be incremental and therefore feasible in large
applications; it allows incremental binding; and it permits localisation of schema
changes to subgraphs delimited by these points. The support for incremental
evolution of persistent applications requires new binding mechanisms that utilise the
dynamic checking and provide consistent naming schemes throughout applications.

The development of constructs that provide concurrency, transactions and recovery
taken together still lacks unifying concepts that cover the full range of possibilities
from those present and sought in databases to those available in programming
languages. However, solutions exist for important subdivisions of that space and the
present lines of research are rapidly expanding these.

Much research has focused on how to support orthogonally persistent systems. Four
architectures are all being explored. The least committing involves extending an
existing system with libraries and possibly pre-processors. Although this can provide
short term benefits with few risks, it has fundamental limitations in the longer term. A
common strategy is to combine two existing systems. This has operated since the
early days of databases but the degree of integration has advanced considerably with
the advent of OODBMS. It may still leave programmers coping with two models,
particularly when they are concerned with failure semantics and other symptoms of
system stress. They may also find that they still have to perform mappings between
representations, though this is now much diminished.

Recently, integrated systems have been constructed in standard computing
environments. These achieve the desired consistency and are portable. They are at the
very least a necessary intermediary on the path to wider use of orthogonally persistent
systems and are likely to have long-term utility. Their only drawback is that they
operate in an environment tuned to a different style of computation and therefore may
have efficiency problems due to this mismatch. Although this may present challenges
to current implementors it is feasible that the supporting operating systems and
hardware can evolve to meet the new needs of this architecture.

The final architecture may be viewed as prototyping this evolution or as a platform
for a more radical transition. In this architecture the underlying operating systems and
even the hardware are re-designed and re-implemented to provide orthogonal
persistence for all the systems they support. This radical replacement of the persistent
support system would, if it were eventually adopted, have the benefit of ensuring
consistent persistent behaviour, even under stress, of all the software and data it
supported simplifying the tasks of programmers and users.

In all of the last three avenues of research much effort goes into object store design.
The challenge is to find mechanisms for object movement, representation, translation,
concurrency, transactions, recovery and space management that combine well
together on the available hardware and software platforms. The size and load on parts
of a persistent system is likely to vary dramatically between applications and during
the lifetimes of some applications. Consequently, there is considerable interest in
adaptive algorithms. Persistent object store technology is now quite sophisticated and
can deliver reasonable performance and full functionality over specific areas of this
design space.

Type-safe linguistic reflection has been developed extensively in the context of
persistent systems for three reasons: it enables systems to evolve; it allows specialised
notations to be used from which equivalent types and programs are generated in the
persistent language; and it permits safe computations over types yielding greater
genericity.

Using these technologies, substantial applications have been built. Their construction
and maintenance uses incremental techniques that originated with database
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programming but finer grain and more general incrementality is now possible.
Among the applications are tools and programming environments that support
persistent programming and exploit the potential of persistence to give reliable access
to contextual information. Hyper-programming is supported in such an environment.
This is a new technique for program construction that forms static bindings from the
source program representation to values in the store while the source is being edited.

The present uses of persistence for constructing programming environments and
software engineering tools not only demonstrate the viability of persistent technology
but also its ability to support the introduction of new tools, flexibly coupled via a
store that preserves all structural information and affords continuous type safety. The
software engineering tools particularly exploit the reliable references and the data
modelling tools make substantial use of reflection.

Many avenues of research are being pursued in persistent systems and many more are
opening up. The three main avenues of research are: the extension of persistence
results to other contexts; the exploitation of the potential of persistence to facilitate
new applications with sophisticated computational requirements; and the search for
improved engineering for persistent support systems.

After fifteen years of research, orthogonally persistent systems have reached the point
where they should be used by a wider community. Researchers who build
applications with complex long-term data may accelerate their experiments by using
one of the more mature persistent systems. Programming language, operating system
and database system designers should at least examine the results obtained with
orthogonal persistence with a view to incorporating the best and most relevant of
them into their own designs. Ideally, one of the mature research systems will be
commercially supported so that this new technology can be seriously evaluated under
realistic use.
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