
Users as Contextual Features of Software Product
Development and Testing

David Martin
Xerox Research Centre Europe

Grenoble, France

david.martin@xrce.xerox.com

John Rooksby
Computing Department

Lancaster University, UK

rooksby@comp.lancs.ac.uk

Mark Rouncefield
Computing Department

Lancaster University, UK

m.rouncefield@lancaster.ac.uk

ABSTRACT
This paper examines how software developers discuss users and
how such discussions are intrinsic to the negotiation and settling
of technical decisions in the development and testing of a
software product. Using ethnographic data, we show how the
user features in conversations, not as a ‘topic’ but as ‘context’ to
technical work. By understanding the user as a contextual feature
in developers’ group work we are able to draw attention to issues
in the use of Extreme Programming for software product
development. Extreme Programming is a participatory design
method, but software product development involves envisioning
and designing for future customers.

Categories and Subject Descriptors
D.2.1 [SOFTWARE ENGINEERING]: Requirements/
Specification – elicitation methods, methodologies.

General Terms
Management, Documentation, Design, Human Factors,
Languages.

Keywords
Extreme Programming, Software Product, Ethnography.

1. INTRODUCTION
This paper discusses the role of users and customers in the
implementation and testing of a software product. This is not a
paper about participatory design; users and customers hardly
participated in the work we observed and when they did they
were kept at a certain distance. However, who the customers and
users were or might be, and what they might want were prevalent
concerns. Accordingly, in addressing the longstanding interest in
user involvement and representation in the design process, we are
interested in how the cooperative, group work between software
product developers involves calling for, structuring and applying
expertise and knowledge about users and customers. We find that
users are a contextual concern insomuch as, in accordance with

Garfinkel & Sacks’ [12][26] re-specification of context, users are
continually relevant to technical work but are spoken of as and
where it becomes necessary to do so.

We focus on the use of the method XP (Extreme Programming)
for the development of a software product. We do not criticize
XP, but address: how XP for software product development, as a
form of cooperative work with and for current and future
customers and users is handled; how customers and users feature
in on-going design and development decisions; and how risks are
encountered and minimized in this form of development. We
begin this paper with a background discussion of two significant
studies of the representation of users during product development.
We then describe our fieldwork at a software product company,
and present and analyse three examples.

2. BACKGROUND
Woolgar [33][34][13] studied the development of a desktop
computer, taking particular interest in the testing phase. He
noticed that discussions of users were common amongst
developers and that these users were not actual ‘people’ as such
but categories for and stories about people that came to make
sense through an organizational frame. This came about partly
through difficulties of getting to know actual users from within
the company, but also through conflicting demands in providing
for various users and ‘users in general’. Furthermore there were
issues of competing understandings and of knowledge and
expertise being distributed within the company, and of there being
a need for the company to ‘create the future’. Woolgar claims
“The whole history of a system project can be construed as a
struggle to configure (that is define, enable and constrain) the
user” (Woolgar [34], p207). Woolgar’s line of argument rests on
the idea of the computer as an artefact that crosses an
organizational boundary. This artefact is produced in an
organizational setting which fixes certain normative modes and
methods for its use, that if adhered to will facilitate and sustain its
‘working’. In other words, developers try to ‘figure out’ what
their users require, and then design their system to fit that.
However, ‘figuring out’ is necessarily shaped by the way the
organization works, technological and development constraints
and opportunities, and partial and differential access to a
heterogeneous user group. Whilst Woolgar discusses developers’
talk about users, he does so in order to move onto ideas about the
social relations between users and designers that sustain a
technology. It is upon this point that the many subsequent takes
on ‘configuring the user’ depart. Lindsay [19] notes “Woolgar’s
configured user is inextricably intertwined with the development,
especially the testing phase of the technology” (p31) and expands

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Group ‘07, November 4–7, 2007, Sanibel Island, FL, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

on ways in which users of desktop computers are otherwise
configured, for example in advertising or how user groups sustain
older technologies. Bowers reapplies the concept in looking at
the ways bank staff get customers to follow preferable courses of
action (Bowers & Martin [4]), and at how users talk back to
designers (Bowers & Pycock [5]). Mackay et al [23] look at the
rapid prototyping of bespoke software. Both Bowers and Mackay
appropriate the concept ‘configuring the user’ to discuss
‘something done to someone’.

