If Software is the Solution,
What is the Problem?

Bashar Nuseibeh

Computing Department

W The Open Distinguished Lecture Series
University St. Andrews, 15t December 2006

The Open University (OU)

® Founded in 1969 to widen access to higher education
— No entry conditions (except for post-graduates)

— Part-time, distance education
— Inspired other similar universities around the world

m Over 200,000 students at any one time

— 70% of students In full-time employment
A 50,000 sponsored by their employer

@ Mostly mature students, but

— more younger students recently
1 20% of undergraduates under 25

OU Student numbers

First students in 1971: 25,000
— 130,000 total in other universities

@ Since then over 2 million students; currently
— 150,000 UG and 30,000 PG students
— 25,000 overseas students
— 10,000 students with disabilities

@ Among world’s 20 largest universities by student
number and the UK’s largest

@ 13 OU Regional Centres in the UK

OU In Scotland

@ Scottish regional centre in Edinburgh
1 Supporting 15600 students

1Supported by
— 500 tutors
— 87 members of staff

A http://'www3.open.ac.uk/near-you/scotland/

Computing at the OU

@ Teaching: Department of Computing
— 43 academics, 14 staff tutors, 4000 students

@ Research: Centre for Research in Computing
1 Department of Computing
1 Knowledge Media Institute (KMi)
1 Institute for Educational Technology (IET)

@ Research Areas
— Software Engineering
— Human-Computer Interaction
— Computational Linguistics and Information Retrieval
— Knowledge Technologies

Today’s Three Lectures ...

1 10:00-11:00
A roadmap of requirements engineering

m 11:30-12:30
Problem-oriented requirements engineering

m 14:00-15:00
Security requirements engineering

these lectures contains no explicit
descriptions of programs or code, which
x some members of the audience may find
disturbing. Viewer discretion is advised.

Lecture 1

A Roadmap of
Requirements Engineering

... and some detours

The “voice of the customer”

A story that’s probably not true

At the height of the space race
between the US and the USSR in the
1960's, there was a requirement for
a pen that worked in zero gravity.

o

The Russians faced with the same problem, used a pencil!

To meet this requirement, NASA
spent a considerable amount of money
developing such a pen that was hailed
by Americans as a great success.

Requirements Engineering (RE)

Requirements are:

- expressions of stakeholder needs of a system to
achieve particular goals.

- expressed in the vocabulary of the problem domain,
rather than the system (solution) domain.

X

NP,
\ 2
a Requirements Engineering is about: ;%

1. Discovering stakeholder goals, needs, and E
expectations EZ

Adjusting stakeholder expectations

2. Communicating these to system implementers
Adjusting implementer expectations

A Roadmap of RE

a1 A little (more) motivation
- Or, why RE is important

® A little background
- Or, before we begin RE

8 A roadmap
- Or, what is RE?

2 “You are here”
- Or, the RE state-of-the-ar

a1 A little speculation
- Or, where to go from here ...

Motivating requirements engineering ...

Motivation — Part 1: Scare Tactics

Many software failures can be attributed to
Ineffective requirements engineering

Ariane b

So, who dunnit?

Motivation — Part 1: Scare Tactics

@ If you don't do RE, your software will fail ...

- Many software failures can be attributed to
failure to do RE effectively.

Ariane H:

Spectacular failures almost always happen
for systemic reasons.

S
|

l’ Motivation — Part 2: Economics
e

@ RE saves you money ...
Errors found ‘earlier’ in the software development

life cycle are cheaper and easier to fix than those
found later in the development life cycle [Boehm].

@ The studies that make this claim N

i,

also assume a waterfall life cycle. -+

®((pr

AYNY”
e N4

”

N

L o)

mE W Motivation — Part 3:
Quality

@ RE helps you build better products ...

9,

- that will satisfy your customer,

- (and therefore make you money).

= This is an engineering argument because it addresses:
= Fitness for purpose, as expressed by stakeholders

The Bottom Line

"If you build software without [requirements
and] specifications, it can never be incorrect
- it can only be surprising.”

B. Kernighan

So, what is requirements engineering?

A Definition of RE

"Requirements engineering is the branch of systems
engineering concerned with the real-world goals for,
services provided by, and constraints on a large and
complex software-intensive system. It is also
concerned with the relationship of these factors to
precise specifications of system behaviour, and to
their evolution over time and across system
families.”

