
Professor Arthur Trew
 Director, EPCC

a.s.trew@ed.ac.uk
+44 131 650 5025

The Exascale Challenge

parallel computing today

•  the programming model is one of a set distinct memories
distributed over homogeneous microprocessors
–  each microprocessor runs a Unix-like OS

•  data transfers between the processors are managed
explicitly by the application

•  almost all programs are written in sequential Fortran or C

•  they use MPI (Message Passing Interface) for data transfers
between nodes/microprocessors

•  some applications which exploit parallel threads on each
microprocessor use a hybrid model
–  shared memory on the microprocessor, distributed memory outwith
–  this holds promise for many applications, but is still rare

parallel computing today

•  (like the OS) few mathematical algorithms have been
designed with parallelism in mind

•  … the parallelism is then “just a matter of implementation”

•  this approach generates much duplication of effort as
components are custom-build for each application

•  … but the years of development and debugging inhibits
change and users are reluctant to risk a reduction in scientific
output while rewriting takes place

•  we may be close to a “tipping point”
–  without fundamental algorithmic changes progress in many areas will

be limited

justifying the exaflops

•  today, the majority of codes won’t scale to a teraflops (1012
flops), so why bother with the exaflops (1018 flops)?

•  there is an applications demand

•  achieving it will require us to have radically new hardware
and software designs
–  “clear and widely recognised inadequacy of the current HPC software

infrastructure in all component areas for supporting … escalation”1

•  hence there are challenges for
–  engineers for new designs for hardware and networks
–  computer scientists for compliers, software engineering, autonomic

computing …
–  numerical analysts for new highly-scalable algorithms

1: International Exascale Software Project Roadmap http://www.exascale.org/iesp/IESP:Documents

the need for speed

thanks to Intel Corporation

… in oil exploration

Total Oil

… in aircraft design

… nuclear reactor design

shooting for an exaflops

thanks to top500.org

what are the challenges?

•  DARPA conducted a study on Exascale hardware in 20071

•  Objective: understand the course of mainstream technology
and determine the primary challenges to reaching 1EFlops
by 2015, or soon thereafter

•  they concluded the four key challenges were:
I.  power consumption
II.  memory and storage
III.  application scalability
IV.  resiliency

•  … to which I would add:
V.  validation

1: http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf

I: the power problem

•  the most power-efficient microprocessors available today
deliver ~450 Mflops/W on Linpack
–  ie ~2.2 MW per Pflops … or 2.2GW per Eflops
–  excluding cooling which adds 20-100% to the power draw

Longannet: 2.4 GW
•  … clearly, we have to do better!

–  DARPA goal: 50 Gflops/W in 8
years

–  100x improvement

I: how do we reduce power consumption?

•  the simplest way is to reduce the clock rate
–  the power consumption of a microprocessor depends on many factors
–  … empirically, the power consumption α ν3

–  a 20% drop in clock rate gives an 50% reduction in power1

•  however, lowering the clock reduces the speed
–  and, hence, increases the number of cores required
–  bad news for HPC
–  especially if you want to use data!2

1: http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
2: http://spectrum.ieee.org/computing/hardware/multicore-is-bad-news-for-supercomputers

•  recently, we upgraded HECToR: dual-
core 2.3 GHz -> quad-core 2.0 GHz
–  one application reduced its performance

by 1.7x

I: microprocessor architectures

•  conventional microprocessor architectures are optimised for
single thread performance, rather than energy efficiency
–  fast clock rate with latency (performance)-optimised memory
–  heavy use of speculative execution => large structures supporting

various types of predictions
–  relatively little energy spent on actual ALU operations

•  could be much more energy efficient with multiple slow,
simple processors exploiting vector/SIMD

I: microprocessors not the only problem

•  which takes more?
–  performing a 64-bit FMA

•  or, moving the three operands 20mm across the die?

