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The real world isn’t random?

� Very true!
Can we identify structural 

features common in real 
world problems?

� Consider graphs met in real 

world situations
� social networks

� electricity grids

� neural networks

� ...
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Real versus Random

� Real graphs tend to be sparse
� dense random graphs 

contains lots of (rare?) 

structure

� Real graphs tend to have short 

path lengths
� as do random graphs

� Real graphs tend to be clustered
� unlike sparse random graphs

L, average path length

C, clustering coefficient

(fraction of neighbours connected to 
each other, cliqueness measure)

mu, proximity ratio is C/L 
normalized by that of random 
graph of same size and density
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Small world graphs

� Sparse, clustered, short path 
lengths

� Six degrees of separation
� Stanley Milgram’s famous 

1967 postal experiment

� recently revived by Watts & 
Strogatz

� shown applies to:

� actors database

� US electricity grid

� neural net of a worm

� ...
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An example

� 1994 exam timetable at 

Edinburgh University
� 59 nodes, 594 edges so 

relatively sparse

� but contains 10-clique

� less than 10^-10 chance in a 

random graph
� assuming same size and 

density

� clique totally dominated cost 

to solve problem
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Small world graphs

� To construct an ensemble of small world graphs
� morph between regular graph (like ring lattice) and 

random graph

� prob p include edge from ring lattice, 1-p from 

random graph

real problems often contain similar structure and 
stochastic components?
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Small world graphs

� ring lattice is clustered but has long paths

� random edges provide shortcuts without 
destroying clustering
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Small world graphs
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Small world graphs
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Colouring small world graphs
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Small world graphs

� Other bad news
� disease spreads more 

rapidly in a small world

� Good news
� cooperation breaks out 

quicker in iterated 

Prisoner’s dilemma
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Other structural features

It’s not just small world graphs that have been studied

� High degree graphs
� Barbasi et al’s power-law model

� Ultrametric graphs
� Hogg’s tree based model

� Numbers following Benford’s Law
� 1 is much more common than 9 as a leading digit!

prob(leading digit=i) = log(1+1/i)

� such clustering, makes number partitioning much easier
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High degree graphs

� Degree = number of edges connected to node

� Directed graph
� Edges have a direction

� E.g. web pages = nodes, links = directed edges

� In-degree, out-degree
� In-degree = links pointing to page

� Out-degree = links pointing out of page
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In-degree of World Wide Web 

� Power law distribution
� Pr(in-degree = k) =

ak^-2.1

� Some nodes of very 

high in-degree
� E.g. google.com, …
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Out-degree of World Wide Web 

� Power law 
distribution
� Pr(in-degree = k) =

ak^-2.7 

� Some nodes of very 
high out-degree
� E.g. people in SAT
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High degree graphs

� World Wide Web

� Electricity grid

� Citation graph
� 633,391 out of 783,339 

papers have < 10 citations

� 64 have > 1000 citations

� 1 has 8907 citations

� Actors graph
� Robert Wagner, Donald 

Sutherland, …
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High degree graphs

� Power law in degree distribution
� Pr(degee = k) = ak^-b  where b typically around 3

� Compare this to random graphs
� Gnm model

� n nodes, m edges chosen uniformly at random
� Gnp model

� n nodes, each edge included with probability p
� In both, Pr(degree = k) is a Poisson distribution

� tightly clustered around mean
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Random v high degree graphs
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Generating high-degree graphs

� Grow graph

� Preferentially attach new 
nodes to old nodes 
according to their degree
� Prob(attach to node j) 

proportional to degree of 
node j

� Gives Prob(degree = k) =
ak^-3
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High-degree = small world?

� Preferential attachment 

model
� n=16, mu=1

� n=64, mu=1.35

� n=256, mu=2.12

� …

Small world topology thus 

for large n!
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Search on high degree graphs

� Random
� Uniformly hard

� Small world
� A few long runs

� High degree
� More uniform

� Easier than random
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What about numbers?