[adapted from Zave 1997]

Orientation pTga

\

1 Foundations ‘?7
1 Context and Groundwork
1 Eliciting Requirements
% Modelling and Analysing Requirements
Communicating Requirements
1 Agreeing Requirements
2 Evolving Requirements s fus s

TR e e o

Finkelstein (ed.), 4-11 June 2000, Limerick,
Ireland, ACM Press.

Foundations of RE

@ Computer Science

| Logic

@ Linguistics

@ Systems Theory

® Cognitive Psychology
® Anthropology

® Sociology

@ Philosophy ... epistomology... phenomenology ...ontology...

Context and Groundwork

1 Context
- Organisational setting
- Contract and procurement procedures
- Process improvement and maturity

- Personnel and staffing S@?
™

2 Groundwork JT%
- Feasibility &) 4
- Risk

[from Finkelstein]

Eliciting Requirements —

3 Requirements elicitation is partly a process of
discovering stakeholder expectations, and
adjusting these expectations.

Things to elicit

= Boundaries

= Stakeholders

Goals

Tasks ... use cases ... scenarios
Feasibility

Risk

Where to elicit requirements from

= Stakeholders
= Application domain
= Existing documentation

b |

) |

Eliciting Requirements -

Traditional techniques
- Questionnaires, surveys, interviews, analysis of existing
documentation, etc.
Group elicitation techniques
- Brainstorming, focus groups, RAD/JAD workshops, etc.

Prototyping
- For early feedback from stakeholders

A4
Model-driven techniques ¥\ 1% /
- Goal-based, use case/scenario-based, etc. "’éﬂ"/

Cognitive techniques
- Protocol analysis, card sorting, laddering, etc.

Contextual techniques
- Ethnography, conversation analysis, etc.

Modelling and Analysing Requirements

1 Enterprise modelling
2 Data modelling

2 Behavioural modelling
2 Domain modelling

1 Modelling non-functional requirements (NFRs)

1 Analysing Requirements Models
- Animation

- Automated reasoning
- Consistency checking

Detour 1. From Fuzzy to Formal

"Everybody loves my baby ... but my baby loves only me”

Formalisation

Vv X - Loves (x, MyBaby) // Formalise Line 1 of song
V' y - Loves (MyBaby, y) >y = Me // Formalise Line 2 of song

Analysis
V X - Loves (X, MyBaby)
Loves (MyBaby, MyBaby)

vy - (Loves (MyBaby,y) >y =Me)
Loves (MyBaby, MyBaby) — MyBaby = Me

Conclusion: T am my baby !

A ‘formal’ specification

™ Rule:
- All departmental visitors give invited Iec‘rur'es
O“O
1 Fact:

&
- Bashar is a departmental visitor é{s ékf“
2 Observation:

- Bashar gives an invited lecture "
2’

)
&

9

g% Formal Analysis

Allows the requirements engineer
to ask about properties of a
software system to be developed.

Three interesting kinds of formal analysis:

Deduction Induction Abduction

(Natural) Deduction

3 Rule:
All departmental visitors give invited lectures

Fact:
Bashar is a departmental visitor

Deduction concludes that:
Bashar gives an invited lecture

./“/y L
— A

Induction (Learning)

1 Fact:
Bashar is a departmental visitor

@ Observation:
Bashar gives an invited lecture

Induction learns the rule that:
All departmental visitors give invited lectures

Abduction (Explanation)

m Rule:
All departmental visitors give invited lectures

@ Observation:
Bashar gives an invited lecture

Abduction explains the fact that:
Bashar is a departmental visitor

Communicating Requirements

® RE facilitates communication among stakeholders

B Requirements documentation
- is often the focus of such communication
- affects choice of specification language
- sometimes makes use of documentation standards

3 Requirements traceability

B Requirements management

Agreeing Requirements

@ To design and implement a system, the
requirements have to be agreed.

® To get agreement requirements have to be
- Validated b,%“
- Negotiated, and conflicts resolved
- Prioritised

m
‘ R/
77

m
'5 Wy
NSV

ﬂ \

/

Living with Inconsistency

B)
Y

Detour 2: Living with Inconsistency

m Rule:
All departmental visitors give invited lectures

| Fact:

Bashar is a departmental visitor

Bashar is NOT a departmental visitor
Inconsm‘ency|

What can we conclude???
Does: Bashar gives an invited lecture ... or NOT?

Inconsistency:
Live and Let D.A.I.

