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400 years of success
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science ... the newcomer

Simulation

*Edinburgh 1980 AD

prob = exp(-beta*(newenergy - oldenergy))
if (drand(seed) .lt. prob) then

newangle + 2.0%pi
newangle — 2.0%pi

if (newangle .lt. 0.0 ) newangle
if (newangle .ge. 2.0%pi) newangle

angle(ix. iy) = newangle

dx(ix,iy) = cos(angle(ix,iy))
dy(ix,iy) = sin(angle(ix,iy))
col(ix,iy) = cos(0.5%angle(ix,iy))*#2

accept = accept + 1

end if



the Big Bang o\ lepect
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— catalogues of nebulae (clouds) were produced to
avoid people mistaking them for comets

— recognised that some nebulae were in our own
galaxy and others were whole galaxies




Hubble and the Redshift problém‘m

* 1929: the Hubble Diagram
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* 1915: Einstein had actually predicted the
expansion of the Universe 15 years earlier —

but refused to believe his own equations
- “it was my greatest blunder”

— but this means that we have an equation with which to study the Universe

G,+ =8rT,
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looks simple, but isn't
G,=8ml,

* this may look like one equation, but actually it's 10!

* ... and they are so complex that Einstein thought they would
never be solved

* in fact, they can be solved mathematically —
but only in a few few simple cases

. a job for the computer!

* because, clearly, we can’t experiment on
the Universe!




s

what's the problem? R

e actually, there are two (related) problems:
— 1: what is the Universe made of?
— 2: and what structre doe it have?

* we can only find <10% of the mass

* and theories of the Big Bang say that the missing mass
(dark matter) is not matter as we know it

* ... and now we also have dark energy!!!
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2dF Galaxy Redshift Survey Q-
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* can so much structure be created from so smooth a start?

* ... well that depends on the how much matter is in the
Universe ... and what it is made of

* while the acceleration in expansion is due to dark energy
— is this Einstein’s “greatest blunder” in real life (ie Az0)?
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predicting the weather L .

* similar approaches can be used, for example, to predict the

weather, or model the climate

0_’; +V.pu=0 conservation of mass
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* possible! * impossible!
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Lewis Fry Richardson

* the first numerical prediction was
made by Richardson during WWH1

* ... he did two timesteps of 3 hours
on a 7x7x5 (~250 km) grid

* unfortunately, these took 2 years
to perform by hand

e ... and he got the answers wrong

because of poor input data
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but now we have computers

» UK daily forecast: 12 km
____grid+ 70 levels in the
atmosphere

— runs every 6 hours

e Each requires
2,000,000,000,000,000
(2x10"°) calculations

* Your PC could do that
adiz calculation but it would

o take 3 months to predict
“} tomorrow’s weather!

' N
i A o

Cralgrothle

ank {

-
—



grand challenges

* beyond physics there are even bigger problems

*Darwinian
__________ QUOHHON™™ " s
......................... N
*Population *Molecular dynamics
*109%s . 9T I *10 s
«105m . SPoE ) Il <10 -1 m

*Molecular
*Organism sconformation
*107s *103s
*1m «109m

.Organ Cell
*103s *103s
*10 3 m 10" m
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the engine room

* for the last 40 years we have
relied on Moore’s Law to

deliver faster computers

* ... and thereis no obvious
end in sight, so no problem?

* WRONG!
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(not) Moore’s Law B m

Moore’s Law is often confused with its corollary: increasing
clock rate ... and hence performance
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e ... and this has peaked

2010
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Dennard’s Law ‘ . _‘

* in 1974 Dennard et al established a set of scaling rules for

MOSFETSs (cf 1)
— subsequently extended to include CMOS

Parameter Scaling Factor
doping concentration K

device size 1/k

voltage 1/k

power dissipation 1/K?

power density 1

Switching time 1/k

* but as k rises, carrier mobility degrades

* and leakage currents increase through quantum tunnelling

1:http://www.ieee.org/portal/site/sscs/menuitem.f07ee9e3b2a01d06bb9305765bac26c8/index.jsp?&pName=sscs_level1_article&TheCat=6010&path=sscs/07Winter&file=Bohr.xml



quantum effects

* when one atom high
“bumps” look significant in a
photo of your transistors,
both their manufacture and
behaviour will be “exciting”

* without a technology change, further shrinkages will
produce bizarre behaviours

— transistors use the same power doing nothing as when they work

— the new generation of transistors consume dramatically more
power than prior experience would have predicted

— performance gains will be slower than past experience would have
indicated

1: Bernie Meyerson, Chief Technologist, IBM
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continuing Moore’s Law \

Intel Roadmap: Platform 2015

*Many-core era
*Massively parallel applications

I .1 00
*Increasing HW *Multi-core era
Threads «Scalar and parallel applications
*Per Socket .1

HT

» ﬁ

+2003 *2005 2007 +2009 +2011 +2013
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parallelism on the deskto_b‘“ ALY -

('nter) * functional parallelism easy to

implement and effective on dual-

Centrino 2
, core

* ... but how do you use an 80-core
microprocessor effectively?

* this is THE problem for the
computer industry today

-
—
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how can you possibly mean@he\ﬁm

* the microprocessor is ubiquitous:

* and the economics are based on volume sales to the
commodity market

* ... remove the incentive/need to upgrade the home PC every
2/3 years and those sales will fall

* that will happen if we can’t use the potential of current
MICroprocessors
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parallelism

* has been used for HPC applications for 30 years to help sate
applications’ need for performance

* itis, however, a second best to increasing single-node

performance
— first, because it is harder to program
— second, because its benefits don’t necessarily scale

al = aserial Ta parallel

(04
_ parallel
an - aserial + n
o X gorial
Om w n — seria
Jom—>oo Tr=cC

serial TO parallel

* fora

serial = 370, maximum speedup ~ 30x

* Amdahl’'s Law assumes fixed workload: strong scaling
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Gustafson’s Law = m

* the problem with Amdahl’'s Law is that the workload is fixed

* ... what if we let this increase with the number of processors?

a=a,  +1l.o

seria parallel

1o parallel

n
an = aserial + = al

* hence, speedup a n ... this is known as weak scaling

* and we have relied on this for the past 30 years
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economic pressures

* in the early 90’s parallel HPC was a niche area
— large computer vendors were not (really) engaged

technological innovation

— custom microprocessors
— custom networks

— custom O/S

— custom languages

* |ack of standards made portability poor

* ... and expensive




parallelism today

* now, after a decade of standardisation, we have

—M PI, OpenM P 100% HP(;gopjrjt:Hng Sjskgtjﬂn:H jiStribUtion
—FOI’tranQO, C++ ZEE gmmmm
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_Linux I T,
—PBS, TotalView, ScaLAPACK ... i =!

e standard microprocessors (AMD, Intel, Power)

e ...only the memory architecture and inter-processor
network for companies’ USP

* with clusters even these areas are “commoditised’

—s0, while clusters have a role in HPC
—cluster vendors compete on support, packaging and price

M N



parallelism tomorrow

* are today’s programming methodologies fit for the future?

e ... that's the key issue for Lecture 2
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