
Professor Arthur Trew
 Director, EPCC

a.s.trew@ed.ac.uk
+44 131 650 5025

The Exascale Solution?

the exascale challenges – a summary

I.  power consumption
II.  memory and storage
III.  application scalability
IV.  resiliency
IX.  validation

•  all of these require computer science inputs
–  some need new hardware designs
–  some require extended CS models
–  some fundamentally new CS theories and methods

•  all also need collaboration with:
–  engineers for hardware designs
–  computational scientists to understand implementation constraints
–  mathematicians on algorithms

•  the intellectual challenges are truly exciting

International Exascale Software Project

•  IESP is a CS-orientated research project investigating how
to build an exascale computer1

•  although international, it is dominated by the US
–  and plays most strongly to an economy that has both the

applications need for such computers and the ability to build them

1: http://www.exascale.org/mediawiki/images/a/a1/Iesp-roadmap-draft-0.93-complete.pdf

•  EESI is a European response

•  G8 countries make their first ever research call – exascale
computing
–  it’s just a pity that their budget does not match by their aspirations!

IESP recommendations

•  IESP strongly advocates a co-design model
–  the software and hardware are developed in parallel

•  backed by aspiration pull and technology push
–  global challenges make the case … but the codes are too immature
–  technology push is not enough

–  politically the cost is too high, too few companies will benefit
–  technically, there are many potential hardware routes … and many likely

dead-ends

•  co-design vehicles
–  applications which are scientifically sound with the potential to scale

provide development paths
–  … while global challenge codes develop in parallel

answering the programmers’ prayer

•  in IESP’s model the hardware will support a systems stack:
X-stack

•  X-stack will:
–  support concurrent programming models, applications and tools

–  provide software and tools will manage power directly

–  provide resilient software

–  address changes to heterogeneous nodes

–  solve parallel I/O bottleneck

•  unfortunately, it doesn’t say how these will be done!

•  … IESP advocates CS research in:

outstanding research priorities
•  systems software

–  operating systems: fault-tolerance, collective OS services, power management, hierarchy management …
–  runtime systems: heterogeneity, load balancing, fault-tolerance, dynamical resource management …
–  I/O systems: integration of emerging storage devices, embed I/O into programming models …
–  systems management: resource control & scheduling, security, integration and test …
–  external environments: linking to remote resources …

•  development environments
–  programming models: support for heterogeneous nodes, HPC interoperability, fault-tolerant MPI …
–  frameworks: data layouts, fault resilience, inter-component coupling …
–  compilers: MPI-aware compilers, compiler support for hybrid programming, power-aware compilers …
–  numerical libraries: asynchronous algorithms, architectural transparency, power-aware …
–  debugging tools: categorical assimilation, support for node heterogeneity, scalability …

•  applications
–  algorithms: intra/inter-node scaling, fault resilience, heterogeneity, strong scaling …
–  data analysis and visualisation: integration with simulation, workflows, data extraction …
–  data management: scalable data-mining, new database technologies, search & query tools …

•  crosscutting activities
–  resilience: techniques for saving/restoring state, MPI replacement, fault-oblivious software …
–  power management: node-level OS management, power-aware libraries etc …
–  performance optimization: heterogeneity, hybrid programming, enhanced concurrency …
–  programmability: new programming models, new runtime models, new compiler support …

bye bye homogeneity

•  today most HPC facilities are homogeneous
–  perhaps with specialised processors for peripheral functions, eg I/O

•  even if the nodes are compound, the components are
separate with separate programming models
–  eg. microprocessors with attached FPGA

•  microprocessors will increasingly be built from disparate
components: “normal” core, GPGPU, SIMD Array
–  with a mix which may vary within a machine

•  … somehow, that mix will have to be controlled to give
optimal performance

linking to hardware

•  beyond these general statements about heterogeneity IESP
did not suggest a hardware architecture

•  … and hence what the software constraints would be

exascale architectures – a strawman

•  DARPA also performed an exascale study focussed on the
software issues1

•  to understand these they characterised the likely hardware,
extrapolating from current roadmaps:
–  heavyweight strawman: based on commodity microprocessors +

separate memory and routing chips (eg Cray XT4)
–  lightweight strawman: customised, low power microprocessor with

integrated memory and routing (eg IBM BlueGene)

1: http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf

the evolutionary strawmen

•  to see if they could make a practical exascale machine they
then made a number of assumptions:
–  applications will demand same DRAM/flops ratio as today
–  processor die size will stay constant
–  Moore’s Law will drive core counts per processor, but clock rates will

stabilize
–  flops/cycle will rise from 2 (today) to 8 (2015)
–  max power/rack will double every 3 years
–  number of racks may increase by 50/year

•  are these reasonable?

