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Abstract

Persistent systems support a single storage abstraction in which all data may be
created and manipulated in a uniform manner, regardless of its longevity.  In such
systems a protection mechanism is required to ensure that programs can access
precisely those objects they are supposed to access and no others.  In a
monolingual system this protection can be provided by the type system of the
programming language; in systems which support multiple persistent languages a
separate protection mechanism must be supported.  This paper describes the
capability-based protection mechanism employed in Grasshopper, a new operating
system specifically designed to support persistent systems on a conventional
workstation platform.  We show that this mechanism provides sufficient power
and flexibility to handle a wide variety of protection scenarios.

1. Introduction

In this paper we describe the protection mechanism in Grasshopper, an
operating system designed to support orthogonal persistence.  The two basic
principles of orthogonal persistence are that any object may persist (exist) for as
long, or as short, a period as the object is required, and that objects may be
manipulated in the same manner regardless of their longevity [3].  Persistent
systems provide a fundamentally different computation paradigm to conventional
systems.  In a conventional system different mechanisms are provided for creating
and accessing temporary data and permanent data (e.g. virtual memory and a file
system).  A persistent system, on the other hand, supports a single storage
abstraction in which all data may be created and manipulated in a uniform manner,
regardless of its longevity.  Thus, programs may create data structures which
outlive their execution and there is no need to write code to "flatten" data structures
in order to store them in files.



A number of persistent systems have been constructed, most of which have been
built above conventional operating systems, usually Unix [1,4,25,26,32].  Although
these systems have been successful in terms of demonstrating the feasibility of
persistence as a programming paradigm, efficiency has been a major problem.  This
is not surprising since they are being constructed above operating systems with a
model that is fundamentally different from the persistence model.  Other groups
have developed specialised hardware in order to provide a more appropriate
environment [9,17,33].  These groups have encountered difficulties because of the
cost of building hardware using the latest technology and the problems associated
with making the results of the research available to other research groups.

In Grasshopper [12,13] we have adopted a third approach which is to develop a
new operating system on a conventional workstation platform.  Some other research
groups have also taken this route [5,6,10].  We see the advantages of this approach
as:

• workstations are cheap and readily available,

• their performance is improving rapidly, and

• most research groups have access to these machines and so the
results of our work can be easily made available.

Unfortunately, the use of workstations designed to support Unix does place
some constraints on our design, particularly related to addressing issues.  These
problems have been discussed elsewhere [13].  Despite these difficulties we believe
that it is possible to provide an efficient environment for persistent systems on
conventional hardware.

An important issue in the design of a persistent system is the protection
mechanism.  Some form of protection is necessary for two reasons:

1. to ensure that programs can access precisely those objects they are
supposed to access and no others, and

2. to restrict access to certain operating system functions.

In a monolingual persistent system built using a type-safe language the first
category of protection can be provided by the programming language and type
system [27].  However, Grasshopper is intended to be language independent.  It is
expected that persistent application systems employing different languages will run
concurrently above the kernel.  We therefore cannot rely on a single type system.

In most conventional operating systems access to operating system functions is
controlled by a separate mechanism from that used to control access to data.  Each
user is given an access level and this determines the operations which may be
performed.  In Unix there are effectively only two such access levels, normal user
and super-user.  Just as we have argued that there should be a single data creation
and manipulation mechanism for all data, it is sensible to have a single protection
mechanism which provides all access controls.  Such a uniform approach has been
adopted on some object-based operating systems (e.g. Monads [22]) and is



employed in Grasshopper, which has a single protection mechanism controlling
access to both data and operating system functions.

This paper concentrates on the issue of protection in the Grasshopper operating
system.  We begin with a description of the basic abstractions over storage and
execution in Grasshopper and the protection requirements for these abstractions.
We then provide some background on capabilities as a protection mechanism for
persistent systems in general.  This is followed by a description of the structure of
capabilities in Grasshopper and a discussion of access rights and revocation.
Finally we describe the operations supported for the manipulation of capabilities in
Grasshopper.

