L E—————

Why disk arrays?
— Failures
— Redundancy

RAID

Performance considerations
— normal and degraded modes

Disk array designs and implementations

Case study: HP AutoRAID

he

HEWLETT
PACKARD

M Why disk arrays?

Because stuff happens.

2000-03-StAndrews-arrays, 2 HEWLETT
John Wilkes Y [bF] PACKARD

- Failures

v Things break -- in a moderately predictable way in aggregate

120 - Relative mortality rate
100 \
80

o\

I\ -

O T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11
Time

v Metrics:
— MTTF: “mean time to failure” -- a rate, not a period
— AFR: annual failure rate (better -- but still just middle of “bathtub”)
— MTTR: “mean time to repair”

2000-03-StAndrews-arrays, 3 [ﬁF HEWLETT
John Wilkes PACKARD

Definitions

v Reliability
— R(t) = likelihood system up continuously from time 0 to time t

v Availability
— A(t) = likelihood system will be up at time t

v Performability
— P(t,p) = likelihood system will be providing performance p at time t

A

Normal performance

Degraded
mode

Performance

Failure!

Rebuilding Time

2000-03-StAndrews-arrays, 4 [bp HEWLETT
John Wilkes PACKARD

¢ Solution: introduce redundancy!

v Complete copies
— replication, “mirroring”

v Partial redundancy

— Hamming codes/ECC Mirror copies

- tolerates mangling of elements
* unnecessarily strong: we know when disks are broken

— Parity
- XOR sets (stripes) of data blocks to calculate a “parity block”
- any data block in a stripe can be reconstructed from the others + parity

XOR

Parity unit (xor of rest of
stripe units in same stripe)

2000-03-StAndrews-arrays, 5 HEWLETT
John Wilkes Y [ﬁF] PACKARD

§ ' Redundancy helps

v For disks:
— originally (mid-1980s), these were the most unreliable components
— nowadays, they’re one of the more reliable ones (AFR of 1-2%)
— but failure rates are proportional to numbers ...

v Assume: independent failures
warning! danger! caution! error!

v With no redundancy ...
AFRjisks ~= Ngisks * AFRgisk

v With one degree of redundancy ...
AFR ~= AI:Rdisks(Ndisks) * IVITTRdisk * AI:Rdisks(Ndisks'-I)

raid

2000-03-StAndrews-arrays, 6 [ﬁF HEWLETT
John Wilkes PACKARD

3 Redundancy hurts, too

v Cost
— replicating everything costs 2x as much storage
— solution: partial redundancy

v Slower updates
— 2X as many copies to write to
— ... even worse with partial redundancy

v Greater complexity
— 80-90% of disk array firmware is error handling
— lots and lots of configuration choices ...

2000-03-StAndrews-arrays, 7 [bp HEWLETT
John Wilkes PACKARD

L E—————

Why disk arrays?
— Failures
— Redundancy

RAID

Performance considerations
— normal and degraded modes

Disk array designs and implementations

Case study: HP AutoRAID

he

HEWLETT
PACKARD

v Originally (like everything else?) invented by IBM
— striping explored at Univ. Maryland

— catchy terminology popularized by UC Berkeley:

- Patterson, Gibson & Katz: “The case for Redundant Arrays of
Inexpensive Disks (RAID)”, ACM SIGMOD, 1988

— comparison point: slow, large expensive disks (SLED)

- goal was to compete with IBM mainframe disks
using cheap, unreliable PC drives

Now:
v RAID: Redundant Arrays of Independent Disks

2000-03-StAndrews-arrays, 9 HEWLETT
John Wilkes Y [ﬁF] PACKARD

'RAID levels 0, 1, 10

v RAIDQO: striping (no redundancy)

Stripe unit

=1 =1 =1

Striping balances the load
and allows large transfers
to happen in parallel

v RAID1: aka mirroring (full redundancy)

Mirror copies

Mirroring gives 2x the read
bandwidth per disk, but
writes have to go to both

v RAID10: striped mirroring (full redundancy)

Mirror copies

2000-03-StAndrews-arrays, 10
John Wilkes

HEWLETT
[l'/' PACKARD

§1 RAID level 3 - parity-protected striping

v RAID3: byte-interleaved

— all disks read/written in lock step XOR parity is single-bit ECC

— parity on dedicated disk that can correct single-bit
(ok: sees same load as remainder) | erasures

— great for high-bandwidth, large
transfers; otherwise poor If a disk is missing, XORing

the others will give you its

contents

Parity unit (xor of rest of
stripe units in same stripe)

2000-03-StAndrews-arrays, 11 HEWLETT
John Wilkes (D e

¥ RAID level 4 - block-interleaved stripes

v RAID4: block-interleaved
— independent reads/writes possible
— parity on dedicated disk (hot spot!)

