Automated Bargaining

Edward Tsang

Centre for Computational Finance and Economic Agents (CCFEA) University of Essex <u>http://cswww.essex.ac.uk/CSP/finance</u> <u>http://www.cfea-labs.net</u>

Centre for Computational Finance and Economic Agents (CCFEA)

- Interdisciplinary centre
- Director: Sheri Markose (Economics)
- Deputy: Edward Tsang (Computer Science)
- ♦ Lecturer: Olaf Menkins (CCFEA)
- City Associates chair: Nick Constantinou HSBC
- ♦ 11 PhD students, 26 Doctoral+Master students
- Selected Projects:
 - Forecasting, bargaining, payments, herding

25 January 2008

All Rights Reserved, Edward Tsang

Bargaining work at CCFEA

The Automatic Bargaining Research Team at Essex

Abhinay Muthoo Economics Game Theory

Nanlin Jin Computing Extending Rubinstein Model Evolving strategies

25 January 2008

Sheri Markose Economics/CCFEA Red Queen Effect

Tim Gosling Computing/BT Distributed scheduling Evolving middlemen

Maria Fasli Computing Agent Tech.

Edward Tsang Computing/CCFEA Constraints, Business models

Biliana Alexandrova-Kabadjova CCFEA/BoMexico Electronic money Payment System

Lots of ideas to be explored

Collaborations Welcome

All Rights Reserved, Edward Tsang

Bargaining Theory with Applications

Bargaining Theory

Abhinay Muthoo http://www.essex.ac.uk/economics/ people/staff/muthoo.shtm

Bargaining in Game Theory

Rubinstein Model:

In reality: Offer at time $t = f(r_A, r_B, t)$ Is it necessary? Is it rational? (What *is* rational?)

- A's payoff x_A drops as time goes by A's Payoff = $x_A \exp(-r_A t\Delta)$
- Important Assumptions:
 - Both players rational
 - Both players know everything
- Equilibrium solution for A:

 $\mu_{A} = (1 - \delta_{B}) / (1 - \delta_{A} \delta_{B})$ where $\delta_{i} = exp(-r_{i} \Delta)$

Optimal offer: $x_A = \mu_A$ at t=0

Notice: No time *t* here

All Rights Reserved, Edward Tsang

Evolutionary Bargaining Strategies

Nanlin Jin

http://cswww.essex.ac.uk/CSP/bargain

Evolutionary Bargaining Strategies

Prisoners' Dilemma

- Co-evolution
- GA vs PBIL

Bubinstein's Model

- Offer at time $t = f(\mathbf{r}_A, \mathbf{r}_B, t)$
- $-x_A^*$, x_B^* emerged as best results
- Other solutions emerged occasionally

Current work

- Asymmetric information
- Outside options

Evolutionary Rubenstein Bargaining, Overview

- Game theorists solved Rubenstein bargaining problem
 - Subgame Perfect Equilibrium (SPE)
- Slight alterations to problem lead to different solutions
 - Outside option
 - Asymmetric information
 - Different time intervals
- Evolutionary computation
 - Succeeded in solving a wide range of problems
 - EC has found SPE in Rubenstein's problem
 - Can EC find solutions close to unknown SPE?
- Co-evolution is an *alternative approximation* method to find game theoretical solutions
 - Less time for approximate SPEs
 - Less modifications for new problems

Rubinstein Solution vs Experimental Results

$(\delta_A^{}, \delta_B^{})$	Rubinstein	Experimental x_A	
	Solution x_A '	μ	σ
(0.4, 0.4)	0.7143	0.8973	0.0247
(0.4, 0.6)	0.5263	0.5090	0.0096
(0.4, 0.9)	0.1563	0.1469	0.1467
(0.9, 0.4)	0.9375	0.9107	0.0106
(0.9, 0.6)	0.8696	0.8000	0.1419
(0.9, 0.9)	0.5263	0.5065	0.1097
(0.9, 0.99)	0.0917	0.1474	0.1023

 x_A : agreement made by the best strategies in the final (300th) generation Population size 100; Crossover rates 0 to 0.1; Mutation rates 0.01 to 0.5; Tournament size 3

25 January 2008

All Rights Reserved, Edward Tsang

Issues Addressed, EC for Bargaining

- Representation
- One or two population?
- How to evaluate fitness
 - Fixed or relative fitness?
- How to contain search space?
- Discourage irrational strategies:
 - Ask for $x_A > 1$?
 - Ask for more over time?
 - Ask for more when δ_A is low?