Sharrock & Anderson’s [29] work on users as a ‘scenic feature of
design space’ is reasonably contemporary to Woolgar’s but less
well known. It follows a similar interest in the ways designers
discuss users during technology development, in this case the
development of a photocopier. They point out that “users were
not participants in the design activities which we observed [but]
what users would want, what they might do, what they would be
willing to accept were treated as significant and sometimes even
decisive” (p11). Significantly, they also point out “the issue of
what users would or would not do arose in the context of some
other topic” (p13). There is some parallel here with
ethnomethodological studies of law, as Lynch [21] discusses of
the preparation of a court case:

“projections of courtroom procedure … are tied to the judge’s,
or a judge’s, possible reciprocal actions. In different
instances, the judge’s preferences and tendencies are assigned
to a particular individual, treated as a local preference for
specific protocols, or ascribed to a disposition to act in a
particular way in “cases like this”. The attorneys invoke the
judge as an organizational principle that locally governs the
presentation of the case at hand. Whether or not the
attributions about the judge made by the attorneys are
accurate, they incorporate the judge into the practical
organization of the projected cases, and by so doing they
realize the judge in their procedures for presenting cases at
hand.” (Lynch [21], p103)

As Lynch observes, although a judge is not physically present, he
or she is still invoked and oriented-to in differing degrees of
generality by participants. The design of a software product is
oriented towards potential users in a similar way. In discussing
product development Sharrock & Anderson notice how
knowledge and expertise about users appears as ‘typifications’.
These typifications appear for practical purposes in getting
technical work done and accordingly user typifications are
defined not for what users are, but for how they are significant to
the work at hand.

Woolgar and Sharrock & Anderson are looking at similar aspects
of similar situations and devise similar accounts of how
developers realize the user. This paper builds upon their work not
only by applying a similar ethnographic approach to a different
software engineering method, but also by using more detailed
ethnographic data enabling us to stress the user as a ‘general’
typification, and to highlight the role of argumentation. Also, by
examining a small software company rather than a global
corporation, and in particular by examining a complaint, we are
able to address occasions where users are seen to have definite
histories and abilities.

3. ETHNOGRAPHY OF AN EXTREME
PROGRAMMING TEAM
Complementing previous ethnographies of XP in Practice (eg.
Mackenzie & Monk [22], Sharp et al [30], Hunt et al [16], Chong
& Hurlbutt [8]) this paper presents an ethnography of software
developers in a small software company developing a software
product for business customers. The study employed
observational methods and in-situ interviews to view, capture and
understand work as it happened via note taking, video,
photographic and audio recordings. A total of 30 days fieldwork
was undertaken in a period between July 2005 and April 2006.
Over the same period we have also been involved with an agile
methods interest group, convened for discussion and peer learning
amongst developers, and one of the authors has prior experience
of using XP in development.

The company ‘IDEco’ (a pseudonym) produces an IDE
(integrated development environment) for end-users to develop
applications, using an XML based language and a graphical
screen designer. The applications are to run on various mobile
phones and other mobile devices. During the study, the company
had seven full-time employees, four of whom were programmers
(Paul, Tom, Dale and Mick – all names have been changed).
There was also a technical director and trainer (Shaun), a
customer relationship manager - CRM (Gordon), and a financial
administrator (Brian). The programmers at the study site use
practices from XP including an on-site customer (although this
role is filled by Gordon the CRM), frequent releases, and what is
known as ‘the planning game’. They do not do test driven
development or practice pair programming, preferring (as seems
very common for small programming teams) to work sitting
around a large shared table.

4. THE CUSTOMER IN EXTREME
PROGRAMMING
Extreme Programming, or XP, cannot be outlined in entirety in
this paper, but it is necessary to give some flavour before
discussing the role of the customer. XP is arguably not ‘just’ a
method but also a set of skills. For example, along with the “core
practices” of XP are four “core values”: communication,
simplicity, feedback and courage. These values are intrinsic to
both justifications for the practices and advice for their effective
use; therefore XP has recognizably human centric concerns.
Jeffries [17] presently lists the core practices of XP as Whole
Team, Planning Game, Small Releases, Customer Tests, Simple
Design, Pair Programming, Test Driven Development, Design
Improvement, Continuous Integration, Collective Code
Ownership, Coding Standard, Metaphor and Sustainable Pace.
The customer has a role in many of these practices, for example
the ‘whole team’ includes an onsite customer, and this customer is
to take a decisive role in the development and prioritization of
requirements and the specification and running of acceptance tests
(see Beck [1], Jefferies [17]).

Lippert et al [20] highlight that XP was originally developed with
relevance to bespoke, in-house software development in large,
North American organizations. As the method has been
popularized it has been somewhat modified by its founders, and
extensively appropriated by its users. Lippert et al call attention
to the following appropriations: the development of application
frameworks, the development of eBusiness applications, software

product development, and outsourcing. With each of these,
Lippert et al associate a number of problems and common to each
are problems to do with the customer relationship, particularly
that:

“In essence, XP combines the sponsor and user into the role of
the customer. This can lead to problems if the user interests
and the business interests of the customers are not reconciled”
(Lippert et al [20], p21)

Concerning the development of software products, Lippert et al’s
main point is:

 “Sometimes the developers do not have access to users due to
the project type, for example a standard product is being
developed. In this case, we would have to think how the user
can be substituted, perhaps by assigning the role of the
customer to someone from the development organization.”
(Lippert et al [20], p20)

Lippert et al’s recommendation is to use a product manager as the
customer. In many software product companies a product
manager or (as with the case study in this paper) a CRM
(customer relationship manager) acts as such. This creates a
situation in which the ‘XP-customer’ is producing requirements
for something they are able to sell. This situation might lead to
some ambiguities in what is required, but more-so creates the
situation where much feedback and acceptance cannot take place
immediately. It is not until the software has been bought and put
to use that problems or new requirements related to a feature can
emerge. As the product gains a user base, the XP-customer also
begins to find herself as a mediator for requirements or issues that
arise from customers. The person in this position clearly has an
important role to play as the connection between the development
team, current customers and future markets. Their work involves
sorting through requests, opinions and so forth from all sides, as
well as judgments over future market directions to come to
decisions about how best to proceed with the design.

