Professor Arthur Trew
Director, EPCC
a.s.trew@ed.ac.uk
+44 134 650,.5025

parallel computing today ST NI o

* the programming model is one of a set distinct memories

distributed over homogeneous microprocessors
— each microprocessor runs a Unix-like OS

* data transfers between the processors are managed
explicitly by the application

* almost all programs are written in sequential Fortran or C

* they use MPI (Message Passing Interface) for data transfers
between nodes/microprocessors

* some applications which exploit parallel threads on each

microprocessor use a hybrid model

— shared memory on the microprocessor, distributed memory outwith
— this holds promise for many applications, but is still rare

‘_

parallel computing today

* (like the OS) few mathematical algorithms have been
designed with parallelism in mind

e ... the parallelism is then “just a matter of implementation”

* this approach generates much duplication of effort as
components are custom-build for each application

* ... but the years of development and debugging inhibits
change and users are reluctant to risk a reduction in scientific
output while rewriting takes place

* we may be close to a “tipping point”

— without fundamental algorithmic changes progress in many areas will
be limited

‘_

justifying the exaflops : oy e

* today, the majority of codes won’t scale to a teraflops (1072
flops), so why bother with the exaflops (1078 flops)?

* there is an applications demand

* achieving it will require us to have radically new hardware
and software designs

— “clear and widely recognised inadequacy of the current HPC software
infrastructure in all component areas for supporting ... escalation™

* hence there are challenges for

— engineers for new designs for hardware and networks

— computer scientists for compliers, software engineering, autonomic
computing ...

— numerical analysts for new highly-scalable algorithms

1: International Exascale Software Project Roadmap http://www.exascale.org/iesp/IESP:Documents

. . A - !.
- A
.

AR
the need for speed b “‘\-&-m‘

- 1 ZFlops

<. . 100 EFlops

" Weather 10 EFlops

Prediction 1 EFlops

. ' 100 PFlops

o 7" 10 PFlops

b ‘ j 1 PFlops

Genomicsj 100 TFiops

Research 10 TFlops

1 TFlops

“\K 100 GFlops

P 10 GFlops

~." « | 1GFlops

Medical 100 MFlops
Imaging 1993

thanks to Intel Corporation

\ \

1999

2005

2011

2017

2023 2029

1075 flops Allgoriﬂlm exity
A i
1000 :
E 184 Visco elasiic
-100 E S umxydnnmﬂm:
. E —
- ' visco elastic moded
-4 Isatropic/anisotropic FWI
: elastic modeling/RTM
~0,5 Isofropic/anisofropic
Isotropic/anisoTopic
—0,1 Paraxal Isotropicianisolropic Imaging
Asymptotc approiaton maging
- =

1995 2000 2005 2010 2015 2020
Algorithmic complexity Vs. corresponding computing power

900 TF

| 56TF

Substained performance for different frequency content
over a 8 day processing duration

111

1 HPC Power

1 PAU (TF)

_ courtesy
s El Total Oil
JEE— =

v\ \ \

. In aircraft design

Capacity: LES Available
of Ovemight Ccmpuhnonal
Loads cases run iresieadty ’ Capacity [Flop/s]
1 RANS - 4

. — 1 Zeta (107)

" ‘% // 1 Exa (10%)

41 Peta (10" X10°

“Smart" use of HPC power: . ——1 Tera (10")
* Algorithms

* Data mining

* knowledge -1 Giga (10"

i | | | | |
1990 2000 2010 2020 2030

— Real time

A~ CFDbasedT7 Aero T . CFD-based
Set LOADS Optimisation Full MDO noise ci?ﬂb“e"m
&HQ '&CFD-CSM simulation simulation
C__a@_ll_[t__y'acﬁeved during one night batch AIRBUS France

-
—

. huclear reactor deS|g

g

r—

2003 2006 2007 2010 2015
oy ey
m ‘p mnl..llllmuﬂ
WMD S 0 now |
petter Unoersiand the wall
Merna loadng In an Wil enadie the study of soe
Injection. efects Impiied by the fow -
around naighbour fuel
Knowing the oot causes of mﬁu assemblies.
moesngnuo;ommam Part of 3 fus! assembly Satter undersiandng of
oroviem Refined mesh near the 3 gria assembies wibeation i
val. wear-out of the rods.

