Smart-Its: Prototyping the Disappearing Computer

Hans-W. Gellersen

Lancaster University Department of Computing Ubiquitous Computing Research

Prototyping in Ubicomp Research

Ubicomp Research Methodology

 "The research method for ubiquitous computing is standard experimental computer science: the construction of working prototypes of the necessary infrastructure in sufficient quantity to debug the viability of the systems in everyday use, using ourselves and a few colleagues as guinea pigs. This is an important step towards insuring that our infrastructure research is robust and scalable in the face of the details of the real world."

Ubicomp Research Methodology

• **Roy Want**, Intel Research, formerly XeroxPARC: "10 Lessons Learned about Ubiquitous Computing"

Lesson 4: Only building something actually allows you to explore its full design potential

... Lesson 9: It's a lot of work to deploy a Ubiquitous Infrastructure and it's even more work to maintain it

The Importance of <u>Building</u> Prototyping

Learning from building a prototype

- Feasibility, Limitations, Trade-offs, Pitfalls
- e.g. Pin&Play: Does it work? Does it scale? What is the tradeoff between size/bandwidth?

Discovering issues you'd never have thought of

 e.g. Sense Table: structural properties of table limits accuracy – no point in sampling of load sensor data at higher rate

Chance innovations

 e.g. Sense Table: designed for context acquisition – use as "mouse" emerged once it was built

The Importance of <u>Building</u> Prototypes

Building Prototypes

- Envisioning Design
- Tool for communication of ideas
- e.g. Sense Table inspired series of designs at RCA

The Importance of <u>Deploying</u> Prototypes

Deploying, not just demonstrating!

- Evolving an understanding of how a system fits into a physical and social context
 - e.g. PARCTab experience
 - in demos: "mobile email" most popular with users
 - in the deployed system:

• exception: the meeting room, but there email was too slow because many people were using it simultaneously

The Importance of <u>Deploying</u> Prototypes

Evaluation in context

- Context-aware behaviour can only be evaluated in context
- Requires deployment in the real world
- Observation possibly over extended periods
 - Time to get over the wow! factor
 - Often interested in the infrequent odd cases
 - Observation difficult, not always acceptable

The Importance of <u>Deploying</u> Prototypes

The idea of "Living Laboratories"

- Instrumented real-world environments
- Longitudinal studies
- e.g. the Aware Home at Georgia Tech

Physical Prototyping Challenges

Physical prototyping

Ubicomp inevitably involves physical prototyping

- Pre-Ubicomp research in areas such as computing systems, human-computer interaction etc:
 - Usually dealing with software as the variable and hardware as the constant
- Ubicomp research
 - Prototyping of both software and physical system components
 - Exploring new device concepts (e.g. information appliances, wearables, ...)
 - Exploring new device interactions (e.g. sensing and manipulation of the environment)

Problems with Physical Prototyping

Skills in the wrong camp!

- Ubicomp research is driven by communities that traditionally have been software-centric
- Hardware people aren't interested in Ubicomp prototyping (not challenging – they rather advance the enabling technologies)

Problems with Physical Prototyping

Construction difficult

- Hardware available typically at wrong level of abstraction, or difficult to interface
- Prototyping can involve PCB design and selection of electronic components at a very low level
- Not more than 1 device per research group per year
- Rarely iterating on design

Irreproducible

- Results can not be reproduced by others
- Demo hardware vanishes

Many issues ignored or poorly studied

• Context, interaction with environment, ...

Problems with Physical Prototypes

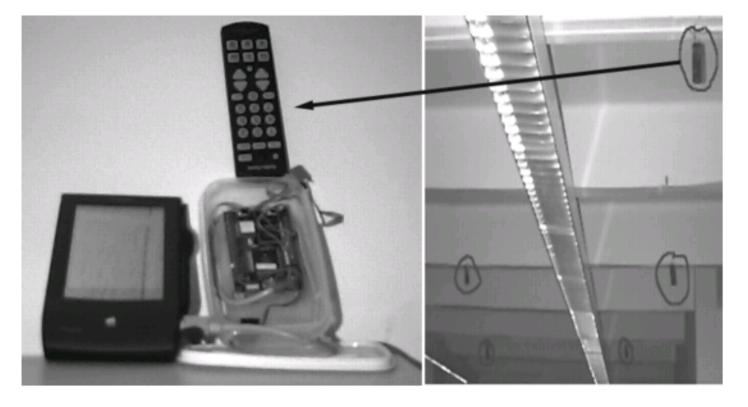
Ubicomp Catch 22

- Ubicomp applications cannot be developed without suitable hardware
- But the design of suitable hardware depends on an understanding of how the hardware fits into the application environment

