
1

Model-Driven,
Component-Based Development

2

Contents
Motivation

Component Modeling

Product Line Engineering

Process Modeling

Conclusion

3

Industrial Reuse Drivers

Vision
Assemble applications
from prefabricated parts

COTS component market

Web Services

Obstacles
Current technologies (.NET,
J2EE) very implementation
oriented

Little understanding of how to
scope components

Vision
Capture core software assets as
platform-independent models (PIMs)

Automatically map PIMS to PSMs

Obstacles
Larges upfront investment

Poor connection with regular
“single-system” technology

Obstacles
Lack of systematic methods
for creating PIMs

Fixed and Ad hoc mapping
techniques

Vision
Development activities
oriented around
product families

manage commonalities
and variabilities KobrA

Component-based
Development (CBD)

Model-Driven
Architecture (MDA)

1

2

3Product-Line
Engineering (PLE)

4

The KobrA Project
KoKomponentenbbasierrte AAnwendungsentwicklung

Supported by BMBF
January 1999 -> December 2001

Four partners
Softlab GMBH, Munich
PSIPENTA Software Systems, Berlin
Fraunhofer FIRST, Berlin
Fraunhofer IESE, Kaiserslautern

Successfully applied by numerous companies
PSIPENTA, Digital Steps, SIEDA, ...

At IESE, further developed for embedded systems
development

MARMOT Method

5

Separation of Concerns
Abstraction

(MDA)

Composition
(CBD)

Genericity
(PLA)

Instantiation

Decomposition
Embodiment

FrameworkApplication

6

Modeling Principles
Uniformity

all behavior rich elements should be viewed as
components, including (sub)systems
component assembly = component development

Parsimony
minimal set of concepts (no redundancy)

Locality
all models should be local to a component

Encapsulation
component specifications (what) must be separated from
component realizations (how)

7

Component Modeling

Structural Model
(UML class/object
diagrams)

Functional Model
(operation specifications)

Behavior Model
(UML statechart diagram)

B
usiness

C
om

ponent

Specification

Structural Model
(UML class/object
diagrams)

Interaction Model
(UML collaboration
diagrams)

Activity Model
(UML activity diagrams)

Realization

8

Composition Hierarchy

Clientship
rules

Conformance rules

Conformance rules

Conformance rules

Cliensthip
rules

Conformance rules

9

Simple International Bank (SIB) Example

«component»

«component»

«component» «component»

Bank

Teller Converter

Dictionary

<<creates>>

<<creates>> <<creates>>

10

createAccount
deposit
showAccount
withdraw
closeAccount
setRate
convertToEuro
convertFromEuro

Bank
noOfAccounts : Integer := 0 Account

UserName : String
accountID : String
balance : Float
Denom : String
Limit : Float

manages1 *

<<subject>>

Empty

AccountsButNoRates

RatesButNoAccounts

AccountAandRates

createAccount/
deposit/
viewAccount/
withdraw /
closeAccount [noOfAccounts > 2]/

noOfAccounts : Integer

createAccount/
deposit/
viewAccount/
withdraw/
closeAccount [noAccounts > 2]/
setRate/
convertToEuro/
convertFromEuro/

noOfAccounts : Integer := 0

setRate/
convertToEuro/
convertFromEuro/

createAccount

setRate

setRate

closeAccount [noOFAccounts = 1]

createAccount

closeAccount [noOFAccounts = 1]

{crateAccount, deposit, viewAccount must
all be in Euro}

Behavioural Model
Functional Model

Structural Model

Class Diagram

Operation Specifications
Statechart Diagram

Name withdraw

Informal
Description

An amount of money in a particular currency is withdrawn from an
account.

Constrains --
Receives account:Account

currency:String
amount:Float

Returns A boolean indicating whether the withdrawal was possible

Changes account

Assumes --
Result If account or currency are not valid, the operation has been aborted and

an exception has been raised.