In product development then, it is necessary to handle multiple
customers and ‘ideas of and for customers’ in a variety of ways.
Software products must be sold, and thus the sale-ability is clearly
an important development concern. However, the software is also
a product to be used. These twin and sometimes conflicting
concerns feature prominently in our material. To question what
the relationship is between the programmers and the XP-customer
would be accepting that in this model the CRM is ultimately
responsible for decisions. However we have noticed that there
are multiple and dynamic ways in which user and customer talk
occurs amongst the ‘whole team’ in work. Our experience has
been that the developers are far from shielded from figuring out
customer requirements and tests but take central stage.

5. TALK IN DEVELOPMENT WORK
“’Technical work’ viewed from the point of getting it done
involves the determination of such matters as how much work
there is to be done, how long it will take, how many must be
involved, how much time is available, how those involved are
to combine their activities to carry the work through, and how
they are to ensure that their activities will remain coordinated
and synchronised over its course, what is to be done in various
eventualities, who will make the judgement as to whether the

work has been done satisfactorily and what it will take to
satisfy them.” (Sharrock & Anderson [28], p161)

XP, as much as any other development work (or ‘technical’ work,
or the work of survey researchers as discussed by Garfinkel [11]
and eluded to in the quote above), involves socially organized
activity. That said, the XP literature places a much greater
emphasis on interpersonal skills than do most other methods.
Face-to-face interaction in particular is encouraged in place of and
in spite of documentation. At the heart of the XP ethos is a notion
that programming works best as an intensely cooperative
enterprise, and that this cooperation results in better design and
better code. On-going talk should enable code that is more of a
group production and therefore better written, better tested, better
integrated, and less likely to contain errors.

“All members of the project team should communicate
intensively. Special importance is given to personal
conversation, since information is exchanged more effectively
this way. In particular, misunderstandings and ambiguities
can be ironed out immediately. If intensive communication
between members of the project is guaranteed, a good part of
the otherwise normal documentation can be done away with.”
(Lippert et al [20] p3).

The developers’ office at the fieldsite has been purposefully
chosen and set up to allow face-to-face talk and interaction. This
is true of most ‘agile’ office spaces but by no means all (e.g. see
Hunt et al [16]). Whereas the XP literature promotes office space
with quiet zones where programming pairs cannot be interrupted
(e.g. see Sharp et al [30]), the programmers at the fieldsite, as
seems very common, share an open office space and sit around a
single, large table. Their talk will generally be of differing levels
of intensity during different stages of the development iteration,
for example planning is predominantly talk based whereas writing
the user manual is regularly done in silence. During development
and testing there will sometimes be much talking, and sometimes
hours of near silence. That the talk we report on, and the work it
achieves, is routine and mundane is attested to by the fact that in
our later interviews with staff it was often difficult to get them to
recall the specific events of what were apparently slightly heated
discussions. Ambiguities about how to proceed, conflicting ideas,
different evidence for different solutions and disagreements are a
routine part and parcel of the work. While we focus on the
everyday, here, we do not discount the special and atypical
circumstances that may also arise and be informative (cf. Nardi
[24]), it is just that during our fieldwork we never encountered
situations that stood out in this way. Problems, and indeed certain
‘nasty surprises’ (cf. Garfinkel [11]), were encountered, but not as
remarkable events. That problems will arise routinely and that
programming and development throws up nasty surprises is very
much oriented to as the ‘nature of the business’. Of course not all
customer talk is in the thick of work around the table; customers
might potentially be discussed at lunch, or over the phone.

Development work is an intensively cooperative endeavour
(DeSouza et al [10]). The developers’ awareness of each other’s
work is embedded and embodied within the particular
configurations (Heath et al [15]) of the office space, the artefacts
and the thoroughly normalised occasions to talk, things to talk
about, methods to get someone’s attention, and means of
argumentation. Amongst developers at the fieldsite, premising a
discussion is often a case of just saying something. We often saw

developers just say something out loud, for example exclamations
such as “Build failed!” or “I can’t, I just can’t!” Such
exclamations can be responded to by a question or simply
ignored. Sometimes more direct statements are made or questions
are asked, for example “Tom’s not worked on the manual for
ages!” or “You got the VM?” There are also more coordinative
remarks, for example “Flag’s up”. Body language also seems
important in initiating or 'premising' discussions. One developer
often appears to invite a conversation by sitting back in his chair
(often accompanied by a large huff). The same developer will
regularly sit back in his chair when holding discussions. Another
developer often seems to move his head to the right hand side of
the monitor when he wishes to initiate or engage in discussions.
Such issues are not limited to initiating a conversation but also to
enter a conversation that is ongoing between other developers.
Despite such intricacies in appropriate behaviour, it does seem
that the developers expect a right to talk and a right to question.
This is in line with what Jeffries [17] promotes as ‘collective code
ownership’.