2. Grasshopper Basic Abstractions

In this section we describe the two basic abstractions in Grasshopper.  The
abstraction over storage is the container and the abstraction over execution is the
locus. Conceptually, each locus executes within a single container, its host
container. Containers are not virtual address spaces.  They may be of any size,
including larger than the virtual address range supported by the hardware.  The
data stored in a container is supplied by a manager. Managers are responsible for
maintaining a consistent and recoverable stable copy of the data represented by the
container.  The use of managers, which is vital to the removal of the distinction
between persistent and volatile storage, is beyond the scope of this paper and is
discussed in [12].

2.1 Containers

Containers are the only storage abstraction provided by Grasshopper; they are
persistent entities which replace both address spaces and file systems.  In most
operating systems, the notion of a virtual address space is associated with an
ephemeral entity, a process, which accesses data within that address space.  In
contrast, containers and loci are orthogonal concepts.  A Grasshopper system
consists of a number of containers which may have loci executing within them.  At
any moment in time, a locus can only address the data visible in the container in
which it is executing.  Of course, there must be facilities which allow the transfer of
data between containers.  The mechanisms provided in Grasshopper are mapping
and invocation.

The purpose of container mapping is to allow data to be shared between
containers.  This is achieved by allowing data in a region of one container to appear
(either as read-only or read-write) in another container.  In its simplest form, this
mechanism provides shared memory and shared libraries similar to that provided
by conventional operating systems.  However, conventional operating systems
restrict the mapping of memory to a single level. Both VMS [24] and variants of
Unix (such as SunOS) provide the ability to share memory segments between
process address spaces, and a separate ability to map from disk storage into a
process address space.  Several other systems [7, 8, 28, 31] provide the notion of a
memory object, which provides an abstraction over data.  In these systems, memory



objects can be mapped into a process address space, however memory objects and
processes are separate abstractions.  It is therefore impossible to directly address a
memory object, or to compose a memory object from other memory objects.

By contrast, the single abstraction over data provided by Grasshopper may be
arbitrarily (possibly recursively) composed.  Since any container can have another
mapped onto it, it is possible to construct a hierarchy of container mappings as
shown in Figure 1.  The hierarchy of container mappings forms a directed acyclic
graph.  The restriction that mappings cannot contain circular dependencies is
imposed to ensure that one container is always ultimately responsible for data.  In
Figure 1, container C2 is mapped onto container C1 at location a1. In turn, C2 has
regions of containers C3 and C4 mapped onto it.  The data from C3 is visible in C1
at address a3, which is equal to a1 + a2.

 

Figure 1: A container mapping hierarchy

Loci perceive the address space of their host container.  Therefore, all loci
executing within a container share the same address space.  However, a locus may
require private data, which is visible to it, yet invisible to other loci that inhabit the
same container.  To satisfy this need, Grasshopper provides the notion of a locus
private mapping.

Locus private mappings are visible only to the locus which created them and
take precedence over host container mappings.  This allows, for example, each
locus to have its own stack space with the stacks of all loci occupying the same
address range within the host container.  This technique both simplifies multi-
threaded programming and provides a useful security mechanism that is
unavailable with conventional addressing mechanisms.



2.2 Loci

In its simplest form, a locus is simply the contents of the registers of the
machine on which it is executing.  Like containers, loci are maintained by the
Grasshopper kernel and are inherently persistent.  Making loci persistent is a
departure from other operating system designs and frees the programmer from
much complexity [22].

A locus is associated with a container, its host container.  The locus perceives
the host container’s contents plus any containers mapped by locus private mappings
within its own address space.  Virtual addresses generated by the locus map directly
onto addresses within the host container and the locus private mapped containers.
A container comprising program code, mutable data and a locus forms a basic
running program.  Loci are an orthogonal abstraction to containers.  Any number
of loci may execute within a given container; this allows Grasshopper to support
multi-threaded programming paradigms.