/

Deduction
(Reasoning about
Inconsistency)

Abduction
(Explaining Inconsistency)

v

Induction
(Learning from Inconsistency)

Evolving Requirements

®m Successful systems will evolve
- When the environment in which they operate changes

® Managing change is a fundamental RE activity
- Adding new requirements & requirements scrubbing
- Fixing errors & managing inconsistency
- Impact analysis & configuration management

@ Requirements for product families, COTS & Services
- Identify core requirements
- Reuse requirements
- Match requirements to software architectures

So, where are we in terms of
state-of -the-art?

You Are Here! '

Modelling in context

1 Describing indicative and optative properties
of the environment

® Inconsistency happens, live with itl

O 4
'J

REJ, RE Conference, REFSQ, AWRE...
In the UK: BCS RESG (www.resg.org.uk)

Journey Planner — a wish list

Richer models for capturing and analysing non-functional
requirements.

Techniques for modelling and analysing properties of the
environment

- to deal with incomplete, inconsistent & evolving models

- To deal with a changing environment (e.g. mobility context)

Reuse of requirements models.

- to adapt products into product families

Bridging the gap between elicitation approaches based
on contextual enquiry and more formal specification and
analysis approaches.

Detour 3: Requirements & Design

Twin Peaks: A finer grain process?

|ndependent Imp/emeﬂfaﬁoﬂ Depena’eﬂce Dependent

General

Specification
Level
of
Detarl
Requirements
Detailed

[B.Nuseibeh, IEEE Computer, 34(3):115-117, March 2001]

Mountain Range: exploring alternatives

Independent Imp/emenfaﬁon Depena’ence Dependent

General
Specification

Leve/

of
Detairl

Candidate Candidate
Requirements Designs

Detailed

Some difficult guestions

2 What is a requirements engineer?
- A software architect?
- A systems engineer?

- An anthropologist?
- .72

@ The end of RE, as we know it?
- Refinement - not realistic?
- Documentation - not necessary?
- Time scales - too long?

A final thought ...

Consider the following two projects:

@ Project 1: completed on time, but
- Estimated cost: $4M = actual cost: $9M
- Post release: 30% additional performance developed
- Annual maintenance costs: $3M

& Project 2:
- Budgeted time to develop: 5 years - actual time: 14 years
- Estimated cost: $7M > actual cost: $102M
- Post release: $40M of adaptive maintenance costs
- Current (preventative) maintenance: $20M over 10 years.

Are these projects successes or faillures?

® In software engineering, they would be used
as illustrations of the ‘software crisis'.

® The projects are actually regarded as great
examples of civil engineering success:

& Summary: RE Rules OK!

RE can help discover, adjust, and
communicate user expectations of
software, leading to high(er) quality

systems that are fit for purpose.

Lecture 2

Problem-Oriented
Requirements Engineering

... regquirements and specifications

References

Michael Jackson Ben Kovitz

(L i
| |Il|| m | ts
cifications

ol AR AKE
REQUIREMENTS
ot |
il

Ed

The big picture

Software Systems Engineering

=

Requirements Engineering

W
Problems Solutions
| |

People - and how to please them

A Perspective on Software Engineering

Behaviour
N
N
- A
Descriptions o ’

Writing

A Problem Specification

-

B Requirements Specification —

— Details the concerns of customers and users
— Defines functions to be performed, and constraints

Types of Specification

B System Specification

— Defines a system boundary and interactions between the system
and its environment (i.e. a “black box” view)

m Architectural Design Specification
— ldentifies the major subsystems, and interactions between them
— Allocates functional requirements to subsystems

m Detailed Design Specification

— Describes the detalls of the decomposed components of a
system

Roles of Specifications 4‘{“-{\%
Y
| A contract

— Specifies a job to be done

— Acts as a basis for judging completion of the job (and
hence payment!)

@ A communication medium
— Conveys and understanding of the domain

— Passes information between different teams in the
software development process

| A statement of commitment
— Whether legally binding or otherwise

Audience for Requirements Specifications

m Users, Purchasers
— Most interested in system requirements

— Not generally interested in detailed software
requirements

B Systems Analysts, Requirements Analysts
— Write various specifications that inter-relate

® Developers, Programmers
— Have to implement the requirements
B Testers
— Determine that the requirements have been met

#8 Project Managers

— Measure and control the analysis and development
processes

Specification Perils

Noise: the presence of text that carries no relevant information to
any feature of the problem.

Silence: a feature that is not covered by any text.

Over-specification: text that describes some feature of the
solution, rather than the problem.

Contradiction: text that defines a single feature in a number of
Incompatible ways.

Ambiguity: text that can be interpreted in at least two different
ways.

Forward reference: text that refers to a feature yet to be defined.