Else if
 account.balance + account limit >= amount,

then account.balance := account.balance – amount and „true“ has been
returned

Otherwise „false“ has been returned.

Component Specification (Bank)

Empty

AccountsButNoRates

RatesButNoAccounts

AccountAandRates

createAccount/
deposit/
viewAccount/
withdraw /
closeAccount [noOfAccounts > 2]/

noOfAccounts : Integer

createAccount/
deposit/
viewAccount/
withdraw/
closeAccount [noOfAccounts > 2]/
setRate/
convertToEuro/
convertFromEuro/

noOfAccounts : Integer := 0

setRate/
convertToEuro/
convertFromEuro/

createAccount

setRate

setRate

closeAccount [noOFAccounts = 1]

createAccount

closeAccount [noOFAccounts = 1]

{createAccount, deposit, withdraw, viewAccount
must all be in Euro}

Statechart Diagram

Name withdraw
Informal
Description

An amount of money in a particular currency is withdrawn from
an account.

Receives ID : String
currency:String
amount:Float

Returns A boolean indicating whether the withdrawal was possible

Changes account with accountID = ID
Rules if currency = account.denom then

 equivalentAmount = amount
else
 equivalentAmount = amount converted to denomination

Result If ID or currency are not valid then
 operation has been aborted and an exception raised.
else if account.balance + account.limit >= equivalentAmount,
 account.balance := account.balance – equivalentAmount
 and True has been returned
else
 False has been returned.

 Operation Specifications

createAccount()
deposit()
viewAccount()
withdraw()
closeAccount()
setRate()
convertToEuro()
convertFromEuro()

Bank

noOfAccounts : Integer := 0
Account

accountID : String
ownerName: String
balance : Float
denom : String
Limit : String

manages1 *

<<subject>>

Class Diagram

11

Simple International Bank (SIB) Example

«interface»
Currency

setRate
convertFromTo

«interface»
AccountManager

createAccount
deposit
showAccount
withdraw
closeAccount

«component»
Bank

«component»
Bank

Currency

AccountManager

12

Component Realization (Bank)

:Teller

Structural Model

Bank

Converter

1
1

PersistentAccount1

11 *

*

setRate
convertToEuro
convertFromEuro

createAccount
getAccount
closeAccount

Teller

accesses

Account

deposit
withdraw

*1

<<subject>>

:Bank

:Converter

:Teller

:PersistentAccount

Class Diagram Object Diagram

Collaboration Diagrams

Activity Model

getAccount

GetBalance evaluateRequest

WidthrawCash return
False

return
True

:Teller :Account :Bank

Balance ≥ RequestBalance < Request

:Converter

ConvertRequest

Activity Diagram

:Converter

Interaction Model

:Bank

:Converter

withdraw (ID, curr, am) : res

4 : [bal > euro] withdraw (euro) : res

a : PersistentAccount

1: getAccount(ID) : a

:Teller

2: convertToEuro (curr, am) : euro

3 :getBalance() :bal

Collaboration Diagrams

Bank

Converter

1

1

PersistentAccount

1

11 *

*

setRate()
convertToEuro()
convertFromEuro()

createAccount()
getAccount()
closeAccount()

Teller

accesses

Account

deposit()
withdraw()
getbalance()

*

1

<<component>>

<<component>>

<<subject>>

Class Diagram

:Bank

:Converter

withdraw (ID, curr, am) : res

4 : [bal +limit > eur]
withdraw (euro) : res

a : PersistentAccount

1: getAccount(ID) : a

:Teller

2: convertToEuro (curr, am) : euro

3 :getBalance() :bal

Collaboration Diagrams

getAccount

GetBalance evaluateRequest

WidthrawCash
return
False

return
True

:Teller :Account :Bank

Balance + limit
≥ Request

Balance + limit
< Request

:Converter

ConvertRequest

Activity Diagrams

13

SIB Realization

Bank

AccountManager

«component»
TellerAccountManager

«component»
Converter

Currency

«delegates»
Currency«delegates»

