
2000-03-StAndrews-arrays, 1
John Wilkes

Storage management: talk roadmap

! Why disk arrays?

– Failures

– Redundancy

! RAID

! Performance considerations

– normal and degraded modes

! Disk array designs and implementations

! Case study: HP AutoRAID

2000-03-StAndrews-arrays, 2
John Wilkes

Why disk arrays?

Because stuff happens.

2000-03-StAndrews-arrays, 3
John Wilkes

Failures

! Things break -- in a moderately predictable way in aggregate

! Metrics:

– MTTF: “mean time to failure” -- a rate, not a period

– AFR: annual failure rate (better -- but still just middle of “bathtub”)

– MTTR: “mean time to repair”

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Relative mortality rate

Time

2000-03-StAndrews-arrays, 4
John Wilkes

Definitions

! Reliability

– R(t) = likelihood system up continuously from time 0 to time t

! Availability

– A(t) = likelihood system will be up at time t

! Performability

– P(t,p) = likelihood system will be providing performance p at time t

Time

Normal performance

RebuildingP
e

rf
o

rm
a

n
c

e

Degraded

mode

F
a

il
u

re
!

2000-03-StAndrews-arrays, 5
John Wilkes

Solution: introduce redundancy!

! Complete copies

– replication, “mirroring”

! Partial redundancy

– Hamming codes/ECC

• tolerates mangling of elements

• unnecessarily strong: we know when disks are broken

– Parity

• XOR sets (stripes) of data blocks to calculate a “parity block”

• any data block in a stripe can be reconstructed from the others + parity

Parity unit (xor of rest of

stripe units in same stripe)

XOR

Mirror copies

2000-03-StAndrews-arrays, 6
John Wilkes

Redundancy helps

! For disks:

– originally (mid-1980s), these were the most unreliable components

– nowadays, they!re one of the more reliable ones (AFR of 1-2%)

– but failure rates are proportional to numbers …

! Assume: independent failures

warning! danger! caution! error!

! With no redundancy …

AFRdisks ~= Ndisks * AFRdisk

! With one degree of redundancy …

AFRraid ~= AFRdisks(Ndisks) * MTTRdisk * AFRdisks(Ndisks-1)

2000-03-StAndrews-arrays, 7
John Wilkes

Redundancy hurts, too

! Cost

– replicating everything costs 2x as much storage

– solution: partial redundancy

! Slower updates

– 2x as many copies to write to

– … even worse with partial redundancy

! Greater complexity

– 80-90% of disk array firmware is error handling

– lots and lots of configuration choices ...

2000-03-StAndrews-arrays, 8
John Wilkes

Storage management: talk roadmap

! Why disk arrays?

– Failures

– Redundancy

! RAID

! Performance considerations

– normal and degraded modes

! Disk array designs and implementations

! Case study: HP AutoRAID

2000-03-StAndrews-arrays, 9
John Wilkes

RAID

! Originally (like everything else?) invented by IBM

– striping explored at Univ. Maryland

– catchy terminology popularized by UC Berkeley:

• Patterson, Gibson & Katz: “The case for Redundant Arrays of
Inexpensive Disks (RAID)”, ACM SIGMOD, 1988

– comparison point: slow, large expensive disks (SLED)

• goal was to compete with IBM mainframe disks
using cheap, unreliable PC drives

Now:

! RAID: Redundant Arrays of Independent Disks

2000-03-StAndrews-arrays, 10
John Wilkes

! RAID0: striping (no redundancy)

! RAID1: aka mirroring (full redundancy)

! RAID10: striped mirroring (full redundancy)

RAID levels 0, 1, 10

Stripe unit

Stripe

Mirror copies

Mirror copies

Striping balances the load
and allows large transfers
to happen in parallel

Striping balances the load
and allows large transfers
to happen in parallel

Mirroring gives 2x the read
bandwidth per disk, but
writes have to go to both

Mirroring gives 2x the read
bandwidth per disk, but
writes have to go to both

2000-03-StAndrews-arrays, 11
John Wilkes

! RAID3: byte-interleaved

– all disks read/written in lock step

– parity on dedicated disk
(ok: sees same load as remainder)

– great for high-bandwidth, large
transfers; otherwise poor

RAID level 3 - parity-protected striping

Parity unit (xor of rest of

stripe units in same stripe)

XOR

XOR parity is single-bit ECC
that can correct single-bit
erasures

If a disk is missing, XORing
the others will give you its
contents

XOR parity is single-bit ECC
that can correct single-bit
erasures

If a disk is missing, XORing
the others will give you its
contents

2000-03-StAndrews-arrays, 12
John Wilkes

! RAID4: block-interleaved

– independent reads/writes possible

– parity on dedicated disk (hot spot!)

