

Storage area networks

- Physical connectivity
 - links and loops
- Command sets and protocols
 - what to say
 - how to send it
- LAN vs SAN
 - and other false dichotomies
 - case study: CMU NASD

- Physical connectivity
 - what kind of bus/interconnect fabric
- Command set
 - how are requests formatted?
 - what requests can be sent?
- Protocol
 - buffer management
 - flow control
 - error recovery
 - security

- Local attach
 - IBM channel (System/360 mainframe)
 - [E]IDE
 - parallel SCSI
- Shared attach -- SANs (Storage Area Networks)
 - parallel SCSI (multiple initiators)
 - IBM SSA
 - Fibre Channel
- Futures?
 - Ethernet
 - Infiniband

- Physically:
 - 100MB/s (800Mb/s)
 - point-to-point, loop, switched
 - copper: coax, or backplane traces
 - fibre: up to 500m multimode;
 10km single-mode

Components:

- point-to-point links
- hubs ("wiring closet in a box")
- switches
- host- and device-adapters
 (e.g., HP's Tachyon chip set)

SCSI, IP encapsulations

- A ring-connected structure
 - dual counter-rotating rings (failure tolerance)
 - hubs provide physical star-like topology
- Token-ring-like protocol: only one sender at a time
 - traversals:
 - lay claim
 - grant claim
 - transfer data
 - release

- Why bother?
 - low cost: a few \$\$ more than parallel SCSI
 - multidrop
 - supported <u>now</u> by disk drives

- Current state of the art
 - designs are done by hand, using a few simple "potted" topologies
- Surely automation should be straightforward?
 - Given:
 - flows between endpoints (hosts, devices)
 - link, hub, switch characteristics
 - Apparently not!
 - degree-constraints seems unusual
 - divide-and-conquer seems unhelpful
 - "Extra credit" items are very important:
 - fault tolerance: designing for all possible failure cases
 - multiple layers of switches/hubs possible

Appia designs FibreChannel fabrics for a Rome assignment

Benefit: error-free, near-minimal-cost fabric designs

This diagram shows the operation of the MERGE heuristic (developed by Li-Shiuan Peh at SSP/HP Labs) as it finds the best solution to a simple SAN design problem.

Future work will extend this to design HA fabrics with performance guarantees.

We'd love some help!

- Physical connectivity
 - links and loops
- Command sets and protocols
 - what to say
 - how to send it
- LAN vs SAN
 - and other false dichotomies
 - case study: CMU NASD

- Fixed-size Command Descriptor Block
 - read, write, inquire, ...
 - think of this as an rpc
- Separate read- or write data phase
 - transfer controlled by the "target" (aka, disk)
 - simplifies buffer management for small devices
- Mode pages
 - data about the device
 - setting/reading configuration information
- Asynchrony
 - multiple outstanding requests
 - limited sequencing: "put at front"; "add to end"

- Functions:
 - buffer management
 - flow control
 - error recovery
 - security
- Existing choices
 - parallel SCSI: bus-based signalling
 - FCP: mapping of SCSI signalling onto FibreChannel
- Future possibilities
 - a new block-transfer protocol?
 - TCP/IP + RDMA extensions (Cisco, draft of Feb. 2000)
 - advantages: existing management infrastructure; high speed; standards organizations
 - disadvantages: security problems; no multidrop

- Security
 - this wasn't a factor in locally-attached storage
 - now, NT thinks it can format any device it can reach!
 - solutions:
 - zoning (switch vendors) -- pervasive, but coarse granularity
 - host-side security (HP Storage Manager DM) -- defeatable
 - device-side security (EMV VolumeLogix) -- slow to deploy
 - roles are important
 - "can host X see this device?"
 - "can host X read/write to it?"
 - "can host X configure it?"