What Researchers can do about it

• John Barton, HP Labs

Services for wireless handheld appliances ...but you don't have any...


- Plan A: whine about it

 Work on services; wait for appliances
- Plan B: Hack one
 - Hardware, device drivers, ...
- Plan C: Build one
 - See Plan B.
- Plan D: Fake one

Plan B: Hack One

Ingeniuty diverted to Hardware Improvisation!

• e.g. TV remote controls as IR beacons (Cyberguide project, Gatech 1996)

Plan D: Fake One

Simulation of physical prototypes

- Idea: back to virtual reality to explore ubicomp environments before they are build
- Closed world, no surprises: you get what you model
- Cannot replace studies in a real context
- John Barton's Ubiwise Simulator

The Ubiwise Simulator

Two window virtual world

Close-up Device View

Physical Environment View

Back to Plan C: Build One

But lower the Hurdle

- Provide prototyping platform
 - hardware/software building blocks, architecture
- Functionality
 - embedded processing
 - wireless communication
 - physical interaction (sensors/actuators)
- Constraints
 - Price, size, energy consumption matter now (can't wait for the future to happen)

Architecture

Small embedded devices

- Sensor module for local observation
- Embedded perception to lift sensor data to context
- Radio module for sharing of context in ad hoc networks

Building Blocks

- Family of devices
- Software libraries
- Highly configurable sensor units
- Alternative wireless technologies

Smart-Its Background

- Mediacup Project, 1999-2001
- Demonstrator for Digital Presence

Mediacup Implementation

- Cup with embedded sensors, processor, wireless comm., and wireless charging
- Autonomous computation of user-level context ("filled up", "gone cold", …)

Smart-Its Platform

All base boards

- Microcontroller
- RAM
- Analog Inputs
- Digital I/O
- Wireless communication
- All boards are software and hardware compatible

Small portable unit

- 45mm x 50mm x 19mm
- 29g with battery

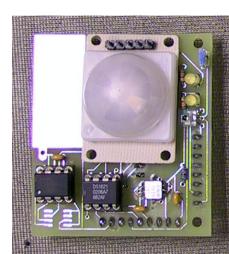
Base station/debug unit

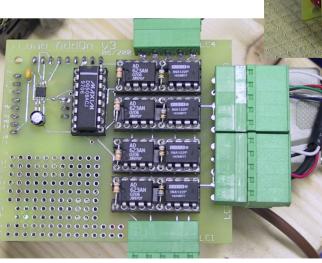
- 55mm x 70mm x 29mm
- 110g with 4x AAA
- RS232 connector
- DC Power Connector

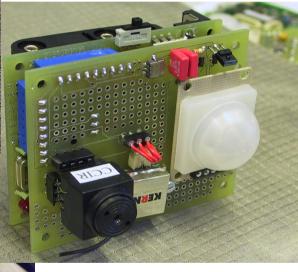
Sensor boards Add-ons to the Core Smart-Its