•  they are not conservative
–  for example, all of HECToR is 60 racks

power consumption

•  assume one of two possible system power models:
–  simplistic (aka highly optimistic model)

– max power per die grows in line with ITRS projections
–  power/memory chip remains constant
–  power for routers remains constant –

–  even though we know that we need to increase bandwidth
–  true, if energy/bit moved/accessed decreases as fast as flops

increases
–  fully scaled (aka pessimistic/realistic model)

–  as above, except memory and router power scales with flops
–  true, if energy/bit moved/accessed remains constant

heavyweight strawman

Sterling: http://www.lbl.gov/CS/html/SC08ExascalePowerWorkshop/Exarch.pdf

heavyweight power costs

•  4x target … and we still have to add on cooling, peripherals
etc

lightweight strawman

Sterling: http://www.lbl.gov/CS/html/SC08ExascalePowerWorkshop/Exarch.pdf

lightweight power costs

•  … no better than the heavyweight option overall, though
more flops/kW

required parallelism

•  whichever strawman model you choose, you still have to
manage ~109 threads

the aggressive strawman

•  they then tried the “clean sheet of paper” approach
–  aggressive strawman: microprocessors designed to maximise

performance for minimal power

•  system architecture:
–  32 nm silicon technology, but with aggressive voltage scaling

system characteristics–aggressive strawman

Characteristic
Flops – peak (PF) 997
 - microprocessors 223,872
 - cores/microprocessor 742
Cache (TB) 37.2
DRAM (PB) 3.58
Total power (MW) 67.7
Memory Bandwidth (B/s per flops) 0.0025
Network bandwidth (B/s per flops) 0.0008

critical concerns

•  the memory and network bandwidth/flops ~1% of current
Pflops machines
–  this is already a limiting factor for most applications

–  ideally 3 word/flops; practically ~few Byte/flops; achieved ~0.3 Byte/
flops

–  vital to be able to increase number of operations on each datum

•  adaptively-balanced node
–  this may overcome this imbalance on an application-by-application

basis
–  designed to enable power to be used either processing or moving data

to memory or network
–  too little power to drive both the ALU and memory at 100%

simultaneously

six ways not to do it

1.  ignore Little’s Law
–  required concurrency = latency*bandwidth, or waste memory

bandwidth

2. use processors engineered for serial applications
–  out-of-order execution, speculation, hardware-controlled caches …

waste energy for dubious benefit

3. rely on weak scaling

4. synchronize all data communications
–  one-sided communications are more efficient

5. add global synchronization
–  not only does it introduce delays, but it is not fault-tolerant

6. use algorithm design to minimize flops
–  data movements dominate energy usage

strong vs weak scaling

•  weak scaling (problem size α machine concurrency) has
been the mainstay of parallelism for 30 years

•  strong scaling (scaling with a fixed problem size) has been
hard to find

•  for some applications there is no more weak scaling because
the system being studied is already large enough
–  eg classical MD for many chemistry applications only requires 100

-1000 molecules

•  but a larger set is constrained by algorithmic complexity

algorithmic complexity
•  consider a problem which scales as O(n2), running on P

processors

•  if n→2n, the memory requirement doubles, but the
computational load quadruples

•  if we map this new load to 4xP processors then each processor
has the same workload as before
–  but there are only 50% as many particles in each processor’s memory
–  so, the data exchange ratio rises

•  only if we have an algorithm which scales linearly (or slower)
can we maintain the compute/communications ratio

•  … and these algorithms don’t exist

final thoughts

•  the aggressive strawman is unlikely to be based on a
technology which is of interest to anyone outside HPC
–  so, who will build it?
–  is this a return to the path of custom-built machines?

•  more generally, if Moore’s Law requires ever more
parallelism where is the demand from “normal users”
–  drivers for renewal may be increased memory, improved graphical

performance …
–  but unless we solve the parallel working problem soon, the industry

faces potentially fatal challenges
–  can you design the “killer app”?

