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The real world isn’t random?

m Very true!

Can we identify structural
features common in real
world problems?

m Consider graphs met in real

world situations
social networks
electricity grids
neural networks
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Real versus Random

m Real graphs tend to be sparse

dense random graphs
contains lots of (rare?)
structure

m Real graphs tend to have short
path lengths

as do random graphs

m Real graphs tend to be clustered
unlike sparse random graphs
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L, average path length
C, clustering coefficient

(fraction of neighbours connected to
each other, cliqueness measure)

mu, proximity ratio is C/L
normalized by that of random
graph of same size and density



Small world graphs

m Sparse, clustered, short path
lengths

m Six degrees of separation

Stanley Milgram’s famous
1967 postal experiment

recently revived by Watts &
Strogatz

shown applies to:
m actors database
m US electricity grid
m neural net of a worm
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An example

m 1994 exam timetable at

Edinburgh University

1 59 nodes, 594 edges so
relatively sparse

1 but contains 10-clique
m less than 107-10 chance 1n a

random graph

1 assuming same size and
density

m clique totally dominated cost
to solve problem
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Small world graphs

m To construct an ensemble of small world graphs

morph between regular graph (like ring lattice) and
random graph

prob p include edge from ring lattice, 1-p from
random graph

real problems often contain similar structure and
stochastic components?
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Small world graphs

m ring lattice is clustered but has long paths

®m random edges provide shortcuts without

destroying clusterin
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Small world graphs
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Small world graphs
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normalized clustering coefficient and characteristic path length
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Colouring small world graphs

1e+08 :
le+07 ;
1e+06 ;
100000 ;

10000

nodes searched

1000

100 |

10 I L ! ! L ! ! L ! ! L ! ! !
0.0001 0.001 0.01 0.1 1
rewiring probability, p

1/25/20.



Small world graphs

m Other bad news

disease spreads more
rapidly in a small world

B Good news

cooperation breaks out
quicker in iterated
Prisoner’s dilemma

1/25/2008



Other structural features

It’s not just small world graphs that have been studied

m High degree graphs
Barbasi et al’s power-law model

m Ultrametric graphs
Hogg’s tree based model

m Numbers following Benford’s Law
1 is much more common than 9 as a leading digit!
prob(leading digit=1) = log(1+1/1)
such clustering, makes number partitioning much easier
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High degree graphs

m Degree = number of edges connected to node

m Directed graph
Edges have a direction
E.g. web pages = nodes, links = directed edges

m In-degree, out-degree
In-degree = links pointing to page
Out-degree = links pointing out of page
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In-degree of World Wide Web
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Out-degree of World Wide Web
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High degree graphs
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World Wide Web
Electricity grid

Citation graph
633,391 out of 783,339
papers have < 10 citations
64 have > 1000 citations
1 has 8907 citations

Actors graph

Robert Wagner, Donald
Sutherland, ...



High degree graphs

m Power law 1n degree distribution
Pr(degee = k) = ak”-b where b typically around 3

m Compare this to random graphs
Gnm model

m n nodes, m edges chosen uniformly at random
Gnp model

m n nodes, each edge included with probability p
In both, Pr(degree = k) is a Poisson distribution

m tightly clustered around mean
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Random v high degree graphs
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Generating high-degree graphs

m Grow graph

AN Preferentially attach new
nodes to old nodes

ﬁ;@ % 4% % % according to their degree

Prob(attach to node j)
proportional to degree of
node j

Gives Prob(degree = k) =
ak”"-3
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High-degree = small world?

m Preferential attachment
'H E I N TERMET: 2001 mOdel
L n=16, mu=1
n=64, mu=1.35
n=256, mu=2.12

Small world topology thus
for large n!
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Search on high degree graphs

® Random !
Uniformly hard

m Small world
A few long runs

m High degree
More uniform
Easier than randor
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What about numbers?

m So far, we’ve looked at
structural features of
graphs

m Many problems contain

numbers

Do we see phase
transitions here too?

