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Abstract

The principal tasks of an operating system are to manage the resources of the
system, maintain the permanent data of the system and to provide an efficient
environment for the execution of user programs. In conventional operating
systems these tasks are centred around the file system as the repository of
permanent data and virtual memory as the execution environment. Persistent
systems offer an aternative view in which the lifetime of datais separated from the
access mechanism. In a persistent system all data, regardless of its lifetime, is
created and manipulated in auniform manner. When persistenceisincluded as the
basic abstraction of an operating system, many of the inadequacies of existing
operating systems are eliminated and the tasks of an application developer are
greatly simplified. This results in major improvements both in terms of program
development time and execution efficiency. Grasshopper, a persistent operating
system being devel oped by the authors, provides a testbed for the demonstration of
these claims.

1 I ntroduction

The principal tasks of an operating system are to manage the resources of the system, maintain
the permanent data of the system and to provide an efficient environment for the execution of
user tasks. In addition, users expect that the operating system will provide alevel of resilience
to failure and appropriate facilities to recover from failure with a minimum of interruption to
computations and minimum |oss of data.

Most existing operating systems provide the resource management, permanent data
maintenance and execution environment. However, there are two common inadequacies: the
discontinuity between permanent and temporary data and the lack of resilienceto failure. The
model of permanent data (a file system) is fundamentally different from the model of data
supported in the execution environment (virtual memory). Consequently, permanent data must
be accessed indirectly viathe file system interface making it difficult to maintain complex data
structures such as graphs. By contrast, arbitrary data structures may be created and



manipulated in virtual memory, but these cannot persist longer than the lifetime of the creating
program.

The support of two different data models results in a number of difficulties and potential
inefficiencies:.
(1)  Programmers must determine the lifetime of their data early in the design process and
write their program accordingly. This may result in duplication of effort.

(i) If the data embedded within a complex data structure is to be stored permanently, the
programmer must write code to flatten the structure and copy it to a file, and
corresponding code to reload it. This results in a significant amount of programmer
effort and execution overhead.

(i) The programmer must deal with two different protection models.

Memory-mapped files are an attempt to blur this distinction. However, they are limited in their
application, partly due to the second inadegquacy mentioned above, lack of support for resilience
and recovery. Systems such as Unix provide no guarantees about the state of files following a
crash. Instead, utilities are provided to check and repair file system structures; however, these
do not guarantee the integrity of the data stored in the files. 1t isnot unusual for files, or parts of
filesto belost following a crash, leaving datain related filesin an inconsistent state. However,
in addition to passive data, operating systems also support active data (processes) and these
systems provide no support for recovery of computations, which must be manually restarted.

Although resilience of data and computations is not provided by conventional operating
systems, both of these are essential for many applications. For example, a user editing afile
expects that the file will not be lost if the system crashes. Indeed, they would prefer that all of
the changes up to the time of the crash are included. Similarly, users with long running
applications (e.g. simulations) would prefer it if these were restarted from the point at which the
crash occurred. Since the operating system does not include such services, they are added to
each application on an ad hoc basis as discussed in the next section.

In 1981, Atkinson [9, 10] proposed that all data in a system should be able to survive for as
long asthat datais required; he called the attribute of longevity persistence. He also proposed
that all data should be treated in a uniform manner regardless of the length of time for which it
persists. That isthe persistence attribute of datais orthogonal to its other attributes such as size,
type, ownership etc. Systems that provide this abstraction are said to support orthogonal
persistence. In this sense orthogonally persistent systems provide a uniform abstraction over
all data storage. Furthermore, since the state of a process is just data, processes themselves
may be made persistent [25] and may outlive a single invocation of a system.

A number of approaches to the construction of persistent systems have been adopted. These
include the design of programming languages with integrated support for persistence [8, 10,
30], operating systems [13, 14, 17, 19] and new hardware architectures [26, 34]. Of these
approaches, we favour the development of an operating system. The provision of support for
persistence at the operating system level ensures the overall integrity of the data without
restricting the system to a single language.

It is our contention that a persistent operating system provides a solution to the problems
outlined above. Although virtually all of the examples cited in this paper can be implemented



using a conventional operating system, the result is usually a somewhat contorted design and
the programmer is forced to wrestle with the operating system in order to achieve the desired
result. A persistent operating system provides a natural and elegant solution, whilst
maintaining efficiency.