v Updating parity is expensive for small writes
— one effect: write-caching becomes especially important

XOR
1. Read old data & parity
1||3 2 1||3 2. Compute new parity
A O C O C 3. Write new data + parity
== = = J—‘ => 4x 1/O operations per small write
SN———— SN———— SN—————

2000-03-StAndrews-arrays, 12 [ﬁ HEWLETT
John Wilkes B PACKARD

} 1 RAID level 5

v RAIDS5 - rotated-parity-protected striping
to balance the load

Parity unit (xor of rest of

stripe units in same stripe)

Rotating the parity balances
the parity load across all the disks;
striping allows fast large transfers

RAIDS5 is the configuration of choice
for all but performance-intensive
loads

2000-03-StAndrews-arrays, 13 [ﬁF HEWLETT
John Wilkes PACKARD

i/ RAID “levels”

Currently accepted RAID levels

— 0: no redundancy
— 1: full copy (mirrors)
— 10: striped mirrors

Note: not really
levels, just a list

— 2: Hamming-code/ECC (not used)
— 3: byte-interleaved parity
— 4: block-interleaved parity (more useful variant of RAID3)

— b5: rotated block-interleaved parity
— 6: double parity (“P+Q parity” -- rare)

2000-03-StAndrews-arrays, 14 [ﬁ HEWLETT
John Wilkes B PACKARD

3¢ RAID: some tricky points

LWLRVEL
4
|
|

v Updates in flight at time of power failure can corrupt the parity
— either: an expensive parity rebuild on power up
— or: keep a non-volatile intentions log

v Reliability calculations based on disks alone are bogus
— power source is single largest problem
— then controller failures, cooling, backplane, connections, ...
— redundancy helps here, too
— nobody likes to talk about software ...

2000-03-StAndrews-arrays, 15 []
John Wilkes

L E—————

Why disk arrays?
— Failures
— Redundancy

RAID

Performance considerations
— normal and degraded modes

Disk array designs and implementations

Case study: HP AutoRAID

he

HEWLETT
PACKARD

v Floating parity [Menon92]
— write parity anywhere -- saves one revolution

A=
\/

A

3

2000-03-StAndrews-arrays, 17
John Wilkes

Improving performance: RAID 4/5

1. Read old data & parity
* claim: old data is already cached
2. Compute new parity
3. Write new data + parity
* parity write is “free”
=> ~2X |/O operations per small write

) caciars

3 ‘Improving performance: RAID 4/5

v Parity logging [Stodolsky94]
— aggregate parity updates into an append-only log

— propagate log in background

'\1

=Y ~— -

| 55 o . Radleu= S

b ® .« v

S. AN :

‘.1""‘ ¢ y XY Loggn

= Mimrenin

K20 Nonrecundant

-—

~

w »

; L 80 »

100+ A
J -
Laiew o 2
- -~
W —T -~
N o XL 2)
-0 10 2D 30 40
Uesr 10 persmond perdiss
2000-03-StAndrews-arrays, 18 [bF] II;IEI\:I:V&.E;;

John Wilkes

' Improving performance: AFRAID

v A Frequently Redundant Array of Independent Disks
[Savage&Wilkes96]

— live (a little) dangerously ...
— update parity opportunistically in the background
— gives smooth tradeoff between availability and performance

1 0)

Helative MTTDL (HAIDS

ooooooooooooooooooo

2000-03-StAndrews-arr: R piimie ' [b:” HEWLETT
John Wilkes PACKARD

1! Improving performance: choice of stripe size

v Optimum size is

dependent on:

v Choices are a daunting
problem for sysadmins

read:write mix

data layout
(RAID1 vs RAID5)

concurrency level

back-end disk o
characteristics snouvency 8
(e.g., track size) aTeney &

4
5
-

[Chen90] for RAID1, [Chen95] for RAID5

2000-03-StAndrews-arrays, 20 [ﬁF HEWLETT

John Wilkes

PACKARD

Degraded-mode performance

v Reading RAID4/5 when a disk is broken is expensive

p—
1. Read all surviving data & parity
4 _ 2. Compute missing data (XOR)
N — N— N
i i — => all surviving disks are involved

(
(

2000-03-StAndrews-arrays, 21 [b HEWLETT
John Wilkes B PACKARD

Improving RAIDS degraded mode performance

v Chained declustering [Hsaio+DeWitt90]
— spread the second copy out over other disks

— when the primary copy breaks, each secondary disk takes
up only a portion of the slack

Primary copy

-

Secondary copy,
spread over other drives

2000-03-StAndrews-arrays, 22
John Wilkes

=)

