
1

Colin Atkinson

2nd May 2007

University of St. Andrews

Model-Driven,
Component Engineering

2

Agenda
Components, Services and Models

Model-Driven, Component-Based Development

Orthographic Service Engineering

3

Components, Services
and Models

4

Contents
Components

Web services

Models and MDA

Design by contract

5

Motivation for Components
the concept of systematic reuse in software is very attractive

increased reliability
components exercised in
working systems

reduced process risk
less uncertainty in
development costs

standards compliance
embed standards in reusable
components

accelerated development
avoid original development
and hence speed-up
production

promoted in software engineering in three main ways -
reusing knowledge and experience

patterns, standards, guidelines

developing generic solutions
product lines, frameworks

developing and assembling parts
component-based development

6

What is a Component?
each author has his own favorite definition

UML Specification

“ a component represents a modular,
deployable, and replaceable part of
a system that encapsulates
implementation and exposes a set
of interfaces "

“ a reusable software component
is a logically cohesive, loosely
coupled module that denotes a
single abstraction "

Booch 87

frequently asked questions
does a component have state?
is a component an object?
is a component a module?

most commonly accepted definition
“ a software component is a unit of composition with contractually specified

interfaces and context dependencies only. A software component can be
deployed independently and is subject to composition by third parties "

ECOOP’96

?

7

Software versus System Components
key is to distinguish software and system components

Software Components

functional elements of a software
application at development time

units of independent deployment

units of third-party composition

have no (externally) observable
state

define external context
dependencies

may be instantiatable

System Components

functioning parts of a system in
its execution environment

a.k.a Subsystem

(semi)-autonomous parts of an
executing system

interact with system elements
developed by third parties

may have externally visible
state

have unique identity

⇒ objects, functions⇒ types, modules

8

Key Characteristics of Components
although components have some similarities to traditional classes
and/or modules they have some important additional properties

they define “required” as well as “provided” interfaces

provided interface
services offered by the
component

required interface
services required by the
component

they are self descriptive
accompanying meta-data
describes relevant features
of the component for
potential users

«component»
Order

OrderEntry

Billing Person

AccountPayable

OrderableItem

9

Component Composition
by definition components are assembled to create larger entities

ideally component assemblies have the same properties as primitive
components and can be combined with into larger components
contemporary component technologies do not have this property

components are assembled by
using connectors

delegation connectors
link the external interface of a
component to its internal realization
via its parts

assembly connectors
indicate that one component
provides the services that another
component requires

Order

Orderable
Item

Product

:OrderHeader
«focus»

:LineItem

Account

Account
Payable

«delegates» «delegates»

10

Ports
a mechanism for isolating a classifier from its environment

provides a point for conducting interactions between the internals
of the classifier and its environment

allows a component to be defined independently of its
environment

makes it reusable in any environment that conforms to the
constraints imposed by its ports

required interfaces of a port
describes requests which may be
made from the component to its
environment

provided interfaces of a port
characterize requests to the
component from its environment

«component»

OrderProcess

OnlineServices

OrderEntryTrackingPayment

11

Logical Containment
in recursive component models, one component can be
nested or contained in another component to arbitrary depths

the composite component can be viewed as a (logical)
container of its parts

Store

OrderEntry Person

:Product

OrderableItem

:Order :CustomerOrderEntry

Account Account

«delegates»

«delegates»

12

Component Description Levels
Components can be realized at various abstraction levels

language and platform independent
requires vendor-neutral interface specification language
tools translate vendor-neutral specifications to specific languages
and/or platforms
main example – CORBA Component Model

language specific, platform independent
requires a “write once, read everywhere” language
components must be written in that language
main example – Java component models

language neutral, platform specific
language neutral binary specification
requires operating system to support the standard
main example – COM Component Models

13

Binary Component Models
define how components are represented in memory

but not how programming languages are bound to them

most well known is COM (Common Object Model)
foundation for all Microsoft component software
is widely available on other platforms also
is agnostic the use of objects to implement components

IOleObject

IUnknown

IDataStorage

IpersistentStorage

IOleDocument

QueryInterface Operation
takes a named interface and checks if the
current COM object supports it

if so, it returns the corresponding
interface reference
if not, it returns an error indication

allows a client with a reference to an
interface to “get to” any other interface
supported by the same COM object

