
Autonomic Computing

© 2004 IBM Corporation

The Autonomic Computing
Architecture

Ric Telford
Director, Strategy and Technology
Autonomic Computing
April 14, 2004

2

Autonomic Computing

© 2004 IBM Corporation

Agenda

�Autonomic Computing Architecture

�Touchpoints

�Autonomic Managers

�K-services

�Autonomic Computing Core Technologies

�Problem Determination and Self-Healing

�Solution Change Management and Self-

Configuring

�Autonomic Computing Policy Management for

delivering policy-driven IT

3

Autonomic Computing

© 2004 IBM Corporation

Components of the Autonomic Computing Architecture

The autonomic computing architecture abstracts or organizes the systems into some

basic elements.

M

A

E

P

�Touchpoints

�K-services

�Autonomic Managers

4

Autonomic Computing

© 2004 IBM Corporation

Building Block: Touchpoint

A major contributor to the complexity of managing an IT infrastructure is the diverse

syntax and semantics in the mechanism used for the manageability interface.

A touchpoint is an autonomic computing system building block

that implements the sensor and effector behavior for one or more of
the managed resource manageability mechanism.

MR

MR

Commands Logs

Configuration Files

Events
APIs

Sensor Effector

Properties: Identification,

Metrics, State, Configuration,

Relationships: Hosts, Uses.

5

Autonomic Computing

© 2004 IBM Corporation

MR

MR

Commands Logs

Configuration Files

Events
APIs

Sensor Effector

Properties: Identification,

Metrics, State, Configuration,

Relationships: Hosts, Uses.

Building Block: Touchpoint
Overview

A touchpoint is an autonomic computing system building block that implements the

sensor/effector pattern for one or more of the manageability interface mechanisms.

The mechanisms used to
monitor and control a managed
resource form its
manageability interface.

The details a manager needs to
monitor and control a managed
resource.

Managers changes details through its effector.
Two Modes:
(1) Manager initiates the change
(2) Resource requests the change.

Managers obtains details through its sensor.
Two Modes:
(1) Manager request details
(2) Resource provides details

6

Autonomic Computing

© 2004 IBM Corporation

Building Block: Touchpoint

A manageability interface for a managed resource that incorporates these four

interaction styles enables most self management scenarios.

Sensor

Call-Out-Request is an

interaction style in which the

resource manager asks another
capability for some details.

Perform-Operation is an

interaction style in which an

client issues a command
against a resource manager.

Retrieve-State is an

interaction style in which a
client polls for some details.

Receive-Notification is

an interaction style in which a
resource manager sends an
unsolicited message.

A sensor enablers a client to access state
using two styles:

A effector enables a client to change state using
two styles:

Effector

MR

MR

Commands
Logs

Configuration Files

Events
APIs

Sensor Effector

7

Autonomic Computing

© 2004 IBM Corporation

Building Block: Autonomic Manager

An autonomic manager is a configuration of automated functions that deliver “self

management” capabilities.

Analyze Plan

ExecuteKnowledge
Monitor

8

Autonomic Computing

© 2004 IBM Corporation

Autonomic Manager

Building Block: Autonomic Manager

Self-Management is an automation style that implements a control loop that is

driven by the circumstances observed in the system.

Collects details from the

system and organizes

then into situation that

need to be analyzed.

Analyze Plan

Execute

Analyzes observed situations to

determine if some change needs

to be made.

KnowledgeMonitor

Shares accumulated knowledge

across the elements.

Creates or selects a

plan to make a

desired change

Makes the changes

by performing the

plan

“Self Management” is an automation style

that implements a control loop that is driven

by circumstances observed in the system.

An autonomic manager is an autonomic

system building block that implements a

control loop.

9

Autonomic Computing

© 2004 IBM Corporation

Autonomic Manager

Building Block: Autonomic Manager

Self-Management is an automation style that implements a control loop that is

driven by the circumstances observed in the system.

