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Abstract

We describe how the provision of a persistent programming environment together with a
language that supports first class procedures may be used to provide the semantic features of
other object modelling languages. In particular the effects of information hiding, data
protection and separate compilation are provided and a comparison of the method with more
traditional techniques is examined.

Introduction

We explain what is meant by extending rights of procedures and functions in a procedural
language to be consistent with those of other data types such as integer or array. This is
shown to be useful and elsewhere we have demonstrated it is implementable [5].

In particular the effects of information hiding, data protection and separate compilation
can be achieved without introducing new concepts such as modules and abstract types. The
relative merits of the two approaches are reviewed. Separate program preparation depends on
making the procedure a first class data object and providing orthogonal persistence. The
power of this consistent treatment of procedures is obtained without adding to the complexity
of the language. Indeed the language is simplified, there being fewer concepts for the
programmer to understand.

What is persistence?

The persistence of a data object is the length of time that the object exists. In traditional
programming languages data cannot last longer than the activation of the program without the
explicit use of some storage agency such as a file system or a database management system.
In persistent programming, data can outlive the program and the method of accessing the data
is uniform whether it be long or short term data. We have discussed this concept fully
elsewhere [1]. The language concepts presented in this paper depend on persistence being
provided as an orthogonal property of data; all data objects, whatever their type, have the
same rights to long and short term persistence.

What are first class procedures?

Most programming languages provide facilities for abstractions over expressions and
statements. Indeed these abstractions, functions and procedures let us say, are often the only
mechanisms for abstraction in the programming language. The power of the mechanism is
derived from the fact that the user of the procedure does not require to know the details of
how the procedure executes, only its effect. We use the word 'procedure' to represent both
procedure and function when it is not necessary to differentiate between them.

The procedures of Algol 60[19] and Pascal[26] can only be declared, passed as
parameters or executed. However, as has been pointed out by Morris [16] and Zilles [29], to
exploit the device to its full potential it is necessary to promote procedures to be full first
class data objects. That is, procedures should be allowed the same civil rights as any other
data object in the language such as being assignable, the result of expressions or other
procedures, elements of structures or vectors etc. Lisp [14] was the first language with first
class procedures and other languages include Iswim [11], Pal [6], Gedanken [22], Sasl [24],
ML [15] and with some restrictions Euler [25] and Algol 68 [30]. Of course the applicative



programming technique revolves around the ability to have first class procedures in the
language and central ideas such as partial application are impossible otherwise.

What is Closure?

The most important concept in the understanding of first class procedures is that of
closure [23,9]. The closure of a procedure is all the information required to execute the
procedure correctly. It is in two parts. The first part is the code to execute the procedure and
the second part is its environment which contains the local and free variables of the procedure
and is usually implemented by a static chain [21]. In order to execute the procedure correctly
we must have both parts of the closure. We will restrict ourselves here to block structured
languages with static scope rules.

In block structured languages such as Algol 60, Pascal and S-algol [17] we very rarely
need both parts of the closure to be recorded explicitly for the procedure. This is because the
scope rules determine that a procedure can only be called from a position in the program
where all the free variables of the procedure are accessible. The local variables do not exist
before and after the call so the static chain is computable at the time of the call.

This is illustrated in Figure 1 where we have a program written in S-algol. In procedure
'one' we have the free variables 'a' and 'b'. However since the procedure may only be called
after its declaration in the same block or inner blocks it is always possible for the compiler to
calculate the static chain of the procedure from the static chain of the block that calls it.

let a := 3
 .
 .
begin

let b := 16
.
.
procedure one
! start of scope of procedure one
begin

.

.
write a + b

end
.
.
one
begin

.

.
one

end
! end of scope of procedure one

end

A program where the full closure is not required
Figure 1

Algol 60, Pascal and S-algol all allow procedures to be passed as parameters to other
procedures and clearly from Figure 2 it can be seen that the static chain may not always be
computable from the block surrounding the call.

procedure  A( procedure( int  -> int  )B )
begin

let  p := 3
.



