
The Grand Unified Theory of Address Spaces

*Anders Lindström, *John Rosenberg and †Alan Dearle

*Department of Computer Science
University of Sydney, Australia
{anders, johnr}@cs.su.oz.au

†Department of Computing Science
University of Stirling, Scotland
al@cs.stir.ac.uk

Abstract

A key decision in the design of an operating system is
which facilities to provide for the management and
composition of the address space. A wide spectrum of
schemes exist, ranging from the private process ad-
dress spaces of Unix through to the recently revived
single address space approach. This paper proposes a
new model which provides a unified and generalised
approach to address space management. The model
presents a single abstraction of address spaces which
are orthogonal to processes and may be composed in
arbitrary ways. The power of the model is
demonstrated by case studies which show how shared
libraries, a Unix system and a single address space
system may be implemented.

1. Introduction

The structure and facilities provided for the manipu-
lation of the address space constitute a fundamental
element in the design of an operating system. The
approach taken effectively dictates the computa-
tional model for programs executing on the system
and can limit the scope of the sharing and protection
paradigms that are possible. A wide spectrum of ap-
proaches to the provision of the address space have
been proposed and implemented, each with inherent
advantages and limitations.

Probably the best known approach, representing
one end of the spectrum, is the model originally sup-
ported by Unix. In this model each process has its
own address space, containing (possibly shared)
code and private data. A major advantage of this
approach is that it provides automatic, hardware
supported protection between processes. However,
the cost has been severe restrictions on the modes of
sharing that can be supported. The use of separate
process address spaces, combined with multitasking,
has lead to a sharing paradigm based on a number of
small applications executing in separate processes
and communicating via pipes. This approach has
proven extremely effective where the information
being shared maps easily to a byte stream but is
inadequate for more complex data types such as
trees or graphs. It has been argued that this design
was very much the result of the limited size of ad-
dress spaces supported by machines. Certainly this
was the case for Unix which was designed to run on
machines with a 64Kb address space.

The recent advent of machines with 64 bit ad-
dresses has caused system designers to rethink the
segregated model and to revive an idea first pro-
posed by the MULTICS designers [13] and imple-
mented on dedicated hardware by systems such as
Monads [14] . Such systems may be viewed as be-
ing at the opposite end of the spectrum from the tra-
ditional Unix model and are called single address
space operating systems (SASOS) [3] . In a SASOS,
all processes operate in the same address space.
Therefore all data and code must reside within this
address space in some unique location. The argu-
ments for this approach include improved sharing,
flexible protection models, and support for transpar-
ent persistence and distribution.

While the basic idea of a SASOS is appealing,
there are a number of problems that have not yet
been adequately addressed by their designers.
These problems relate to address space reuse and
the allocation of addresses in a distributed system.
In addition, most SASOS designs rely on the avail-
ability of, at least, a 64 bit address space. While 64
bit processors exist, none of them actually provides
a true 64-bit address space and it is not clear when
they will.

Between the two ends of the spectrum, there are
a number of schemes that are based on a segregated
model but that provide improved sharing facilities.
In modern Unix environments these include shared,
dynamically linked libraries and memory mapped
files. In micro-kernel systems, such as Mach and
Chorus, these facilities are generalised to a model
based on memory objects. While these models pro-
vide more flexibility than traditional operating sys-
tems, actual experience shows that inadequacies
remain for some applications [15] .

We believe that each of these approaches in-
volves trade-offs that are best evaluated on an ap-
plication-by-application basis. Therefore, the oper-
ating system should not dictate which one is used.
In this paper we propose a model of address space
management that is general enough to implement
any of these schemes described above with no sig-
nificant loss of efficiency. It also provides for some
novel approaches unavailable in any of them. The
paper first describes the model and then demon-

2

strates the power of the model through several case
studies.

2. A General Model of Address Spaces

In this section we describe a new multiple address
space model which provides a set of abstractions
that allow arbitrary models of sharing. The abstrac-
tion over data access and storage is the container.
The abstraction over execution is the locus (from
locus of execution); a term used to avoid any pre-
conceptions attached to the terms process and
thread . Protection is achieved using a capability
system.

2.1 Containers

Containers serve a number of purposes in our model.
First, they provide a means for data storage. The
data in a container is persistent, meaning that its
lifetime is orthogonal to the lifetime of the creating
locus and that it survives system shutdowns. The
details of container data management are further
discussed in [7] . Second, containers provide
address spaces for loci which execute within them.
A single locus may move between containers by the
invocation mechanism explained below. The
container in which a locus currently executes is
called its host container. During execution, all
virtual addresses issued by a locus correspond
directly to the container addresses of the host
container. Containers differ from virtual address
spaces on conventional systems because they may
be bigger than the address space provided by the
hardware and they are persistent. The third purpose
of containers is to provide a mechanism for address
space composition through the mapping facility
described below. Finally, containers serve as a
generic protection mechanism both by providing
hardware protected abstract data types through the
invocation mechanism and by providing ‘views’ of
data using the mapping mechanism.

