
Chapter 2

Software Development and

Deployment

John Rooksby, University of St Andrews

Summary

Systems development is more than a technical procedure; it is a form of coop-
erative work. The development of any non-trivial system involves various kinds
of planning and procedures, necessitates forms of distributed coordination work
and requires some subtleties amongst workers in the form of awareness of the
work of others. These practices are intricate and fine-grained and saturate ev-
ery level of software engineering from coding, to testing, to documenting, to
procurement and marketing.

The related chapter on Requirements and Design focuses specifically on
these process activities and how socio-technical analyses can contribute to them.

Background

Software and systems development work has evolved and transformed over the
decades. Many of these changes relate to the need to construct, manage and
assure increasingly large and complex systems. The changes include:

• A shift in focus from programs to systems, and from technical to socio-
technical problems;

11



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 12

• A shift from development to procurement, configuration, and reuse, and
from “greenfield” engineering to “brownfield” engineering where systems
must be integrated and coordinated with other systems;

• A shift from small to large development teams that are spread between
sites and often between different organisations, and an increasing recog-
nition that the communication and cooperation between developers needs
to be intensive and of quality;

• Changing user-provider relations, with iterative development and reduced
time to market meaning issues are often knowingly left until post-deployment,
and usefulness becoming relevant alongside or in place of correctness;

• Development increasingly becoming a professional activity made account-
able to organizations and regulatory bodies;

• Technology transfer from research entailing the reorganisation of current
practices and the acquisition of new skills.

Our work has been driven by two concerns:

1. Research in software and systems engineering has mostly focused on tech-
nology and has paid little regard to the fact that human, social and or-
ganisational issues have a major influence on all aspects of engineering
processes.

2. The focus of the software and systems engineering research community
has mostly been on ‘interesting’ systems such as complex, safety-critical
systems with requirements for advanced methods of development and val-
idations. However, most systems are more mundane (although they may
be complex in different ways) and methods of developing such systems
(e.g. the extensive use of ERP systems) have changed radically over the
past 20 years. These changes have not been widely acknowledged by the
research community.

Our concern has been that while the work of systems development has changed,
the academic discipline of software engineering has remained static and can
often miss real world problems. There is a gulf between academia and practice,
caused not just by the failure of organisations to heed the lessons and insights
from software engineering research, but also problems with the relevance of this
research to real-world practice.



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 13

Organisational Issues

Many of the problems of software development are organisational; they are
the problems of coordination, scheduling, decision-making, awareness, and so
on. A key difference between systems engineering and socio-technical systems
engineering is that the latter takes these into account.

Systems development is normally managed on a project basis. Projects are
formatted organisational arrangements within which people and resources can
be allocated, coordination tools and procedures deployed, and they provide the
context for the organisational accountability of system development, particularly
the measurement of progress. Contrivances associated with projects can include
phases, specifications and plans. Other contrivances can include allocating roles
and organising people into teams, specifying means of cooperation such as
regular meetings, sign-off and so on.

Contriving the orderliness of work does not in itself ensure this orderliness or
provide remedies for all contingencies. For example, plans are followed dynami-
cally and remade as development progresses. Questions repeatedly arise during
the development and testing of systems as to what exactly can be done to sat-
isfy the plan, what parts of the plan are achievable given the time available, and
what is missing from the plan.

Cooperative work in systems development and testing is often kept orderly
through the use of “ordering devices”. These ordering devices may be informa-
tion technologies such as versioning systems, wikis, and workflow management
systems. They may be paper-based technologies, such as task-cards or sign-off
sheets; or, they may be more procedural such as verbalising particular actions
or events, working in rotating pairs, holding meetings, or the adoption of a
particular coding style.

Managing the ordering devices in software engineering is often perceived as
bureaucratic work that does not contribute directly to the system itself. How-
ever, this work is always crucial to the successful development of any non-trivial
system. It is therefore important to notice and analyse the repertoire of ordering
devices used in any particular systems engineering project, the interdependencies
between these, and their strengths and fallibilities.

There is also a relationship between organizational structure, organisational
priorities and the ways in which systems projects are carried out. This stretches
well beyond what kind of method an organisation selects (agile, plan-based,
etc.) and into how any particular method is practiced. The ways in which
an organisation is structured can significantly impact on the way a project is
practiced and, indeed, the architecture of the system itself. This can be in terms
of hierarchy and decision-making. It can be in the ways in which collaboration



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 14

and teamwork are structured. And, it can be around the availability of people
and resources.

The priorities of an organisation also significantly affect the ways in which
systems engineering is practiced. These often become apparent as deadlines
approach, with the need to make a profit, or make software available for pre-
scheduled activities overtaking the concerns for producing reliable or fully func-
tional software.

Specifications

Systems specifications take different forms depending on the design method
used and whether the project is being done in-house or by an external supplier.
In whatever form they take however, specifications provide a framework within
which, and in reference to which, design and testing, and user-designer relations,
get worked out in practice.

• Contracts: At one extreme, specifications can take the form of a bulky
contract between a supplier and customer stipulating the work that will
be done over a period of years. Formal contracts between a supplier and
an organisation, the formal, legal stipulation of work and responsibilities,
are more than simply statements of fact but get dragged into everyday
work, invoked, pointed to, metaphorically waved about, and used in a
number of ways. The contract is a living document, a constant source of
reference and discussion around which work and activities get organised,
changed, modified and abandoned.