2.3 Inter-Container Communication

An operating system is largely responsible for the control and management of
two entities: objects, which contain data (containers); and processes (loci), the
active elements which manipulate these objects. One of the most important
considerations in the design of an operating system is the model of interaction
between these entities.  Grasshopper uses the procedure-oriented model in which
communication is achieved via procedure calls and processes move between entities
[23].  Thus a locus may invoke a container thereby changing its host container.

Any container may include, as one of its attributes, a single entry point known
as an invocation point. When a locus invokes a container, it begins executing code
at the invocation point.  The single invocation point is important for security; it is
the invoked container that controls the execution of the invoking locus by providing
the code that will be executed.

A locus may invoke and return through many containers in a manner similar to
conventional procedure calls.  The Grasshopper kernel maintains a call chain of
invocations between containers.  Implicitly each locus appears to be rooted in the
container representing the kernel: when a locus returns to this point it is deleted.
However some loci may never need to return to the container from which they were
invoked; such a locus may meander from container to container.  In such
circumstances, a parameter to the invoke system call allows the locus to inform the
kernel that no call chain need be maintained.

Access to operating system functions is also achieved by invocation. This
provides a uniform interface for applications and blurs the distinction between
system and user functions.



2.4 Protection Requirements

In the previous sections we have described the basic abstractions in Grasshopper
and the operations over these abstractions.  Given that containers are the only
abstraction over storage, some access control mechanisms are required.  These
include control over:

• which containers may be invoked

• the setting of an invocation point

• which containers may be mapped and the type of access one has to
the mapped region, e.g. read/write

• the creation and destruction of containers

Similarly, it is desirable to have control over loci.  The control required
includes:

• control over the creation of locus private mappings

• the ability to block and unblock loci

• management of locus exceptions

• control over the creation and destruction of loci.

In a conventional operating system many of these controls are provided by the
file system, which maintains access lists, usually on a hierarchical basis.  This is
not appropriate in Grasshopper since there is no file system.  Some persistent
systems use the type system to provide control over access, however, as we have
stated earlier, we propose to support multiple languages with different type systems,
and so this is not an alternative.  For these reasons we believe that it is essential for
Grasshopper to support a third abstraction: a protection mechanism.  That
abstraction is capabilities and in the following section we provide some background
and justification for this choice.

3. Capabilities as a Protection Mechanism

Capabilities were first proposed by Dennis and Van Horn [14] as a technique for
describing the semantics of controlled access to data. The idea was extended by
Fabry who proposed a computer system based on capabilities [15]. There have been
several capability-based systems constructed.  Some of these enlisted hardware
support [30,33,35], others were purely software implementations [29,36]. Although
these systems differ greatly, the fundamental principles of capability-based access
control are the same.

The basic idea is that access to objects is controlled by the ownership and
presentation of capabilities. That is, in order for a program to access an object it
must produce a capability for that object. In this sense capabilities may be viewed as
keys which unlock the object to which they refer. Since the possession of a



capability gives an undeniable right to access an object it is important that
programs are unable to access data for which no authorisation is held.  A capability
for an object can only be obtained by creating a new object or by being passed a
capability by another program holding that capability.

There are three well-known techniques for achieving this requirement:

tagging: in which extra bits are provided by the hardware to
indicate memory regions representing capabilities and
to restrict access to them,

passwords: in which a key, embedded in a sparse address space, is
stored with the entity and a matching key must be
presented to gain access to that entity, and

segregation: in which capabilities are stored in a protected area of
memory.

In all of the above methods, capabilities have three components: a unique name
identifying some entity, a set of access rights related to that entity, and rights
pertaining to the capability itself, for example, whether the capability can be
copied.  Capability systems use entity names which are unique for the life of the
system, that is, the name given to an entity will never be re-used, even if the entity
is deleted. This avoids aliasing problems and provides a means of trapping
dangling references. Such unique names may be generated by using a structured
naming technique where each machine is given a unique name and each entity
created on that machine has a unique name [18,19].