2.2 Loci and invocation

Our computational model is procedure-oriented\[11]
in that communication is achieved by loci moving
between containers by invoking them. Any con-
tainer may include, as one of its attributes, a single
entry point known as an invocation point. When a
locus invokes a container, it begins executing code
at the invocation point. This facility is important for
security; it is the invoked container that controls the
execution of the invoking locus by providing the
code that will be executed.

A locus may invoke and return through many
containers in a manner similar to conventional pro-
cedure calls. As a consequence of this, a particular
container may have any number (including zero) of
loci executing within it. Parameters consisting of

data and capabilities for other containers (see be-
low) may be passed on an invoke operation. This
mechanism is very similar to those provided in other
object-based systems such as Monads [14] , Clouds
[6] , Alpha [5] and
Spring [9] .

One of the key features to the invocation mecha-
nism is that it is potentially very fast in comparison
to message-passing systems[2, 10] and for this rea-
son a variant of this model has been incorporated
into Mach[8] .

2.3 Mapping and address space composition

The purpose of container mapping is to allow data to
be efficiently shared between containers. This is
achieved by allowing data in a region of one con-
tainer to be made accessible (either as read-only or
read-write) at a range of addresses in another con-
tainer. Importantly, any mappings made into the
source container of the mapping are also visible in
the destination container. We call this recursive or
transitive mapping. This provides a powerful mech-
anism for composing address spaces and follows
naturally from the model because there is only one
abstraction of data storage and access. Recursive
mapping is a departure from other systems, such as
Mach, which provide separate abstractions for data
storage (memory objects) and address spaces,
thereby enforcing a single level of composition.

Loci perceive the address space of their host
container. Therefore, all loci executing within a
container share the same address space. However, a
locus may require private data, which is visible to
it, yet invisible to other loci that inhabit the same
container. To satisfy this need, the model provides
the notion of locus private mappings, which are al-
ways created relative to a locus and take prece-
dence over container mappings. Only the locus for
which they are created perceives them. This allows,
for example, each locus to have its own stack
occupying the same address range as the stacks of
other loci. This technique is used in some native
Unix kernel implementations to simplify stack man-
agement.

An interesting feature of locus private maps is
that they remain in effect even while the locus is
not executing in the destination container of the
mapping. Thus, if that container is visible through a
mapping or the locus returns to it, the locus private
mapping will still be taken into account during ad-
dress translation.

Finally, in addition to the data in a container be-
ing persistent, any mappings made into it are also
persistent, i.e. they may outlast the creating locus.

3

2.4 Access control

Access control is enforced via a capability-system,
which provides a location-independent means of
referencing entities within the system. A capability
must be presented to invoke a container or to exe-
cute any mapping operation. This, combined with
the fact that a locus can only address data within its
host container and those mapped into it, provides a
flexible protection environment.

3. Case Studies Using the New Model

3.1 Statically-linked shared libraries

Many conventional operating systems use shared li-
braries to reduce the disk and physical memory re-
quirements of programs. Additionally shared li-
braries may be updated without requiring programs
to be relinked. One of the drawbacks of current im-
plementations is that all processes using shared li-
braries, including instances of the same program,
must incur the cost of dynamic linking.

In our model, it is possible to implement shared
libraries that are statically linked. This means that
the text segment required by a program can be cre-
ated before any instances of that program come into
existence but that many different programs may still
share one copy of the library. This approach can
therefore deliver all the benefits of shared libraries
without incurring the cost of dynamic linking.

Consider an application call foo that uses two li-
braries lib1 and lib2. Figure 1 illustrates how foo’s
text segment can be created and shared between
different processes. In this example, the data repre-
senting the code for the libraries and the applica-
tion-specific code of foo, reside in separate contain-
ers and the text segment of foo has been created by
mapping the libraries and application code into an-
other container called foo.text. Notice that, because
container creation is independent of loci, this opera-
tion can be performed by the linking system before
any instances of foo are created.

In the example, there are two instances of foo
called foo' and foo". Each instance is implemented
as a container that maps in three containers, a pri-
vate data segment, a private stack segment and the
shared text segment. Since the text segment has al-
ready been composed, there is no need to perform
dynamic linking. The efficacy of avoiding dynamic
linking has been shown in the Spring system[12] .
The Spring model differs somewhat from ours be-
cause it does not allow recursive mapping.
Therefore, even though the libraries may have al-
ready have had their external references resolved,
each library must be separately mapped into each
instance of the program. In our model, an interme-
diate container, such as foo.text in figure 1, can be
used to reduce this operation to a single mapping.

