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The Exascale Challenge 



parallel computing today 

•  the programming model is one of a set distinct memories 
distributed over homogeneous microprocessors 
–  each microprocessor runs a Unix-like OS  

•  data transfers between the processors are managed 
explicitly by the application 

•  almost all programs are written in sequential Fortran or C 

•  they use MPI (Message Passing Interface) for data transfers 
between nodes/microprocessors 

•  some applications which exploit parallel threads on each 
microprocessor use a hybrid model 
–  shared memory on the microprocessor, distributed memory outwith 
–  this holds promise for many applications, but is still rare 



parallel computing today 

•  (like the OS) few mathematical algorithms have been 
designed with parallelism in mind 

•  … the parallelism is then “just a matter of implementation” 

•  this approach generates much duplication of effort as 
components are custom-build for each application 

•  … but the years of development and debugging inhibits 
change and users are reluctant to risk a reduction in scientific 
output while rewriting takes place 

•  we may be close to a “tipping point” 
–  without fundamental algorithmic changes progress in many areas will 

be limited 



justifying the exaflops 

•  today, the majority of codes won’t scale to a teraflops (1012 
flops), so why bother with the exaflops (1018 flops)? 

•  there is an applications demand  

•  achieving it will require us to have radically new hardware 
and software designs 
–  “clear and widely recognised inadequacy of the current HPC software 

infrastructure in all component areas for supporting … escalation”1 

•  hence there are challenges for  
–  engineers for new designs for hardware and networks 
–  computer scientists for compliers, software engineering, autonomic 

computing … 
–  numerical analysts for new highly-scalable algorithms 

1: International Exascale Software Project Roadmap  http://www.exascale.org/iesp/IESP:Documents 



the need for speed 

thanks to Intel Corporation 



… in oil exploration 

Total Oil 



… in aircraft design 



… nuclear reactor design 



shooting for an exaflops 

thanks to top500.org 



what are the challenges? 

•  DARPA conducted a study on Exascale hardware in 20071 

•  Objective: understand the course of mainstream technology 
and determine the primary challenges to reaching 1EFlops 
by 2015, or soon thereafter 

•  they concluded the four key challenges were: 
I.  power consumption 
II.  memory and storage 
III.  application scalability 
IV.  resiliency 

•  … to which I would add: 
V.   validation 

1: http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf 



I: the power problem 

•  the most power-efficient microprocessors available today 
deliver ~450 Mflops/W on Linpack 
–  ie ~2.2 MW per Pflops … or 2.2GW per Eflops 
–  excluding cooling which adds 20-100% to the power draw 

Longannet: 2.4 GW 
•  … clearly, we have to do better! 

–  DARPA goal: 50 Gflops/W in 8 
years 

–  100x improvement 



I: how do we reduce power consumption? 

•  the simplest way is to reduce the clock rate 
–  the power consumption of a microprocessor depends on many factors 
–  … empirically, the power consumption α ν3 

–  a 20% drop in clock rate gives an 50% reduction in power1 

•  however, lowering the clock reduces the speed 
–  and, hence, increases the number of cores required 
–  bad news for HPC 
–  especially if you want to use data!2 

1: http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled 
2: http://spectrum.ieee.org/computing/hardware/multicore-is-bad-news-for-supercomputers 

•  recently, we upgraded HECToR: dual-
core 2.3 GHz -> quad-core 2.0 GHz 
–  one application reduced its performance 

by 1.7x 



I: microprocessor architectures 

•  conventional microprocessor architectures are optimised for 
single thread performance, rather than energy efficiency 
–  fast clock rate with latency (performance)-optimised memory 
–  heavy use of speculative execution => large structures supporting 

various types of predictions 
–  relatively little energy spent on actual ALU operations 

•  could be much more energy efficient with multiple slow, 
simple processors exploiting vector/SIMD 



I: microprocessors not the only problem 

•  which takes more? 
–  performing a 64-bit FMA 

•  or, moving the three operands 20mm across the die? 