Although the ownership of a capability guarantees the right to access the
corresponding entity, the access rights field may restrict the level of access allowed.
The facilities provided by access rights vary greatly between different capability
systems. They may be as simple as read, write and execute, or they may be based on
the semantics of the different objects, for example a list of procedures for accessing
an abstract data type. When a capability is presented in order to access an object,
the system checks that the type of access does not conflict with that allowed in the
capability. There is usually an operation which allows a new capability to be
created from an existing one with a subset of the access rights. This allows for the
construction of restricted views.

The third component of a capability contains status bits which indicate which
operations can be performed on the capability itself. Again, these vary greatly. The
minimum usually provided is a no copy bit which restricts the copying of the
capability, perhaps on a per user basis. This may be used to stop some user from
passing a capability on to other users, i.e. to limit propagation. Other status bits
may include a delete bit which allows the holder of the capability to delete the
object.

A further facility provided on some capability systems is the ability to revoke
access. That is, after giving a program a capability it may be desirable at a later
time to revoke this capability.  Implementation of revocation is not easy. The



simplest technique is to change the unique name of the object. This will effectively
invalidate all existing capabilities. Selective revocation may be supported by using
indirection through an owner-controlled table of access rights or by providing
multiple names for the object which can be individually invalidated.

Capabilities provide a uniform model for controlling access of data. However,
entry to the system itself, by logging on, must in the end be based on some form of
password. An advantage of capability-based systems is that, even if the password
system is broken, there need not be any single password which provides access to
all data of the system. That is, there need not be a super-user.

In summary we see the major advantages of capabilities as a protection
mechanism as being:

• unique naming of entities, avoiding aliasing problems

• flexibility, in that a number of different protection paradigms may
be implemented

• restricted access to entities may be supported

• revocation allows lifetime control over access

• avoidance of the need for a super-user

For all of these reasons capabilities are supported as the basic protection
abstraction in Grasshopper.

4. Capabilities in Grasshopper

The basic access and protection mechanism in Grasshopper is the capability.  In
order to perform any operation on a container or locus an appropriate capability
must be presented.  From an abstract point of view, capabilities in Grasshopper
have five fields as shown in Figure 2.  The unique name identifies the entity to
which this capability grants access.  The category defines the kind of the entity
represented.  The categories supported include containers, loci and devices.
However, it is anticipated that there will be additional categories supported in the
final system.

Figure 2: The logical structure of a capability in Grasshopper

The next three fields define the access granted by the capability.  The capability
rights indicate rights relating to the capability itself while the category rights relate
to operations on a particular entity category.  The capability and category rights are
described in section 4.4.



The entity rights are uninterpreted by the system and are meaningful only to the
particular entity referenced by the capability.  They are stored in a secure manner
by the kernel with the other access rights and are passed as an implicit parameter
on invocation.  They may be used for a variety of purposes; for example, they could
be used as tags to represent a primitive type system allowing a container to
implement a domain specific protection mechanism.  Alternatively,  they may be
used as an identifier; a device manager may represent different physical devices
using capabilities that differ only in their entity rights field.  In this case the entity
rights field represents the physical device.  They may also be used to describe the
level of service available from an invoked container using this capability.  This
could be implemented as a bit list, with one bit for each operation provided by the
container.  Such an arrangement would allow the construction of capabilities with
different views of a container.  Alternatively, the entity rights could be used as a tag
to identify the capability used to effect an invoke.  This would allow some form of
accounting for the service provided.  In both of these case the kernel does not
interpret the meaning of the entity rights; it simply stores them and makes them
available as part of the invoke mechanism.

The two major issues in the design of a capability system are the naming
scheme and the method used to protect the capabilities themselves.  The allocation
of unique names to entities and the method used to locate these entities is beyond
the scope of this paper.  However, as will be shown in the following sections, these
unique entity names are not directly visible to users of the system and so we have
considerable flexibility in the design of the low-level naming scheme.