We will discuss three example conversations about customers and
users. Firstly talk about the usability of a downloadable demo
version of the product for people who might be thinking of
purchasing it. Secondly of resolving whether a problem in using
the product within a ‘virtual machine’ matters. And thirdly an
example of the developers discussing complaints and requests
emailed to the Customer Relationship Manager by existing
customers.

5.1 Example One: Usability and Sale-ability
In this first example we discuss the design of a menu for the
selection of mobile-device emulators. It is quicker to test code
using an emulator than to use one of the actual devices, and hence
most users first run code on an emulator and on the actual device
only when the code is complete (there are many exceptions to this
rule, particularly amongst experienced developers and testers
aware of the bugs in emulators). There are a finite number of
emulators relevant to the software product and these are listed in a
menu. The problem is that no emulator is installed automatically
with the product but each must be installed separately by the user.
Selecting menu items pointing to emulators that are not installed
gives an error message informing the user of this. The developers
discuss this:

S “Users don’t bother reading the error message … they
will see it as an error with the IDE itself.”

Shaun suggests that emulators not installed should be “greyed
out” in the menu. Tom disagrees and suggests writing a better
error message, which at the moment is fairly cryptic. Dale
seems annoyed and agrees with Tom.

S “look, I know its stupid but there you go … the most
important thing is that it runs out the box … it is a
business decision … I would want it working for the
initial play. The first 10 minutes, it should work out the
box.”

G “Is it hard to make it work out the box?”

S “No it’s trivial. We want it to work out the box.”

D “All you’re doing is postponing the issues.”

S “Good. Until after they’ve bought it.”

The conversation goes on about how the users will know how to
install additional emulators if the menu item is greyed out. The
conversation includes the sequence:

P “If you’re going to install an emulator, you have to read
the instructions.”

D “Well people don’t read the manual.”

S “Well people don’t read error messages either.”

Other possibilities are now explored, including having a tick or a
cross by each emulator or having hover help. Dale is adamant
these are bad ideas and will make the IDE harder to use. The
conversation is soon brought to a close:

S Refers to an email from someone who couldn’t get the
demo to work “He wasn’t happy about the trouble to just
get ‘hello world’ running … It’s a matter of impression.
…”

D “You just make it easier for people to evaluate but harder
to use.”

P “I thought we decided on the tick and cross. Because with
a cross it’s not greyed out, you can still click on it.”

D Continues to defend use of an error message.

G “Do a tick and a cross and move on.”

M “I’ll do it.” said humorously, implying they must not let D
be responsible for this task

Resistance from two of the developers (Tom, but particularly
Dale) leads to Gordon the CRM making an order about what to do
and for the conversation to move on. Up until this point a number
of options have been explored, as seems typical with many
decisions about the software. Things are often talked through,
and different possibilities are raised. Therefore it is significant
that Gordon not only tells them how the menu will be designed
but also that the conversation will move on: it is ordinarily
acceptable for any decision to be questioned. Mick, with humour,
takes on the responsibility for this task, acknowledging that they
must do what Gordon says, and that Dale is not going to agree.
We see many interesting aspects to this example, not least the
seemingly different orientations to the software as either an easy
to use or an easy to sell system, and the accounts of what it is for
the software to be working. We will introduce two more
examples before a discussion of such issues.

5.2 Example Two: Causes and Solutions to
Technical Problems
In this example we describe the discovery of a problem with the
software. This problem is eventually categorized as a ‘known
problem’ rather than solved.

P Working with D at D’s machine “Your machine’s just
died.”

M Entering conversation from across the table “What you
done?”

D “I’ve dragged a control …” …

P “You know what it is, you got a massive drag threshold.”

D “No, I got it set to one.”

M Goes round the table to stand beside D. “It’s like the
delay that’s set in the threshold” There is a short
period of silence. “I mean its slow all round and I don’t
get that. It’s on a machine that’s faster than mine. The
only time, is when you’ve got many selections and you do
a validate on drag.

Paul and Mick go on to compare the software running on Paul’s
and Dale’s machines. Dale is running the software using a
virtual machine (VM) and they find that it is much slower in
this virtual machine. They all agree that “it’s weird”, three of
them repeating this same phrase (but not in any ‘dramatic’
sense). After some further discussion they query whether the
problem is in running a JVM (Java Virtual Machine) in the VM:

M “It might not necessarily be Java though.”

D “Yeah I think its Java.”

M “The JVMs running inside the VM?”

D “Yeah”

M “I suppose its something we can document as a known
problem.”