Analyze Plan

ExecuteMonitor Knowledge
Symptom

Change

Type
Plan

10

Autonomic Computing

© 2004 IBM Corporation

Execute

EffectorSensor

Monitor

Analyze Plan

Autonomic Manager

EffectorSensor

Knowledge

Building Block: Autonomic Managers

G
O

A
L

S

“Orchestrating” AUTONOMIC MANAGER

� Accepts higher level business goals

� Translates business policy into goals and
objectives for the resource its managing

� Pushes Goals down onto its managed
elements

D
E

C
IS

IO
N

“Touchpoint” AUTONOMIC MANAGER

� Accepts goals

� Translates goals into effectors to be pressed

� Pushes down onto effectors and measures
goals via sensors

Managed Resource

Managed

Resources

EffectorSensor

Autonomic Manager

EffectorSensor

ExecuteMonitor

Analyze Plan

Knowledge

Managed Resource

� Accepts decisions

� Manages resources accordingly

11

Autonomic Computing

© 2004 IBM Corporation

Building Block: K-Service

A k-service is used to share knowledge between autonomic managers.

K-Types define the syntax and semantics for a type of

knowledge.

K-Type is “configure” data for an AM.

When appropriate, identify/build enabling technology

for k-types.

K-Service is a building block for sharing knowledge

between AM.

K-Service existing for k-type/query combinations.

12

Autonomic Computing

© 2004 IBM Corporation

Policy Symptom

Plan

Execute

Analyze

Monitor

Building Block: K-Service

Knowledge can be passed to the autonomic manager as configuration data or the

autonomic manager can request knowledge as configuration data.

Knowledge

Autonomic Manager

Sensor Effector

Policy

The behavior of the

autonomic manager is

controlled by policies that

describe what needs to be

accomplished.

Symptom

13

Autonomic Computing

© 2004 IBM Corporation

Touchpoint

Interaction between components

The interfaces for an Autonomic Manager and a Touchpoint are defined as “services”.

Autonomic Manager

M

A

E

P

Service interface is used to monitor and
control a managed resource.

Service interface to control and
monitor the autonomic manager.

Service interface for the touchpoint to
contact its manager.

Assign Resource (Touchpoint)

Assign Manager (AM)
Retrieve-State

Call Out

Receive-Notification

14

Autonomic Computing

© 2004 IBM Corporation

A simple example

� Autonomic elements have two management tasks

� They manage themselves

� They manage their relationships with other elements through negotiated

agreements

Autonomic Database Autonomic Storage Array“I need to allocate
some additional table
space ”

“I am reallocating
storage and
moving the
information”

15

Autonomic Computing

© 2004 IBM Corporation

Multiple Contexts for Autonomic Behavior

System Elements
(Intra-element

self-management)

Groups of
Elements

(Inter-element
self-management)

Business Solutions
(Business Policies,

Processes, Contracts)

Server

Farm

Enterprise

Network

Storage

Pool

Customer

Relationship

Management

Enterprise

Resource

Planning

Servers Storage
Network
Devices

Middleware Database Applications

16

Autonomic Computing

© 2004 IBM Corporation

Core AC Problem Determination Technology:
First steps towards Self-Healing Systems

1. Common Base Event (CBE) Model

� Standard to facilitate intercommunication among components
supporting logging and problem determination.

2. Generic Log Adapter

� Converts existing log files into CBE format

3. Log and Trace Analyzer

� Organizes log and trace data into CBE format for problem

determination

4. Symptom Database

� File of symptoms, string match patterns, associated solutions and

directives used in analysis of events and messages in a log.

17

Autonomic Computing

© 2004 IBM Corporation

Common Base Event Model: Overview

� Data elements in logs need to be in a consistent format to facilitate

correlation of events from different infrastructure components, and to

facilitate effective intercommunication among disparate applications and
systems.

� Common Base Event (CBE) model is a standard describing how system

activity is recorded and communicated.

� Common format for logging, management, problem determination, and
autonomic computing

� CBE Elements:

1. Identification of component reporting the situation

2. Identification of component affected by situation

3. The situation (REQUEST, START, REPORT, STOP, DEPENDENCY,
CONFIGURE, CREATE, CONNECT, etc)

Common Base Event
submitted to OASIS

Common Base Event
submitted to OASIS

18

Autonomic Computing

© 2004 IBM Corporation

Generic Log Adapter: Overview

� An adapter for the
conversion of existing

log formats into CBE

� Standards based: Java

plug-in on top of the
Eclipse platform

� GUI: For the creation of
mapping rules.

� Runtime: Takes mapping

rules as input and

produces CBE records
as output.