This paper describes the approach to persistence and resilience taken in Grasshopper, a
persistent operating system being developed at the Universities of Stirling and Sydney. The
paper is organised as follows. We first describe the various approaches to data management
and demonstrate that the approach used in persistent systems removes the need for ad hoc
techniques. This is followed by a discussion of the requirements of a persistent operating
system. We then describe the persistence model provided by Grasshopper and show how it
provides auniform model of persistence and resilience.

2. Data M anagement

2.1 Ad hoc solutions

Almost all computer systems are concerned with the saving and recovery of dynamic state. In
the light of this, a variety of ad hoc mechanisms have evolved to maintain dynamic state.
Perhaps the most common example of thisis the saving of documents in word processors and
editors. In these applications the saved data is relatively simple consisting of linear strings of
text. In other application areas, such as computer aided design, the datais much more complex,
consisting of large pointer-based data structures containing objects of a variety of types. Such
structures are considerably more difficult to save in either afile system or database.

As the complexity of the data that is saved and restored increases, so does the time taken to
save and recreate the data set each time an application is run. In many cases, application users
have compromises forced upon them due to the complexity and cost of having programmers
make the appropriate encodings. A good example of thisis core files where we are forced to
examine a flat data representation (a core file) of an extremely complex collection of data
structures such as register sets, stacks and heaps. Another common example is in compilers
where parse trees are saved in some flat format as they are passed between different phases of
the compilation.

In all the above cases, the data that is saved is separate from the computation that transforms the
data. In other computations, it is the actual state of the computation that we wish to preserve.
Consider a long lived computer simulation; we may wish to snapshot the state of the
computation so that it may be recovered after a system failure. In this case there is extremely
close coupling between the data that is saved: register values, stacks, memory state etc. and the
application itself. Applications, such as remote file system servers, effectively simulate this
restartability by maintaining enough state information in files and having the operating system
restart them each time the system is re-booted. The results of this approach for systems such
as NFS locking are notorious.

The technique of saving the state of an active application may also be applied to arbitrary
application programs such as word processors and editors. For example, an entire window
manager session could be saved and subsequently recovered at some later time. Such an
approach would have many advantages; for example we would no longer need a plethora of ad
hoc mechanisms such as .xsession, .Xrdb, .login, .cshrc and autoexec.bat to recreate some of



the state of the user's environment since all of the dynamic state would be captured in the
snapshot.

2.2 Integrated solutions— persistence

Persistent systems have no need for the ad hoc techniques described above. Since all data may
persist for an arbitrary length of time, the original data structures used by applications may be
maintained in their original form. Subsequent work on saved documents simply involves the
application re-attaching itself to the persistent data structures. Similarly, the data and process
driving asimulation will persist across system invocations. Startup files such as .cshrc, etc. are
no longer needed since the environment they attempt to recreate is persistent.

3. An operating system supporting orthogonal persistence
31 Why?

Since 1978 a large number of researchers have constructed systems which support orthogonal
persistence [1, 2, 3, 4, 5, 6, 11, 29], most of which are programming language systems. A
number of persistent languages have been developed either from scratch [8, 10, 30] or as an
extension to an existing language [31, 32, 33, 35, 36]. These usually provide a large store
within which concurrent processes manipulate persistent data. In some of these systems, the
stores contain all data including procedures, graphics objects, processes and their associated
state [12].

However, implementing the abstraction of persistent data at the programming language level
suffers from two drawbacks. The first of these is that the host operating system was not
designed to support persistence; therefore the operating system interface does not usually
provide abstractions sympathetic to a persistent language implementation. The consequence of
thisisthat the language designer is usually forced to implement a persistent abstract machine
above the operating system abstractions, with a corresponding loss of efficiency. A similar
problem is reported by the designers of database systems [38, 41].

The second problem with this approach is that every persistent language implements its own
persistent abstract machine duplicating much of the functionality found inside the operating
system and other language implementations. Often these different implementations are entirely
incompatible with each other, prohibiting interactions between programs written in different
languages. This would appear to be a retrograde step compared to the mixed language
environments supported by conventional systems.

We therefore believe that the abstraction of orthogonal persistence should be implemented by
the operating system. We believe that such an approach to operating system design could be as
revolutionary as virtual memory in terms of the advantages for user-level applications. Inthe
following section we briefly outline the requirements of a persistent operating system.

