Where the hard problems are

Toby Walsh Cork Constraint Computation Centre http://4c.ucc.ie/~tw

1/25/2008

Where the hard problems are

That's easy

- Passing your finals
- Finding a job

....

Where the hard problems are

That's easy

- Passing your finals
- Finding a job
- •••
- Where are the hard computational problems?
 - Computational complexity
 - Phase transition behaviour
 - Exploiting structure

Computational complexity

Study of "problem hardness"

Typically worst case

Big O analysis

Sorting is easy, O(n logn)

Chess and GO are hard, EXP-time

- "Can I be sure to win?"
- Need to generalize problem to n by n board

Computational complexity

- Study of "problem hardness"
 - Typically worst case
- Big O analysis
 - Sorting is easy, O(n logn)
 - Chess and GO are hard, EXP-time
 - "Can I be sure to win?"
 - Need to generalize problem to n by n board

Where do things start getting hard?

Computational complexity

Hierarchy of complexity classes

- Polynomial (P), NP, PSpace,
- NP-complete problems mark boundary of tractability
 - No known polynomial time algorithm
 - Though open if P=/=NP

Aside: What happens at the top of this hierarchy? Some algorithms may NEVER terminate, e.g. halting problem is undecidable

NP-complete problems

Non-deterministic Polynomial time

- □ If I guess a solution, I can check it in polynomial time
- But no known easy way to guess solution correctly!

Complete

- Representative of all problems in this class
- If this problem can be solved in polynomial time, all problems in the class can be solved
- □ Any NP-complete problem can be mapped into any other

NP-complete problems

Many examples

- Propositional satisfiability (SAT)
- Graph colouring
- Travelling salesperson problem
- Exam timetabling

— •••

Satisfiability

- 1st problem shown to be NP-complete [Cook 71]
- Decision problem
 - □ Given a clausal formula, is it satisfiable?

E.g. (X or Y) & (-Y or Z) is satisfied by X=true, Y=false ...

Clausal = ANDs of some ORs

Satisfiability

■ In NP (easy to prove)

You give me an assignment, I can check it satisfies formula in polynomial time

• Complete for NP (hard to prove)

Any problem in NP can be reduced to SAT in polynomial time

Embassy ball.

King wants to invite PERU or exclude QATAR Queen wants to invite QATAR or ROMANIA Kings wants to snub ROMANIA or PERU

Who can we invite?

Embassy ball.

King wants to invite PERU or exclude QATAR Queen wants to invite QATAR or ROMANIA Kings wants to snub ROMANIA or PERU

(P or -Q) & (Q or R) & (-R or -P)

Embassy ball.

King wants to invite PERU or exclude QATAR Queen wants to invite QATAR or ROMANIA Kings wants to snub ROMANIA or PERU

(P or -Q) & (Q or R) & (-R or -P) is satisfied by P=true, Q=true, R=false

Embassy ball.

King wants to invite PERU or exclude QATAR Queen wants to invite QATAR or ROMANIA Kings wants to snub ROMANIA or PERU

(P or -Q) & (Q or R) & (-R or -P) is satisfied by P=true, Q=true, R=false and by P=false, Q=false, R=true

Hardware verification

Hardware verification P S Q S = Cin or (P or Q), ... CN Court

Scheduling jobs in a factory

- Set of jobs, resource constraints, start and due dates, ...
- Just need to sequence jobs

Xij = true iff Job i occurs before Job j

. . .

Design theory

- Experimental design, Latin squares with special properties
- Open problems solved by encoding problems into SAT
 - [Fujita, Slaney, Bennet, 1993]
 - Best paper at the International Joint Conference on Artificial Intelligence, 1993

Latin square

- Also called "quasigroup"
- Each colour occurs once in each row and column

Quasigroup or Latin Square (Order 4)

Latin squares

- Can we complete a partially coloured Latin square?
 - NP-complete problem
 - Applications in telecommunications

32% preassignment

SAT model for Latin square

What are the variables? Xijk is true if square (i,j) has the colour k

What are the constraints
 Row constraints

 (-Xijk or -Xij+1k),

 Column constraints

 (-Xijk or -Xi+1jk),

Fibre-optic routing

1/25/2008

Routing = Latin square problem

- Each channel cannot be repeated on input ports
- Each channell cannot be repeated on output ports

Input ports

Output ports

Orthogonal Latin squares

- Find a pair of Latin squares
 - Every cell has a different pair of elements
- Generalized form:
 - Find a set of m Latin squares
 - Each possible pair is orthogonal