� Open Source – Project

Hyades:

http://eclipse.org/hyades

19

Autonomic Computing

© 2004 IBM Corporation

Log and Trace Analyzer: Overview

• Viewing, analysis, and
correlation of log files

• Consolidated

environment that deals

with logs and traces

produced by various
components

• Easier and faster for

developers and support
personnel to debug and

resolve problems

• Link to WebSphere

symptom database

available today

Customer pain point:
Difficulty in analyzing problems in multi-component systems

20

Autonomic Computing

© 2004 IBM Corporation

Log and Trace Analyzer: Parsers and Correlation
Engines

� Eclipse based tools

� Built in parsers: Imports

existing log files and

converts to CBE format on
the fly.

� Built in correlation engines:

Visually displays the
correlation between log

records using a number of

factors:

� Sequential Correlation

� Associative Correlation

21

Autonomic Computing

© 2004 IBM Corporation

Log and Trace Analyzer: Symptom Database

� Used in the analysis of

events and error messages
that may occur in a log.

� XML file of symptoms,

string match patterns,
associated solutions, and

directives.

22

Autonomic Computing

© 2004 IBM Corporation

Log and Trace Analyzer: Knowledge from experience

� Symptom Database Editor: Edit

existing symptom databases, or
create custom symptom

databases specifically for your

environment or applications.

� Define application specific

directives and solutions

� Augment a product’s
symptom database based on

actual experience

23

Autonomic Computing

© 2004 IBM Corporation

Log and Trace Analyzer: Profiling Tool

� Tool for profiling

applications in real time

to diagnose performance

and memory leak
problems

� Interactively profile

applications on local and
remote deployment

environments

24

Autonomic Computing

© 2004 IBM Corporation

� Consistent methodology for creating
software packages

� Install, update, fix, uninstall, repair,

rollback, commit the package
� Verifying the deployment so the

software is ready to use

Solution Change Manager

Architecture and StandardsArchitecture and Standards

� Data model of an installation

package and installable

units

� Interfaces of components to

process this data

Customer pain point:
Difficulty of deployment in complex systems

� A common infrastructure to ensure a simpler and more consistent

deployment experience.
� Common tooling to reduce the cost and complexity of building, deploying, and

maintaining software solutions.

� Common deployment descriptors to describe the installation capabilities and

dependency requirements for a given software package.

� Common packaging to which can be used for new installations, upgrades, and

maintenance.

� Common dependency checking technologies to validate environment

(hardware, OS, software, configuration, etc.)

25

Autonomic Computing

© 2004 IBM Corporation

Solution Change Manager Highlights

ToolingTooling
ChangeChange

ManagerManager

�Create Application

Components and

descriptors

�Create Solutions/Packages

�Create Updates

� Enablement in

the middleware

and OS

Installer

Update
Install

Product

Install

�Analyze

Dependencies

Dependency

Checker

�Deploy pre-reqs (as

part of Package)

�Deploy Application

Components

Registry

26

Autonomic Computing

© 2004 IBM Corporation

�Industry Solutions include...

ƒ eServer, WebSphere, Tivoli, DB2,
Lotus, Rational...

ƒ Business Partner Applications

ƒ Customer Applications

�Different Admin consoles

ƒ No look & feel consistency

ƒ No administration integration

�Multiple - costly learning curves

ƒ Delayed deployment of solution

ƒ Increased admin training costs

�Different technologies

ƒ Java, C, C++, HTML, XML

ƒ Installed Client

ƒ Web based

Solutions Administration Today

27

Autonomic Computing

© 2004 IBM Corporation

Integrated Solutions Console Technology

�Standards-based architecture

ƒ J2EE, Java, XML

ƒ JSR 168 - Portlet API's

�Portlets allow administration

functions to be developed in a

solution-oriented manner

�Packaged and deployed like J2EE

Web Applications

J2EE APIs

WebSphere Portal Technology

WebSphere Application
Server Technology

Integrated Solutions Console

Portlet APIs

28

Autonomic Computing

© 2004 IBM Corporation

J2EE APIs

WebSphere Portal Technology

WebSphere Application Server Technology

Integrated Solutions Console

Portlet APIs

Page
Definitions

Role
Definitions

Help
Portlet
Portlets

AUIML

PS widget Library

Business

Logic

ISC additional features
Theme, Navigation, Tasking, Status, Help

Console Components built on ISC

29

Autonomic Computing

© 2004 IBM Corporation

Goal: Admin Console Convergence

HMC

Integrated Solutions Console (ISC)