Simple Supply Chain Management Models

Tim Goslinghttp://cswww.essex.ac.uk/CSP/bargainBTexact Studentship

Motivation

- Humans are very good at:
 - Situation analysis and negotiations
- Humans are not so good at:
 - Handling large volumes of info & transactions
 - Having several conversations at once
- Motivated by large electronic supply chains
- Computer based strategy called for
- Success is not simply affected by bargaining skills, but also the number of agents it can talk to and the volumes it can handle

The SSCM Mission

Provides a simple supply chain trading model

- Defines three types of participants:
 - Customers
 - Supplier
 - Middlemen (who we are mainly interested in)
- Middlemen strategy paramelised
- EC is used for evolving strategies
- ◆ <u>The method is hoped to be general & practical</u>

Scenarios Studied

- Customers requirements specific & non-negotiable
 Satisfiabi S2: Customer requirements are negotiable
- Dedicated customers for each middleman
- Customers initiate trade
- Suppliers have limited supply of resources
- One supplier per pr S3: Multiple suppliers per product
- Suppliers passive: wait for requests from middlemen
- Middlemen task is to:
 - Evaluate requirements, reject those it can't fulfil
 - Attempt to fulfil remaining requirements

Population-based Incremental Learning (PBIL) in Simple Supply Chain Management (SSCM)

Trading Agents Competition for E-Commerce

Maria Fasli

http://cswww.essex.ac.uk/staff/mfasli

Trading Agents Competition (TAC)

Classic Game (*Thalis*)

- Simultaneous auctions with substitutable and interrelated goods
- Dynamic bid configuration depending on historical data, current state and projected state
 B Agents 28 Automarket
- Application of Strategic
 Demand Reduction
- Domain-specific heuristics
- 3rd and 4th positions in TAC
 2003 and 2004 respectively

All Rights Reserved, Edward Tsang

TAC Work at Essex

Supply Chain Management Game (Socrates)

- An agent acts as a reverse auctioneer with the suppliers in multi-attribute auctions with substitutable and interrelated goods. Suppliers use a reputation mechanism and their delivery may be partial or complete
- Dynamic scheduling for production and delivery
- Ordering strategy and factory utilisation are interdependent and crucial
 ICEC 02: 7th position
- ICEC-03: 7th position

Bargaining as Constraint Satisfaction

Simple Bargaining Game Edward Tsang http://cswww.essex.ac.uk/CSP/edward

Local Constraint Optimisation

- Every agent is self-centred
- Agents constrain each other
- The simplest form of local constraint satisfaction / optimisation above
 - All deeper research depends on strategy in this problem

Information Available, Tournament 3.1

- No information on others' constraints

 No information about the range of costs and utilities were available
- Bid history available within each game
 e.g. [+45, -80, +40, -90]
- No information on previous games
 i.e. no knowledge on identity of opponent

Tournaments

◆ Tournament 3.1 (2002) – No information about opponents ◆ Tournament 3.2 (2003) - Ranges of cost/utilities/SBD/BBD known ♦ Tournament 6.0 (2003) – Chain bargaining ◆ Tournament 5.1 (2004) – No SBD/BBD, each round costs £k to the player

Simple Chain-Bargaining Game

Chain completes iff all adjacent players agree on deals End-seller $\rightleftharpoons M_1 \gneqq \dots \gneqq M_n \gneqq$ End-buyer Cost Days to Sell (DTS) Utility Days to Buy (DTB)

More information → more mathematical solutions
 Less information → procedural (messy) strategies

Meet the Sellers

The Jacob-Seller (dgiaco_s)

- Drop price linearly, make obvious drop in penultimate move
- The Keen-Seller-2 (keen_s2)
 - Half price each turn, keen to accept deals
- The Stubbings-Seller (pmstub_s)
 - Reduce price at increasing rate, try to recognize deadlines
- The Stacey-Seller (rpstac_s)
 - Complex rules for various situations, hard-bargaining
- The Smart-Seller-4 (smart_s4)
 - Estimate buyer's bottom line based on bid-history

Jacob-Seller (dgjaco_s)

- Accepts bids that are above the cost by a predefined margin,
- Or when it judges (based on the bids history) that the buyer has reached its limit.
- Start offer: cost plus a predefined premium
- General rule: This offer is reduced linearly until 4th final day. It then offers cost plus a target profit (parameter to the program) for one move. The penultimate move makes an obvious drop in price to tempt the buyer. A minimum profit is demanded in the final offer.