14

Simple International Bank (SIB) Example

«component»

«component»

«component»

Bank

«component»
Teller Converter

Dictionary

<<creates>>

<<creates>>

<<creates>>

15

Component Specification (Teller)

Behavioural ModelFunctional Model

Structural Model

createAccount
getAccount
closeAccount

Teller

noOfAccounts : Integer := 0

*

PersistentAccount

accountID : String
balance : Float
Denom : String

1

<<subject>>

Empty

HasAccounts

createAccount/
getAccount/
closeAccount [noOfAccounts > 2]/

noOfAccounts : Integer := 0

createAccount

closeAccount [noOFAccounts = 1]

Class Diagram

Statechart DiagramOperation Specifications

Name createAccount
Informal
Description

An account is opened in a particular currency for a customer
with a particular name, and the Account ID is returned

Constraints --

Receives name : String
currency:String

Returns A String with the ID of the account

Changes teller
Assumes There is an exchange rate for the specified currency
Result A new account with a unique ID in the denomination,

currency, has been generated
The name of the customer has been stored in account
The account ID has been returned

16

Teller Realization

Teller

AccountManager

«component»
Dictionary

17

openNewAccount activity diagram

SIB Context Activity Model

DecideStarting
Balance

:Customer :Clerk :Bank

Balance ≥ 50 EURBalance < 50 EUR

CheckStarting
Balance

CreateAccount

Deposit
Balance

18

SIB Context Interaction Model
openNewAccount sequence diagram

:Bank:Customer :Clerk

OpenNewAccount (bal, curr, name)

[bal < 50 EUR] InsufficentMessage() [bal ≥ 50 EUR]createAcc (name, curr) : ID

deposit (ID, bal, curr)

19

SIB Context Structural Model

Bank 1

Account

Clerk
Customer

name

accountID
ownerName
balance

*

*
1

**

*

1

Bank Context (openNewAccount) Class Diagram

*

20

Converter

Component
Reuse

COTS Component

Component Engineering Process

Bank’s context

Bank

Dic.

Teller

21

Product Line Engineering
Aims to systematically exploit the similarities between systems

Involves the development of a generic infrastructure reusable
across a family of target products

Key activities include
analysis of common and variable product characteristics
definition of the intended scope of reuse
identification of the optimal level of genericity to support
variant and optional features

Traditionally implies major upfront investment

Product

A
Product

B
Product

C

A

B

C

22

Generic Component Models

Structural Model
(UML class/object
diagrams)

Functional Model
(operation specs.)

Structural Model
(UML class/object
diagrams)Interaction Model

(UML collaboration
diagrams)

Activity Model
(UML activity
diagrams)

Behavior Model
(UML statechart diagram)

Decision Model

Decision Model

Specification

Realization

B
usiness

C
om

ponent

23

Generic Component Specification (Bank)

Decision Model

ID Question Subject Resolution Effect
yes
(default)

Resolve structural diagram decision 1: yes
Resolve operation spec. withdraw decision 1: yes
… 1

Is a customer allowed
to to overdraw his/her
account up to a
certain limit?

Overdraw
Limit

no Resolve structural diagram decision 1: no
Resolve operation spec. withdraw decision 1: no
…

yes
(default)

Resolve structural diagram decision 2: yes
Resolve operation spec. withdraw decision 2: yes
Resolve operation spec. withdraw decision 3: yes
… 2

Is it an international
bank that handles
different currencies?