•  moving the data uses 3x the energy

•  loading the data from off-chip takes >10x more yet
–  flops are cheap, communications are expensive
–  exploiting data locality is critical

893,500.288914668
x 43.90230564772498
= 39,226,772.78026233027699
+ 2.02789331400154

= 39,226,724.80815564

II: memory and power
2000 2010

•  memory bandwidth has increased ~10x over the past decade

•  the energy cost/bit transferred has declined by 2.5x

•  … the energy cost of driving the memory at full bandwidth
has risen 4x

•  memory DIMMs can’t provide bandwidth at acceptable
energy costs

II: memory performance

•  over the past 30 years
DRAM density has
increased ~75x faster than
bandwidth

•  … memory bandwidth is
the limiting factor in future
designs

•  novel memory
technologies needed :
–  phase-change memory,

holographic memory,
graphene …

1995 2006

III: applications scalability

•  those codes with low communications overheads and which
can exploit weak scaling do well:

Lattice Boltzmann – soft condensed matter

III: applications scalability …

CFD – modelling combustion

III: applications scalability …

•  … some do pretty well

Hybrid Monte Carlo – particle physics

III: applications scalability … again

•  … but most are disappointing
–  this behaviour is caused by the overheads of global communications
–  applications only when communications are highly infrequent, or local

Lattice Boltzmann – biophysics

III: alarming applications scalability …

•  users, especially in chemistry and engineering, are locked-in to poorly-
scaling third-party codes

•  summary: widespread need for good software engineering and parallel
techniques

Density Functional Theory – Physical Chemistry

IV: resiliency

•  an Eflops machine is likely to have ~106 processors

•  if each processor had a lifetime of 10 years (unlikely)

•  … then the machine will have a MTBF of ~5 minutes!

•  we therefore have to be able to operate it in a way which is
resilient to single-node failures

•  unfortunately, most scientific applications use synchronous
algorithms

•  … which would halt when something blocks the data flows

•  fault tolerance is not a new problem
–  von Neumann considered this is detail as early computers failed often

IV: fault-tolerant computing

•  … is common in many high-throughput applications
–  Google, Amazon’s Availability Zones …

•  here, the focus is to maximize overall throughput, not to
minimize the execution time of every individual job

•  these applications have elaborate supervisory structures

•  why not transplant these approaches to HPC?

IV: fault-tolerant HPC

•  this approach is directly applicable to HPC where the
problem can be decomposed as a task farm
–  eg. DNA sequence analysis, LHC simulations, SETI@home …

•  however, this is a (small) subset of applications

•  most require tight coupling between processes
–  data must flow between worker processes and not just between a

master and a pool of workers

IV: fault-tolerant HPC

•  what happens when a processor fails in such synchronous
applications?

•  now, neighbouring processes don’t have to run on
neighbouring processors (though it is faster if they do)

•  so, we can reserve processors to substitute for failed ones
–  fault-tolerant MPI provides a framework to achieve this

IV: fault-tolerant HPC

•  … so, the problem is solved?

•  No

•  while it may be possible to reconnect the processors in a
new configuration to exclude failed components, how do we
reconstruct the state of the failed processor?

•  we could checkpoint each processor’s state to a neighbour
and then transfer this to the spare, when required

•  … however, this will be computationally expensive
–  memory/core is decreasing
–  memory and network bandwidths already limit performance

•  most codes use checkpoint/restart
–  crude and unscalable to exascale

V: validation

•  if the application does not mimic reality then there is no
point

•  there are many levels at which errors can creep in:
–  hardware unrepeatability
–  inappropriate choice of algorithm
–  wrong coding

hardware errors

•  of these, hardware problems may be surprising, but:
–  1994: Pentium divide error

–  Intel: “1 in 9 billion divides wrong”
–  at this rate an Eflops machine would make ~108 mistakes s-1

–  1991: Meiko i860
–  race conditions produce errors which are scientifically significant
–  run every simulation three times, if two agree, accept

–  2003: QCDOC (Bluegene prototype)
–  need to reduce clock rate to prevent race conditions

–  2008: Cray XT4
–  undiagnosed network problems give lack of reproducibility
–  example of “silent errors” which are all too prevalent1

–  these are different from “soft errors” because they can persist

1: Cappello et al 2009 Int J HPC Applns, 23, 374

hardware(?) errors

•  in these last 3 cases the errors were only uncovered by a
particularly diligent user group
–  “normal” users would never have noticed

•  understanding how to improve matters requires us to
understand where the problems originate
–  little consensus, different studies have suggested different sources
–  but most likely that most problems originate in the system software