Hardware

• Much simpler

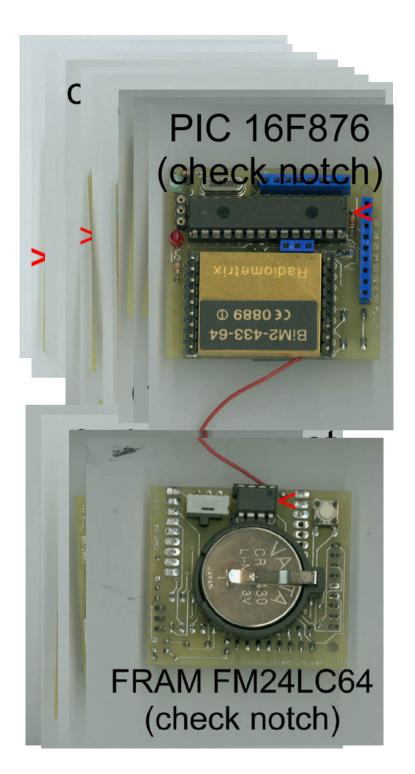

Software


- Build upon frameworks **Communication**
- Basic functions available


Examples

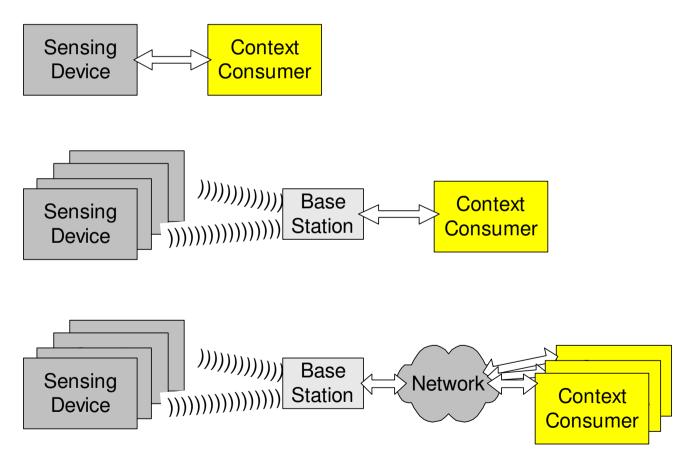
- General sensors
- Vision / Camera
- Load sensing
- Weather board
- Motion sensing
- Actuator boards

• ..


Hardware DIY Approach

Selected requirements

- Understandable with a CS background
- Minimal electronics skills
- Similar to electronic kits
- Easing embedding of sensors and actuators
- Reusable
- Basic hardware and software should run within a week for most scenarios


Beyond rapid prototypes

- All components as CAD unit
- Different physical shapes (of the same HW) are easy to do
- Software compatible to modules

Software Context Acquisition Systems

Architectures & Software Frameworks

Platform Evaluation

Evaluation Method

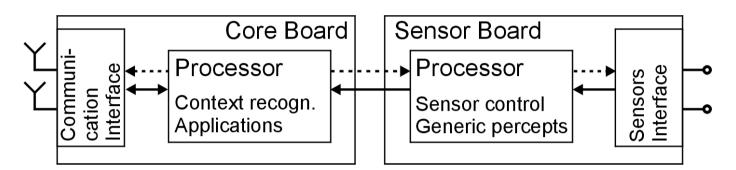
- Workshop with users from other projects
- 2,5 days for development of mini-demos from scratch

Results

- Hardware: new add-on devices
 - e.g. RFID reader
- Application demos
 - Smart Ball
 - Wireless Gesture Input
 - Perception of walking in groups