Currencies

no Resolve structural diagram decision 2: no
Resolve operation spec. withdraw decision 2: no
Resolve operation spec. withdraw decision 3: no
…

createAccount
deposit
showAccount
withdraw
closeAccount
<<variant>> setRate
<<variant>> convertToEuro
<<variant>> convertFromEuro

Bank
noOfAccounts : Integer := 0 Account

UserName : String
accountID : String
balance : Float
<<Variant>> Denom : String
<<variant>>Limit : Float

manages1 *

<<subject>>

Structural Model

Class Diagram

Empty

AccountsButNoRates

RatesButNoAccounts

AccountAandRates

createAccount/
deposit/
viewAccount/
withdraw /
closeAccount [noOfAccounts > 2]/

noOfAccounts : Integer

createAccount/
deposit/
viewAccount/
withdraw/
closeAccount [noAccounts > 2]/
setRate/
convertToEuro/
convertFromEuro/

noOfAccounts : Integer := 0

setRate/
convertToEuro/
convertFromEuro/

createAccount

setRate

setRate

closeAccount [noOFAccounts = 1]

createAccount

closeAccount [noOFAccounts = 1]

{crateAccount, deposit, viewAccount must
all be in Euro}

<<variant>>

<<variant>>

Behavioural Model

Statechart Diagram

Functional Model

Operation Specifications

Name withdraw

Informal
Description

An amount of money <variant> in a particular currency </variant> is withdrawn from
an account.

Constrains --

Receives account:Account
<<variant>> currency:String <</variant>>
amount:Float

Returns A boolean indicating whether the withdrawal was possible

Changes account

Assumes --
Result If account <variant> or currency </variant> are not valid, the operation has been

aborted and an exception has been raised.

Else if
account.balance <variant> + account limit </variant> >= amount,

then account.balance := account.balance – amount and „true“ has been returned

Otherwise „false“ has been returned.

createAccount()
Deposit()
showAccount()
withdraw()
closeAccount()
<<variant>> setRate()
<<variant>> convertToEuro()
<<variant>> convertFromEuro()

Bank

noOfAccounts : Integer := 0
Account

accountID : String
balance : Float
<<variant>> denom : String
<<variant>> limit : Float

manages1 *

<<subject>>

Class Diagram

Question Diagram Effect
Y

Class
Diagram

Remove attribute
Account.limit 1

Is a customer
allowed to
overdraw his/her
account up to a
certain limit?

N Operation
Schema
withdraw

Remove limit from
<Result>

Y
Class

Diagram
Remove operation
Bank.setRate()

Remove operation
Bank.convertToEur
o()

Remove operation
Bank.convertFromE
uro()
Remove currency
from <Description>
Remove currency
from <Receives>

2

Is it an
international bank
that handles
different
currencies?

N

Operation
specification

withdraw Remove currency
from <Result>

Decision Tables

24

Product Line Life Cycle

Application
Eng.

..

Framework
Eng.

Framework
Engineering

Application
Eng.

Application
Eng.

..

instantiation
feedback

25

Pros and Cons of KobrA
Simple and Systematic

strict separation of concerns

Incremental introduction of component and product lines

Uniform treatment of systems and components
component assembly = component creation
fractal-like product, recursive process

Integrated quality assurance
Inspections, testing, quality modeling

BUT
Fairly complex and difficult to apply without a tool

26

Further Information
Book

Atkinson et. al., Component-Based Product Line Engin-
eering with the UML, Addison-Wesley, September 2001

Web Pages
http://www.iese.fhg.de/Kobra_Method/
http://swt.informatik.uni-mannheim.de

Contact
atkinson@informatik.uni-mannheim.de

http://www.iese.fhg.de/Kobra_Method/
http://swt.informatik.uni-mannheim.de/

	Model-Driven, �Component-Based Development
	Contents
	Industrial Reuse Drivers
	The KobrA Project
	Separation of Concerns
	Modeling Principles
	Component Modeling
	Composition Hierarchy
	Simple International Bank (SIB) Example
	Component Specification (Bank)
	Simple International Bank (SIB) Example
	Component Realization (Bank)
	SIB Realization
	Simple International Bank (SIB) Example
	Component Specification (Teller)
	Teller Realization
	SIB Context Activity Model
	SIB Context Interaction Model
	SIB Context Structural Model
	Component Engineering Process
	Product Line Engineering
	Generic Component Models
	Generic Component Specification (Bank)
	Product Line Life Cycle
	Pros and Cons of KobrA
	Further Information