3.2 Requirements

Tanenbaum [40] lists the four major components of an operating system as being memory
management, the file system, the input-output subsystem and process management. The nature
of these four components is different in persistent systems. In a persistent system, the
functionality of the file system and memory management are replaced by the persistent store.
In many operating systems, notably Unix, input-output is presented using the same abstractions



asthefile system; clearly thisis not appropriate in a persistent environment since thereisno file
system, and much of the input-output is eliminated by the single store abstraction. In most
operating systems, processes are ephemeral entities; we have already argued the virtue of
making processes persistent. It istherefore to be expected that an operating system designed to
support persistence will have a different structure from a conventional operating system and
will provide adifferent set of facilities.

We can summarise the principal requirements of such an operating system as follows[21]:

I.  The maor requirement is support for persistent objects as the basic abstraction.
Persistent objects consist of data (including code) and relationships with other
persistent objects; the system must therefore provide a mechanism for supporting the
creation and maintenance of these objects and relationships. This mechanism should
be based upon a uniform addressing scheme used by all processes to access objects.
That is, all processes should (potentially) have access to all data using the same
addressing scheme. Thisisessential for orthogonal persistence.

ii. A further requirement is that these objects must be both stable and resilient. The
system must reliably manage the transition between long and short term memory
transparently to the programmer.

iii.  Processes must be integrated with the object space in such away that process state is
itself contained within persistent objects. The importance of this is that processes
themselves become resilient.

Iv.  Although the persistent store is uniform, thereis still arequirement to be able to restrict
access to objects for the same reasons that file systems contain access control
mechanisms. Any operating system supporting persistence must therefore provide
some protection mechanism.

We call an operating system that provides these facilities a persistent operating system.
4 Grasshopper

Grasshopper is an example of a persistent operating system. In this section we describe the
three basic abstractions provided by Grasshopper. The abstraction over storage is the container
and the abstraction over execution is the locus. The container in which alocus is currently
executing is called its host container. Containers are repositories of data and may be of any
size. The third basic abstraction is capabilities which provide control over access to
Grasshopper entities.

41 Containers

Containers are the only storage abstraction provided by Grasshopper; they are persistent entities
which replace both address spaces and file systems. In most operating systems, the notion of a
virtual address space is associated with an ephemeral entity, a process, which accesses data
within that address space. In contrast, containers and loci are orthogonal concepts. A
Grasshopper system consists of a number of containers which may have loci executing within
them. At any time, a locus can only address the data visible in the container in which it is
executing. Grasshopper provides two facilities, mapping and invocation, which allow the
transfer of data between containers.



The purpose of container mapping is to allow data to be shared between containers. Thisis
achieved by allowing datain aregion of one container to be viewed within aregion of another
container. Unlike the memory object mechanism provided by other systems [15, 16],
containers may be arbitrarily (possibly recursively) composed which provides considerably
enhanced flexibility and performance [28].

Since any container can have another mapped into it, it is possible to construct a hierarchy of
container mappings as shown in Figure 1. The hierarchy of container mappings forms a
directed acyclic graph. The restriction that mappings cannot contain circular dependenciesis
imposed to ensure that one container is always ultimately responsible for data. In Figure 1,
container C2 is mapped into container C1 at location al. In turn, C2 has regions of containers
C3 and C4 mapped into it. The datafrom C3isvisiblein C1 at address a3, which is equal to
al + a2
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Figure 1: A container mapping hierarchy

Loci perceive the address space of their host container. Therefore, all loci executing within a
container share the same address space. However, alocus may require private data, which is
visible to it, yet invisible to other loci that inhabit the same container. To satisfy this need,
Grasshopper provides the notion of locus private mappings which are visible only to the locus
which created them and take precedence over host container mappings. For example, this
permits each locus to have its own stack with all stacks occupying the same address range
within the host container [28].

42 Loc

In its simplest form, alocusis simply the contents of the registers of the machine on which it is
executing. Like containers, loci are maintained by the Grasshopper kernel and are inherently
persistent.

A locus is associated with a host container. The locus perceives the address space of the host
container plus any privately mapped containers. Virtual addresses generated by the locus map
directly onto addresses within the host container and the privately mapped containers. A
container comprising program code, mutable data and a locus forms a basic running program.



Loci are an orthogonal abstraction to containers; any number of loci may execute
simultaneously within a given container.

4.3 Inter-Container Communication

An operating system is largely responsible for the control and management of two entities:
objects, which contain data (containers); and processes (loci), the active elements which
manipulate these objects. One of the most important considerations in the design of an
operating system is the model of interaction between these entities. Grasshopper uses the
object-thread model in which communication is achieved via procedure calls and threads (loci)
move between entities [27]. Thus a locus may invoke a container thereby changing its host
container and may later return to the original container.