HWG 27

Prototyping Exercise - Impressions


smartoits

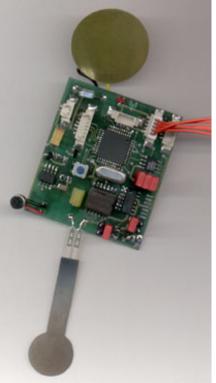
The Smart-Its Project

Smart-Its

A Platform for Rapid Prototyping of Ubiquitous Computing Systems

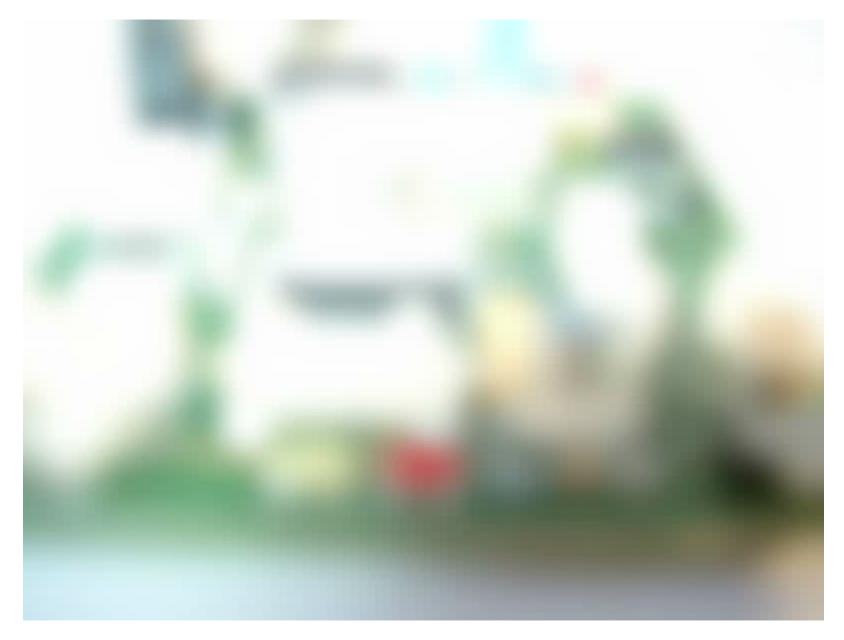
More Smart-Its Devices

ETH Zurich


- Bluetooth node
- Interoperability \bullet

TecO, Uni KA

- Minimal size
- Minimal energy •



Beyond Prototyping

- Development of Prototyping Platform is vehicle for further research in the Smart-Its project
- Exploring "Smart Artefacts" Vision
 - Applications composed of common objects that have processing and context-awareness embedded
- Studying Collective Awareness
 - Context-awareness based on shared observation
 - Integration of diverse types of sensor
 - Perception processes that scales with number of spontaneously connected sensors

Acknowledgements

- University of Karlsruhe, Germany
- ETH Zurich, Switzerland
- Interactive Institute, Sweden
- VTT Electronics, Finland

More information

 http://www.smart-its.org/ and partner sites

Summary

- The importance of building and deploying prototypes in ubicomp research
- Challenges associated with physical prototyping
- The Smart-Its platform designed to lower the hurdle for building, trying out and evaluating prototypes of the Disappearing Computer
- More information, links to project sites http://www.comp.lancs.ac.uk/~hwg/
- Contact hwg@comp.lancs.ac.uk

Thank you!

Readings

Ubicomp Prototyping

- [1] R. Want, "Ten Lessons Learned about Ubiquitous Computing", Invited Talk at Dagstuhl Seminar on Ubiquitous Computing, Sept 2001, http://www.inf.ethz.ch/vs/events/dag2001/ slides/roy-lessons.pdf
- [2] N. Davies and H. Gellersen, "Beyond Prototypes: Challenges in Deploying Ubiquitous Systems"
- [3] C. Kidd, G. Abowd et al "The aware home: A living laboratory for ubiquitous computing research", Proc CoBuild 1999, Springer-Verlag
- [4] J. Barton, "The Ubiwise Simulator", Lecture at Dagstuhl Summer School on Ubiquitous Computing, Aug. 2002, http://www.inf.ethz.ch/vs/events/dag2002/
- [5] S. Long et al "Rapid Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study", Proc. Intl. Conf. on Mobile Computing (MOBICOM'96), ACM Press, pp. 97-107

Smart-Its

- [5] http://www.smart-its.org/
- [6] L.E. Holmquist et al, "Smart-Its Friends: A Technique for Users to Easily Establish Connections between Smart Artefacts", Proc. Ubicomp 2001, Springer-Verlag
- [7] "Smart-Its: Technology for Smart Artefacts with Collective Awareness", Technical Report, http://www.comp.lancs.ac.uk/~hwg/Smart-Its.jamb2002.pdf
- [8] A. Schmidt, "Smart-Its Hardware Tutorial" http://www.comp.lancs.ac.uk/~albrecht/smart-its/platform/
- [9] Smart-Its Overview Video http://ubicomp.lancs.ac.uk/~hwg/Smart-Its_640_480.mov