• Cards: At the other extreme, agile methods produce short-term require-
ments written on small cards throughout a project. The cards used in
agile programming may be less formal than a contract, but these too are
more than statements of fact; they are a source of reference and discus-
sion serving both to structure and coordinate a project team. These cards
are not only used within a process, but embody that process, supplying
physical devices that can be repeatedly arranged around in the ongoing
coordination of work activities.

As with any kind of plan, the development work and the system actually pro-
duced differ from what is stipulated in the specification. The actual project work
and the finished system are instead a product of putting the specification into
practice. This involves working out how the specification translates into, and
relates to, the multifarious activities of development work, and the specifics of



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 15

the emerging system. These activities, decisions and appraisals are often fash-
ioned through intense negotiation between the different parties, in contingent
and rapidly changing circumstances, in which the specification is a key feature
and resource.

The area of specification is one where socio-technical factors are, perhaps,
most evident and so it has been a focus for research in using socio-technical
analyses. The chapter on Requirements and Design covers some of this research
and its applications.

User-centred design

Systems development should orient to how the system will be used, what func-
tionality is needed, what infrastructure and resources for running the system
will be available, and what the usability issues are. Requirements engineering,
particularly in user-centred design methods, often seeks to improve the quality
of user-relevant information available during the design process.

This is important, but our experience is that user-centred design methods
are too idealised. The realities are:

• User participation: The reality tends to be that where users are involved,
these are often the ‘expendable’ people within an organisation (i.e. the
ones with enough time to participate) and they find it very difficult to
articulate what it is they want from a system. Participatory design is
often also abandoned as deadlines start to bite. Users are often also
involved in testing systems, but this seems to get conflated with training,
which can mean neither is done properly.

• Customer participation: The user and the customer are rarely the same.
While the rhetoric is systems engineering is often about user centeredness,
the reality is that systems engineers must prioritise satisfying the customer.
The customer’s priorities can often be more associated with cost and
deadlines than with usability.

• User and customer proxies: In many cases, the user or customer is
not actually available and so will be simulated. This may be through the
creation of user models, but is more commonly done through someone
acting as a proxy. In particular, product companies do not always have
a pre-existing customer base (and even if they do, need to focus on the
expanding the market to other customers) and so some member of the
development or marketing team will usually stand in for the customer.



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 16

• Typification: Whether users participate or not, a substantive part of
a systems project involves speculating and reasoning about what users
might do with the system. Where no genuine user is available, this will
involve talking about what users may do. Where users are available, that
user still needs to reason about what they might do with the system and
how representative they are of other users.

Pervading the user-designer relation in systems development are issues of gener-
alisation. How does one person’s needs and opinions generalise to others? How
do the issues in one organisation generalise to the issues in others (as potential
customers)? How can a product developed for one niche be generalised for a
wider market? Systems engineers, even if they have “users” to hand, will in-
evitably have to engage in some practical social reasoning about how to satisfice
the needs of users.

Software testing

Testing, as with every other aspect of systems development, is saturated with
social and organisational issues. We have found that while developers seem
comfortable acknowledging the social and organisational issues in, say, require-
ments engineering, they are still extremely reluctant to acknowledge that similar
factors pervade testing.

We have undertaken studies to characterise testing as it is done ‘in the wild’.
We have not focused on newsworthy achievements or experiences in testing and
have purposefully not discussed safety critical testing. We are certainly making
no claims that the examples represent best practice. What we have achieved is
a characterisation of run-of-the-mill testing, one that can supply insights into
the kind of work that is currently done in many organisations on a mundane
basis. This kind of testing is not usually safety critical but is often project or
business critical.

We have identified a number of themes:

• Plans are followed dynamically and remade as testing progresses. This is
because testers work with limited resources, but also because problems
are routinely discovered during testing that can demand reformulation of
the plans.

• Testing involves work to stay organised, with coordination of effort be-
tween testers and between testers and the broader development team
being a demanding concern.



CHAPTER 2. SOFTWARE DEVELOPMENT AND DEPLOYMENT 17

• Time is of constant relevance and a significant factor in the way testing
is organised. Decisions on whether the time and effort are justified are
essentially and contingently organisational.

• There is congruence between organisational structure, organisational pri-
orities and the way tests are performed. For example the people and
locations available for testing, and the priorities given to release dates,
particular customers and so on heavily shape testing.

• Tests are attributed significances. Not all possible tests are undertaken,
we have seen testers choose which are the most significant to do given
the time available.

• Testing involves reasoning and speculation about practices and situations
of use. A substantive part of a systems project involves reasoning about
what users might do with the system. Therefore the practical sociological
reasoning of testers is not limited to how to coordinate during the course
of testing, but is central to deciding what it is a reasonable test to set.

In the face of real world complexity, testing is a satisficing activity. Systems
validation and verification can never ensure the correctness of a real world sys-
tem. Systems engineers have to find and accept ‘good enough’ solutions, not
because less is preferred to more but because there is no choice.

Retrospective

In our studies, we have tried to achieve a characterisation of run-of-the-mill
development, one that can supply insights into the kind of work that is currently
done in many organisations on a mundane basis. We believe that a better
understanding of the everyday work of systems development helps us understand
why technologies are and are not used and can inform the design of more usable
methods and technologies.

We have deliberately steered away from safety critical systems, focusing on
ones that are transformative, ones that are often project or business critical.
These are the kinds of systems that are overwhelmingly common, and for which
best practices can be distorted by the preoccupation in software engineering
with the safety critical. It is common in the literature to use stories of good
and bad practice, stories of the kind of work systems engineers should aspire to
or avoid at all costs. We have trodden a different path, using examples of the
kinds of work that we believe will be recognisable to anyone with experience in
real world systems development.