P “Yeah”

M “If you’re running your JVM on a VM, or we could
say…”

There is a period of silence

M “It could be where [unnecessary events keep firing] but
normally in Windows it would lose them so it doesn’t do
anything. But in the VM its firing all the time. We could
change that code. But I don’t know how. Its not like we
can intercept the events in Java. It won’t let you.”

D “I’ll Google it, see if anyone else has noticed.”

A short while later Paul finishes installing a VM on his
machine. He confirms that the same problem occurs. Mick
speculates that it is an issue with Swing (the Java graphical user
interface utilities package). This would probably imply that the
issue is out of their hands. Later they further evaluate the issue.
They talk about “Joes off the street” and whether such people
would use VMs. The consensus is that ordinary people
wouldn’t have a VM. They then talk about what they
themselves do with a VM:

P “But you would never develop in a VM. Our stuff doesn’t
work well in a VM, but you wouldn’t develop in a VM.
And our guys are developers.”

D “Well supposedly.”

P (laughing) “Not really from what we’ve seen…”

D “Too harsh!” …

M “Its good that you’re using that and that we’ve found it. If
we got a call coming in we could say “Are you using it on
a VM?” and they would say “oh yeah!”. It would be
interesting to see how many we got of that nature.”

They decide to categorise this as a ‘known problem’, and it will
be listed in the user manual as such.

In this example we see how errors arise and the strategies the
developers have in dealing with them. A problem is ‘discovered’
and, when attempts to solve it get complex the relevancy of
solving it gets discussed. In this instance the initial ‘incorrect’
proffered diagnoses and investigations are not simply a product of
impatience and inexperience. These ‘recipes’ (Schutz [27]) are
functional and often lead to quick results. They begin with
appeals to organisational knowledge (“has this happened before?”
“What does this remind you of?”) and on this failing they switch
to first principles, particularly a comparison of two machines
running side by side. They never identify the cause of problem
but are satisfied it is out of their hands and go on to consider
whether this problem is a problem for them to worry about. By
categorizing it as a ‘known problem’, the problem fits into the
bureaucratic system and can be put off or dealt with within
orderly and normal work (i.e. it could become a requirement for
solution in a later iteration).

5.3 Example Three: Customer Requests and
Complaints
Our final example is of the developers figuring out the meaning of
a customer’s complaints and requests. These were sent by email
to the customer relationship manager, who in turn has forwarded
them to Paul. The email is difficult to read and parts of it seem
strange:

P “Do you want to hear the second of [this customer’s]
issues? This one’s a bit more normal. Toolbar command
not in the GUI demo and he’s wishing it to appear.”

M “Which toolbar? We don’t have a toolbar!”

D “I think it’s the buttons.”

A discussion ensues about just what the customer is talking
about. ‘The buttons’ is one idea of several that come up and
they eventually decide that the topic is probably “the button
bar”. However the developers do not think there is any problem
with the button bar. Mick requests a copy of the email.

M “I’ll see if I can decipher [the email] because [the button
bar] still works … he might be trying to do something
entirely different.”

P “It could be anything. Through what I’ve seen it could be
anything.”

D “Its not that it doesn’t work, its what he’s trying to do.” …

M “If you don’t put an image in, it just puts in a coloured
button, and it just cycles round.”

So it seems to be working. They discuss candidate ‘mistaken
use’ or alternative senses to what the customer might be saying.

M “Unless he’s using a stupid GIF like, that it can’t load. A
huge GIF or something. I mean I can’t see [name of
customer] making that mistake, I mean he’s not daft. …In
all fairness he’s saying… you can’t put a button on a
toolbar. The only place you can put an image is on the
system toolbar. I think that’s what he’s trying, or he’s got
a huge GIF file that he can’t load.”

This marks the end of the discussion of the toolbar. This issue
will be noted down on a card and discussed later. However
there are more suggestions in the email from this customer.

M (laughs) “I’m just reading in his email about the keypad.
The email says that you guys should come out and see
why these ‘picky things’ are in fact what will make this
the finest application.”

They then talk about another customer who got excited about
the system and was making a lot of suggestions.

M “He just couldn’t understand that a mobile device just
didn’t have the processing power of a laptop.”

All three examples show the developers to have near-contact with
customers, often but not exclusively mediated by the CRM
(example one mentioned a customer email and example two
mentioned support calls). Clearly, customer contact is a very
important feature of development and while the developers may
casually state a desire to be somewhat protected from too much
direct contact they do regularly speak of and sometimes to users.
The customer being discussed in this example is particularly vocal
and despite not being someone paying a great deal of money, was
valued for his enthusiasm for giving feedback. This example
demonstrates that the developers take requests from customers
seriously and that there is potential for customers to inspire
requirements, but it seems the developers are under no illusion
that “what this customer wants” is necessarily what he or she
should be given. The developers sometimes laugh about their
customers, especially their ability to make sensible well written
suggestions, but the time spent in translating and working out the
issues does seem valuable. We can see the developers
deciphering a poorly written email, but assuming there is not just
a presentation but also a translation issue here. They come up
with likely translations, but these do not fit with the developers’
knowledge of what is and is not working in the system. It is
suggested that it is an error of use rather than an error with the
system, but this conclusion is also stalled as “the user isn’t that
stupid”. Here we see combinations of knowledge about who
specific users are, what they do, and how they might term things
differently. In effect we see that if users are 'scenic features' of
the development process, then they are scenic features that can
move from the background to the foreground, from backstage to
front-stage, from just 'users' (who don’t read manuals) to users
with specific skills, experiences and known aptitudes ("he's not
daft"). However, the topicality of a specific user, the problems
they have and the kinds of things they worry about are fleeting
and feed into developer’s discussions of what is and is not
working in the software rather than what this user does or does
not require.