Any container may include, as one of its attributes, a single entry point known as an invocation
point. When alocus invokes a container, it begins executing code at the invocation point. The
single invocation point isimportant for security since it isthe invoked container that controls the
execution of the invoking locus by providing the code that will be executed.

The kernel appears to user-level applications as a set of containers. Thus, access to operating
system functions is also achieved by invocation. This provides a uniform interface for
applications and blurs the distinction between system and user functions.

44 Naming and Protection

In the previous sections we have described the basic abstractions in Grasshopper and the
operations over these abstractions. Given that containers are the only abstraction over storage
(i.e. thereis no file system), some access control mechanisms are required.

In a conventional operating system many of these controls are provided by the file system
which maintains access lists, usually on a hierarchical basis. This is not appropriate in
Grasshopper since there is no file system. Some persistent systems use the type system to
provide control over access, however, as we have stated earlier, we propose to support multiple
languages with different type systems, and so thisis not an alternative. For these reasons we
believe that it is essential for Grasshopper to support a third abstraction, a naming and
protection mechanism, in the form of capabilities [22, 43].

In Grasshopper, every container and locus has an associated list of capabilities [18]. A
capability list is constructed from tuples containing a unigue fixed length key and a capability.
Operations are provided for copying capabilities and for adding and removing them to and
fromlists. At any time, alocus has access to:

I. all the capabilitiesinitsown list,
ii.  al capabilitiesinits host container'slit,

Programs can refer to capabilities by specifying a capability list (locus or host container) and a
key. Grasshopper checks that an entry with the given key exists in the specified list. An
appropriate capability must be presented for operations involving the manipulation of entities,
such as invocation, mapping, and blocking and unblocking of loci. Since kernel services are
reguested by invocation, access to these may also be controlled by capabilities.



The capability mechanism is deliberately simple and low-level for reasons of efficiency and
flexibility. Higher level naming mechanisms, e.g. name servers, are implemented as user-level
containers using the operations described above.

45 Managers

Thus far we have described how all data storage in Grasshopper is provided by containers.
However, we have not described how containers are populated with data. This is the
responsibility of managers which are user-level entities. The use of managers is motivated by
the desire, as far as practicable, to leave all policy decisions out of the kernel. The kernel
provides mechanisms which can be used by higher level software to implement required
policies. This provides maximum flexibility and avoids the kernel making decisions which
impact upon performance. For example, the memory management policy can have major
effects on the performance of garbage collection. User-level virtual memory management,
supported on a number of recent operating systems |7, 23, 44], has a similar motivation.

Each container has an associated manager, which is an ordinary user-level program, held within
acontainer. The manager is responsible for:

. provision of the pages of data stored in the container,
. responding to access faults,
. operation within alimited amount of physical memory (page discard),

. implementation of a stability algorithm for the container [20], i.e. maintenance of the
integrity and resilience of data, and

. mai ntenance of coherence in the case of distributed access to the container.

The kernel provides a standard framework in which managers may operate. This includes
automatic invocation of the appropriate manager on an access fault, and a set of interfaces
which allow managers to arrange the hardware trandlation tables in such away that the required
datais visible at an appropriate address in the container. Thus managers provide user-level
virtual memory management in common with several other recent operating systems.

4.6 Consistency

Containers and their associated managers provide the abstraction of persistent data. Managers
are responsible for maintaining a consistent and recoverable stable copy of the data represented
by the container. As part of its interface, each manager must provide a stabilise operation.
Stabilisation involves creating a consistent copy of the data on a stable medium.

Managers alone are not able to maintain a system-wide consistent state since there may be
dependencies between the loci executing within different containers. The state of alocusis
defined by a set of registers, its kernel state and the set of modified pages that the locus has
accessed since its last snapshot. In Grasshopper, alocus may snapshot this state upon which
the kernel requests the managers of the containers which hold these pages to perform a
snapshot, thereby incorporating the changed state of the modified pages into the recoverable
dtate.

Since loci may be dependent on the results of computation performed by other loci, it is
necessary to detect these dependencies and ensure that they are preserved across failure of the



system; this guarantees global consistency which is the responsibility of the Grasshopper
kernel. The kernel coordinates the processing of locus snapshots and maintains dependency
information such that it is possible to recover the state of the system from a causally consistent
set of locus snapshots [24, 39, 42]. Details of these techniques are beyond the scope of this

paper.