>

= C

[ﬁF HEWLETT

PACKARD

i1 Improving RAID5 degraded mode performance

v Declustering [Muntz90]
— make stripes narrower than whole array
- only stripes that have the broken disk need pay performance penalty
— each stripe uses a different set of disks
- some complexity in the mappings that do this nicely
« but “close enough” works just fine
— better degraded-mode performance, at the cost of more disks
- stripes are smaller => more parity
— Improvements
- Approximate block designs
- Prime/Relpr [Alvarez98] - better-spread large-transfer load

2000-03-StAndrews-arrays, 23 []
John Wilkes

§ | Recovery/rebuild after a disk failure

v Reduce MTTR: keep an online spare
— e.g., XP256: up to 4 spares per rack of 64 drives

v Distributed sparing [Menon92] makes the spare useful
— spread its “contents” across all the disks
— effectively adds an extra disk’s performance to the array

2000-03-StAndrews-arrays, 24 [bp HEWLETT
John Wilkes PACKARD

Y Recovery/rebuild after a disk failure

v Reconstruction after failure

— sweep across data: read every stripe, rewrite parity/missing data

- poor performance if done too simply: data transfers are too small; too
much blocking

- better: disk-oriented reconstruction [Holland93]
— keep >= one outstanding read for each disk

— can also piggyback updates on foreground activity
- requires keeping a map of reconstructed stripes

— big tradeoff: faster recovery or slower foreground activity?

2000-03-StAndrews-arrays, 25 []
John Wilkes

L E—————

Why disk arrays?
— Failures
— Redundancy

RAID

Performance considerations
— normal and degraded modes

Disk array designs and implementations

Case study: HP AutoRAID

he

HEWLETT
PACKARD

+ Array implementations

v In software
— cheapest, but consumes memory (and cpu) cycles
— usually mirroring, in OS Logical Volume Manager

v In host bus adapter
— common in PC servers
— big win is from the read/write cache
— fault handling is very limited

Host interface (PCI)

Array
controller

Cache

2000-03-StAndrews-arrays, 27 [bp HEWLETT
John Wilkes PACKARD

-t Array implementations

v Mid-range array (e.g., HP FC60)

— sometimes separate controller and disk boxes

— up to 1-2TB disk, 0.5Gb cache RAM

— can saturate a 100MB/s FibreChannel link; O(10,000 10s/s)

Cache
controller

Packaging:
* whole array is in a single box, or
- array controller is in separate box

Host interfaces

controller

o
o
=
)
“'1
®
=
o

219 ‘4amod

2000-03-StAndrews-arrays, 28
John Wilkes

[bp HEWLETT

PACKARD

§.1 Array implementations

v High-end array: integrated box (e.g., HP XP256; EMC Symmetrix)
— up to a few TB of disk
— up to a few GB of cache
— up to a few $million

v What you pay for:
— lots of caching (vital to performance)

— multiple host interface types
- e.g., HP XP256: SCSI, FibreChannel, and ESCON

— quality power distribution, cabling, cooling, vibration isolation
— phone-home, remote management, support infrastructure
— can saturate a few 100MB/s FibreChannel links; O(50,000+ 10s/s)

2000-03-StAndrews-arrays, 29 []
John Wilkes

Disk array architecture - high end

Packaging:

- array controller in a separate box
(disks in rack-mountable trays), to

- array controller is one of several
6’ racks

Host interfaces

Front-end Front-end
controller controller

Parity XOR I

P°""er etc Back-end controllers P°""er etc

Power etc % % % % Power etc

2000-03-StAndrews-arrays, 30 HEWLETT
John Wilkes Y [bF] PACKARD

sk arrays: Logical UNits

v Most arrays provide multiple LUNs (SCSI Logical UNits)

one or more disk drives bound together into a common layout
different LUNs can have different sizes, different layouts

LUN 0 is often special (used for controlling the array as a whole)
at low end: 8-32 LUNs

at high end: thousands of LUNs
« SCSI limit: 4096 LUNs, from a 12 bit LUNid

v A few common variations (there are many more):

parts of disks instead of whole disks
LUNs may be named relative to ports, not uniquely
LUNs can have different caching behavior

2000-03-StAndrews-arrays, 31 []
John Wilkes

¥+ Summary

v Disk arrays use redundancy to protect against disk (and other
storage component) failures
— rest easy: the storage system is no longer the main problem!

v They can also provide performance benefits
— caching can easily provide 10-100x performance boost

v But ... at cost of lots of complexity
— algorithms
— configuration choices
— Implementation options

2000-03-StAndrews-arrays, 32 []
John Wilkes

L E—————

Why disk arrays?
— Failures
— Redundancy

RAID

Performance considerations
— normal and degraded modes

Disk array designs and implementations

Case study: HP AutoRAID

he

HEWLETT
PACKARD