14

Disadvantages of Component Based Development

time and effort required for development of components
anecdotal evidence indicates that the effort invested in
generalizing component is recovered after 5th reuse

unclear and ambiguous requirements
reusable components are to be used in different applications,
some of which may yet be unknown and the requirements of
which cannot be predicted

conflict between usability and reusability
to be widely reusable, a component must be sufficiently
general, scalable and adaptable and therefore more complex

component maintenance costs
while application maintenance costs can decrease, component
maintenance costs can be very high

15

Motivation for Web Services

distributed-object and component solutions have shortcomings
mainly for use within an intranet
a lot of interoperability problems due to their proprietary nature
do not scale to the Internet
tightly coupling services and consumers
server object implementations not portable

to promote B2B interaction need an solution that
enables universal interoperability
enables widespread adoption
is based on ubiquitous open, extendible standards
requires minimal supporting infrastructure
focuses on messages and documents, not on APIs

16

What Are Web Services?
“Web services are a new breed of Web application. They are self-
contained, self-describing, modular applications that can be
published, located, and invoked across the Web. Web services
perform functions, which can be anything from simple requests to
complicated business processes. …

Once a Web service is deployed, other applications (and other Web
services) can discover and invoke the deployed service.” IBM

self-contained
functionality and attributes are
exposed in a public interface while
implementation is hidden

self-describing
have a machine-readable description
used to understand their interface

modular
are reusable and can be composed to
generate higher level functionality

published
can be registered in electronic
“yellow pages” for easy location by
other applications

located
are tied to a fixed, globally unique
location identified through a URI

invoked
can be invoked using an standard
Internet protocol

17

Web Services Architecture
elements in a system built from web services play one of three roles

Service
Provider

Service
Broker

(Repository)

Service
Requestor

publish bind

find

service providers publish
services by advertising service
descriptions in the registry

service requestors use find
operation to retrieve service
descriptions from the service
registry

service requestors bind to
service providers using binding
information found in service
descriptions to locate and invoke
a service

(SOAP)(UDDI,
WSDL)

(UDDI,
WSDL)

service requestor
Service provider
Service broker (repository)

18

Core Web Service Technologies
SOAP (Simple Object Access Protocol)

a message layout specification defining a uniform way of passing XML-
encoded data
a way to simulate RPC over standard Web communication protocols

WSDL (Web Service Description Language)
defines Web Services as collections of network endpoints or ports
a port is defined by associating a network address with a binding

UDDI (Universal Description, Discovery and Integration)
provides a mechanism for clients to find web services
the basis for repository services for business applications

(network protocol (HTTP)

Data encoding (XML)

Messaging (SOAP)

Interaction Stack

data type definition (XML Schema)

service description WSDL

Description Stack

(directory) UDDI

Discovery Stack

19

Important Dichotomies
Web Services versus Web Service providers

the term “service” is sometimes used to refer to just the abstract
interface and sometimes to an implementing object
the terms “service interface” and “service provider” should be used
when clarity is needed

Web Service types versus Web Service instances
strictly speaking Web Services are instances
WSDL specifications bind operations to specific URL’s as part of the
definition of ports, and thus have a unique instance identity
however, SOAP specifications define an abstract interaction protocol
(interface) which can be used with any conformant service provider

Web Services versus components
Web services are not software components
they are instances, can have state, do not define required interfaces ..
but they are clearly system components

⇒ Web Services are objects !

20

Are Web Services Stateless or Stateful?
the core Web Service standards allow Web Services to be stateful since
one web service can export multiple methods

however, they are often characterized as stateless because
the core standards have no mechanism for controlling concurrent access to
web services in a multi-client environment
the “state” of stateful web service abstractions is usually stored outside the
service provider code

Stateless Web Service Stateful Web Service ? Stateful Web Service

Proxy

Push Pop

Proxy

Add Divide

?
Proxy

Read Write

Database

21

Pros and Cons of the Web Service Model

increase development
efficiency

increase flexibility

increase opportunities to
generate revenue from
services

increase reusable
components/services

increase interoperability via
standards

decreased IT control of
software assets

decreased security / reliability

decrease trend to in-house
centralized systems (more
global distribution)

increased flexibility and
efficiency for developers

decreased control for IT
organizations

22

Motivation for Model-Driven Development
heterogeneity hinders the development of enterprise distributed
systems

there is (and will never be) complete consensus on
hardware
operating systems
network protocols
programming languages

middleware is intended to solve this problem, but has itself
proliferated

CORBA, ..
COM / .NET, ..
Java / J2EE, ..
SOAP / WSDL, …
….