Wishful thinking: text that defines a feature that can not
ossible be validated. s
i o

The World and the Machine

m The Machine
— We are interested in software systems
— We will call the software system to be developed the ‘machine’

— The hardware exists only to run the software, hence it is also
part of the machine

@ The Application Domain
— A machine will interact with its environment
— A machine is built to serve some purpose in the world

— The aspect of the environment that defines the machine’s
purpose is it's application domain

— The application domain is often a human activity system

[Adapted from Jackson 1995, p.72]

A Little Phenomenology

Application Domain

Machine Domain

Shared
Phenomena
(i.e. the interface)

Requirements

. Programs
live here

Specification
pecifications live here

live here

Requirements as Application Phenomena

-

L) I

2 For a program to satisfy a requirement, we need to consider:
— The properties of the computer (C)
— The properties of the program (P)
— The properties of the domain (D) independent of the machine
— The requirements (R) for the machine
— The properties of the machine in the application domain; i.e. the

specification (S)

Demonstration that P satisfies R is then a two step process:
— Do C and P imply S? ... verification
— Do S and D imply R? ... validation

Example

@ Requirement R:

— “Reverse thrust shall only be enabled when the aircraft is moving
on the runway”

Domain Properties D:
— Wheel pulses on if and only if the wheels are turning
— Wheels are turning if and only if moving on the runway

a1 Specification S:
— Reverse thrust enabled if and only if wheel pulses are on

® S+DimplyR

— But what if the domain model is wrong?

In the mood

Mood (of a verb):
— Indicative: asserts a fact (“you sing”)
— Interrogative: asks a question (“are you singing”)
— Imperative: conveys a command (“Sing!”)
— Subjunctive: states a possibility (“I might sing”)
— Optative: expresses a wish (“may you sing”)

m Shall’ and ‘will’ can be used in different moods:
— “l shall drown. No one will save me”
— “l will drown. No one shall save me”

@ For requirements engineering:
— use the indicative mood for domain properties
— use the optative mood for requirements

[Adapted from Jackson 1995, p.126]

Exercise

1 In developing a system to control a lift, which of the following descriptions
are indicative and which are optative:

(a) The elevator never goes from the nth to the n+2th floor without passing the
n+1th floor.

(b) The elevator never passes a floor for which the floor selection light inside the
car is illuminated without stopping at that floor.

(c) If the motor polarity is set to up, and the motor switch setting changed from off
to on the elevator starts to rise within 250ms.

(d) If the up arrow indicator at a floor is not illuminated when the lift stops at the
floor, it will not leave in an upwards direction.

(e) The doors are never open at a floor unless the elevator is stationary at that
floor.

() When the elevator arrives at a floor, the elevator-present sensor at the floor is
set to on.

(9) If an up call button at a floor is pressed when the corresponding light is off, the
light comes on, and remains on until the call is serviced by the elevator
stopping at that floor and leaving in an upwards direction.

Descriptions !ﬁgv
2 A designation \V g

— singles out a phenomenon of interest; tells you how to recognise it; gives it a
name

— Is always informal, as it maps from the fuzzy phenomena to formal language
m A definition

— gives a formal definition of a term that may be used in other descriptions

— can be more or less useful, but never right or wrong
B Arefutable description

— states some property of a domain that could in principle be refuted; might not
be practical to refute it, but refutation should be conceivable

— refutability depends on an appeal to the designated phenomena of the
domain being described

m Arough sketch

— Is a tentative description that is being developed
— may contain undefined terms

Examples

@ Designation:
— Mother(x, m) denotes that m is the genetic mother of x

@ Definition:
— Child (x, y) is defined as mother(y, x) or father (y, x)

3 Refutable Description:
— For all m and x, Mother(x, m) implies not(Mother(m, x))

@ A rough sketch:
— ‘Everyone really belongs to just one family’.

Natural Language

Requirements specifications are often written in natural
language

Natural language is accessible to many people, and is
often suitable for expressing designations and rough
sketches.

® However, using natural language may make lead to
specifications whose consistency, correctness and
completeness is difficult to assess.

Some fun with natural language

21 Dry Cleaners Window: 38 years on the same spot.

@ Clothes Shop: Wonderful bargains for men with 16 and 17
necks.

21 Used Cars: Why go elsewhere to be cheated? Come here
first!

@ Clothes Factory: We do not tear your clothing with
machinery. We do it carefully by hand.