.
write  B( p )

end

begin
let  b := 14 ; let  c := 3

procedure  C( int  a -> int  ) ; b * b - 4 * a * c

A( C )
end

A program requiring the full procedure closure
Figure 2

When procedure 'A' is executed in this example function 'B', which is the formal
parameter, is really function 'C' in the following block. In order to execute 'C' correctly we
must know about the free variables 'b' and 'c'. To do this we need both parts of the closure for
'C' to be transmitted to 'A' when 'A' is called.

The p-code implementation of Pascal [20] falls into the trap of only recording the
procedure address instead of the full closure for the procedure and thus disallows the passing
of procedures as parameters. A solution to the problem is given by Morrison [18].

First class procedures in relation to abstract data types.

The supporters of abstract data types [13] argue that it is essential for powerful languages
to have an abstraction mechanism over data objects. In the same manner that a procedure
separates the implementation of a task from its use, the abstract data type separates the
representation of a data object from its use. Thus we have at once an abstraction mechanism
and a protection mechanism. The abstract data type defines the operations available on the
data object while only allowing the definition of the type to manipulate or access the
representation. Languages which support abstract data types include Simula [4], Clu [12],
Alphard [28], Euclid [10], ML[15] and Ada [8].

None of the above languages, with the exception of ML, support first class procedures.
However, as has been pointed out by Horning [7], the advantages and aims of procedural and
data abstraction are similar. Indeed if procedures are data objects the mechanism for both
abstractions can be the same --- that of the procedure. This, of course, is not a new idea and
was present in the work of Strachey [23] and Zilles [29].

The complex number example

To explain the mechanism the following program segment written in PS-algol [3] is given
in Figure 3. The task it sets out to solve is to define an abstract object for a complex number
and to allow only the operations of addition, printing and creation on the complex number.

let  add := proc( pntr  a,b -> pntr  ) ; nullproc
let  print := proc( pntr a ) ; nullproc
let  complex := proc( real  a,b -> pntr  ) ; nullproc

begin
structure complex.number( real  rpart,ipart )

add := proc( pntr a,b -> pntr  )
complex.number( a( rpart ) + b( rpart ),a( ipart ) + b( ipart ) )

print := proc( pntr  a )
write  a( rpart ),
if a( ipart ) < 0 then  "-" else "+",rabs( a( ipart ) ),"i"



complex := proc( real  a,b -> pntr  )
complex.number( a,b )

end

let  a = complex( -1.0,-2.8 ) ; let  b = complex( 2.3,3.2 )
print( add( a,b ) )

The definition of an abstract type for complex numbers in PS-algol
Figure 3

In PS-algol a structure class is a tuple of named fields with any number of fields of any
type. The structure statement adds to the current environment a binding in the closest
enclosing scope for the class name ('complex.number' in this example), and a binding for
each field name ('ipart' and 'rpart' in this case). When an instance of a structure class is
created (by complex.number( a,b ) above), it yields an object of that class which may be
assigned to an object of type pntr . The class of a pointer is not determined at compile time
but at run time and since the structure class is similar to a type definition in other languages
this gives a degree of polymorphism to PS-algol.

The structure declaration in the example

structure complex.number( real  rpart,ipart )

defines a structure with two real fields 'rpart' and 'ipart'. To create an object of this class we
may use the expression

complex.number( 3.2,5.4 )

The fields of the structure may then be accessed by using a pointer expression followed by
the structure field name in brackets. e.g.

a( rpart )

The example, in Figure 3, shows three procedure variables being declared and in the
following block being assigned values. The representation of the complex number is
encapsulated in the block and is not available to other parts of the program. Since the field
names of the representation of the complex number are local to the block only the procedures
defined in the block may use these names. Outside the block the names are invisible. Thus we
have completely separated the representation of the data object from its use and achieved one
of the aims of abstract data types. Indeed the block could be rewritten to represent the
complex number in polar co-ordinates without changing the external meaning. Furthermore
we have demonstrated that the traditional block structure and scope rules of Algol 60 with the
addition of first class procedures are sufficient to support abstract data types. Figure 4 shows
how the block can be made into a function itself perhaps to be located elsewhere in the
program or separately compiled.