Kernel data must also be made persistent and recoverable; inthisway, the kernel is part of the
persistent environment, thereby extending the concept of an operating system instance. A
Grasshopper kernel persists even when the host machine is not operating. Conventional
operating systems rebuild the operating system from scratch each time they are bootstrapped.
In Grasshopper, the entire kernel, operating system and user state persists. After an initial
bootstrap, an entire self-consistent state is loaded and continues execution.

5 Recover ability, Resilience and Applications

The Grasshopper model effectively provides the programmer with resilient and recoverable
data and processes. In this section we return to the examples of ad hoc data management
discussed in section 2 and show how the Grasshopper mechanisms provide a coordinated and
simple solution to the problems described.

51 Generic Applications

Generic applications are programs which operate on data to achieve a particular purpose.
Different sets of data are operated on at different times. Examples include word processors,
spreadsheet programs, CAD systems, editors, etc. In conventional systems the permanent state
of the documentsisheld in files. In Grasshopper each document is held in its original formin
acontainer. The application codeisalso held in acontainer. Each document container hasits
corresponding application container mapped into itself with the invocation point set to the start
of the application code. Thus the application may be initiated to operate on any document
simply by invoking that document container. The application has direct access to the data
structures representing the document and the costs associated with converting the document to
and from itsfile format are totally avoided; no recovery code need be written by the application
developer. In addition the capability system can guarantee that the internal representation of the
documents cannot be accessed by other programs. It should be stressed that thisis only one
approach and severa other techniques using the Grasshopper mechanisms are possible.

52 Intermediate Representations

Compilation systems present an excellent example of simplifications introduced by persistence.
Typically compilers provide an option to embed symbolic information which can be used by
the debugger within the generated executable code. The information is essentially a flattened
copy of the symbol table produced and used during the compilation process. In Grasshopper,
the symbol table can outlive the compilation in its original form. This could either be stored in
the generated code container or in a separate container for use by tools such as the debugger.
Similarly, intermediate representations of the code can be maintained to improve error reporting
or to enable automatic re-generation of machine code if the application is moved to a different
architecture. Thislatter approach is used on the AS/400 [37]. It isimportant to note that these
facilities can be provided with very little change to the compilation system. The data structures
aready exist and Grasshopper automatically makes them persistent.



53 Long-lived Applications

The third example is long-lived applications such as simulations. In Grasshopper these
applications and the corresponding loci are automatically resilient. The application programmer
need not write any special recovery code. The system guarantees that, following a crash, the
loci executing these applications automatically restart from the last consistent state. This results
in considerable savings in terms of programmer productivity and program development time.

54 Environments

The cost of construction of atypical Unix/X-windows environment can be significant, both in
terms of execution time and user time. Users typically create several windows and establish
particular environments within those windows. In conventional systems this environment
must be recreated each time the user logs on, a process which may involve the execution of a
number of scripts as well as gestures by the user in order to re-establish the state within
windows. In Grasshopper this cost is eliminated. Since the environment (including open
windows) is represented by data structures in containers, it is automatically persistent.
Furthermore, any loci (processes) associated with the environment are also persistent. Thus,
login simply corresponds to reconnecting to the environment and no user provided start-up
code or initial gestures need be performed. In addition, users may create many different
environments and connect to the one most appropriate for the task at hand. For example, there
may be a program development environment, a word processing environment, etc. Again, no
special user-level code need be written to achieve this flexibility; it is all a direct result of
persistence.

6 Conclusions

A significant proportion of the effort spent developing an application is devoted to dealing with
issues of storage and recoverability. Thisis because most existing operating systems provide a
severely limited long-term storage data model and little support for recoverability, resilience and
consistency of recovered data. Grasshopper provides persistent containers and loci asits base
abstractions and guarantees their recoverability; following a system failure, they will be
recovered to an globally self-consistent state.

The provision of these guarantees by the operating system, coupled with the ability to create
arbitrarily long-lived data structures, considerably simplifies the development of application
programs and encourages the construction of integrated systems. The programmer is not
required to write any code in order to save a data structure and all programs are automatically
recoverable and resilient. This results in major improvements in terms of both program
development time and execution efficiency.

A first implementation of the Grasshopper operating system is nearing completion. This
operates on the DEC Alpha range of machines. Initial experiments with development of
applications in (persistent) C confirm our expectations.
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