6. USERS IN CONTEXT
“Through the timing, placing, pacing, and patterning of verbal
interaction, organisational members actually constitute the
organisation as a real and practical place. Furthermore,
through a turn-by-turn analysis of organisational talk, it is
possible to gain insight not only into how everyday business
gets done at the level of talk, but also the interactional and
organisational business that is accomplished through that
talk.” (Boden [2], p15)

Our examples demonstrate some of the ways in which concerns
can be raised or settled through various realisations of ‘the user’.
As Boden would recognise, not only is the user spoken of in
everyday business but is spoken of in talk that accomplishes that
business. Advocates of the method XP clearly state the
importance of talk, and therefore analyses which Boden suggest
are important here. The examples show how, as Boden argues,
problem solving is located in fine-grained, sequential
organisational activities. Of particular relevance is the notion of
'local logics':

"As they sift through locally relevant possibilities ... social
actors use their own agendas and understandings to produce
‘answers’ that are then fitted to ‘questions’." (Boden [2])

In the examples we document the contingencies of product
development, the 'normal, natural' troubles whose 'usual' solution
is, of a sort, ‘readily available’. Particularly visible in example
two, usual solutions invoke horizons of tractability, containing
candidate answers (seen before) and solutions (used-before-and-
seen-to-work). Problems demand quick solutions, taking into
consideration the present situation, the resources available, as
well as any consequences:

"Caught in the pressing necessity of choice, organisational
actors move through a fluid mix of problem identification,
goal negotiation, solution seeking and decision-making."
(Boden [2])

Such situated problem-solving results in fixes that may eventually
become part of the repertoire of candidate solutions. And, as the
extracts suggest, the boundaries between the types of problem are
permeable and resolvable - for example through 'Google-ing'.
Similarly, and unsurprisingly, different members view problems
differently and this may lead to the resolution of the problem in,
and through, the ability to improvise or recognise similarities with
previous problems. The focus of this paper is on how the ‘user’
appears for and within such work.

6.1 Users as Typifications
In the examples, we have seen that the user can on occasion be
such-and-such a person (eg. “[so-and-so] said in an email”),
sometimes a more-or-less specific group of people (e.g. “our
guys”), sometimes a more general category (e.g. “developer”), or
sometimes a course-of-action category (“evaluator”) - i.e. their
role as 'scenic features' can change. However, more often than
not the user is ‘typified’ in the abstract (e.g. “they” or “people”).
Whereas the developers studied by Sharrock & Anderson [29] had
their contact with users mediated through report forms, the
developers at our fieldsite have more direct links with (and no
doubt far fewer and more readily available) users. While users
may not be physically present or called upon in decision making
at our study site, they do make themselves known and feature in
discussions, even as ‘real’ people. However, different customers
(and by extension users) are more valuable than others, likewise
the future market is very valuable, and so certain users and their
opinions and ideas are given more credence. Sharrock &
Anderson cite economic and other practical factors as reasons for
the diminished user role (diminished to ‘typifications’). We see it
to be more inevitably so for product development; even when
developers take greater interest in their customers and in figuring
out and addressing their needs, those needs are inevitably cast
against a general backdrop of other more or less important users.

Sharrock & Anderson [29] contrast the ‘user as a scenic feature’
with notions of user needs, requirements and evaluations being
empirically assessed. At our fieldsite where users are more readily
available, there is still no sure fire way of deciding that certain
user feedback or that certain user requests are the ones that should
be taken into account.

As stated, the vast majority of references to use of the system are
made using abstract or bland (as opposed to colourful, or
specifically drawn) types such as ‘I’ or ‘people’, and particularly
‘you’. The generic ‘you’ is overridingly common in talk about
functionality (for example “you can still click on it” or “you’d
rather expect it”). This makes much of the functionality appear as
common-sense for users and developers alike. In the final
sequence of example one, we firstly see ‘you’ as referring to those
developers present in the room, and then in the following line as a
generic for users of the software. The second usage is the kind
we are interested in and reflects, as Sacks describes, that ‘you’ is
rarely said to refer to a single person but more-so in the plural as
“a way of talking about everybody, and indeed, incidentally of
me” (Sacks [26], p166); so here ‘you’ is a plural for ‘every user
and incidentally me’. In this case Paul is discussing normal work
for programmers: “you can still click on it”. This is one of many
cases of references to the user-in-general where no obvious
distinction is made between the developers of the software
product and its users.