3 Jewellers: Now Is your chance to have your ears pierced
and get an extra pair to take home too.

Church Bulletin: Don't let worry kill you - let the church
help.

m Extends what the mind can grasp and remember

@ Gives the same story to each member of the team
| Introduces new team members to the project
@ Protects intellectual equity

2 Helps the writer to better understand the problem

[From Kovitz 1998, Chapter 13]

Arboricide

@ "Alan, BIill, Charlie, Dave, Eddy, Fred, Geoff, Harry,
lan, Joe and Keith are all related. Geoff's uncle's
brother is Harry's cousin. Eddy's grandfather is lan's
uncle. Alan is not Fred's nephew. Harry's father is
Keith's brother. Alan is older than lan. Fred plays

tennis with Charlie’s brother.”

m “Who Is Geoff’s cousin?”

Arboricide: the Destruction of Trees

Joe

| |
Alan Keith

L | |

| | | | |
Harry lan Fred Charlie Bill
|
| |
Dave Geoff Eddy

| “Who I1s Geoff’'s cousin?”

From problem descriptions to
problem structures: problem frames

@ Machine and problem world are relative to problem
— The machine is what we must build
— The problem world is given

m The requirement is a condition on the problem world
— The machine interacts with the problem world at A

— The requirement is about the problem world
In terms of phenomena B

One-Way Traffic Lights: a Little Problem

@ The lights are to be controlled so that they show Stop and Go
In a specified sequence of phases of specified durations

@ The computer can cause R and G pulses
— But how are Stop and Go phenomena related to R and G?

Phenomena in the Problem

~
N
N
N

-..__~._Private phenomena

- of the World (not shared
' with the Machine) e.qg.:
S whether Stop or Go is
showing

Shared phenomena
(belonging both to the
World and to the Machine)

e.g.. R, G pulse events
Private phenomena

of the Machine (not shared
with the World) e.g.: program

counter register, value of disk
record

Descriptions in the Problem

Stop, Go R
————————————— ----states I
= 8 e requirement
L (all phenomena of the
N World)

= -
- o
~

=¥ D: domain
: - R, G pulse .
S: program \ € ’
progra R, G pulse AT AN properties

events

specification Stop, Go
states (all phenomena of the

(phenomena shared by the d
Machine and the World) World)

D describes how the world is (indicative): how Stop and Go respond to the R and G

pulses
R describes how we want the world to be (optative): desired sequence of Stop and

Go lights
S describes how we want the interface to be (optative): eg “(R1; R2; wait 50; ...)*”

Eventually we must show that S ,D |- R

One-Way Traffic Lights:
Problem Diagram

R ,
Lights G Traffic Lights
Controller Lights Regime

Problem World Decomposition: An Example

@ Controlling a complex traffic
Intersection with traffic
lights, pedestrian crossings,
road sensors

1 The problem world:

Al Light
Units
Lights
Controller A2 Crossing
Buttons
A3
Road
Sensors

& Problem world decomposition can open up design options

rians Safe
Road)
Layout Vehl_cles
& Drivers

Traffic

B2

Problem Frames (types)

m Jackson identifies four types of simple problems which have
an identifiable structure
— Information Display
— Workpieces
— Commanded Behaviour
— Required Behaviour

@ The key Is to try to decompose problems you don’t
understand into subproblems that you do understand,
and for which there are known solutions.

— http://en.wikipedia.org/wiki/Problem Frames Approach

Summary

@ Specifications can provide precise descriptions that
bridge the gap between problems and solutions.

| Specifications can have defects that are misleading
and that need to be identified and addressed.

1 Requirements (that live in the problem world) can
0e vague and difficult to analyse systematically.

@ Problem structures can help clarify and organise
requirements and the elements of the application
domain to which they relate.

Lecture 3

Security Requirements Engineering

A security problem?

S =

o B o

Requirements and Security Engineering

Security
Requirements
Engineering

R. Crook, D. Ince, L. Lin, and B. Nuseibeh, Security Requirements Engineering:
When Anti-requirements Hit the Fan, Proceedings of IEEE International Requirements Engineering
Conference (RE'02), Essen, Germany, 9-13 September 2002.