structure complex.arithmetic( proc( pntr ,pntr  -> pntr  )cadd ;
proc( pntr  )cprint ;
proc( real ,real  -> pntr  )ccomplex )

let  complex.arith = proc( -> pntr )
begin

structure complex.number( real  rpart,ipart )

complex.arithmetic(
proc( pntr  a,b -> pntr  )
complex.number( a( rpart ) + b( rpart ),a( ipart ) + b( ipart ) ),



proc( pntr  a )
{ write a( rpart ),

if a( ipart ) < 0 then  "-" else "+",rabs( a( ipart ) ),"i" },

proc( real  a,b -> pntr  )
complex.number( a,b ) )

end  !of complex.arith

!main program --- redo the names
let  t = complex.arith()
let  add = t( cadd ) ; let  print = t( cprint ) ; let complex = t( ccomplex )

let  a = complex( 1.2,0.3 ) ; let  b = complex( 9.4,-3.2 )
print( add( a,b ) )

The complex number package
Figure 4

The structure class 'complex.arithmetic' contains three procedures as elements. The
notation

proc( pntr ,pntr  -> pntr  )

denotes the type of a function from two pointer parameters to an object of type pointer.
Whereas proc( pntr  ) denotes the type of a procedure with one pointer parameter.

In the main part of the program an application of the function 'complex.arith' yields a
structure of class 'complex.arithmetic' which is assigned to the name 't'. In this procedure the
same three procedures as before are defined and their closures exported via a structure. This
is slightly more complex than the last version in that there is an extra dereference to obtain
the same names but that is a syntactic problem which can easily be overcome if necessary.

Data protection

Morris [16] specified three ways in which a data object may be used in a manner not
intended. They are

"1. Alteration : An object that involves references may be changed without use of the
primitive functions provided for the purpose.

2. Discovery : The properties of an object might be explored without using the primitive
functions.

3. Impersonation : An object, not intended to represent anything in particular, may be
presented to a primitive function expecting an object representing something
quite specific."

The first two problems are overcome by the methods already demonstrated in PS-algol.
Since the names of the fields in the structure class are only known to the primitive
procedures, by the scope rules, then the objects can never be accessed except by the primitive
procedures. However impersonation is a problem in PS-algol because structure class pointers
are checked at run time. It is not that the impersonation will not be discovered but that it will
cause a hard failure at run time. The solution to the problem is to check the class of the object
before allowing any operation on it. Thus we can define the program's action if an
impersonation does take place. In our example the procedure 'complex.arithmetic' may be
rewritten as in Figure 5.

let  complex.arith = proc( -> pntr )
begin

structure complex.number( real  rpart,ipart )
let  error = proc( pntr  a -> bool )



if a isnt complex.number then
begin

write  error.message
true

end  else false
complex.arithmetic(
proc( pntr  a,b -> pntr  )
if error( a ) or error( b ) then nil else

complex.number( a( rpart ) + b( rpart ),a( ipart ) + b( ipart ) ),
proc( pntr  a )
if error( a ) then  write "This is not a complex number"
else  { write  a( rpart ),

if a( ipart ) < 0 then  "-" else "+",rabs( a( ipart ) ),"i" },
proc( real  a,b -> pntr  )
complex.number( a,b ) )

end  !of complex.arith

The complex number package with impersonation checks
Figure 5

Comparison of first class procedures and abstract data types

Figure 6 below shows how the abstract type for complex numbers may be declared in
ML. We ignore the fact that ML does not have real as a base type for this example.

abstype comp = comp of  real  # real
with

val add( comp( r1,i1 ) ) ( comp( r2,i2 ) ) = comp ( ( r1 + r2 ),( i1 + i2 ) )
and print( comp( r,i ) ) = ( output( terminal,stringofreal( r ) ) ;

output( terminal, if i < 0.0 then  "-" else "+" ) ;
output( terminal,stringofreal( realabs( i ) ) ) ;
output( terminal,"i" ) )

and complex r i = comp ( r,i )
end

An example abstract datatype declaration written in ML
Figure 6

It is useful to compare this with the declaration given in Figure 3. The abstype .... with
construct in ML is essentially an environment manipulation, so that after the construct the
declarations appearing between with  and the corresponding end  are installed in the
subsequent environment, but the type 'comp' is available only in the environment of the
declarations after with . This is nearly equivalent to the notation in Figure 3, with the
following detailed correspondence.