•  but, most applications are very sensitive to a single soft error1

•  fault oblivious, “self-stabilisation” algorithms have been
investigated for many years2

1: Lu and Reed 2004 Proc 2004 ACM/IEEE Conf of Supercomputing
2: Dijkstra 1974 Commun, ACM 17(11), 643

self-healing machines

•  self-stabilisation requires that all software used in the
program’s execution is fault-tolerant
–  not just the application and numerical algorithm

•  … so, a lot of work

•  moreover:
–  such algorithms have only been investigated in basic distributed

system operations
–  the duration of the stabilisation phase is unknown
–  … and, errors during the stabilisation phase restart the clock

•  thus, it’s not obvious how to have self-stabilising numerical
algorithms

•  … but many aspects of the runtime environment could make
use of this approach

algorithmic choice

Algorithm! Implementation!vs.!

∑ f(x)!
r = 0

do i=1, n
 r = r + f(i)

end do

1234567.4440 1234567.4448
1234567.4444 1234567.4444
1234567.4448 1234567.4440
------------------ -------------------
3703702.4000 3703702.5000

•  … and the correct answer is ….. neither
–  3703702.3332

algorithmic choice
•  discretising a continuous system on to a grid necessarily introduces errors

•  … the algorithm must be chosen to ensure that these do not propagate
excessively:

•  eg. Poisson’s Equation ()
– we wish to solve this on some surface with some boundary conditions

•  the problem worsens for higher differentials: O() vs O() for

ρ(i,j)	

Φ(i,j)	

ρ(i-1,j)	

Φ(i-1,j)	

ρ(i,j+1)	

Φ(i,j+1)	

ρ(i-1,j+1)	

Φ(i-1,j+1)	

Δ	

Forwards

Centred

Forwards

Centred

initial value problems

•  … not going to go through the algebra but IVP problems
require stability, eg Diffusion Equation:

•  this is a parabolic PDE

•  if we calculate Φt+1(x) from Φt(x) (FTCS in 1D)

•  but, this scheme is unstable unless ∆t<∆x2/2D
–  … and with this condition it is computationally very expensive

•  we can remedy that by using an implicit integration scheme
–  here, Φt+1(x) is calculated using Φt+1(x+∆x) etc at the advanced time

initial value problems

•  unfortunately, this is only accurate to O(∆t)

•  … so we have to use Crank Nicholson
–  an average of implicit and explicit, accurate to O(∆t2)

•  but we have to use a different integration scheme for, say,
the Wave Equation:

•  - this is a hyperbolic PDE

•  … so, choice of algorithm is not necessarily straightforward
–  especially if you are trying to simulate a phase change, as the

character of the pde can change

•  nor is timestep necessarily constant throughout a simulation

wrong coding

•  making mistakes is only human

•  finding, and correcting, them requires a process

•  … unfortunately few academic software developers
understand the software development process
–  this is an area steeped in mystery

•  but, fortunately, academic software developers aren’t likely to
kill anyone through their mistakes

Software Testing - Introduction 36

Bad Software

•  Ariane 5 Explosion

•  Code from Ariane 4 re-used

•  Faster engines in Ariane 5 triggered
a bug which caused buffer overflows

•  Oops!!
–  No comprehensive testing of old

code in the new platform

•  Result – A very big bang

Software Testing - Introduction 37

Bad Software … cont

•  Therac-25: Medical Linac
–  two modes of operation: “Electron” (low power)

and “X-ray” (high power)
•  early example of concurrent programming
•  only partial understanding of the need for

control of inter-thread communications
•  eg.

–  user entered “X” by mistake
–  quickly corrected sequence, entering “E”
–  ran sequence

–  one thread controlled the output power
–  another controlled the collimator

–  mis-prioritisation permitted the high power
setting to run without the collimator plate in
place

•  several deaths occurred

formal verification

•  … provides a method for rigourous verification of correctness
as an alternative to ad hoc testing
–  formal specification methods can show critical interactions between

program components

•  however, for scientific applications the applications for formal
testing within the component is limited
–  they use floating point numbers => requires us to know what

tolerance is important
–  … hence has been the responsibility of the application and currently

few such tests are made
–  at exascale the volumes of data increase and the practicality of even

this is unclear

•  in parallel we need to validate results because of the high
probability of soft errors