Conclusions

3 Many (but not all) security issues arise in the
problem world, so we need rigorous problem analysis

— Security requirements arise from such problem analysis
— Analysing security requirements can benefit security analysis

B Security requirements engineering gives rise to
research challenges:

— Relating software and system security requirements
— Relating security problems to security solutions

— Understanding scope and context

— Knowing when to stop

Ingredients of this talk

A little bit of requirements engineering
| A little bit of security engineering
m A little bit of social engineering
@ A question of software engineering?
@ Some common sense

@ A research agenda

@ A little bit of security...terminology

3 Security is concerned with the protection of assets from
(intentional) harm

— Protection: achieved through prevention or prohibition

— Asset: something in the system that has direct or indirect value
— Threat: Harm that can happen to an asset

— Attack: A threatening event

— Attacker: The agent causing an attack (not necessarily human)

— Vulnerability: a weakness in the system that makes an attack more
likely to succeed

Security engineering

@ A mature discipline with many techniques, mechanisms,

and standards for implementing security
— e.g., firewalls, cryptography, access control, etc.

| Security risk analysis and management

Assets Threats Vulnerabilities
\J / Analysis
NEE
l Management

Security Measures

Security goals — CIA ... A

Confidentiality — ensure that an asset is visible only to
actors authorized to see it.

Integrity — ensure that the asset is not corrupted.

Availability — ensure that the asset is readily accessible
to agents that need it, when they need it

Authentication — ensure that the identity of the asset or
actor is known.

1 ... accountability ... non-repudiation ... authorisation ...

A wicked problem

B Security is a ‘wicked problem’ [Rittel], for which there
IS no perfect solution;

— security implementations are a trade-off between cost and
effectiveness;

— Some assets are not worth protecting,
— acceptable solutions vary from stakeholder to stakeholder,

— the solution space is bounded by what the customer is willing to
spend and what technology can provide.

Security Is not football

@ Do we need to model attackers in security analysis?

— Security is not a zero sum game:

1 there Is no exact equivalence between the losses incurred
by the asset owner and the gains of the attacker.

— S0, the evaluation of possible harm to an asset can
sometimes be carried out without reference to particular
attackers; and

— consideration of the goals of attackers cannot be used
simply to arrive at the goals of a defender to prevent
harm.

L J
Security Requirements %’f

B Security requirements may be usefully expressed as:
— constraints on functional requirements
— ... In order to achieve security goals.

C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh, "A Framework for Security Requirements
Engineering," in Proceedings of the 2006 Software Engineering for Secure Systems Workshop
(SESS06), co-located with ICSE06, Shanghai China, 20-21 May 2006, pp. 35-42.

Goal

Figure 1: Security Requirements Core Artefacts
(Class diagram)

O
m Application Manager_nel_']t
qq_) : Busﬁ'sesst(}oal Conl(rg: OZ';T)CIple
1 .
-': i 1\4'\ }l\- ——————— Elicited flomm= == == = e— = a— — 1 T g
__________ i - o
< : : L Elicited from 1 Asset I ~
I | c
V) n ' I A I 8_ GC)
d ('6 | | Harms I O o}
(- I 1) -
o | | o -
q) (D : | Harm Manda:ted by 5 com
S = i | | 53
A ——d "
q) : I | Derived from U) g (&)
o : Operationalises l | 8 =S 8
e — : l Other Quality (@] =) -
3 1 | Goals: R_eliability, Security Goal O Q. —
I Usability, etc a E 8_
= | A L ®)
Q | | o2
I i | 8 Y— o
Y ! | | T O ®
[S §'c
> 2 | | | 2 3 E
— y B O
q) l EIicileId from Operali!)na\ises a8 E l—
- E) U U T o -
O o hunctonal constant || | £ &y
| | (o)
) =
= AXK [[<: o
V) > 1l | | vy 2
=
g I I I ——————— Constrains === % =— —— — — — I (U O >‘
q) | I——-Constrains————— | | I ch (<D}
— o | LI L1 L% X
O | Other Quality Security aa 'l: C
Constraints: Reliability, Requiremen 2
: Lsatzility, etc v (anstraint)I O i g
O | x 2> " oependerey | s e =
I . i QO O _-
1 (D Implements — — — — — — — _|n|1pleinemsl — — =—Implements= -1 uC:) E "?
— e L »
c S 11 | Abstract class E = E
8 'IC; Syvstem d g 2
< q) Architecture . O c
+— - X D

Inheritance

The role of analysis In security
requirements engineering

| the ablility to show that proposed security goals adequately
express what is needed by the stakeholders,

@ the proposed security requirements adequately satisfy the
goals, and

@ the system adequately satisfies the security requirements.

=

/‘l /

Vi

1.

2.

3.

4.

Challenges of Security
Requirements Engineering

Scoping — bounding the scope of security problems.

Representation — representing the
B security problem context, and
B negative requirements of a malicious user.

Analysis — reasoning about the satisfaction of
security requirements.

Integration — relating security requirements and
design.

Problems of scope ...

¥ This cash machine has
been designed with the
most sophisticated
password encryption.