We see our third sequence of example one to contain an
interesting switch from a general category ‘you’ to a third-person
category ‘people’. There is a generic imperative “you’ve got to
read the manual”, followed by a generic statement of fact in the
third person “people don’t read the manual”. This switch to the
third person can be regularly seen in conversations where the
developers talk about what might be seen as bad practice. The
switch to the third person is done when the developers wish to
distance users’ ways of working from their own, but note that this
is no more a claim about their users being ‘dummies’ as it is an
artful means for forming an argument (of the form “yes, but you
don’t understand the users”). The repost “well people don’t read
error messages either” maintains the third person category
“people” and in so doing beats the previous statement at its own
game; perhaps this could have been achieved in no other way.

The final sequence of example two demonstrates the negotiability
of categories for users. Paul poses that “you wouldn’t develop in
a VM, and our guys are developers”. This utterance seems to set
up a certain equivalence or affinity between the developers and
their users. Unlike in our previous case, the switch between
categories is done here by the same person in the same utterance.
However, as the talk progresses, we see Dale evaluating the
categories given by Paul initially as “well supposedly”, which
leads to Paul changing his stance to agreement with Dale before
Dale himself reformulates to “too harsh!”. This is an example of
both the fluidity of typifications and the developers’ abilities and
compulsions to negotiate, restate and evaluate them between
themselves; jokiness aside, users are ‘like us but just not too
much’. We note the use of ‘guys’ here is the kind of ‘gendered
language’ discussed by Cockburn & Ormrod [9], but to follow
their arguments through would be to assume that ‘guys’ mapped
to some sort of list of users the developers ‘have in mind’, a
position we reject (which is not to reject inequalities in
development).

6.2 Users as Courses of Action
Thus far our discussion has covered some general sets of
common-sense actions for software use, but we can also point to
instances where work practice or ‘courses-of-action categories’
(Sacks [26]) become a more substantiated feature of conversation.
The developers discuss and tie in their decisions to the work
practices of users in multiple and interesting ways. Firstly, we
can see an account of ‘working’ related to what users do. The
first sequence of example one contains “I would want it working
for the initial play”. This not only demonstrates knowledge about
what people do on first encountering the software (they ‘play’
with it), but also gives an interesting account of ‘working’.
Working is used here to relate to something that does not have the
user stop and think, read error messages or get the wrong
impression. Working here then is strongly tied in with user
practice, rather than into a technological sense of reliability. A
concern for work practice is also apparent in example three where
the developers question the work practices of a user in terms of
whether the system, or the use of the system is faulty. Even more
specific examples can be found although these tend to be where
the customer is some special case, the following concerns a large
organization they are hopeful to get as a customer:

P “With VehicleRepairCo, if you have to drive 30mins to
where you’ve got to get then its no problem to wait five
more seconds.”

The above example is about a particular customer but draws upon
general knowledge of what employees of that customer do,
further informed by the knowledge of how that company would
deploy applications built with IDEco’s system ‘in the field’. This
knowledge may turn out to be wrong or not relevant but is good
enough for their work at the time (figuring out worst acceptable
cases for performance testing a high-load server).

6.3 Users as Timely Arrivals
As we have been arguing, users are contextual concern, brought
into discussion ‘as’ and ‘when’ required. In this section we
discuss ‘when’ they are required.

Regarding example two, it is in one sense fortunate and another
convenient that in finding that they can’t ‘solve’ an issue the
developers satisfy themselves that it is acceptable not to. For the
evaluative question of whether a problem matters, the user (to
borrow from Sacks [26]) ‘appears on cue’. This is not to say the
developers are lazy and invoke the user to dodge the difficult
work; we have been noticing the opposite whereby the developers
seem to have a spirited curiosity towards technologies. This
curiosity is useful, as it means that they are often concerned with
understanding their application better, its limits, its problems and
the possibilities for future development, all of which seems to be
important in developing a good quality product. This however
does not entail an ‘aesthetic or objective’ rather than ‘pragmatic’
orientation: we see the user often appears as a pragmatic
justification for work being of aesthetic or objective quality. We
too see the user in justifications for decisions that could be said to
be un-aesthetic (although these are perhaps more controversial
decisions). In example one the repost “until after they’ve
purchased it” to “you are just postponing the issues” is clever as,
through agreeing with and then diminishing the issue, Shaun is
able to stifle further argument for an aesthetic design. Shaun does
not imply that everyone will purchase the product but draws from

the idea that the customer will make their decision early. This
idea is not contested. It also implies that problems post purchase
have some acceptability and can be dealt with in a different way.
If you do not sell the system you do not get anywhere.

