Computer Simulation – setting the scene

Professor Arthur Trew Director, EPCC a.s.trew@ed.ac.uk +44 131 650 5025

 $\bullet F = ma$ $\bullet E = mc^2$

400 years of success

science ... the newcomer

Simulation

A

•Edinburgh 1980 AD

prob = exp(-beta*(newenergy - oldenergy))

if (drand(seed) .lt. prob) then

if (newangle .lt. 0.0) newangle = newangle + 2.0*pi if (newangle .ge. 2.0*pi) newangle = newangle - 2.0*pi

angle(ix, iy) = newangle

dx(ix,iy) = cos(angle(ix,iy))
dy(ix,iy) = sin(angle(ix,iy))
col(ix,iy) = cos(0.5*angle(ix,iy))**2

accept = accept + 1

the Big Bang

200 years ago

 catalogues of nebulae (clouds) were produced to avoid people mistaking them for comets

100 years ago

recognised that some nebulae were in our own galaxy and others were whole galaxies

Hubble and the Redshift problem

• 1929: the Hubble Diagram

1915: Einstein had actually predicted the expansion of the Universe 15 years earlier – but refused to believe his own equations
 "it was my greatest blunder"

- but this means that we have an equation with which to study the Universe

looks simple, but isn't

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

- this may look like one equation, but actually it's 10!
- ... and they are so complex that Einstein thought they would never be solved
- in fact, they can be solved mathematically but only in a few few simple cases
- ... a job for the computer!
- because, clearly, we can't experiment on the Universe!

what's the problem?

- actually, there are two (related) problems:
 - 1: what is the Universe made of?
 - 2: and what structure does it have?

- we can only find <10% of the mass
- and theories of the Big Bang say that the missing mass (dark matter) is **not** matter as we know it
- ... and now we also have dark energy!!!

structure from (almost) nothing

- can so much structure be created from so smooth a start?
- ... well that depends on the how much matter is in the Universe ... and what it is made of
- while the acceleration in expansion is due to dark energy

 is this Einstein's "greatest blunder" in real life (ie A≠0)?

predicting the weather

• similar approaches can be used, for example, to predict the weather, or model the climate

$$\frac{\partial \rho}{\partial t} + \nabla . \rho \mathbf{u} = 0$$
 conservation of mass

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P - 2\mathbf{\Omega} \times \mathbf{u} + \eta \nabla^2 \mathbf{u} \quad \text{Navier Stokes}$$

$$\frac{\partial T}{\partial t} + \nabla . \mathbf{u}T = \kappa \nabla^2 T + \mathcal{F}. \quad \text{ energy transfer}$$

• possible!

• impossible!

Lewis Fry Richardson

- the first numerical prediction was made by Richardson during WW1
- ... he did two timesteps of 3 hours on a 7x7x5 (~250 km) grid
- unfortunately, these took 2 years to perform by hand
- ... and he got the answers wrong because of poor input data

but now we have computers

UK daily forecast: 12 km grid + 70 levels in the atmosphere

- runs every 6 hours
- Each requires
 2,000,000,000,000,000
 (2x10¹⁵) calculations

• Your PC could do that calculation but it would take 3 months to predict tomorrow's weather!

grand challenges

beyond physics there are even bigger problems

the engine room

- for the last 40 years we have relied on Moore's Law to deliver faster computers
- ... and there is no obvious end in sight, so no problem?
- WRONG!

(not) Moore's Law

 Moore's Law is often confused with its corollary: increasing clock rate ... and hence performance

• ... and this has peaked

Dennard's Law

- in 1974 Dennard et al established a set of scaling rules for MOSFETs (cf 1)
 - subsequently extended to include CMOS

Parameter	Scaling Factor
doping concentration	k
device size	1/k
voltage	1/k
power dissipation	1/k ²
power density	1
Switching time	1/k

- but as k rises, carrier mobility degrades
- and leakage currents increase through quantum tunnelling

1:http://www.ieee.org/portal/site/sscs/menuitem.f07ee9e3b2a01d06bb9305765bac26c8/index.jsp?&pName=sscs_level1_article&TheCat=6010&path=sscs/07Winter&file=Bohr.xml

quantum effects

 when one atom high "bumps" look significant in a photo of your transistors, both their manufacture and behaviour will be "exciting"¹

- without a technology change, further shrinkages will produce bizarre behaviours
 - transistors use the same power doing nothing as when they work
 - the new generation of transistors consume dramatically more power than prior experience would have predicted
 - performance gains will be slower than past experience would have indicated
- 1: Bernie Meyerson, Chief Technologist, IBM

continuing Moore's Law

Intel Roadmap: Platform 2015

parallelism on the desktop

- ... but how do you use an 80-core microprocessor effectively?
- this is **THE** problem for the computer industry today

how can you possibly mean that?

• the microprocessor is ubiquitous:

- and the economics are based on volume sales to the commodity market
- ... remove the incentive/need to upgrade the home PC every 2/3 years and those sales will fall
- that will happen if we can't use the potential of current microprocessors

parallelism

- has been used for HPC applications for 30 years to help sate applications' need for performance
- it is, however, a second best to increasing single-node performance
 - first, because it is harder to program
 - second, because its benefits don't necessarily scale

$$\alpha_{1} = \alpha_{serial} + \alpha_{parallel}$$

$$\alpha_{n} = \alpha_{serial} + \frac{\alpha_{parallel}}{n}$$

$$f \text{ orn} \rightarrow \infty \quad \frac{\alpha_{n}}{\alpha_{1}} = \frac{\alpha_{serial}}{\alpha_{serial} + \alpha_{parallel}}$$

- for $\alpha_{serial} = 3\%$, maximum speedup ~ 30x
- Amdahl's Law assumes fixed workload: strong scaling

Gustafson's Law

- the problem with Amdahl's Law is that the workload is fixed
- ... what if we let this increase with the number of processors?

$$\alpha_1 = \alpha_{serial} + 1.\alpha_{parallel}$$

$$\alpha_n = \alpha_{serial} + \frac{n.\alpha_{parallel}}{n} = \alpha_1$$

- hence, speedup α n ... this is known as weak scaling
- and we have relied on this for the past 30 years

economic pressures

- in the early 90's parallel HPC was a niche area
 - large computer vendors were not (really) engaged
- medium-sized companies differentiated themselves through technological innovation
 - custom microprocessors
 - custom networks
 - custom O/S
 - custom languages
- lack of standards made portability poor
- ... and expensive

parallelism today

- now, after a decade of standardisation, we have
 - -MPI, OpenMP
 - -Fortran90, C++
 - -Linux
 - –PBS, TotalView, ScaLAPACK ...

- standard microprocessors (AMD, Intel, Power)
- ...only the memory architecture and inter-processor network for companies' USP
- with clusters even these areas are "commoditised"

 –so, while clusters have a role in HPC
 –cluster vendors compete on support, packaging and price

parallelism tomorrow

- are today's programming methodologies fit for the future?
- ... that's the key issue for Lecture 2