1/25/2008



"

Number partitioning

m What’s the problem?

1 dividing a bag of numbers
into two so their sums are
as balanced as possible

m What problem instances?

1 n numbers, each uniformly
chosen from (0,l ]

1 other distributions work
(Poisson, ...)
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Number partitioning

m Identify a measure of constrainedness
more numbers => less constrained
larger numbers => more constrained

could try some measures out at random (/n, log(l)/n,
log(l)/sqrt(n), ...)

m Better still, use kappa!

(approximate) theory about constrainedness
based upon some simplifying assumptions

e.g. ignores structural features that cluster solutions together

1/25/2008



"
Theory of constrainedness

m Consider state space searched

1 see 10-d hypercube
opposite of 2210 possible
partitions of 10 numbers
into 2 bags

m Compute expected number of

solutions, <Sol>

1 independence assumptions
often useful and harmless!
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Theory of constrainedness

m Constrainedness given by:
kappa= 1 - log2(<Sol>)/n
where nis dimension of state space

m kappa lies in range [0,infty)

kappa=0, <So/>=24n, under-constrained
kappa=infty, <Sol>=0, over-constrained
kappa=1, <So/>=1, critically constrained

phase boundary
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Phase boundary

m Markov inequality
prob(Sol) < <Sol>

Now, kappa > 1 implies <So/> < 71
Hence, kappa > 1 implies prob(Sol) < 1

m Phase boundary typically at values of kappa slightly
smaller than kappa=1

skew in distribution of solutions (e.g. 3-SAT)
non-independence
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Examples of kappa

m 3-SAT

kappa = 1/5.2n
phase boundary at kappa=0.82

m 3-COL

kappa = e/2.7n
phase boundary at kappa=0.84

B number partitioning
kappa = log2(l)/n
phase boundary at kappa=0.96
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Number partition phase
transition
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Prob(perfect partition) against
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Finite-size scaling

m Simple “trick” from statistical physics

around critical point, problems indistinguishable except
for change of scale given by simple power-law

®m Define rescaled parameter
gamma = kappa-kappac . n*1/v
kappac
estimate kappac and v empirically

m ¢.g. for number partitioning, kappac=0.96, v=1

1/25/2008



Rescaled phase transition

Prob(perfect partition) against gamma
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Rescaled search cost
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Easy-Hard-Easy?

m Secarch cost only easy-hard here?
Optimization not decision search cost!
Easy if (large number of) perfect partitions
Otherwise little pruning (search scales as 220.85n)

m Phase transition behaviour less well understood for
optimization than for decision

sometimes optimization = sequence of decision problems
(e.g branch & bound)

BUT lots of subtle issues lurking?
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The future?

What open questions remain?
Where to next?
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Open questions

m Prove random 3-SAT occurs at I/n = 4.3

random 2-SAT proved to be at /n=1

random 3-SAT transition proved to be in range
3.42 < /I/'n <4.506

m 2+p-COL

Prove problem changes around p=0.8
What happens to colouring backbone?
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Open questions

m Does phase transition behaviour give insights to help

answer P=NP?

it certainly identifies hard problems!

problems like 2+p-SAT and ideas like backbone also show
promise

m But problems away from phase boundary can be hard to
solve

m over-constrained 3-SAT region has exponential resolution proofs

m under-constrained 3-SAT region can throw up occasional hard
problems (early mistakes?)
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Summary

That’s nearly all from me!
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Conclusions

m Phase transition behaviour ubiquitous
decision/optimization/...
NP/PSpace/P|...
random/real

m Phase transition behaviour gives insight into
problem hardness

suggests new branching heuristics

ideas like the backbone help understand branching
mistakes
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Conclusions

m Al becoming more of an experimental science?

theory and experiment complement each other well

increasing use of approximate/heuristic theories to
keep theory in touch with rapid experimentation

m Phase transition behaviour 1s FUN

lots of nice graphs as promised

and it is teaching us lots about complexity and
algorithms!
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