Computations with smaller and smaller scales in larger and larger geometries
a better understanding of physical phenomena
A better optimisation of the production (margin benefits)

a more effective help for decision making

Fujistu VPP S000 Cluster, IEM PowerS IEM Blue Genell
4 600 Triops duing 1MONM 10 Pps during 1 mon®
2 month lengeh computation 9 days
1 Gb of storage # 15 Gb of storage # 200 Gb of storage # 1 Tb of storage # 10 To of storage
2 Go of memory 25 Gb of memory 250 Gb of memory 2,5 Tb of memory 25 Tb of mamory
IESP/Application Subgroup Scalablity / Solver ... od. ...
Visualisation

shooting for an exaflops

100PFlops
10 PFlops -
1 PFlops -
100 TFlops -
2005 Line
10 TFlops

1 TFlops

Performance

100 GFlops 3

10 GFlops

%

1 GFlops -

'OOMFIOpS TTr rrrrr1rrrrfrrrrJrrrrrrrrfrrrrfrrrrrrrrrrrrrrrryrrrryrrrorey

W ~ ® = M W Ok & - o
g 8 8 8 2 8 B S =
- - - &8 68 6 & & o &

1993
2013
2017
2019

thanks to top500.org

-
—

what are the challenges?

* DARPA conducted a study on Exascale hardware in 2007

* Objective: understand the course of mainstream technology
and determine the primary challenges to reaching 1EFlops
by 2015, or soon thereafter

* they concluded the four key challenges were:

|. power consumption
[I. memory and storage

[ll. application scalability
V. resiliency

. ... to which | would add:
V. validation

1: http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study _Initial.pdf

R N

-"~
Laah
S

|: the power problem

* the most power-efficient microprocessors available today

deliver ~450 Mflops/W on Linpack

— ie ~2.2 MW per Pflops ... or 2.2GW per Eflops
— excluding cooling which adds 20-100% to the power draw

Longannet: 2.4 GW
* ... clearly, we have to do better!

— DARPA goal: 50 Gflops/W in 8
years

— 100x improvement

l: how do we reduce power consumption?" o

* the simplest way is to reduce the clock rate
— the power consumption of a microprocessor depends on many factors
— ... empirically, the power consumption a v3
— a 20% drop in clock rate gives an 50% reduction in power?

* however, lowering the clock reduces the speed

— and, hence, increases the number of cores required
— bad news for HPC [‘
— especially if you want to use datal? Memorystackedonprocesso

Conventional architecture

* recently, we upgraded HECToR: dual-
core 2.3 GHz -> quad-core 2.0 GHz

— one application reduced its performance
by 1.7x

Performance (seconds)

Processor cores

1: http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
2: http://spectrum.ieee.org/computing/hardware/multicore-is-bad-news-for-supercomputers

5 . -
- :
.

=" —
B

-

l: microprocessor architectures

J" N .

* conventional microprocessor architectures are optimised for

single thread performance, rather than energy efficiency
— fast clock rate with latency (performance)-optimised memory

— heavy use of speculative execution => large structures supporting
various types of predictions

— relatively little energy spent on actual ALU operations

* could be much more energy efficient with multiple slow,

simple processors exploiting vector/SIMD

|: microprocessors not the only p) o :

* erforming a 64bitFMA X 43.90230564772498
= 39,226,772.78026233027699
+ 2.02789331400154

= 39,226,724.80815564

* or, moving the three operands 20mm across the die?

* moving the data uses 3x the energy

* |oading the data from off-chip takes >10x more yet

— flops are cheap, communications are expensive
— exploiting data locality is critical

-
—

Il memory and power

100

*— @

=]

> \ 1000 9
: —~ |7t
S | ~—Bandwidth GB/'s —#—mW/GB’s =
= o
g 10 — 0 g
% /./ S
8]
; /./ 110 g
(=]

.

1 ./ 1
SDRAM PC133 Module DDR-400 Module DDRII-800 Module DDR3-1333 Module

Figure 6.22: Commodity DRAM module power efficiency as a function of bandwidth.

* memory bandwidth has increased ~70x over the past decade

* the energy cost/bit transferred has declined by 2.5x

* ... the energy cost of driving the memory at full bandwidth
has risen 4x

* memory DIMMs can’t provide bandwidth at acceptable
energy costs

ll: memory performance

* over the past 30 years
DRAM density has

increased ~75x faster than
bandwidth]
* ... memory bandwidthis ;. 1 ==
the limiting factor in future /// === et ot
* novel memory 19555"? T i

technologies needed :

— phase-change memory,
holographic memory,
graphene ...

llI: applications scalabilityﬂ

1

those codes with low communications overheads and which

can exploit weak scaling do well:

Parallel speedup

140000

120000

100000

80000

60000

40000

20000

0

Lattice Boltzmann — soft condensed matter

/ full halo
=i perfect
reduced halo
/
[
0 20000 40000 60000 80000 100000 120000 140000

cores

SR
applications scalablllty “‘ m‘

CFD — modelling combustion

80000

70000 ~

60000 -

50000 +

~—Scability (T1-10)
40000

=i Scalability(T2-T10)

Ideal
30000 -

20000 o

10000 ~

0 10000 20000 30000 40000 50000 60000 70000

R ‘
lll: applications scalablllty m‘

CG Performance (GFlops)

12000

10000

8000

6000

4000

2000

0

. some do pretty well

Hybrid Monte Carlo — particle physics

/.