1. In Figure 3 the three let  clauses introduce the three names into the outer environment
whereas in Figure 6 the same three names are left, by being declared after the with, in
the outer scope.

2. The begin end pair delimits a scope level as does a with end pair.

3. In Figure 3 the representation of the complex number is introduced by the structure
declaration which is local to this inner scope only. In Figure 6 the representation of
complex is introduced by the abstype statement and this binding is available only in
the scope by with  and end .

4. In both cases in the inner scope three bindings of names to procedural values are
declared.



The similarity is semantically almost complete. As a consequence of the need to define
the binding in one scope and introduce the name in another the names have been declared as
variables as in Figure 3, whereas they are constants in ML. The other differences are merely
syntactic --- the main one being the rather redundant declarations of 'add', 'print' and
'complex'. The designer has the choice of requiring this or adding new constructs such as
abstype to the language.

Another aspect of using a procedural mechanism is that it provides parametric abstract
types. Let us suppose that an abstract type for vectors is required but that different
dimensional spaces may be used and that vectors from these require different representations
and different operators. Figure 7 shows an appropriate definition.

structure vector.pack( proc( pntr ,pntr  -> pntr  )add ; proc( pntr  )print ;
proc( *real  -> pntr  )create )

let  make.vector.pack = proc( int  n -> pntr  )
begin

structure vec( *real  rep )

let  check = proc( pntr  v -> bool )
if v isnt  vec then { write  "error" ; false }
else if  upb( v( rep ) ) ≠ n and lwb( v( rep ) ) ≠ 1

then  { write  "dimension error" ; false  }
else true

if n < 2 then  { write "silly dimension" ; nil }
else  vector.pack(

proc( pntr  a,b -> pntr  )
if check( a ) and check( b ) then
begin

let  v = vector  1::n of  0.0
for i = 1 to  n do  v( i ) := a( rep )( i ) + b( rep )( i )
vec( v )

end else nil ,

proc( pntr  a )
if check( a ) do
begin

write  a( rep,1 )
for i = 2 to  n do  write  ", ",a( rep )( i )

end ,

proc( *real  r -> pntr  )
if upb( r ) = n and lwb( r ) = 1 then  vec(r)

else  { write  "wrong size" ; nil  } )
end  ! of make.vector.pack

An example of defining a parameterised type
Figure 7

The operators may now be used as shown in Figure 8. To introduce parameterisation of
abstract types may mean more complexity than utilising the parametric mechanisms we
already have.

let  Pack.2D = make.vector.pack( 2 )
let  Pack.3D = make.vector.pack( 3 )

let  add2 = Pack.2D( add ) ; let  print2 = Pack.2D( print )



let  mk2d = Pack.2D( create )
let  add3 = Pack.3D( add ) ; let  print3 = Pack.3D( print )
let  mk3d = Pack.3D( create )

let  v1 = mk2d( @1[ 1.1,2.2 ] )
let  v2 = mk2d( @1[ 3.3,4.4 ] )
let  v3 = add2( v1,v2 )

print2( v3 )

let  w1 = mk3d( @1[ 1.1,2.2,3.3 ] ) .............

An example of using the parameterised type
Figure 8

First class procedures can perform as modules

Many languages have also introduced the concept of modules  Ada, Clu, ML, Modula2
[27].

These appear to serve three functions:

i) Provide a mechanism for own data, that is data bound with the module over the scope
or lifetime of the module, rather than only for individual applications of the module.

ii) To be the unit of program building being used in system construction as a unit of
specification, a unit of compilation, testing and assembly.

iii) As a localisation or hiding of certain design decisions, in other words, the provision
of abstract types.