As we have described in Section 3 there are three basic techniques for protecting
capabilities, namely tagging, passwords and segregation.  The merits of each of
these have been well discussed in the literature [2,16,21,34].  Given that
Grasshopper is to be implemented on conventional hardware, tagging is not an
option.  Password capabilities have the advantage that they may be embedded
within applications and require no special software to protect them.  However, it is
precisely this feature which makes them less appealing.  Since the kernel cannot
know how many (if any) capabilities for an entity exist at any point in time, it
cannot perform garbage collection and must rely on explicit destruction of entities
or some form of aging [2].

In a segregated system the kernel always knows how many capabilities exist for
an entity.  Using segregated capabilities allows garbage collection to be performed
in association with explicit destruction of entities by loci.  Reference counts may be
maintained and, when the reference count on a capability falls to zero (i.e., there
are no more extant references to the corresponding entity) the entity may be
deleted.  For these reasons segregated capabilities are used in Grasshopper.

4.1 Association of Capabilities with Entities

In Grasshopper, capabilities provide access to entities and also control the level
of access to those entities.  Since the Grasshopper system uses a segregated
capability system, capabilities are protected from direct manipulation by programs.



Associated with each entity, but protected from user access, are two tables known as
the permission group table and the capability table.  Capabilities owned by an
entity reside in its capability table whilst control over access to an entity is effected
by entries within its permission group table.  Capability table entries are indexed by
fixed length keys and refer to permission group entries which contain sets of
permissions; together these tables implement the Grasshopper capability regime.

Loci may only use capabilities owned by themselves or their host container;
these capabilities are accessed via the presentation of a capability reference or
capref.  Caprefs are the way in which capabilities appear to the application
programmer.  A capref comprises a pair consisting of a flag and a key.  The flag
specifies whether the key should be interpreted with respect to the locus or its host
container.  The key refers to an entry in the selected entity’s capability table.
Caprefs are not protected by the system and may be constructed arbitrarily.  This
does not constitute a security risk since a useful capref can only refer to those
capabilities legitimately held by the host container or locus.

On presentation of a capref, the key is looked up in the selected capability table.
Assuming a match is found, the permission group field of the selected capability
table entry is used to identify the entity being referenced and the permission group
containing the permissions associated with that capability.

In Figure 3 the container C1 is the host container of locus L1.  Two caprefs,
CR1 and CR2 are stored within Container C1 and are therefore addressable by
locus L1.  When presented by L1, capref CR1 refers to a capability in L1's capability
table whereas CR2 refers to the capability in the L1's host container, C1.  In both
cases the capabilities refer to the entity C2.  However, since they refer to different
permission group entries, they may have different protections associated with them.

On creation of an entity, a single permission group called the master permission
group, granting all access, is also created and a capability referring to it is returned.
Appropriate operations are provided for creating new permission groups with
reduced access; these are discussed later in the paper.  Such groups are called
derived permission groups and capabilities referring to these are called derived
capabilities.



Figure 3: Permission groups, capability tables and caprefs

There are two distinct advantages of this structure.  First, it makes no
assumptions about the relationships between capabilities.  The kernel simply
maintains the capabilities in a table in a secure manner.  Arbitrary naming schemes
and structures can be constructed above the kernel.  For example, it would be
possible to build a hierarchical naming scheme similar to that provided by Unix.
Alternatively, more flexible naming schemes such as those described in [11, 20]
could be implemented.  Indeed, alternative naming schemes may coexist within a
running Grasshopper system.  Second, the separation of the capabilities from the
permission groups provides considerable flexibility, particularly in relation to
revocation of access.  This is discussed in Section 4.3.

4.2 Access Rights

In this section we summarise the access rights supported by the Grasshopper
capability system.  These access rights are stored in permission groups and define
the operations that may be performed using a corresponding capability.  All system
functions (i.e. mapping, invocation, etc.) are controlled by capabilities and require
the presentation of capabilities with appropriate access permissions.