� So far, we’ve looked at 

structural features of 

graphs

� Many problems contain 

numbers
� Do we see phase 

transitions here too?
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Number partitioning

� What’s the problem?
� dividing a bag of numbers 

into two so their sums are 

as balanced as possible

� What problem instances?
� n  numbers, each uniformly 

chosen from (0,l ]

� other distributions work 

(Poisson, …)
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Number partitioning

� Identify a measure of constrainedness
� more numbers => less constrained

� larger numbers => more constrained

� could try some measures out at random (l/n, log(l)/n, 
log(l)/sqrt(n), …)

� Better still, use kappa!
� (approximate) theory about constrainedness

� based upon some simplifying assumptions

e.g. ignores structural features that cluster solutions together
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Theory of constrainedness

� Consider state space searched
� see 10-d hypercube 

opposite of 2^10 possible 

partitions of 10 numbers 

into 2 bags

� Compute expected number of 

solutions, <Sol>
� independence assumptions 

often useful and harmless!
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Theory of constrainedness

� Constrainedness given by:
kappa= 1 - log2(<Sol>)/n

where n is dimension of state space

� kappa lies in range [0,infty)
� kappa=0,         <Sol>=2^n,     under-constrained

� kappa=infty,   <Sol>=0,       over-constrained

� kappa=1,          <Sol>=1,        critically constrained

phase boundary
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Phase boundary

� Markov inequality
� prob(Sol) <  <Sol>

Now, kappa > 1 implies <Sol> < 1 

Hence, kappa > 1 implies prob(Sol) < 1

� Phase boundary typically at values of kappa slightly 
smaller than kappa=1
� skew in distribution of solutions (e.g. 3-SAT)

� non-independence



1/25/2008

Examples of kappa

� 3-SAT
� kappa = l/5.2n

� phase boundary at kappa=0.82

� 3-COL
� kappa = e/2.7n

� phase boundary at kappa=0.84

� number partitioning
� kappa = log2(l)/n

� phase boundary at kappa=0.96
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Number partition phase 

transition

Prob(perfect partition)  against  
kappa
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Finite-size scaling

� Simple “trick” from statistical physics
� around critical point, problems indistinguishable except 

for change of scale given by simple power-law

� Define rescaled parameter
� gamma = kappa-kappac . n^1/v

kappac

� estimate kappac and v empirically

� e.g. for number partitioning, kappac=0.96, v=1
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Rescaled phase transition

Prob(perfect partition)  against  gamma
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Rescaled search cost

Optimization cost  against  
gamma
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Easy-Hard-Easy?

� Search cost only easy-hard here?
� Optimization not decision search cost!

� Easy if (large number of) perfect partitions

� Otherwise little pruning (search scales as 2^0.85n)

� Phase transition behaviour less well understood for 
optimization than for decision
� sometimes optimization = sequence of decision problems 

(e.g branch & bound)

� BUT lots of subtle issues lurking?
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The future?

What open questions remain?

Where to next?



1/25/2008

Open questions

� Prove random 3-SAT occurs at l/n = 4.3
� random 2-SAT proved to be at l/n = 1

� random 3-SAT transition proved to be in range 

3.42 < l/n < 4.506

� 2+p-COL
� Prove problem changes around p=0.8

� What happens to colouring backbone?
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Open questions

� Does phase transition behaviour give insights to help 
answer P=NP?
� it certainly identifies hard problems!

� problems like 2+p-SAT and ideas like backbone also show 
promise

� But problems away from phase boundary can be hard to 
solve

� over-constrained 3-SAT region has exponential resolution proofs

� under-constrained 3-SAT region can throw up occasional hard 
problems (early mistakes?)
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Summary

That’s nearly all from me!
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Conclusions

� Phase transition behaviour ubiquitous
� decision/optimization/...

� NP/PSpace/P/…

� random/real

� Phase transition behaviour gives insight into 
problem hardness
� suggests new branching heuristics

� ideas like the backbone help understand branching 
mistakes
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Conclusions

� AI becoming more of an experimental science?
� theory and experiment complement each other well

� increasing use of approximate/heuristic theories to 
keep theory in touch with rapid experimentation

� Phase transition behaviour is FUN
� lots of nice graphs as promised

� and it is teaching us lots about complexity and 
algorithms!
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