We show that, in conjunction with persistence as an orthogonal property, first class
procedures perform all these roles. The last has already been demonstrated, the first can
depend either on partial application or be obtained in conjunction with the program building
facilities. These are simply based on the idea that programs may use procedures which other
programs have left in a database. Each of these will now be demonstrated.

It is important to note, once again, though lack of space precludes showing it in every
example, that the normal parametric mechanisms of procedures means that we now have
modules which may be parameterised, and for which many instances may exist. This is
obtained without adding extra constructs or concepts to the language.

Partial application

Another advantage of having procedures as first class data objects is the possibility of
having partially applied functions.

Let us provide an abstract structure to maintain lists of things to do, for different people in
different contexts. This may be defined as shown in Figure 9.

structure list.pack( proc( string  )add ; proc()clear ; proc()print )

let  make.list.Pack = proc( string  person,context -> pntr )
begin

structure cell( string  item ; pntr  next )
let  list.start := nil

list.pack(
proc( string  s ) ; list.start := cell( s,list.start ),
proc() ; list.start := nil,
proc()
begin

write  "'n list of tasks for ",person," doing ",context
let  l := list.start



while l ≠ nil do
begin

write  "'n",l( item ) ; l := l( next )
end
write  "'n"

end
)

end

Procedure to make various lists and provide routines to maintain them
Figure 9

This can be used the way shown in Figure 10.

let  RMs = make.list.Pack( "Ron","Finish Paper" )
let  MPAs = make.list.Pack( "Malcolm","Finish Paper" )

let  RMadd = RMs( add ) ; let RMprint = RMs( print )
let  MPAadd = MPAs( add ) ; let MPAprint = MPAs( print )

RMadd( "read Malcolm's notes" ) ; MPAadd( "Write rest of comments" )
RMadd( "type corrections" ) ; MPAadd( "Read next draft" )
RMadd( "Fix references" ) ; MPAadd( "Post last corrections" )
MPAprint() ; RMprint()

Using the procedures with local "memory" of lists
Figure 10

Now on the assumption that a given person has tasks in a number of contexts, it may be
preferable to partially apply this procedure to yield procedures for each person as in Figure
11.

let  make.lists.for = proc( string  person -> proc( string  -> pntr ) )
proc( string  context -> pntr  )
make.list.Pack( person,context )

Partial application of the make.list.Pack procedure
Figure 11

This can be used as shown in Figure 12.

let  Rons.list.maker = make.list.for( "Ron" )
let  Malcolms.list.maker = make.list.for( "Malcolm" )

let  MPA.paper = Malcolms.list.maker( "First Class Fns Paper" )
let  MPA.shopping = Malcolms.list.maker( "Shopping" )

Using the partially applied list maker
Figure 12

In these examples the procedures yielded by functions have "own" data associated with
them (the lists, the tasks and the persons in this example) and so we have demonstrated that
the first requirement for modules can be met by first class procedures.

Separate Compilation

Assuming the provision of persistence we now demonstrate how the procedure may be
used as the unit of system construction and the unit of definition. Suppose a system is to be



built out of the list maintaining program - then to separately compile the list maintainer we
could write a program such as that shown in Figure 13.

structure list.Pack( proc( string  )add ; proc()clear ; proc()print )

let  make.list.Pack = proc( string  person,context -> pntr )
begin

let  list.start := nil ; structure cell( string  item ; pntr  next )
list.Pack(

proc
proc                      as in Figure 9
proc
)

end

structure mlp.container( proc( string ,string  -> pntr )mlp )

let  db = open.database( "Library","Gigha","write" )
if db is error.record do  { write "Database can''t be opened" ; abort  }
s.enter( "make.list.Pack",db,mlp.container( make.list.Pack ) )
commit()

A complete PS-algol program to compile a pack of procedures and
store them in a database for future use

Figure 13

As the program utilises the persistent mechanisms of PS-algol they are reviewed here, but
the reader who requires complete information should read [1,3]. The 'open.database'
operation opens the database with the name given by the first parameter, establishing the
rights specified by the third parameter by quoting the password given by the second
parameter. It also begins a transaction which is completed by a 'commit' or aborted by abort.
's.enter' is one of the operations on tables, PS-algol's associative structures. By convention a
successful 'open.database' yields one of these tables. 's.lookup' is also available to obtain
entries from a table.