! Updating parity is expensive for small writes

– one effect: write-caching becomes especially important

RAID level 4 - block-interleaved stripes

XOR
1. Read old data & parity

2. Compute new parity

3. Write new data + parity

=> 4x I/O operations per small write

1 123 3

2000-03-StAndrews-arrays, 13
John Wilkes

! RAID5 - rotated-parity-protected striping
to balance the load

RAID level 5

Parity unit (xor of rest of

stripe units in same stripe)

Rotating the parity balances
the parity load across all the disks;
striping allows fast large transfers

RAID5 is the configuration of choice
for all but performance-intensive
loads

Rotating the parity balances
the parity load across all the disks;
striping allows fast large transfers

RAID5 is the configuration of choice
for all but performance-intensive
loads

2000-03-StAndrews-arrays, 14
John Wilkes

RAID “levels”

Currently accepted RAID levels

– 0: no redundancy

– 1: full copy (mirrors)

– 10: striped mirrors

– 2: Hamming-code/ECC (not used)

– 3: byte-interleaved parity

– 4: block-interleaved parity (more useful variant of RAID3)

– 5: rotated block-interleaved parity

– 6: double parity (“P+Q parity” -- rare)

Note: not really
levels, just a list

Note: not really
levels, just a list

2000-03-StAndrews-arrays, 15
John Wilkes

! Updates in flight at time of power failure can corrupt the parity

– either: an expensive parity rebuild on power up

– or: keep a non-volatile intentions log

! Reliability calculations based on disks alone are bogus

– power source is single largest problem

– then controller failures, cooling, backplane, connections, ...

– redundancy helps here, too

– nobody likes to talk about software …

RAID: some tricky points

2000-03-StAndrews-arrays, 16
John Wilkes

Storage management: talk roadmap

! Why disk arrays?

– Failures

– Redundancy

! RAID

! Performance considerations

– normal and degraded modes

! Disk array designs and implementations

! Case study: HP AutoRAID

2000-03-StAndrews-arrays, 17
John Wilkes

! Floating parity [Menon92]

– write parity anywhere -- saves one revolution

Improving performance: RAID 4/5

XOR 1. Read old data & parity

 * claim: old data is already cached
2. Compute new parity

3. Write new data + parity

 * parity write is “free”

=> ~2x I/O operations per small write

1 123 3

2000-03-StAndrews-arrays, 18
John Wilkes

! Parity logging [Stodolsky94]

– aggregate parity updates into an append-only log

– propagate log in background

Improving performance: RAID 4/5

2000-03-StAndrews-arrays, 19
John Wilkes

Improving performance: AFRAID

! A Frequently Redundant Array of Independent Disks
[Savage&Wilkes96]

– live (a little) dangerously ...

– update parity opportunistically in the background

– gives smooth tradeoff between availability and performance

2000-03-StAndrews-arrays, 20
John Wilkes

Improving performance: choice of stripe size

! Optimum size is
dependent on:

– read:write mix

– data layout
(RAID1 vs RAID5)

– concurrency level

– back-end disk
characteristics
(e.g., track size)

! Choices are a daunting
problem for sysadmins

[Chen90] for RAID1, [Chen95] for RAID5

2000-03-StAndrews-arrays, 21
John Wilkes

! Reading RAID4/5 when a disk is broken is expensive

Degraded-mode performance

XOR

1. Read all surviving data & parity
2. Compute missing data (XOR)

=> all surviving disks are involved

1. Read all surviving data & parity
2. Compute missing data (XOR)

=> all surviving disks are involved

2000-03-StAndrews-arrays, 22
John Wilkes

Improving RAID5 degraded mode performance

! Chained declustering [Hsaio+DeWitt90]

– spread the second copy out over other disks

– when the primary copy breaks, each secondary disk takes
up only a portion of the slack

Secondary copy,

spread over other drives

Primary copy

2000-03-StAndrews-arrays, 23
John Wilkes

Improving RAID5 degraded mode performance

! Declustering [Muntz90]