Converge

Converge

Converge

Converge

30

Autonomic Computing

© 2004 IBM Corporation

Example Functions

� System Health
�Group Status and Properties
�System Status and Properties
�Resource Status and Properties

� Problem Identification
�Consolidated Monitoring
�Access to logs and message queues

� Corrective Management
�System Control (e.g. shutdown, restart, etc.)
�Job/Process Management and Control (e.g. kill
a process)
�Resource Management and Control (e.g. delete
an event,
�Task Execution

31

Autonomic Computing

© 2004 IBM Corporation

Summary of Autonomic Computing Policy Goals

� Develop the AC Policy Language (4-tuple) specification

� XML grammar that provides a unified view of policy content

across a heterogeneous enterprise

� Develop technology – Policy Management for Autonomic Computing

– which delivers a policy-driven autonomic manager for resource

management

� Used to configure and manage resources

� Provide design to guidance for developing system-level Autonomic

Managers

� Goal-based Autonomic Managers, like eWLM

� Joint work w/ ODDC

32

Autonomic Computing

© 2004 IBM Corporation

Types of Policies

� Business Policy

� Typically encoded into applications, or associated w/ rules

� E.g., Gold customers get better airline seats, faster service

� IT Policy

� Typically encoded into the IT application, or occasionally w/ policy-

based management

� E.g., Gold transactions get 500ms average response time

� Seldom intersect, but should

� Gold customer gets preferential application treatment (gold seating),

and preferential IT treatment (workload)

Our aim is an integrated, policy-based system:
Easier to manage, better customer experience

33

Autonomic Computing

© 2004 IBM Corporation

Background: Autonomic Managers and Policy

Employee

Manager

This is what

I’m doing

This is what you should do.

Policy

Policies guide the behavior of the

manager. “If the employee is not

a mobile user, then their cell

phone bill is not reimbursable”.

Manager / managed is a common IT paradigm

34

Autonomic Computing

© 2004 IBM Corporation

Background: Autonomic Managers and Policy

Policy

Autonomic managers are

guided by (“configured by”)

policies (AC Policy Language,

aka 4-tuple).E

ES

M

A P

Autonomic Manager

K

Autonomic Managers are simply Managers
conforming to AC interfaces and data formats

Managed
Resource

ES

This is what I’m doing

(Common Base Event) This is what you should do.

Sensor and effector interfaces, event, policy, etc.

35

Autonomic Computing

© 2004 IBM Corporation

Anatomy of the AC Policy Language (“4-tuple”)

� Four common concepts identified:
� Scope

• Specifications to identify what is or is not subject to the intent.
� Precondition

• Specifications to express when a policy is to be applied or is
active.

� Business Value
• Specifications to express utility functions to make economic

trade offs
� Decision (Goal/Action/Result)

• Specifications to describe observable behavior or objective.

� Designed by adopting concepts from the industry policy
languages

� Workload Mgmt, Provisioning, IETF/DMTF standard,
Storage policies

DB2

CPU UtilS

36

Autonomic Computing

© 2004 IBM Corporation

A Simple Policy Example

Managed Resource

Execute

EffectorSensor

Monitor

Analyze Plan

Autonomic Manager

EffectorSensor

Knowledge

Notify
CommandRetrieve

State

Monitors for “application

stopped” CBE.

Retrieves “service X state”.

Restart the app.

Evaluates the policy

conditions and business

value

Scope: server type X
PC:

event: application stopped
condition:

service X=running
BV: 10
Decision: Restart app

37

Autonomic Computing

© 2004 IBM Corporation

Policy Management for Autonomic Computing:
High-level Solution Architecture

Policy Editing

Tools

Editor

Policy
Definition

(Policy Grammar)

E

ES

M

A P

Autonomic Manager

ES

K

Editor
Storage

Notify
Call out

Command
Retrieve
State

Managed
Resource

38

Autonomic Computing

© 2004 IBM Corporation

Autonomic Manager vocabulary: Touchpoint Autonomic Managers
and Orchestrating Autonomic Managers