•  moving the data uses 3x the energy 

•  loading the data from off-chip takes >10x more yet 
–  flops are cheap, communications are expensive 
–  exploiting data locality is critical 

893,500.288914668            
x               43.90230564772498 
= 39,226,772.78026233027699 
+                 2.02789331400154 

= 39,226,724.80815564             



II: memory and power 
2000                                                 2010 

•  memory bandwidth has increased ~10x over the past decade 

•  the energy cost/bit transferred has declined by 2.5x 

•  … the energy cost of driving the memory at full bandwidth 
has risen 4x 

•  memory DIMMs can’t provide bandwidth at acceptable 
energy costs 



II: memory performance 

•  over the past 30 years 
DRAM density has 
increased ~75x faster than 
bandwidth 

•  … memory bandwidth is 
the limiting factor in future 
designs 

•  novel memory 
technologies needed : 
–  phase-change memory, 

holographic memory, 
graphene … 

1995                                               2006 



III: applications scalability 

•  those codes with low communications overheads and which 
can exploit weak scaling do well: 

Lattice Boltzmann – soft condensed matter 



III: applications scalability … 

CFD – modelling combustion 



III: applications scalability … 

•  … some do pretty well 

Hybrid Monte Carlo – particle physics 



III: applications scalability … again 

•  … but most are disappointing 
–  this behaviour is caused by the overheads of global communications 
–  applications only when communications are highly infrequent, or local 

Lattice Boltzmann – biophysics 



III: alarming applications scalability … 

•  users, especially in chemistry and engineering, are locked-in to poorly-
scaling third-party codes 

•  summary: widespread need for good software engineering and parallel 
techniques 

Density Functional Theory – Physical Chemistry 



IV: resiliency 

•  an Eflops machine is likely to have ~106 processors 

•  if each processor had a lifetime of 10 years (unlikely) 

•  … then the machine will have a MTBF of ~5 minutes! 

•  we therefore have to be able to operate it in a way which is 
resilient to single-node failures 

•  unfortunately, most scientific applications use synchronous 
algorithms 

•  … which would halt when something blocks the data flows 

•  fault tolerance is not a new problem 
–  von Neumann considered this is detail as early computers failed often 



IV: fault-tolerant computing 

•  … is common in many high-throughput applications 
–  Google, Amazon’s Availability Zones … 

•  here, the focus is to maximize overall throughput, not to 
minimize the execution time of every individual job 

•  these applications have elaborate supervisory structures 

•  why not transplant these approaches to HPC? 



IV: fault-tolerant HPC 

•  this approach is directly applicable to HPC where the 
problem can be decomposed as a task farm 
–  eg. DNA sequence analysis, LHC simulations, SETI@home … 

•  however, this is a (small) subset of applications 

•  most require tight coupling between processes 
–  data must flow between worker processes and not just between a 

master and a pool of workers 



IV: fault-tolerant HPC 

•  what happens when a processor fails in such synchronous 
applications? 

•  now, neighbouring processes don’t have to run on 
neighbouring processors (though it is faster if they do) 

•  so, we can reserve processors to substitute for failed ones 
–  fault-tolerant MPI provides a framework to achieve this 



IV: fault-tolerant HPC 

•  … so, the problem is solved? 

•  No 

•  while it may be possible to reconnect the processors in a 
new configuration to exclude failed components, how do we 
reconstruct the state of the failed processor? 

•  we could checkpoint each processor’s state to a neighbour 
and then transfer this to the spare, when required 

•  … however, this will be computationally expensive 
–  memory/core is decreasing 
–  memory and network bandwidths already limit performance 

•  most codes use checkpoint/restart 
–  crude and unscalable to exascale 



V: validation 

•  if the application does not mimic reality then there is no 
point 

•  there are many levels at which errors can creep in: 
–  hardware unrepeatability 
–  inappropriate choice of algorithm 
–  wrong coding 



hardware errors 

•  of these, hardware problems may be surprising, but: 
–  1994: Pentium divide error 

–  Intel: “1 in 9 billion divides wrong” 
–  at this rate an Eflops machine would make ~108 mistakes s-1 

–  1991: Meiko i860 
–  race conditions produce errors which are scientifically significant 
–  run every simulation three times, if two agree, accept 

–  2003: QCDOC (Bluegene prototype) 
–  need to reduce clock rate to prevent race conditions 

–  2008: Cray XT4 
–  undiagnosed network problems give lack of reproducibility 
–  example of “silent errors” which are all too prevalent1 

–  these are different from “soft errors” because they can persist 

1: Cappello et al 2009 Int J HPC Applns, 23, 374 



hardware(?) errors 

•  in these last 3 cases the errors were only uncovered by a 
particularly diligent user group 
–  “normal” users would never have noticed  

•  understanding how to improve matters requires us to 
understand where the problems originate 
–  little consensus, different studies have suggested different sources 
–  but most likely that most problems originate in the system software 