The above example serves as an illustration of
address space composition using recursive mapping.
Clearly, there are other issues such as how changes
to libraries are effected and how the actual linking
is performed but these issues are relevant to any
system that uses shared libraries. Further, the ex-
ample shows how libraries can be shared between
difference instances of the same program. In cases
where the libraries are comprised entirely of position
independent code, a single copy of the library may
be shared between all programs that use it. Such
considerations are beyond the scope of this paper.

3.2 Unix processes

One of the implicit benchmarks when designing and
implementing new operating systems is whether or
not it is possible to implement a Unix emulation.
The purported benefits of this are that one can then
port familiar programs without having to completely
rewrite them and that it somehow validates the new
operating system. In this section we describe how
locus-private maps can be used in this context.

One of properties of Unix is that a process in ker-
nel-mode can directly access it own user-level ad-
dress space. While alternative implementations of

Figure 1. Statically linked shared libraries using recursive mapping.

4

Unix on micro-kernels such as Mach[1] and
Chorus[4] are possible, the native Unix approach is
tried and proven and is clearly efficient.

One of the problems with implementing Unix as
a user-level program in, for example, Mach is that
the ‘kernel’ resides in a different address space from
the processes. This makes it difficult to directly ac-
cess the process’ address spaces. While the imple-
mentors of the Mach Unix server[9] show that tech-
niques such as memory mapped files and running
‘system code’ at user-level can ameliorate this prob-
lem, it seems clear that giving the Unix server di-
rect access to processes’ address spaces would have
been beneficial.

The solution to this problem in our model hinges
on locus private mappings. Consider figure 2a and
2b. Here, the Unix server resides in a separate con-
tainer, US, that is divided into two large regions
called the process region and the server region, cor-
responding to user and kernel regions in a native
implementation. There are two Unix processes, P1
and P2, that are each implemented as separate con-
tainers with text, data and stack segments in the
process region of the container. The active part of a
process is simply a locus (or many loci if threads
are supported) running in the container. When the
server creates each process, it also performs a
read/write locus private map between the process re-
gions of both the process and the server containers.
This map is made relative to the process’ locus. In
the example, these locus private maps are denoted
as lpm1 and lpm2 and are made relative to locus l1
and l2 respectively.

Figure 2a. P1 in kernel-mode.

Figure 2b. P2 in kernel-mode.

A system call is implemented as an invocation
to the server. Since it is a process’ locus that is ac-
tually in the kernel during a system call, any ac-
cesses to the process region in the server are trans-
lated into accesses to the process’ address space
through the locus private map. In figure 2a, P1’s lo-
cus, l1, has performed a system call by invoking US.
It can be seen from the diagram that accesses to
US’s process region by l1 are translated into ac-
cesses to P1’s container through lpm1. Figure 2b
shows l2’s view of the process region while in US.

Since the mappings into the server’s process re-
gion are private to a process’ locus, each process
can only access its own address space while in the
kernel. This is true even if many processes are in
kernel-mode simultaneously. Note that, due to the
orthogonality of mappings and loci, this mapping
only need be performed when the process is created.

3.3 A single address space environment

Having shown how the traditional segregated model
of address spaces can be efficiently implemented in
our model we move to the other end of the spec-
trum, namely single address space operating sys-
tems (SASOSs). Since our system does not enforce
a single address space for the entire system the fol-
lowing example is not a single address space oper-
ating system. Rather, it is a single address space
environment. While we believe that the former is
not really a viable proposition for reasons outlined in
section 1, we do believe that the main benefit of a
single address space, i.e. meaningful pointers be-
tween protection domains and machines, may use-
fully be exploited in applications that exist in the
larger multiple address space environment.

5

Figure 3. Two protection domains in a single ad-
dress space environment.

One of the best know SASOS designs is the Opal
system[3] . There are two key aspects of Opal in
terms of address space management. First, there is
a single address space in which all data resides.
Second, processes execute in protection domains
that are a collection of protected (read/write or
read) windows onto the data space. Processes may
move between protection domains thereby changing
the portions of the data space which they can ac-
cess. Access to protection domains is governed by a
capability system. Figure 3 shows how an Opal-like
environment may be implemented in our model.

The data space itself is implemented as a single
container, DS, in which all the data resides. There
are two protection domains PD1 and PD2 which
share a common code segment C but operate on two
different objects O1 and O2. Each domain is im-
plemented as a separate container with mappings
from the appropriate parts of the data space.
Protection is based on the fact that a locus, while in
a protection domain, can only access those parts of
the data space that are mapped into that domain.

The entry point of a domain is set to the appro-
priate address in the code segment. Thus, when a
locus wants to move to a new domain it simply in-
vokes the container representing the domain and
starts executing at the correct location. In figure 3,
for example, the locus l moves from PD1 to PD2.
Access to protection domains is controlled by the
capability system and is therefore secure.