X Special precautions have
been taken to ensure
that only authorised
users with valid smart
cards can withdraw
money.

Problems of scope ...

| |s it secure?

A Problem

—Not If the whole
machine Is stolen!

Not an isolated incident

. P =
L s = g 4

In a hotel room in Shanghai
(May 2006)

This Is a demo only!

A guestion of scope &=
1 Bounding the scope of security problems
IS crucial

— ... and is the bread and butter of requirements
engineering

Still on scope

@ Do | need to put

my money Iin a
X safe in the bank?

Still on scope

mNot If the bank
building Is
adequately
protected.

@ C.B. Haley, R. Laney, J.D. Moffett, and B. Nuseibeh, The Effect of Trust Assumptions on the

Elaboration of Security Requirements , Proceedings of 12th IEEE International Requirements
Engineering Conference (RE'04), Kyoto, Japan, 6-10 September 2004.

Arguing Security @@

@ ... and knowing when to stop

3 There is a need to convince oneself and
others of system security

— Through the construction of satisfaction arguments
that a system meets its security requirements.

— Proof versus argument
1 Absolute “shall not” is (usually) not provable
3 Context is (usually) much too large to analyse
1 Therefore “sufficiently convincing” argument must suffice

Combining arguments

1. Formal argument
— Proof that system meets security requirements

— Premises constructed from system context and
behaviour

— Assume closed word assumption
— D, S| SecReq

2. Informal argument
— Structured argument that premises are valid
— Brings trust assumptions to the surface
— Challenge every premise

Toulmin — evidence based arguments

Wamrants

Modal Claim
Cualifier -

~ebuttal

C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh, "Arguing Security: Validating Security
Requirements Using Structured Argumentation,” in Proceedings of the Third Symposium on
Requirements Engineering for Information Security (SREIS'05), Paris, France, 29 August 2005.

Example argument

Backing
The accumulated experience of meteorologists in the North
Temperate Zone indicates that

Warrant *

In these latitudes, passage of a cold front is normally followed
after a few hours by cleanng, cooler weather

Grounds Claim
Modal

Qualifer

This evening the wind has veered around

from SW toward NW; the rain has nearly it will be clearing
: S0 .

stopped; there are local breaks in the chances are and cooler in the
clouds; all signs indicating passage of a marning

cold front.
Rebuttal

unless some unusually
complex frontal system
IS involved

Anti-requirements

& We define an anti-requirement as the requirement of a
malicious user that subverts an existing requirement.

® This is useful because:

— If we can find circumstances in which both a
requirements and an anti-requirement hold (compose),
then we hypothesise that the conditions of composition
identify a potential vulnerability in a system that
Implements both requirements.

Problem Frames and Anti-requirements

-~
-~

-~
Reqguirements
Machine \
Domain 2 [tk

@ Consider an anti-requirement (AR) as the requirement of
a malicious user that subverts an existing requirement.

— It defines a set of undesirable phenomenon that will ultimately
cause the system to reach a vulnerable state.

Abuse Frames

Base
Malicious =
Machine (MM) @
User (MU)

The Base System (BS) is the system attacked.

The anti-requirement (AR) specifies the undesirable phenomena in terms
of E1 in the Base System (BS).

E4 indicates that the Malicious User (MU) can interact with the BS
through or unexpected phenomena.

The specification of the MM describes the interface over the E3 of the
MU and the E2 of the BS that will existentially satisfy the AR.

Threat analysis Using Abuse Frames

B Scope the problem and identify the subproblems

— Describe the security concerns on the functionality to be
achieved in each problem frame diagram.

B |dentify the threats and constructing abuse frames
— ldentify the anti-requirements.

m |dentify security vulnerabilities
— Describe the domain properties.
— Backward search.

8 Address security vulnerabilities

2 |[terate!

Abuse Frame Classes (Patterns)

M@ |nterception

m Modification

m Behavioural

L. Lin, B. Nuseibeh, D.C. Ince, and M. Jackson, Using Abuse Frames to Bound the Scope of Security
Problems, Poster paper, Proceedings of 12th IEEE International Requirements Engineering Conference
(RE'03), Monterey, USA, September 2004, 354-355.

