

C
N
T
w

COMPUTER
North Haugh, St
Tel: (01334) 463
www.cs.st-andre

DIST

Ma

School of C

R SCIENCE
 Andrews, Fife,

3253 Fax: (0133
ews.ac.uk/

TINGU

chines

Mo

Computer Sci
Physics Bu

E
KY16 9SX Sco

34) 463278

ISHED

Sem

201

s Reaso

J S

Departmen
Universi

onday 1

ience (Room
ilding (Lectur

otland

D LEC

mester

10/11

oning a

By

Strother Mo

nt of Comput
ity of Texas a

5 Novem

133a/b), Jack
re Theatre B),

TURE

1

1

about

oore

ter Sciences
at Austin

mber 20

k Cole Building
, North Haugh

SERI

Machin

10

, North Haugh
h, St Andrews

ES

nes

h, St Andrewss

Biography

J Strother Moore holds the Admiral B.R. Inman Centennial Chair in Computing Theory at the

University of Texas at Austin. He is also a Visiting Professor at the University of Edinburgh,

where he spends several months each year. He is the author of many books and papers on

automated theorem proving and mechanical verification of computing systems. Along with

Boyer he is a co-author of the Boyer-Moore theorem prover and the Boyer-Moore fast string

searching algorithm. With Matt Kaufmann he is the co-author of the ACL2 theorem prover.

Moore got his SB from MIT in 1970 and his PhD from the University of Edinburgh in 1973.

Moore was a founder of Computational Logic, Inc., and served as its chief scientist for ten

years. He served as chair of the UT Austin CS department for eight years. He and Bob

Boyer were awarded the McCarthy Prize in 1983 and the Current Prize in Automatic Theorem

Proving by the American Mathematical Society in 1991. In 1999, they were awarded the

Herbrand Award for their work in automatic theorem proving. Boyer, Moore, and Kaufmann

were awarded the 2005 ACM Software Systems Award for the Boyer-Moore theorem prover.

Moore is a Fellow of both the American Association for Artificial Intelligence and the ACM and

is a member of the National Academy of Engineering.

Abstract

Computer hardware and software can be modeled precisely in mathematical logic. If

expressed appropriately, these models can be executable. The ``appropriate'' logic is an

axiomatically formalized functional programming language. This allows models to be used as

simulation engines or rapid prototypes. But because they are formal they can be

manipulated by symbolic means: theorems can be proved about them, directly, with

mechanical theorem provers. But how practical is this vision of machines reasoning about

machines?

In this highly personal talk, I will describe the 40 year history of the ``Boyer-Moore Project''

and discuss progress toward making formal verification practical. Among other examples I

will describe important theorems about commercial microprocessor designs, including parts

of processors by AMD, Motorola, IBM, Rockwell-Collins and others. Some of these

microprocessor models execute at 90% the speed of C models and have had important

functional properties verified. In addition, I will describe a model of the Java Virtual Machine,

including class loading and bytecode verification and the proofs of theorems about JVM

methods. In the latter half of this 3-hour seminar we will look closely at how such machines

are formalized and how the theorem prover is ``taught'' to reason about them, by looking at

simpler examples drawn from list processing and a ``toy'' version of the JVM.

Programme

Monday 15 November 2010

10.30 – 11.00 Coffee & Tea with Biscuits

School of Computer
Science ,

Jack Cole Building,
Common area.

Break

11.00 – 12.00 Lecture 1: Introductory

School of Computer
Science,

Jack Cole Building,
R:133a/b,

North Haugh

I will briefly explain how the theorem prover works and illustrate some of
its important industrial applications. We will do this by quickly surveying
the 40 year history of the Boyer-Moore project, touching on the highpoints
of each decade.

14.00 – 15.00 Lecture 2

Physics Building,
Lecture Theatre B,

North Haugh

In this part of the talk, I will focus on how we formalize the operational
semantics of machines and how we configure the theorem prover to
reason about the programming language defined by the semantics.
I will use a very simple (``toy'') model of the JVM as my target machine.

15.00 – 15.30 Coffee & Tea with Biscuits

Physics Building,
Lecture Theatre B,

North Haugh

Break

15.30 – 16.30 Lecture 3

Physics Building,
Lecture Theatre B,

North Haugh

During the third hour I will show how the user of the theorem prover
interacts with the system to construct proofs that the system cannot
discover by itself. I will start with a very simple list processing theorem to
illustrate the basic user behavior and then we'll jointly tackle a another list
processing theorem.