Keen-Seller-2 (keen_s2)

- Relatively simple
- Keen to make deals as soon as the bid is above its cost, but...
- When time is available, attempt to get a better deal by delaying commitment by one round.
- Start by a very high offer
- General strategy: reduce price by half towards cost in each round.

Stubbings-Seller (pmstub_s)

- Special cases carefully checked and responded to
 - such as the buyer has bid below the cost of pmstub_s,
- General rule: offer MC×* $(r^2-d^2)^{1/2}/r$
 - where MC (minimum price) is 60% above cost,
 - -1+r is the given number of days to sell
 - -d is the number of days gone.
 - i.e. reduce offer price at an increasing rate
- Attempt to judge whether buyer has reached deadline
 - Check if $(1+(b_1 b_2))/(1+(b_2 b_3))$ is below 10%,
 - where b_1 , b_2 and b_3 are the last, last but one and two bids

Stacey-Seller (rpstac_s)

- Complex seller: 18 rules for various situations
- Drive hard bargains by various sensible means.
- When the bid is above cost, the bid is accepted if
 (i) the last two bids are 50% above cost;
 (ii) the last three bids are 25% above cost; or
 (iii) the last four bids are 15% above cost.
- Final 2 days' strategies fine tuned with 7 rules
 - depending on its predetermined margin thresholds
 - and the buyer's latest offer.
- General rule: reduce offer by 7.5% of the cost per round, as long as the offer is above cost.

Smart-Seller-4 (smart_s4)

♦ A *Target* is worked out

- principally based on an estimation of the pattern of the buyer's previous bids.
- Up to three bids are used to project the buyer's next bid.
- ♦ Haggle until it runs out of time, or
 - it believes the buyer has reached its bottom line
 - and the bid is above its cost.

Meet the Buyers

Keen-Buyer (keen_b)

- Simple buyer that accepts any offer below its utility

Progressive-Buyer-2 (progress_b2)

- Linearly increase bid towards utility
- Tryhorn-Buyer (mjtryh_b)
 - Complex rules to predict target and drive hard bargain
- Sourtzinos-Tsang-Buyer (psourt_b)
 - Increase bids reflecting utility² \div seller's offer
- Stacey-Buyer (rpstac_b)
 - Complex rules for various situations, hard-bargaining

Keen-Buyer (keen_b)

- Simple buyer
- ♦ Keen to make deals
- Accept any offer that is below its utility
- ♦ Start: bid a low price
- General strategy: increase price by half towards the utility in each round

Progressive-Buyer-2 (progress_b2)

- Increasing the bid linearly towards utility
- This gives the seller a chance to chart its progress and predict its bottom line
- Philosophy: give the seller a chance to cooperate should the seller wants to
- When the offer is below the utility, it is accepted if:
 (a) there are less than 3 days left; or
 (b) the latest offer is within 95 and 100% of the previous offer (this is seen to be a sign of the seller reaching its limit).

Tryhorn-Buyer (mjtryh_b)

Built upon two important modules:

- (a) a predictor that estimates the bottom line of the seller and
- (b) a purchase-adviser that decides whether an offer is acceptable.
- Attempt to compute seller's arithmetic progress
- Complex rules were used to compute the next bid
- In general, drive a hard bargain by not raising its bids very much until late in the negotiation
- An offer is acceptable if it is the buyer's last day to buy
- Whether an offer is acceptable depends on
 - (a) the offer/utility ratio (the lower the better) and
 - (b) the length of the negotiation (the longer the negotiation, the keener it is to accept the offer).