As we have indicated above, there are three sets of rights: capability rights,
category rights and entity rights.  The first two groups of rights, capability and
category rights, are defined by the Grasshopper kernel and are collectively referred



to as kernel rights.  The last group, entity rights, are not interpreted by the kernel,
but are held in a secure manner in the permission groups.

4.2.1 Capability Rights

The capability rights apply to all categories of entities and control the operations
on the capability tables and permission groups.  The capability rights are:

• destroy – the right to destroy the corresponding entity

• copy permission group – the right to create a copy of a permission
group for an entity

• delete permission group – the right to delete a permission group

• reduce kernel rights – the right to reduce the kernel rights in an
existing permission group

• modify entity rights – the right to modify the entity rights in an
existing permission group

• derive kernel rights – the right to derive a new permission group from
an existing permission group with equal or reduced kernel rights

• derive entity rights – the right to derive a new permission group from
an existing permission group, possibly with modified entity rights

• inject – the right to insert new capabilities into an entity’s capability
table

The first right allows the destruction of an entity.  This is effectively achieved
by deleting all of the permission groups for the entity.  The next two rights control
copying and deletion of permission groups.  The following four rights permit the
modification of the rights in a permission group and the creation of new permission
groups with modified access rights.  The separation of control over manipulation of
kernel rights and entity rights reflects the fact that entity rights are uninterpreted by
the kernel.  The meaning of kernel rights is universally known.  On the other hand,
only programs which understand the format of the entity rights for a particular
entity can sensibly modify these.  It is thus necessary to be able to separately restrict
the ability to manipulate entity rights to appropriate programs.

There are no rights which control the manipulation of capability tables.  Loci
can always refer to their own capability table and the capability table of their
current host container.  The inject right controls access to other entity’s capability
tables.  This is further discussed in Section 4.4.

4.2.2 Category Rights

The category rights apply to specific categories of entities.  However, there are
some common category rights which apply to both containers and loci.  These are:



• alter read-only mappings – the right to define and remove read-only
mappings of containers into this entity

• alter read-write mappings – the right to define and remove read-write
mappings of containers into this entity

• alter exception handler – the right to define and remove an exception
handler for this entity

The container category rights are:

• map read-only - the right to map this container into another entity
with read-only access

• map read-write - the right to map this container into another entity
with read-write access

• invoke - the right to invoke this container

• set invocation point - the right to modify the invocation point for this
container

The locus category rights are:

• raise exception - the right to raise an exception for this locus

• block/unblock - the right to control the scheduling of this locus

There are two sets of mapping rights.  The first set, alter read-only/read-write
mappings, defines whether the holder of the capability is allowed to map containers
into the corresponding entity.  The second set applies to containers and indicate
whether the holder of the capability is permitted to map the specified container into
other containers and loci.  For example, in order to map container A into container
B with read-write access, a locus must have a capability for A with at least map
read-write rights and a capability for container B with at least alter read-write
mappings right.

Grasshopper supports a concept of exception handlers.  There are several rights
associated with these, however they are beyond the scope of this paper.  They are
included here for completeness.

As described earlier, Grasshopper provides an invocation mechanism which
permits loci executing in different host containers to communicate.  A capability
with the invoke right is required in order to invoke another container.  Invocation
causes the locus to begin execution at the invocation point of the invoked container.
The invocation point may be changed by the holder of a capability with the set
invocation point right.

Finally, the block/unblock right allows the holder of such a capability to control
the execution of a locus.  This may be used to implement higher level
synchronisation and scheduling mechanisms in a controlled manner.



4.3 Permission Groups and Revocation

One of the most powerful features of Grasshopper protection system is support
for revocation.  It is possible to grant access to some entity by the provision of a
capability and then to revoke this access at a later stage.  Revocation is achieved in
Grasshopper via the permission group mechanism.