L. Lin, B. Nuseibeh, and D. Ince, Using Abuse Frames to Bound the Scope of Security Problems,
Proceedings of the Third International Workshop on Requirements for High Assurance Systems (RHAS
2004), co-located with RE'04, 6th September 2004, Kyoto, Japan. Available an CMU/SEI Technical
Report and downloadable from: http://www.sei.cmu.edu/community/rhas-workshop/lin.pdf

Lessons Learned (so far)

31 Must understand the system context
— What does your software interact with, and how?
— Understand organisational context

Know and test your assumptions
— What do you know, and how do you know it?
— Argue (reason) systematically

Research Agenda

Boundary issues: problem scoping and decomposition
— Boundaries of security attacks are often fuzzy
— Patterns: from radical to normal engineering

Representation issues

— Lack of specification notations for “prevention” or “prohibition” (what
should NOT happen)

Problem composition and analysis
— Composing security properties

Integrating Security RE within SE process

— Relating security requirements to security architectures and
mechanisms

Selected Related Work

van Lamsweerde et al: antigoals in KAOS
Anton et al: privacy requirements and policies
Chung, Liu, Mylopoulos, Yu: I* security softgoals
Giorgini, Massacci, Silva, Castro et al: Tropos
Kelly et al: extension of GSN to security

Sindre & Opdahl; and Alexander: misuse cases
McDermott & Fox: abuse cases

Taguchi et al: using RBAC, KAOS, and Common Criteria

Thank you.

Acknowledgements:
Karim Adam

Francis Chantree
Bob Crook

Charles Haley

Jon Hall

Robin Laney
Luncheng Lin
Michael Jackson

Jonathan Moffett Financial Support:

Armstrong Nhlabatsi The Royal Academy of Engineering
Blaine Price The Leverhulme Trust
Lucia Rapanotti EPSRC

Mohammed Salifu

	If Software is the Solution, What is the Problem?
	The Open University (OU)
	OU Student numbers
	OU in Scotland
	Computing at the OU
	Today’s Three Lectures …
	Lecture 1
	The “voice of the customer”
	A story that’s probably not true
	Requirements Engineering (RE)
	A Roadmap of RE
	Motivation – Part 1: Scare Tactics
	Motivation – Part 1: Scare Tactics
	Motivation – Part 2: Economics
	Motivation – Part 3: Quality
	The Bottom Line
	A Definition of RE
	Orientation
	Foundations of RE
	Context and Groundwork
	Eliciting Requirements – what & where
	Eliciting Requirements - how
	Modelling and Analysing Requirements
	Detour 1: From Fuzzy to Formal
	A ‘formal’ specification
	Formal Analysis
	(Natural) Deduction
	Induction (Learning)
	Abduction (Explanation)
	Communicating Requirements
	Agreeing Requirements
	Detour 2: Living with Inconsistency
	Inconsistency:Live and Let D.A.I.
	Evolving Requirements
	You Are Here!
	Journey Planner – a wish list
	Detour 3: Requirements & Design
	Twin Peaks: A finer grain process?
	Mountain Range: exploring alternatives
	Some difficult questions
	A final thought …
	Are these projects successes or failures?
	Summary: RE Rules OK!
	Lecture 2
	References
	The big picture
	A Perspective on Software Engineering
	A Problem Specification
	Types of Specification
	Roles of Specifications
	Audience for Requirements Specifications
	Specification Perils
	The World and the Machine
	A Little Phenomenology
	Requirements as Application Phenomena
	Example
	In the mood
	Exercise
	Descriptions
	Examples
	Natural Language
	Some fun with natural language
	Why Document?
	Arboricide
	Arboricide: the Destruction of Trees
	From problem descriptions to problem structures: problem frames
	One-Way Traffic Lights: a Little Problem
	Phenomena in the Problem
	Descriptions in the Problem
	One-Way Traffic Lights: Problem Diagram
	Problem World Decomposition: An Example
	Problem Frames (types)
	Summary
	Lecture 3
	A security problem?
	Requirements and Security Engineering
	Conclusions
	Ingredients of this talk
	A little bit of security…terminology
	Security engineering
	Security goals – CIA … A
	A wicked problem
	Security is not football
	Security Requirements
	Core Security Requirements Artefacts
	The role of analysis in security requirements engineering
	Challenges of Security Requirements Engineering
	Problems of scope …
	Problems of scope …
	A Problem
	Not an isolated incident
	A question of scope
	Still on scope
	Still on scope
	Trust Assumptions
	Arguing Security
	Combining arguments
	Toulmin – evidence based arguments
	Example argument
	Anti-requirements
	Problem Frames and Anti-requirements
	Abuse Frames
	Threat analysis Using Abuse Frames
	Abuse Frame Classes (Patterns)
	Lessons Learned (so far)
	Research Agenda
	Selected Related Work
	Thank you.