We now use the definition in Figure 13 in a program to start a database for a given
person, in which are kept lists on various topics. This is shown in Figure 14.

structure error.record(string  error.context,error.fault,error.explain)
!A program to start a new database for someone's collection of lists
!first get the predefined module for maintaining lists.
let  db := nil
repeat

db := open.database( "library","Gigha","read" )
while db is error.record do
begin

write  "'n sorry the library is being updated"
! wait( 5 )
end

structure mlp.container( proc( string ,string  -> pntr )mlp )

let  MkListPack = s.lookup( "make.list.Pack",db )
if MkListPack = nil do { write "Make list pack not compiled yet" ; abort  }

!find out about the customer
write  "Who are you?" ; let  p = read.a.line()
!set up his database
write  "What password?" ; let  pw = read.a.line()



let  db2 = open.database( p++".lists",pw,"write" )
if db2 is error.record do  { write "Sorry no db space" ; abort  }
!insert a table for his lists indexed by topic
s.enter( "topics",db2,table() )
!part apply MkListPack to ensure name always p
let  his.make.lists = proc( string  topic -> pntr )

MkListPack( mlp )( p,topic )
!preserve that for future use
structure his.list( proc( string  -> pntr  )h.list )

s.enter( "hisMkList",db2,his.list( his.make.lists ) )
commit()

An example of using a separately compiled procedure in PS-algol
Figure 14

Examination of Figure 14 shows a number of features. First, a precompiled collection of
definitions was obtained from the communal database "Library". The code for this is the loop
(normally executed once) to gain access to the program library down to the test that the list
package has been defined. This is equivalent to the module being obtained in a typical
module based language (ML for example) by

get<Module name>
use<Module name>

It seems that this latter form is more succinct. However if the arrangements for libraries
and naming are agreed a standard procedure, such as that shown in Figure 15 can be defined
to achieve the same effect equally succinctly.

!A standard procedure to obtain a module

let  get.from.any = proc( string  module,lib,libpw -> pntr )
begin

repeat
let  db = open.database( lib,libpw,"read" )

while db is error.record do
begin

write  "Sorry for the delay, library",lib,"is being updated"
wait( 5 )

end
let  wanted.module = s.lookup( module,db )
if wanted.module = nil do write "Warning: Module",module,"not defined"
wanted.module

end
let  get = proc( string  module -> pntr  )

get.from.any( module,"library","Barra" )

Standard module fetching procedure defined in PS-algol
Figure 15

In Figure 14, the second part of the program uses the predefined list manipulating module
to define a more specific module, which is left for further programs to use. This demonstrates
two aspects of module use:

i) the module was used without its implementation being seen by the programmer -
giving adequate protection against exploitation of accidents of the present
implementation.



ii) modules can be synthesised using other modules, allowing construction of large
programs, while the individual program text that has to be read to understand the
program at a given level is kept small.

The approach to module collection demonstrated in Figure 15 is just one of many that
could be defined. Thus different software construction groups may define their own module
naming and module storage conventions, and may have their versions of 'get' and
'get.from.any' carry out authorisation procedures and keep records of what has been used.
This gives the basis for constructing a variety of software construction tools within the
language.

Comparison of modules with first class functions

We can now compare the anatomy of a module with that of our definition using first class
procedures. In a conventional modular language there are three separate components
concerned with modules. These are:

i) the module interface definition
ii) the module body definition
iii) the module inclusion statement

The last has already been discussed in connection with Figure 15. The definition of a
structure to carry the pack of interfaces is the first class procedure equivalent of the module
interface definition. As in module based languages it appears both in the context where the
module body is defined and in every context where the module is used. It completely defines
the types of all objects that may pass across the interface, and with the type matching rules in
PS-algol this ensures that only modules with correctly matching types are assembled
together. Although only procedural components of a structure/interface are shown in the
examples, other data types may appear allowing direct access between the module and its
users to some shared variable.