Recall that a capability effectively consists of the name of an entity and the
identification of one of the permission groups associated with that entity.  Access
may be revoked by deleting the permission group with which the capability is
associated.  Any future use of the capability will result in an exception because the
permission group no longer exists.  Such draconian measures are not always
required; Grasshopper therefore also supports the ability to reduce the access rights
for the permission group, thereby reducing the operations allowed.

The mechanism described above, combined with the ability to copy permission
groups and to derive new permission groups, provides a powerful and flexible
protection paradigm.  The set of permissions groups associated with an entity form
a tree.  Copying a permission group creates a new sibling, whilst derivation creates
a new child.  This is similar to a scheme for password capabilities described by
Anderson [2].

The properties of permission group trees are simple:

• The access rights available in any permission group are always
greater than or equal to those available from any descendant of that
permission group.

• If any permission group is deleted then all of its descendants are also
deleted.

• If the access rights in a permission group are reduced then all its
descendants are similarly reduced.

Consider as an example a class of students to whom we wish to give access to
some entity required for an assignment in such a way that it is possible to revoke
access for any individual student, or for all students, e.g. when the assignment is
due.  This can be achieved by creating a new permission group and then deriving a
permission group below this for each student.  Providing a capability for each
permission group is held by the person in charge, then an individual student’s
access may be revoked by deleting that student’s permission group and access for
all students may be revoked by deleting the permission group from which they were
derived.

4.4 Operations on Capabilities

In the previous sections we have referred to various operations for manipulating
and copying capabilities and permission groups.  In this section we provide type
definitions for the various data structures along with a description of each of the



operations.  The structure of the types entity_rights_type and cap_key_type is
implementation dependent and is not important to the discussion which follows.
The notation capability(x) is used to refer to the capability found in the capability
table indicated by x.cr_flag in the location indicated by x.cr_key.

Types

permissions is structure ( capability_rights_type  capability_rights;
category_rights_type  category_rights;
entity_rights_type  entity_rights  )

permission_group is structure (  permissions  pg_permissions  )

capability is structure ( cap_key_type  cap_key;
permission_group  cap_pg  )

caplist_selector is enum (  locus, host_container)

capref is structure ( caplist_selector  cr_flag;
cap_key_type  cr_key  )

Operations

copy_cap ( capref  source, destination )

delete_cap ( capref  target )

copy_pg ( capref  source, destination )

reduce_pg ( capref  target; permissions  new_permissions )

delete_pg ( capref  target )

derive_pg ( capref  source, destination; permissions  new_permissions )

delete_entity ( capref  target )

inject_cap ( capref  source, destination; cap_key_type  new_cap_key )

The copy_cap operation allows capabilities to be copied between and within the
currently accessible capability tables (i.e. current locus table and current host
container table).  The capability referred to by source is copied to the capability
table indicated by destination.cr_flag in the location indicated by
destination.cr_key.  Note that this operation does not affect the permission groups.
After a copy_cap operation, both source and destination refer to the same
permission group.

The delete_cap operation removes the entry referred to by target.cr_key in the
table indicated by target.cr_flag.  Again, permission groups are not affected by this
operation.



The copy_pg operation creates a new permission group for the entity indicated
by capability(source).  The new permission group has the same permissions as the
source.  A new capability is created and is stored in capability(destination) .  This
capability refers to the new permission group.  The new permission group is a
sibling to capability(source).cap_pg, in the permission group tree; revocation of
capability(source) does not revoke capability(destination).  Similarly, revocation of
capability(destination) does not revoke capability(source).cap_pg.
Capability(source).cap_pg.pg_permissions must include copy permission group for
this operation to take place.