Orthogonal Latin squares

- 1 2 3 4 1 2 3 4
- 2143 3412
- 3 4 1 2 4 3 2 1
- 4321 2143
 - 112233442314413234431221
 - 42 31 24 13

- Two 4 by 4 Latin squares
- No pair is repeated

History

 Orthogial Latin squares were introduced by Euler in 1783

□ Also called Graeco-Latin or Euler squares

- No orthogonal Latin square of order 2
 - There are only 2 (non)-isomorphic Latin squares of order 2 and they are not orthogonal

History

- Euler conjectured in 1783 that there are no orthogonal Latin squares of order 4n+2
 - Constructions exist for 4n and for 2n+1
 - □ Took till 1900 to show conjecture for n=1
 - Took till 1960 to show false for all n>1

History

6 by 6 problem known as the 36 officer problem

"... Can a delegation of six regiments, each of which sends a colonel, a lieutenant-colonel, a major, a captain, a lieutenant, and a sub-lieutenant be arranged in a regular 6 by 6 array such that no row or column duplicates a rank or a regiment?"

More background

Lam's problem

- Existence of finite projective plane of order 10
- Equivalent to set of 9 mutually orthogonal Latin squares of order 10
- In 1989, this was shown not to be possible after 2000 hours on a Cray (and some major maths)
- Applications in experimental design
 - To ensure no dependency between independent variables

A simple SAT model

• What are the variables?

□ Xijkl = true if pair (i,j) is in row k column l, false otherwise

- What are the constraints?
 - Lots of them!
 - □ Latin square constraints
 - Orthogonality constraints

A simple SAT model

- Orthogonal Latin square has lots of symmetry
 - Permute the rows
 - Permute the cols
 - Permute the numbers 1 to n in each square
- How can we eliminate such symmetry?

Symmetry removal

- Fix first row11 22 33 ...
- Fix first column
 11
 23
 32
 - ••
- Eliminates all this symmetry?

See Ian Gent or Steve Linton if this interests you!

SAT algorithms

• How do we test if a problem is SAT or not?

Complete methods

- Return "Yes" if SATisfiable
- Return "No" if UNSATisfiable
- Incomplete methods
 - If return "Yes", problem is SATisfiable
 - Otherwise timeout/run forever, problem can be SAT or UNSAT

A	В	\mathcal{C}	D	$A \cdot B$	$C \cdot D$	$\overline{A} \cdot C \cdot \overline{D}$	\boldsymbol{Q}
Q	Q	0	0	0	0	0	0
0	0	0	T	0	0	0	0
0	0	l	0	0	0	L	I
0	0	L	L	0	L	0	I
0	L	Ð	Q	0	0	0	0
0	l	0	T	0	0	0	0
0	L	L	Q	0	0	L	I
Q	I	L	T	0	L	0	I
l	0	0	0	0	0	0	0
I	0	0	T	0	0	0	0
I	0	L	Q	0	0	0	0
I	0	l	T	0	1	0	I
I	L	0	0	I	0	0	I
I	I	0	T	I	0	0	L
I	l	l	0	I	0	0	I
I	I	I	L	I	1	0	I

Truth tables

A	В	C	D	$A \cdot B$	$C \cdot D$	$\overline{A} \cdot C \cdot \overline{D}$	\boldsymbol{Q}
Q	Q	0	0	0	0	0	0
0	0	0	L	0	0	0	0
0	0	I	0	0	0	L	L
0	0	L	T	0	L	0	1
0	L	0	0	0	0	0	0
0	l	0	L	0	0	0	0
0	L	L	0	0	0	L	1
0	l	L	T	0	1	0	1
L	0	0	0	0	0	0	0
I	0	0	T	0	0	0	0
T	0	L	0	0	0	0	0
L	0	L	T	0	1	0	1
L	L	0	0	I	0	0	1
I	L	0	T	I	0	0	L
I	l	L	0	I	0	0	
I	I	T	T	I	1	0	L

Truth tables

Exponential time to construct

A	В	C	D	$A \cdot B$	$C \cdot D$	$\overline{A} \cdot C \cdot \overline{D}$	\boldsymbol{Q}
Q	0	0	0	0	0	0	0
0	0	0	T	0	Ð	0	0
0	0	L	0	0	O	L	L
0	0	T	T	0	L	0	T
0	L	0	Q	0	0	0	0
0	I	0	I	0	0	0	0
0	L	I	Q	0	O	L	I
0	L	L	T	0	L	0	L
l	0	0	0	0	0	0	0
L	0	0	T	0	O	0	0
l	0	I	Q	0	0	0	0
I	0	L	T	0	I	0	L
I	L	0	0	I	0	0	I
L	L	0	T	I	Ð	0	I
I	I	I	0	1	0	0	L
I	I	T	L	L	L	0	L

Truth tables

- Exponential time to construct
- **Exponential space**

Davis Putnam algorithm

- Due to Davis, Logemann and Loveland from 1962
- Original algorithm by Davis & Putnam in 1960 could use exponential space
- DLL traded time for space to give linear space algorithm

Davis Putnam algorithm

Consider

(X or Y) & (-X or Z) & (-Y or Z) & ...