The module body in a modular language usually contains concepts for defining imported,
exported and private variable lists. It usually has a method of defining data storage and data
manipulation. All these are defined here by use of the normal algol declarations and block
structure without additional concepts.

Where a module has internal storage, there is often a need to make many instances of the
module, possibly with different initial data. This can be achieved with these first class
procedures by simply calling them repeatedly with different parameters - no special
mechanism is required. This is illustrated in Figure 14, where each time that program is used,
a new instance of the same module is created, with a different value for person stored within
it.

New version installation

With all large systems, constructed out of separate modules, there is a problem of
managing the installation of new versions. It is necessary to modify the implementation of
modules and then arrange for their subsequent use. Often this can only be done when no part
of the system is running, then the new modules are installed by a complete system rebuild.
This may take considerable resources. The alternative of replacing a module in situ has to be
carefully managed, as it certainly could not be done safely when the module is in use if that
execution were affected.

In PS-algol the transaction mechanism makes the concurrent revision and installation of
modules safe. The effects of a transaction are not visible to other transactions until the
transaction has committed. Programs starting after it will use the new one for the whole
program execution if they are written in the style shown in Figure 14.

More sophisticated mechanisms can be implemented with these facilities. For example, a
program may arrange to bind a particular version of one module to the package it constructs,
by leaving it directly referenced, or leave it to be picked up when the package is run
collecting the latest version. Software tools could be written, to build up systems where



groups of modules could be installed, retained, replaced etc. using no more language concepts
than the features illustrated here.

First class functions as a view mechanism

View mechanisms are used in databases to perform two roles:

i) to provide a stable and appropriate view to the programmer
ii) to implement protection and privacy controls.

The first class functions, together with partial application perform both of these roles.
Stability means that the underlying data may be changed without impact upon programs it
was not intended to alter apart from possible changes in performance. The person who
changes the underlying data is usually responsible for redefining the mapping that provides
the view except where the only available mappings are so simple that the new mapping may
be inferred. If we interpose a set of functions, then redefinition of these functions will provide
the required stability. Similarly, they can be defined so as to provide the appropriate view and
the access controls. We have discussed this use of first class persistent functions elsewhere
[2].

Figure 14 will again serve as an example. The function saved in the database as
'hisMkList' will now only make up lists, print lists etc. for the one person who created this
database. Thus the view of the data has been made appropriate by allowing the person to
avoid redundantly giving his own name every time, and has also been restricted to lists
concerned with that data. Note that the control and the remapping is quite finely controlled
but not over restrictive. For example there is nothing to stop the programmer using this
database to hold other data as well, to which he may have any view or access. This seems
correct.

In Figure 14 however the view constructed is not as secure as we might wish, as a
programmer using it could operate directly on the table which holds the set of topics. To
overcome this we refine the definition, as shown in Figure 16. The revised version prevents
any misuse of the table of topics by making it available only within the body of the
'make.lists' procedure declaration. The refinement also produces four procedures to work over
the data, one to initiate a list on a topic, and the others as before, except that they now take a
topic as a parameter and work for any list for the given person. This illustrates the radical
revision of views that may be constructed, and the way precise control over the operations on
data may be obtained.

!Refined Program to start a database for lists

structure error.record( string  error.context,error.fault,error.explain )
write  "Who are you?" ; let  p = read.a.line()
write  "What password?" ; let  pw = read.a.line()

let  his.make.lists = proc( string  p -> pntr )
begin

let  table.for.topics = table()

let  get.topic := proc( string  topic -> pntr  ) ; nullproc
get.topic := proc( string  topic -> pntr )
begin

let  pack = s.lookup( topic,table.for.topics )
if pack = nil then { write "You have not started that topic'n"

get.topic("dummy") }
else  pack

end

let  db = open.database( "library","Gigha","read" )
if db is error.record do  { write "Cannot open database Library",