Sourtzinos-Tsang-Buyer (psourt_b)

• Use a combination of bidding rules ◆ Bid 1000th of the seller's first offer ◆ Then bid 100th of seller's second offer – As long as the bids are below its utility. ♦ General rule: bid Utility²/Last_offer – i.e. the fraction of the utility that reflects the ratio between the utility and the seller's last offer

Stacey-Buyer (rpstac_b)

- Complex buyer: 20 rules to handle various situations
- Drive hard bargains by various sensible means
 - Even when offer is below its utility, delay acceptance
 - Refuse to raise its bid if seller has not lowered its price for three rounds
- Final 2 days' strategies fine tuned with 6 rules
 - Depending on its predetermined margin thresholds (35%)
 - and seller's latest offer
- General rule: increase offer by 7.5% per round, as long as bid is below utility

Experiment 1: No Middleman

- Every seller plays every buyer
- ♦ 1,000 randomly generated problems per pair
- ♦ Days to sell & Days to buy: 3..20
- ♦ Cost range: 101..300
- Utility range:
 - Low profit: 301..500
 - Medium profit: 1001..1300
 - High profit: 5101..5300

Individual seller/buyer Performance

- Buyers generally do better
- Aggressive sellers/buyers generally do better

25 January 2008

Experiment 2: Mixed Middlemen

♦ 1,000 randomly generated chains

- With 1, 5 and 10 middlemen per chain
- Each middleman = (random seller, random buyer)
- ♦ Days to sell & Days to buy: 3..20 (as before)
- ♦ Cost range: 101..300
- ♦ Utility range: low & high profit
- Utility range and # of games varied over chain length

Chains with Mixed Middlemen

Lessons from Mixed Middlemen Chains

- Recognizing others' constraints is key to completion
- Middlemen that allow others to estimate their bottomline performed reasonably well
 - E.g. (progress_b2, pmstub_s) & (keen_b, pmstub_s)
- Presence of hard-bargainers maintain high prices in the chain
 - With high prices, chains cannot complete even when constraints are recognized
 - When a chain failed to complete, everyone suffers
 - So the hard-bargainers performed reasonably well
- Long chains are less likely to complete

Experiment 3: Uniform Chains

♦ Chains with the same middleman repeated: (Seller, (B,S), (B,S), ..., (B,S), Buyer)
♦ Useful to assess evolutionary stable middlemen
♦ 5 sellers x 5 buyers → 25 possible middlemen
♦ Chains with 1, 5 and 10 middlemen
♦ Same set of problems for each of the 25 chains

Chains with Uniform Middlemen

Normalized Profit for Uniform Chains

Rpstac_b good as buyer But bad in middlemen

25 January 2008

Lessons from Uniform Chains

Consistent performers:

- (keen_b, keen_s2), (keen_b, pmstub_s), (keen_b, rpstac_s), (keen_b, smart_s4), (psourt_b, pmstub_s)
- All but one involves easy-going players, keen_b or keen_s2
- Hard-bargainers <u>rpstac_b</u> and <u>rpstac_s</u> scored badly; they compromised too late
 - For any chain to complete, one buyer and one seller must initiate compromises

What are good components?

Summary: Lessons Learned

- No evolutionary stable strategy in our sample ◆ It pays to drive hard bargains in mixed chains – When a chain breaks down, everyone suffers Recognizing others' constraints is important - Revealing one's bottom line may not be too bad Performance depends on profit margin, chain length and chain formation
 - Adaptation is the only chance to succeed

Survival of the Fittest in Chain Bargaining

Fitter strategies make more copies Will the population converge? If so, converged to what?

Average copies of players, Simple Bargaining Game

25 January 2008

All Rights Reserved, Edward Tsang

25 January 2008

Observations, evolutionary bargaining

- Even the weakest player species survive in some settings; the weakest players died in others
- Consistent results
- Any correlation between
 - copies of player x in time t
 - to copies of player y in time t+1?

Nothing significant observed

Discussions on Bargaining

http://cswww.essex.ac.uk/CSP/bargain

What is Rationality?

- ♦ Are we all logical?
- What if *Computation* is involved?
- ♦ Does *Consequential Closure* hold?
 - If we know P is true and P \rightarrow Q, then we know Q is true
 - We know all the rules in Chess, but not the optimal moves
- ◆ "Rationality" depends on computation power!
 Think faster → "more rational"