Basic idea

Try X=true

Davis Putnam algorithm

Consider

(X or Y) & (-X or Z) & (-Y or Z) & ...

- Try X=true
- Remove clauses which must be satisfied

Davis Putnam algorithm

🗆 Consider

```
(-X or Z) & (-Y or Z) & ...
```

- Try X=true
- Remove clauses which must be satisfied
- Simplify clauses containing -X

Davis Putnam algorithm

🗆 Consider

 $(Z) \& (-Y \text{ or } Z) \& \dots$

- Try X=true
- Remove clauses which must be satisfied
- Simplify clauses containing -X
- Can now deduce that Z must be true

Davis Putnam algorithm

🗆 Consider

 $(Z) \& (-Y \text{ or } Z) \& \dots$

- Try X=true
- Remove clauses which must be satisfied
- Simplify clauses containing -X
- Can now deduce that Z must be true
- At any point, may have to backtrack and try X=false instead

Davis Putnam algorithm

Branching heuristics

- Which variable to assign next?
- Which value (true/false) to try first?

Other refinements

- Clause learning
- Intelligence backtracking
- Implementation tricks
- Worst-case complexity
 - O(1.696^n)

Most fit a very simple schema

Randomly guess truth assignment

Repeat

- Pick a variable
- Flip its truth value

Most fit a very simple schema

Randomly guess truth assignment

Repeat

- Pick a variable
- Flip its truth value
- Heuristics to pick variable
 - Any var in UNSAT clause
 - Var that maximizes number of SAT clauses if flipped
 - Var in UNSAT clause flipped longest time ago ...

Other SAT algorithms

- All kinds of exotic approaches have also been tried
 - Genetic algorithms
 - Ant algorithms
 - DNA algorithms
 - Quantum algorithms

...

Subclass of SAT problem Exactly k variables in each clause (P or -Q) & (Q or R) & (-R or -P) is in 2-SAT

Subclass of SAT problem k variables in each clause (P or -Q) & (Q or R) & (-R or -P) is in 2-SAT 3-SAT is NP-complete

SAT can be reduced to 3-SAT

Subclass of SAT problem

k variables in each clause
(P or -Q) & (Q or R) & (-R or -P) is in 2-SAT

3-SAT is NP-complete

SAT can be reduced to 3-SAT
(P or Q or R or S) = (P or Q or T) & T iff (R or S)
= (P or Q or T) & (-T or R or S)
& (T or -R) & (T or -S)

- Subclass of SAT problem

 k variables in each clause
 (P or -Q) & (Q or R) & (-R or -P) is in 2-SAT
 3-SAT is NP-complete
 SAT can be reduced to 3-SAT

 2-SAT is in P
 - Exists linear time algorithm!

Adding extra var to each clause makes problems hard ... more on this later in the lectures!

3-SAT

- □ Where are the hard 3-SAT problems?
- Sample randomly generated 3-SAT
 - Fix number of clauses, *l*
 - Number of variables, *n*
 - By definition, each clause has 3 variables
 - Generate all possible clauses with uniform probability

Random 3-SAT

Which are the hard instances?

□ around *I/n* = 4.3

What happens with larger problems?
Why are some dots red and others blue?
This is a so-called "phase transition"

Random 3-SAT

- Varying problem size, *n*
- Complexity peak appears to be largely invariant of algorithm
 - complete algorithms like
 Davis-Putnam
 - Incomplete methods like local search

What's so special about 4.3?

Random 3-SAT

- Complexity peak coincides with satisfiability transition
 - I/n < 4.3 problems underconstrained and SAT
 - I/n > 4.3 problems overconstrained and UNSAT
 - I/n=4.3, problems on
 "knife-edge" between
 SAT and UNSAT

Conclusions

SAT is a useful problem class
 Theoretical importance
 Practical value

Hard problems often turn up at a phase transition
 Next lecture: a closer look at this phenomenon!