– make stripes narrower than whole array

• only stripes that have the broken disk need pay performance penalty

– each stripe uses a different set of disks

• some complexity in the mappings that do this nicely

• but “close enough” works just fine

– better degraded-mode performance, at the cost of more disks

• stripes are smaller => more parity

– improvements

• Approximate block designs

• Prime/Relpr [Alvarez98] - better-spread large-transfer load

2000-03-StAndrews-arrays, 24
John Wilkes

Recovery/rebuild after a disk failure

! Reduce MTTR: keep an online spare

– e.g., XP256: up to 4 spares per rack of 64 drives

! Distributed sparing [Menon92] makes the spare useful

– spread its “contents” across all the disks

– effectively adds an extra disk!s performance to the array

2000-03-StAndrews-arrays, 25
John Wilkes

Recovery/rebuild after a disk failure

! Reconstruction after failure

– sweep across data: read every stripe, rewrite parity/missing data

• poor performance if done too simply: data transfers are too small; too
much blocking

• better: disk-oriented reconstruction [Holland93]

– keep >= one outstanding read for each disk

– can also piggyback updates on foreground activity

• requires keeping a map of reconstructed stripes

– big tradeoff: faster recovery or slower foreground activity?

2000-03-StAndrews-arrays, 26
John Wilkes

Storage management: talk roadmap

! Why disk arrays?

– Failures

– Redundancy

! RAID

! Performance considerations

– normal and degraded modes

! Disk array designs and implementations

! Case study: HP AutoRAID

2000-03-StAndrews-arrays, 27
John Wilkes

Array implementations

! In software

– cheapest, but consumes memory (and cpu) cycles

– usually mirroring, in OS Logical Volume Manager

! In host bus adapter

– common in PC servers

– big win is from the read/write cache

– fault handling is very limited

Array
controller

Host interface (PCI)

Cache

2000-03-StAndrews-arrays, 28
John Wilkes

P
o

w
e
r, e

tc

P
o

w
e
r, e

tc

Array implementations

! Mid-range array (e.g., HP FC60)

– sometimes separate controller and disk boxes

– up to 1-2TB disk, 0.5Gb cache RAM

– can saturate a 100MB/s FibreChannel link; O(10,000 IOs/s)

Array
controllerH

o
s
t
in

te
rf

a
c
e
s

Cache

Packaging:

• whole array is in a single box, or

• array controller is in separate box

Packaging:

• whole array is in a single box, or

• array controller is in separate box

Array
controller

Cache

2000-03-StAndrews-arrays, 29
John Wilkes

Array implementations

! High-end array: integrated box (e.g., HP XP256; EMC Symmetrix)

– up to a few TB of disk

– up to a few GB of cache

– up to a few $million

! What you pay for:

– lots of caching (vital to performance)

– multiple host interface types

• e.g., HP XP256: SCSI, FibreChannel, and ESCON

– quality power distribution, cabling, cooling, vibration isolation

– phone-home, remote management, support infrastructure

– can saturate a few 100MB/s FibreChannel links; O(50,000+ IOs/s)

2000-03-StAndrews-arrays, 30
John Wilkes

Disk array architecture - high end

Front-end
controller

Front-end
controller

Cache

Back-end controllers

Host interfaces

Parity XOR

Packaging:

• array controller in a separate box

 (disks in rack-mountable trays), to

• array controller is one of several

 6! racks

Packaging:

• array controller in a separate box

 (disks in rack-mountable trays), to

• array controller is one of several

 6! racks

Cache

Power, etc

Power, etc

Power, etc

Power, etc

2000-03-StAndrews-arrays, 31
John Wilkes

Disk arrays: Logical UNits

! Most arrays provide multiple LUNs (SCSI Logical UNits)

– one or more disk drives bound together into a common layout

– different LUNs can have different sizes, different layouts

– LUN 0 is often special (used for controlling the array as a whole)

– at low end: 8-32 LUNs

– at high end: thousands of LUNs

• SCSI limit: 4096 LUNs, from a 12 bit LUNid

! A few common variations (there are many more):

– parts of disks instead of whole disks

– LUNs may be named relative to ports, not uniquely

– LUNs can have different caching behavior

2000-03-StAndrews-arrays, 32
John Wilkes

Summary

! Disk arrays use redundancy to protect against disk (and other
storage component) failures

– rest easy: the storage system is no longer the main problem!

! They can also provide performance benefits

– caching can easily provide 10-100x performance boost

! But … at cost of lots of complexity

– algorithms

– configuration choices

– implementation options

2000-03-StAndrews-arrays, 33
John Wilkes

Storage management: talk roadmap

! Why disk arrays?

– Failures

– Redundancy

! RAID

! Performance considerations

– normal and degraded modes

! Disk array designs and implementations

! Case study: HP AutoRAID