23

What is Model Driven Development?
an approach to IT system specification that separates the
specification of system functionality from the implementation
of that functionality on a particular technology platform

“design once, build on any platform”

an open, vendor-neutral approach to interoperability using
OMG's modeling specifications

a software
development
process driven by
the activity of
modeling software
systems

automatic
translation

24

CIMs, PIMs and PSMs
Computation Independent Models

describe the requirements for the system
and its environment
the details of the structure and
processing of the system are hidden or
undetermined

Platform Independent Models
focuses on the operation of a system
while hiding the details necessary for a
particular platform.
shows that part of the complete
specification that does not change from
one platform to another.

Platform Specific Models
combines the platform indep. viewpoint
with an additional focus on the detail of
the use of a specific platform by a system

PIM

PSM

Code

Platform
Model

Compiler

CIM

25

PIM and PSM Examples
PIM

A “formal” specification of
the structure and function
of a system that abstracts
away technical detail

usually expressed using
standard UML

PSM
Specifies how the
functionality specified in
a PIM is realized on a
particular platform

expressed using UML
extended with platform
specific UML profiles

Account
«business entity»

number
balance

GenericFactory
«CORBA Interface»

AccountInstanceManager
«CORBA Interface»

ccreate_account() : Account
findAccount : Account

BaseBusinessObject
«CORBA Interface»

Account
«CORBA Interface»

Number : short
Balance : float

26

Key Components of MDA

is used by

is written in

extends

is written inis written in

is written in
is written in

Metalanguage

Transformation
Definition
Language

Transformation
Definition

Transformation
Tool

PIM PSM

languagelanguage

27

Design by Contract
a software design principle derived form the legal
notion of a contract

agreement between two parties in which both accept
obligations and on which both can found their rights.

in SE, provides a means to clearly establish the
expectations and responsibilities of an object

an object must deliver its services (obligations) if and
only if certain stipulations (the rights) are fulfilled
provides an exact specification of an object's interface

an object's contract is formally defined in terms of
invariants
operation pre and post conditions

28

Contract Example

Example
For the price of 4 Euros a letter with a maximum weight of 80
grams will be delivered anywhere in the country within 24 hours

Party Obligations Rights

Customer Pay 4 Euros Letter delivered within 24
hours

Supply letter less than 80
grams

Specify delivery address
within country

Delivery Company Deliver letter within 24
hours

Delivery address is within
country

Receive 4 Euros

Receives letter less than
80 grams

29

Invariants
constraints coupled to classes, types and interfaces

transcend any one particular operation

define what must be true for all instances of the class
when one of the operations is not executing

can be viewed as part of the pre and post condition of
every operation of a class

context Stack
inv: self.noElements <= maxSize

context Stack
inv: self.elements->size() = self.noElements

context Stack
inv: self.noElements >= 0

Stack

push (o : Object)
pop() : Object

Object

elements
{ordered}

0..*0..1

maxSize : Integer
noElements : Integer

30

Pre and Post Conditions
post conditions often refer to the value of an attribute
or association at the start of an operation's execution

achieved by appending @pre to the attribute or
association concerned

the keyword result can be used to identify the value
returned by an operation

context Stack::pop():Object
pre: elements-> size() > 0
post: elements->size() = elements@pre->size() - 1

and elements = elements@pre->
excluding(elements@pre->last())

and result = elements@pre->last()

context Stack::push(o : Object)
pre: elements-> size() < maxSize
post: elements->size() = elements@pre->size() + 1

and elements->last() = o

	Model-Driven, �Component Engineering
	Agenda
	Components, Services �and Models
	Contents
	Motivation for Components
	What is a Component?
	Software versus System Components
	Key Characteristics of Components
	Component Composition
	Ports
	Logical Containment
	Component Description Levels
	Binary Component Models
	Disadvantages of Component Based Development
	Motivation for Web Services
	What Are Web Services?
	Web Services Architecture
	Core Web Service Technologies
	Important Dichotomies
	Are Web Services Stateless or Stateful?
	Pros and Cons of the Web Service Model
	Motivation for Model-Driven Development
	What is Model Driven Development?
	CIMs, PIMs and PSMs
	PIM and PSM Examples
	Key Components of MDA
	Design by Contract
	Contract Example
	Invariants
	Pre and Post Conditions