MPI
== OpenMP/MPI

7

0

10000 20000 30000 40000 50000 60000 70000

cores

| .

lll: applications scalability ..

AR
™

B“"ﬂ
aga

* ... but most are disappointing

— this behaviour is caused by the overheads of global communications
— applications only when communications are highly infrequent, or local

1,000,000
900,000
800,000
700,000
600,000

500,000

300,000
200,000

Totasl Consumed Wallclock seconds

100,000
0

Lattice Boltzmann — biophysics

400,000 -

—— ASIS
4#.—
== OPTIMIZED
T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Core counts

-
—

lll: alarming applications éca?a%ltm

Density Functional Theory — Physical Chemistry

2

Performance

0 T T T T T T T T
0 128 256 384 512 640 768 896 1024

Number of Cores

* users, especially in chemistry and engineering, are locked-in to poorly-
scaling third-party codes

* summary: widespread need for good software engineering and parallel
techniques

-
“ _

I\: resiliency

* an Eflops machine is likely to have ~10° processors
* if each processor had a lifetime of 10 years (unlikely)
e ... then the machine will have a MTBF of ~5 minutes!

* we therefore have to be able to operate it in a way which is
resilient to single-node failures

* unfortunately, most scientific applications use synchronous
algorithms

e ... which would halt when something blocks the data flows

* fault tolerance is not a new problem
— von Neumann considered this is detail as early computers failed often

R .

——
IV: fault-tolerant computing

i)

° ...Is common in many high-throughput applications
— Google, Amazon’s Availability Zones ...

* here, the focus is to maximize overall throughput, not to
minimize the execution time of every individual job

* these applications have elaborate supervisory structures

fé G < / (o@ (o@ (o@

* why not transplant these approaches to HPC?

R A

- A

-

IV: fault-tolerant HPC 2

e

-

* this approach is directly applicable to HPC where the

problem can be decomposed as a task farm
— eg. DNA sequence analysis, LHC simulations, SETI@home ...

* however, this is a (small) subset of applications

* most require tight coupling between processes

— data must flow between worker processes and not just between a
master and a pool of workers

y/ e .
4 Q P
S, d
D
. 3

|V: fault-tolerant HPC A N o

* what happens when a processor fails in such synchronous
applications? ,

* now, neighbouring processes don't have to run on
neighbouring processors (though it is faster if they do)

* SO, wWe can reserve processors to substitute for failed ones
— fault-tolerant MPI provides a framework to achieve this

R N

|\/: fault-tolerant HPC

* ... SO0, the problem is solved?
* No
* while it may be possible to reconnect the processors in a

new configuration to exclude failed components, how do we
reconstruct the state of the failed processor?

* we could checkpoint each processor’s state to a neighbour
and then transfer this to the spare, when required

* ... however, this will be computationally expensive

— memory/core is decreasing
— memory and network bandwidths already limit performance

* most codes use checkpoint/restart
— crude and unscalable to exascale

. . A - !.
- A
.

V: validation

* if the application does not mimic reality then there is no
point

* there are many levels at which errors can creep in:

— hardware unrepeatability
— inappropriate choice of algorithm
— wrong coding

hardware errors

* of these, hardware problems may be surprising, but:
— 1994: Pentium divide error
— Intel: “1 in 9 billion divides wrong”
— at this rate an Eflops machine would make ~108 mistakes s
— 1991: Meiko i860
— race conditions produce errors which are scientifically significant
— run every simulation three times, if two agree, accept
— 2003: QCDOC (Bluegene prototype)
— need to reduce clock rate to prevent race conditions
— 2008: Cray XT4
— undiagnosed network problems give lack of reproducibility
— example of “silent errors” which are all too prevalent’
— these are different from “soft errors” because they can persist

1: Cappello et al 2009 Int J HPC Applns, 23, 374

R .

-»
»
5 -

hardware(?) errors

* In these last 3 cases the errors were only uncovered by a

particularly diligent user group
— “normal” users would never have noticed

* understanding how to improve matters requires us to

understand where the problems originate

— little consensus, different studies have suggested different sources
— but most likely that most problems originate in the system software

* but, most applications are very sensitive to a single soft error’

e fault oblivious, “self-stabilisation” algorithms have been
investigated for many years?