The capability copy operations are used for two main purposes.  First, they allow
the re-organisation of the capabilities in a capability table.  Second, they may be
used to pass and return capability parameters on invocations, i.e. capabilities to be
passed to a container on an invocation are copied to the locus’ capability table prior
to the invocation.  These capabilities may then be accessed by the locus in the
invoked container.  Capabilities may be returned by the same mechanism.  Notice
that the allocation and management of keys is the responsibility of the code
executing in the container.  Appropriate library routines are provided for this
purpose.

The reduce_pg operation replaces capability(target).cap_pg.pg_permissions,
with new_permissions.  All permission groups below capability(target).cap_pg in
the permission group tree are reduced in the same way.
Capability(target).cap_pg.pg_permissions must include appropriate permissions
(reduce kernel rights and/or modify entity rights) for this operation to take place.

Delete_pg deletes the permission group capability(target).cap_pg, and any
permission groups below this one in the permission group tree.  Any capability
referring to any of the deleted permission groups will be invalid following this
operation.  Capability(target).cap_pg.permissions must include delete permission
group for this operation to take place.

The derive_pg operation  is similar to copy_pg, but creates the new permission
group as a child in the permission group tree, possibly with reduced permissions.
The new permission group is created below capability(source).cap_pg in the
permission tree, and with permissions new_permissions.  A new capability is
created as capability(destination) and this capability points at the new permission
group.  Since the new permission group is a child of capability(source).cap_pg,
revocation of capability(source) will cause revocation of capability(destination).
Capability(source).cap_pg.pg_permissions must include derive kernel rights and
derive entity rights (assuming both are modified) for this operation to take place.

The permission group operations provide control over the construction of the
permission group tree in order to allow revocation as discussed in Section 4.3.
They also allow for the construction of restricted views of an entity by appropriate
use of the entity permissions.



Delete_entity deletes all permission groups relating to the entity referred to by
capability(target).  As a result, all capabilities referring to the entity are
invalidated, making the entity inaccessible and effectively deleting it.
Capability(target).cap_pg.permissions must include destroy for this operation to
take place.

The final operation, inject_cap, is the only operation which can access a
capability table other than the current locus and current host container tables.
Capability(source) is copied to the capability table of the entity referenced by
capability(destination) in the location indicated by new_cap_key.  This operation
does not affect the permission groups; both source and the new capability point at
the same permission group.  Capability(destination).cap_pg.permissions must
include inject for this operation to take place.

The inject operation is particular useful for populating a new entity with some
initial capabilities.  For example, a new locus may be created and given some
capabilities for basic system functions such as input-output.

5. Conclusions

In this paper we have described the protection mechanism for the Grasshopper
operating system.  The fact that this mechanism is based on capabilities results in a
number of advantages:

1. The system does not enforce any particular naming or protection
paradigm.  The mapping from meaningful names to capabilities is
managed outside the kernel.  Thus it is possible to construct arbitrary
naming schemes.

2. The creator of an entity has full control over the level of access
provided to other users.

3. Arbitrarily restricted views of entities may be constructed using the
entity rights field of permission groups.

4. Access to entities may be selectively revoked.

5. By the use of unique names and explicit deletion the need for garbage
collection across the entire store is avoided.

A secondary advantage of our approach to capabilities relates to the scheme
used to provide unique names for capabilities.  This naming scheme is not visible
outside the kernel; applications always use caprefs to refer to entities.  This leaves
considerable flexibility in the design of the kernel entity naming scheme and also
permits distribution to be completely transparent.

Although it has been argued in the past that capabilities are an expensive
mechanism, this has been in an environment where capabilities are used for all
addressing.  It will be noted that in Grasshopper, capabilities are only used for
validating course-grain operations such as invocation and mapping.  Normal



memory accesses are directly handled by the conventional virtual memory
hardware.  It is therefore expected that the proposed scheme will be no more
expensive than protection mechanisms provided by existing operating systems and
may well be more efficient.

The scheme described in this paper has been implemented in a prototype
version of Grasshopper on DEC Alpha machines.  This prototype system is already
capable of executing simple user programs and it is expected that a fully usable
version of the system will be available later this year.
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