•  but, most applications are very sensitive to a single soft error1 

•  fault oblivious, “self-stabilisation” algorithms have been 
investigated for many years2  

1: Lu and Reed 2004 Proc 2004 ACM/IEEE Conf of Supercomputing 
2: Dijkstra 1974 Commun, ACM  17(11), 643 



self-healing machines 

•  self-stabilisation requires that all software used in the 
program’s execution is fault-tolerant 
–  not just the application and numerical algorithm 

•  … so, a lot of work 

•  moreover: 
–  such algorithms have only been investigated in basic distributed 

system operations 
–  the duration of the stabilisation phase is unknown  
–  … and, errors during the stabilisation phase restart the clock 

•  thus, it’s not obvious how to have self-stabilising numerical 
algorithms 

•  … but many aspects of the runtime environment could make 
use of this approach 



algorithmic choice 

Algorithm! Implementation!vs.!

∑ f(x)!
r = 0 

do i=1, n 
  r = r + f(i) 

end do 

1234567.4440                                                      1234567.4448 
1234567.4444                                                       1234567.4444 
1234567.4448                                                       1234567.4440 
------------------                                                         ------------------- 
3703702.4000                                                       3703702.5000 

•  … and the correct answer is ….. neither 
–  3703702.3332 



algorithmic choice 
•  discretising a continuous system on to a grid necessarily introduces errors 

•  … the algorithm must be chosen to ensure that these do not propagate 
excessively: 

•  eg. Poisson’s Equation (              ) 
– we wish to solve this on some surface with some boundary conditions 

•  the problem worsens for higher differentials: O(   ) vs O(   ) for  

ρ(i,j)	


Φ(i,j)	



ρ(i-1,j)	


Φ(i-1,j)	
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Φ(i-1,j+1)	
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initial value problems 

•  … not going to go through the algebra but IVP problems 
require stability, eg Diffusion Equation: 

•  this is a parabolic PDE 

•  if we calculate Φt+1(x) from Φt(x) (FTCS in 1D) 

•  but, this scheme is unstable unless ∆t<∆x2/2D 
–  … and with this condition it is computationally very expensive  

•  we can remedy that by using an implicit integration scheme 
–  here, Φt+1(x) is calculated using Φt+1(x+∆x) etc at the advanced time 



initial value problems 

•  unfortunately, this is only accurate to O(∆t) 

•  … so we have to use Crank Nicholson 
–  an average of implicit and explicit, accurate to O(∆t2) 

•  but we have to use a different integration scheme for, say, 
the Wave Equation: 

•  - this is a hyperbolic PDE 

•  … so, choice of algorithm is not necessarily straightforward 
–  especially if you are trying to simulate a phase change, as the 

character of the pde can change 

•  nor is timestep necessarily constant throughout a simulation 



wrong coding 

•  making mistakes is only human 

•  finding, and correcting, them requires a process 

•  … unfortunately few academic software developers 
understand the software development process 
–  this is an area steeped in mystery 

•  but, fortunately, academic software developers aren’t likely to 
kill anyone through their mistakes 



Software Testing - Introduction 36 

Bad Software  

•  Ariane 5 Explosion   

•  Code from Ariane 4 re-used 

•  Faster engines in Ariane 5 triggered 
a bug which caused buffer overflows 

•  Oops!! 
–  No comprehensive testing of old 

code in the new platform 

•  Result – A very big bang 



Software Testing - Introduction 37 

Bad Software … cont 

•  Therac-25: Medical Linac  
–  two modes of operation: “Electron” (low power) 

and “X-ray” (high power) 
•  early example of concurrent  programming 
•  only partial understanding of the need for 

control of inter-thread communications 
•  eg. 

–  user entered “X” by mistake 
–  quickly corrected sequence, entering “E” 
–  ran sequence 

–  one thread controlled the output power  
–  another controlled the collimator 

–  mis-prioritisation permitted the high power 
setting to run without the collimator plate in 
place 

•  several deaths occurred 



formal verification 

•  … provides a method for rigourous verification of correctness 
as an alternative to ad hoc testing 
–  formal specification methods can show critical interactions between 

program components 

•  however, for scientific applications the applications for formal 
testing within the component is limited 
–  they use floating point numbers => requires us to know what 

tolerance is important 
–  … hence has been the responsibility of the application and currently 

few such tests are made 
–  at exascale the volumes of data increase and the practicality of even 

this is unclear 

•  in parallel we need to validate results because of the high 
probability of soft errors 