- Discovery: what storage is out there?
 - naming infrastructure
 - multi-path detection

- Run some of the application function in the disk (array)
 - Eric Riedel, Kim Keeton, Mustafa Uysal all worked in this area
- Big benefits if:
 - embarrassingly parallel application
 - ratio of data-looked-at to data-shipped-to-host is high
 - e.g.: database select operation in decision support (4x improvements)
 - e.g.: parallel sort
- A few of the open issues
 - programming model
 - resource management (especially with multiple applications)
 - error management/containment/security
 - support

- Physical connectivity
 - links and loops
- Command sets and protocols
 - what to say
 - how to send it
- LAN vs SAN
 - and other false dichotomies
 - case study: CMU NASD

- Network hardware: FibreChannel vs Ethernet
 - 1Gb/s available today
 - 10Gb/s E'net will (probably) be ready first
- Storage interface: blocks vs "files"
 - block storage devices (SCSI)
 - "NAS" => file servers (Netware, NFS, CIFS)
- Network protocol: FCP vs TCP/IP
 - specialized protocol vs general-purpose one
- ▼ SAN:
 - dedicated network, used (largely) for storage
 - whatever the protocol!

- Block storage devices (SCSI)
 - critical path simple => fast
 - difficult to push function down to storage device
- "NAS" file servers (Netware, NFS, CIFS)
 - can optimize layout and caching for prefetching, readahead, writebehind, etc, ...
 - finer-grained protection possible
 - critical path has another layer of mapping => slower

- NetSCSI
 - use a "file manager" to police the requests and manage the data layout
 - data flows directly to/from the host
 - otherwise like NFS
- Advantages:
 great for large data transfers
 fine-grained protection
- Disadvantages:
 - file manager is still bottleneck
 - requires secure channel to disk to enforce protection rules

Blocks versus files? Transoft DFS

- Transoft DFS (CIFS-based)
 - use a "file manager" to police the requests, and manage the data layout
 - "layout map" returned to host
 - data portion of transaction flows directly to/from the host
- Advantages:
 - file manager can be CIFS server
 - great for large data transfers, repeated transactions
 - existing SAN infrastructure for IOs
- Disadvantages:
 - protection granularity is whole LUN
 - file manager may still be a bottleneck for metadata *changes*

- CMU NASD
 - use a "file manager" to police the requests, and manage the data layout
 - "permission token" returned to host
 - expressed in terms of "storage objects"
 - rest of transaction flows directly to/from the host
- Advantages:
 - best performance for NFS-like loads for workgroups (lots of metadata traffic)
- Disadvantages:
 - fine-grained protection requires a *lot* of work on device
 - CMU: requires file system in disk
 - ISI NetStation: uses dynamic map instead

133MHz Alpha NASDs; 233MHz clients; switched 155Mb/s ATM SAN 500MHz Alpha NFS server; dual 155Mb/s ATM links Finding parallel association rule on 300MB of sales records

Carnegie Mellon

Quantum Trident drive

"Today" (1997): M68020 + datapath ASIC (at right)

- 0.68 micron (74mm²)
- 4 clock domains, each 40 MHz:
 - SCSI processor
 - disk R/W channel
 - uP control port
 - DRAM port
- •~110 Kgates + 22Kb

Since then:

- Siemens TriCore
- Cirrus Logic 3CI
- TI TMS320C27x

Some of the good results:

Security model [Howard Gobioff]

- much more resilient to attack than most SANs
- shows how to provide fine-grained device sharing
- precompupted digsts speed cryptography
- Object model
 - basis for protection, pre-fetching, layout, ANSI standard proposal
 - offloading NFS operations from file manager can help
- Framework for smart storage devices
 - security + object model
 - "Active disks" combines nicely with the object model

Open question: is it the right answer?

- **v** Probably not such a good a match for:
 - high end databases (dbms tables are larger than devices)
 - low end desktop (no desire for file system in drive)
- Is potentially a good match for scalable mid-range file service
 eg, IDC/ASP environment
- Book is still open on NASD vs Transoft DFS models
 - performance strongly affected by workloads
- Lots of good ideas/technology have resulted

- SANs are an important enabler for the storage-utility model
 - they permit rapid growth and resource redeployment
- ▼ SAN vs LAN is the wrong question :-)
 - 3 independent decisions:
 - link technology
 - command-set
 - protocols
 - But ... LAN technology will probably sweep away FibreChannelbased SANs in the next few years
 - TCP+RDMA/IP seems a strong contender
- Smart devices will change the landscape
 - when?
 - security may prove a decisive factor