4. Conclusions

The provision of flexible facilities for the manage-
ment and composition of the address space has long
been an important topic in operating system design.
It has taken on more significance with increase in
demands being made of the operating system by de-
velopments such as shared libraries, distributed
shared memory, persistence, etc. A wide spectrum

of address space schemes has been developed in an
attempt to satisfy these needs.

In this paper we have presented a new address
space model which unifies all of these ideas. Our
model allows both arbitrary composition of address
spaces and arbitrary relationships between address
spaces and execution entities, as well as flexible
control over access to the address space. We have
demonstrated the generality of the scheme by show-
ing how shared libraries, the Unix model and a sin-
gle address space environment may be implemented
above the new model. Although space has not per-
mitted us to discuss persistence, the model also in-
cludes mechanisms to support user-level control
over the lifetime of data [7] .

The model described has been implemented as
part of the Grasshopper operating system project at
the Universities of Sydney and Adelaide. The first
implementation is on the DEC Alpha platform and is
operational in a limited form. A prototype of the
Unix server also exists. Initial timing experiments
indicate that the overheads associated with main-
taining the model are, on average, no higher than
those in other operating systems. It is expected that
a fully functional version of the kernel will be com-
pleted by early 1995. We intend to implement a
number of other more novel servers in order to ex-
periment further with the model.

Acknowledgements

This work was supported by Australian Research
Council grant A49130439 and by an equipment grant
from Digital Equipment Corporation. The authors
also wish to express their appreciation to Rex di
Bona, Matty Farrow, Frans Henskens, David Hulse,
Stephen Norris and Francis Vaughan who have
made valuable contributions to this work.

References

[1] Acceta, M., Baron, R., Bolosky, W., Golub,
D., Rashid, R., Tevanian, A. and Young, M.
"Mach: A New Kernel Foundation for Unix
Development", Proceedings, Summer Usenix
Conference, pp. 93-112, 1986.

[2] Bershad, B. N., Anderson, T. E., Lozowska, E.
D. and Levy, H. M. "Lightweight Remote
Procedure Call", Transactions on Computer
Systems, vol 8, 1, pp. 37-55, 1990.

[3] Chase, J. S., Levy, H. M., Feeley, M. J. and
Lazowska, E. D. "Sharing and Protection in a
Single Address Space Operating System",
ACM Transactions on Computer Systems,
May, 1994.

6

[4] Chorus Systems "Overview of the CHORUS
Distributed Operating Systems", Computer
Systems - The Journal of the Usenix
Association, 1(4), 1990.

[5] Clark, R. K., Jensen, E. D. and Reynolds, F.
D. "An Architectural Overview of the Alpha
Real-Time Distributed Kernel", Usenix
Workshop on Microkernels and Other Kernel
Architectures, 1992.

[6] Dasgupta, P., et al "The Design and
Implementation of the Clouds Distributed
Operating System", Computing Systems
Journal, vol 3, pp. 11-46, 1990.

[7] Dearle, A., di Bona, R., Farrow, J. M.,
Henskens, F. A., Lindström, A., Rosenberg, J.
and Vaughan, F. "Grasshopper: An
Orthogonally Persistent Operating System",
Computer Systems, vol 7, 3, pp. 289-312,
1994.

[8] Ford, B. and Lepreau, J. "Evolving Mach 3.0
to a Migrating Thread Model", University of
Utah, UUCS-93-022, 1993.

[9] Golub, D., Dean, R., Forin, A. and Rashid, R.
"Unix as an Application Program", included
with Mach distribution..

[10] Hamilton, G. and Kougiouris, P. "The Spring
Nucleus: A Microkernel for Objects", Sun
Microsystems Laboratories, TR-93-14, 1993.

[11] Lauer, H. C. and Needham, R. M. "On the
Duality of Operating System Structures",
Operating Systems Review, 13(2), pp. 3-19,
1979.

[12] Nelson, M. N. and Hamilton, G. "High
Performance Dynamic Linking Through
Caching", Sun Microsystems Laboratories,
TR-93-15, 1993.

[13] Organick, E. I. "The Multics System: An
Examination of its Structure", MIT Press,
Cambridge, Mass., 1972.

[14] Rosenberg, J. and Abramson, D. A.
"MONADS-PC: A Capability Based
Workstation to Support Software
Engineering", Proc, 18th Hawaii International
Conference on System Sciences, pp. 515-522,
1985.

[15] Vauhgan, F., Basso, T., Dearle, A., Marlin, C.
and Barter, C. "Casper: A Cached
Architecture Supporting Persistence",
Computer Systems, vol 5, pp. 337-359, 1992.