1: Lu and Reed 2004 Proc 2004 ACM/IEEE Conf of Supercomputing
2: Dijkstra 1974 Commun, ACM 17(11), 643

S . A - !.
- A
.

self-healing machines

self-stabilisation requires that all software used in the

program’s execution is fault-tolerant
— not just the application and numerical algorithm

... SO, a lot of work

moreover.

— such algorithms have only been investigated in basic distributed
system operations

— the duration of the stabilisation phase is unknown
— ... and, errors during the stabilisation phase restart the clock

thus, it's not obvious how to have self-stabilising numerical
algorithms

... but many aspects of the runtime environment could make

.

use of this approach

algorithmic choice

Algorithm vs. Implementation
r =0
do i=1, n
2 f(x) r=r + £(i)
end do
1234567.4440 1234567.4448
1234567.4444 1234567 .4444
1234567.4448 1234567.4440

3703702.4000 3703702.5000

* ... and the correct answeris neither
— 3703702.3332

-
—

algorithmic choice

* discretising a continuous system on to a grid necessarily introduces errors

e ... the algorithm must be chosen to ensure that these do not propagate
excessively:

* eg. Poisson’s Equation (V’® = p)
—we wish to solve this on some surface with some boundary conditions

o(-1j+1) | o(iy+1) o00(i,j) _ P>+l j)-®(i,j) Forwards
PG-1,4+1) | PGAy+1) 0x — A
(-1 | o(y) o A Centred

D(i-1,))| D(i,)) 9 0P>i.j) A 9@ Forwards

0x 0x 2! g2

oD 0DP(i,j) A% o’d C
— —_— entred
A ox 0x 31 953

* the problem worsens for higher differentials: O(i) VS O(Az) for v

R N

initial value problems

=
>
»

5 -

.. hot going to go through the algebra but IVP problems
require stability, eg Diffusion Equation:
DV*’® =2
this is a parabolic PDE
if we calculate @,,,(x) from ®@,(x) (FTCS in 1D)
@, (x) = D,(x) + 22D, (x + Av) + D, (x - Ax) - 2D, (x) }

but, this scheme is unstable unless At<Ax%/2D

— ... and with this condition it is computationally very expensive

we can remedy that by using an implicit integration scheme
— here, @,,,(x) is calculated using @®,, ,(x+Ax) etc at the advanced time

D, (x)=D,(x)+>2 {(I)m(x +Ax)+ @, (x - Ax) - 2(I)l+1(x)}

S . A - !.
- A
.

initial value problems

* unfortunately, this is only accurate to O(At)

* ... sowe have to use Crank Nicholson
— an average of implicit and explicit, accurate to O(At?)

* but we have to use a different integration scheme for, say,
the Wave Equation:

2y 72 2
vV =<2

* -thisis a hyperbolic PDE

* ... S0, choice of algorithm is not necessarily straightforward

— especially if you are trying to simulate a phase change, as the
character of the pde can change

* nor is timestep necessarily constant throughout a simulation

R .

——
wrong coding B m

* making mistakes is only human

* finding, and correcting, them requires a process

* ... unfortunately few academic software developers

understand the software development process
— this is an area steeped in mystery

* but, fortunately, academic software developers aren't likely to
Kill anyone through their mistakes

R A

. i .“Kl “' 3.-1"" B
Bad Software e “W‘

* Ariane 5 Explosion

* (Code from Ariane 4 re-used

* Faster engines in Ariane 5 triggered
a bug which caused buffer overflows

* Oops!

— No comprehensive testing of old
code in the new platform

* Result — A very big bang

R A

R

-

Bad Software ... cont

* Therac-25: Medical Linac

— two modes of operation: “Electron” (low power)
and “X-ray” (high power)

* early example of concurrent programming
* only partial understanding of the need for
control of inter-thread communications

°* eq.
— user entered “X” by mistake
— quickly corrected sequence, entering “E”
— ran sequence
— one thread controlled the output power
— another controlled the collimator

— mis-prioritisation permitted the high power
setting to run without the collimator plate in
place

* several deaths occurred

-

> ~

»

.l :

formal verification

* ... provides a method for rigourous verification of correctness

as an alternative to ad hoc testing
— formal specification methods can show critical interactions between
program components

* however, for scientific applications the applications for formal

testing within the component is limited

— they use floating point numbers => requires us to know what
tolerance is important

— ... hence has been the responsibility of the application and currently
few such tests are made

— at exascale the volumes of data increase and the practicality of even
this is unclear

* in parallel we need to validate results because of the high
probability of soft errors