E

ES

M

A P

Autonomic Manager

K

Managed
Resource Managed

Resource

Managed
Resource

Managed
Resource

E

ES

M

A P

Autonomic Manager

K

E

ES

M

A P

Autonomic Manager

K

Orchestrating AM

Touchpoint
AM

Managed
Resource

Some AMs manage

resources directly,
others manage AMs

39

Autonomic Computing

© 2004 IBM Corporation

Assembling storage components: Business Continuity and
Provisioning

E

ES

M

A P

K

E

ES

M

A P

K

Storage Manager

Scope: gold transactions

Precondition: 8am to 8pm,

data size < 1MB

Decision: 95% reads < 10 ms

Biz Value: very high

Storage Recovery Manager

Storage Storage

ES ES

Storage Backup Managers

Storage Storage

Storage Provisioner

Scope: gold transactions

Precondition: 8am to 8pm,

data size < 1MB

Decision: 95% reads < 10 ms

Biz Value: very high

RM

E

ES

M

A P

Autonomic Manager

ES

K

Scope: storage devices

Precondition: 8am to 8pm,

Decision: Recovery within 15 mins

Biz Value: very high

Scope: storage

devices

Precondition:

8am to 8pm,

Decision: log file

synch every 5

mins

Biz Value: very

high

40

Autonomic Computing

© 2004 IBM Corporation

Toward an Autonomic, Policy-driven System

Level 2 Level 3 Level 4 Level 5Level 1

Basic

Managed

Predictive

Adaptive

Autonomic

Manual analysis and
problem solving

Centralized
tools, manual
actions

Cross-resource

correlation and
guidance

System monitors,
correlates and

takes action

Dynamic business
policy based
management

Static Code

� Unable to

tailor the

behavior of

the resource

Parameterized

Code

� Tailoring

possible, but

requires

manual effort

and

monitoring

Scripts

(current state

of most

customers)

� Automate

set of actions

�Programming

skill required

Resource

Policies

� Declarative

version of

monitor and

react scripts

�No

programming

Cross-resource

System

Policies

� Declarative,

cross-resource

specificiation

of intentions

41

Autonomic Computing

© 2004 IBM Corporation

Toward an Autonomic, Policy-driven Systems

0. Static Code

1. Parameters to configure a resource

2. Scripts manage a resource

3. Action policies manage a resource

4. Goal policies manage a resource

5. Goal policies manage resources

Managed Element

RM
ES

Ewrh

Ehior

Eto

Erjertwet

Wethwet
Weht

Weht

Weth

Etoh

weth

Database

RM
ES

E

ES

M

A P

Autonomic Manager

K

Most customers (and

implementations) are at

levels 1 and 2.

Storage

RM
ES

E

ES

M

A P
Autonomic Manager

K

E

ES

M

A P

Autonomic Manager

K

42

Autonomic Computing

© 2004 IBM Corporation

Summary

IBM’s autonomic computing initiative will become its most important
cross-product initiative—Thomas Bittman, Gartner Group

� Autonomic Computing represents the future

of managing complexity in IT
� Autonomic Computing needs to be

implemented in a consistent way to ensure

interoperability across components, hence

the need for an architecture and standards

� Autonomic Computing can be accelerated

by having a common set of core

technologies – common problem
determination, install and policy are critical

”“

43

Autonomic Computing

© 2004 IBM Corporation

© Copyright IBM Corporation 2004. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without
warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or
otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

References in these materials to IBM products, programs, or services do not imply that they will be available in all countries
in which IBM operates. Product release dates and/or capabilities referenced in these materials may change at any time at
IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way.

IBM, the IBM logo, the e-business logo and other IBM products and services are trademarks or registered trademarks of
the International Business Machines Corporation, in the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries
or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries or both.

All other trademarks, company, products or service names may be trademarks, registered trademarks or service marks
of others

Disclaimer: NOTICE – BUSINESS VALUE INFORMATION IS PROVIDED TO YOU 'AS IS' WITH THE UNDERSTANDING THAT THERE ARE NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED. IBM DISCLAIMS ALL WARRANTIES INCLUDING, BUT
NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IBM DOES NOT WARRANT
OR MAKE ANY REPRESENTATIONS REGARDING THE USE, VALIDITY, ACCURACY OR RELIABILITY OF THE BUSINESS BENEFITS SHOWN..
IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGES, INCLUDING THOSE ARISING AS A RESULT OF IBM'S NEGLIGENCE.WHETHER
THOSE DAMAGES ARE DIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL, FLOWING FROM YOUR USE OF OR INABILITY TO USE THE
INFORMATION PROVIDED HEREWITH OR RESULTS EVEN IF IBM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE
ULTIMATE RESPONSIBILITY FOR ACHIEVING THE CALCULATED RESULTS REMAINS WITH YOU.