"'n",db( error.fault ),"'n",
db( error.explain ) }

structure mlp.container( proc( string ,string  -> pntr )mlp )
let  mklp = s.lookup( "make.list.Pack",db )( mlp ) !see Figure 14

structure list.pack( proc( string  )add ; proc()clear ; proc()print  )

let  start.topic = proc( string  topic )
begin

let  pack = mklp( p,topic )
s.enter( topic,table.for.topics,pack )

end

let  add.topic = proc( string  topic,task )
get.topic( topic )( add )( task )

let  clear.topic = proc( string  topic )
get.topic( topic )( clear )()

let  print.topic = proc( string  topic )
get.topic( topic )( print )()

start.topic( "dummy" )

structure topic.pack( proc( string  )start.t ; proc( string ,string  )add.t ;
proc( string  )clear.t,print.t )

topic.pack( start.topic,add.topic,clear.topic,print.topic )
end

let  db = open.database( p++".lists",pw,"write" )
if db is error.record do  { write "sorry no db space" ; abort  }

s.enter( "hisMkList",db,his.make.lists( p ) )
commit()

A refinement of Figure 14 to give a more restrictive and convenient view
Figure 16

Figure 17 then illustrates how this view may be used. Note that the programmer has only
the four operations available, and has no knowledge of or access to the way the lists were
represented. In this case the view was fairly appropriate for the task. Another view might
have provided an extra operation to set the current topic, thus economising on the passing of
the 'topic' parameter.

!program to provide end user interface to lists

structure error.record( string  error.context,error.fault,error.explain )
write  "Who are you?" ; let  p = read.a.line()
write  "Your password?" ; let  pw = read.a.line()

let  db = open.database( p++".lists",pw,"write" )
if db is error.record do  { write "Sorry no db space" ; abort  }
!get & unpack saved view
let  hML = s.lookup( "hisMkList",db )

structure topic.pack( proc( string  )start.t ; proc( string ,string  )add.t ;



proc( string  )clear.t,print.t )

let  st = hML( start.t ) ; let ad = hML( add.t ) ; let  cl = hML( clear.t )
let  pr = hML( print.t )
let  current.topic := "dummy" ; let todo := ""
repeat
begin

write  "'n what shall I do?" ; todo := read.a.line()
case todo of
"quit" : {}
"start" : { write  "topic?" ; current.topic := read.a.line()

st(current.topic) }
"change" : { write  "new topic?" ; current.topic := read.a.line() }
"add" : { write  "item?" ; ad( current.topic,read.a.line() ) }
"clear" : cl( current.topic )
"print" : pr( current.topic )
default : write  "Command not understood"
write  "'n"

end
while todo ~= "quit"
commit()

A PS-algol program utilising the view constructed in Figure 16
Figure 17

Conclusions

A number of requirements of modern programming languages, abstract types, modules,
control of module assembly, separate compilation and views of data are met by the provision
of first class procedures and orthogonal persistence. It has long been understood that it is
desirable to be parsimonious in introducing concepts into a language design. The preceding
demonstration therefore challenges language designers as to whether it is necessary to
introduce a long list of concepts which can be covered by the persistent procedural
mechanism.

Considering the semantic properties of languages the case for introducing different
concepts rather than depending on these first class procedures appears to be weak. However,
the text necessary to 'unpack' and introduce into the local environment, the interface of a
module using this method leaves the question of whether extra syntactic constructs are
necessary. If they are, they should probably be some general purpose shorthand (such as the
patterns of ML) rather than a specific construct for modules.

Using the general properties of persistent procedures seems to have a number of
advantages:

i) Software construction tools may be built within the language.
ii) The composition of separately produced software is type checked.
iii) The power of the language is much increased, for example, parameterisation is

always available. The structures, interrelationships and naming rules which may be
constructed are extremely flexible.

Since readily understood and easily implemented languages are needed as a foundation
for software engineering, we argue that serious consideration should be given to languages
which support procedures as data objects, which have an orthogonal provision of persistence
and which are not overgrown with numerous other concepts.
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