Hand in hand with issues of justification are methods of
measurement; of how the developers trade off the work to be done
with the value of that work to the user and to the company (what
Garfinkel [11] calls ‘the administrator's problem'). In example
two the growing complexity of a bug overshadowed the low
possibility it would be noticed. Elsewhere we often see the
amount of work to be done on something measured against what
the users ‘worry’ about:

M “We might do a lot of work that no one would worry
about.”

“We might do a lot of work” refers to the likelihood that this is
difficult rather than the knowledge and again “no one would
worry” seems different to “no one wants” or “they don’t”. We
see a kind of openness here about the possibilities of work and
use, a guess that is good enough for now and means that we don’t
have to spend time on this and can do something else.

What we come to is views of the ‘customer’ and ‘user’ that are
produced for specific (and varied) occasions, conversationally
amongst the group as an aid in understanding problems and
reasoning about development considerations. There is fluidity in
the use of these types, which are enrolled, negotiated and
dispatched according to the problems the programmers are facing
then and there. No user type trumps another automatically but
has value with respect to the work at hand.

Development tasks are defined and scheduled taking into account
customers, users, internally generated ideas, market judgments
and so forth. However smaller requirements and mundane design
decisions are made routinely during development, coding being a
praxiological and satisficing concern (Kristofferson [18], Button
& Sharrock [6,7]). Sometimes these small design decisions
occasion discussion, and a number of these invoke customers,
users and user practices. However, we also need to acknowledge
that in the constraints of development many ‘decisions’ are
simply not discussed, or discussed in relation to the user, or even
understood as being a ‘decision’. It became clear in our
interactions with the programmers that, the fact that the
development could have progressed differently is not a matter that
they spend much time talking about.

6.4 Users as Different to Customers
So what is the difference between user and customer? Most
differentiating between customer and user seems to arise in
discussions and disputes between the developers and the CRM
and technical director. It is clear that the developers most readily
identify with and care for the end users, whilst the customer
relationship manager deals with both users and customers, and as
such has an orientation to the sale-ability as well as the use-ability
of the product. The first example showed the ‘potential buyer’
being invoked as more immediately important than users as a way
of settling an argument. Distinguishing between the two during
development seemed rarely necessary for developers (probably
because much of their orientation is directed un-problematically
towards users). In one case a ‘high paying’ customer who had
lodged a feature request was given special care, and in another a

non-paying user was ignored. Both of these actions were at the
instruction of the CRM however. Care was also taken, again at
the CRM’s request, over getting the software into a shape that
would be suitable for demo-ing to large corporations (such as the
company ‘VehicleRepairCo’ briefly mentioned earlier).

7. DISCUSSION
We have focused upon how ideas about the user (who they are,
what they need and what they will get) feature in the creative
process of software product development and testing. We have
focused on talk between developers and found that in such talk:

• The ‘user’ and ‘customer’ are regularly brought into discussions
between programmers when the design is problematic

• The ‘user’ and ‘customer’ are not simply relevant to the
interface and ways of working with the product. They are
relevant in economic terms.

• Users and customers are often talked about in general terms
such as ‘we’ or ‘people’, but specific users or kinds of users can
be foregrounded when problems and disputes arise.

• Categories for users are fluid, they are negotiable and may
change or be refined over the course of a conversation. The
significance of any category is relative to the work at hand, and
can be contestable.

• Any users and customers brought into discussion are cast
against a background of other users. For the most part, single
users are only interesting in terms of how they relate to a
general set of users.

• There is an interest in what users do, but only to the extent of
what they do ‘in general’. The general ‘you’ user appears to
justify aesthetic decisions, the more specific categories appear
to justify more pragmatic decisions.

• User requirements are often traded off against the amount of
work it is thought it will take to satisfy that requirement. The
value of a requirement is in terms of its generality and how it
will expand the market.

• Customers may know their requirements and what is technically
feasible but they are unlikely to understand the market in which
their requirements will be framed.

• The customer and user get differentiated where financial
concerns are relevant.

These findings arise from a study of the group work of software
product development using XP. XP is a method that encourages
and relies upon conversation and close cooperation within
development. Given these findings we suggest, in the case in
using XP for product development, that users are a contextual
concern to development work. That is, knowledge about users is
formulated and brought forward in ways that shape and enable
development work to be done.

This paper has contributed to the longstanding concern in
Software Engineering with 'users' by drawing on hitherto
overlooked or perhaps misinterpreted work by Sharrock &
Anderson [29], Woolgar [33,34], and others. Although ours is a
study of developers using an agile rather than plan driven method
we have covered many similarities between Woolgar’s and

Sharrock & Anderson’s findings and our own. Although the
(mis)use of XP for product design does enable new ways of
organizing practices, it seems many of these practices remain
similar or the same. As we discussed earlier, the kinds of user
involvement asked for in XP are not possible for product design.
We also note that Button & Sharrock [6] claim that software
engineering methods do not underlie and generate particular
practices, but following and implementing a method is a part of
practice. There are, of course, several key differences between
Woolgar’s and Sharrock & Anderson’s work and our own: Firstly,
we note the dynamic and important relationship between notions
of ‘user’ and notions of ‘customer’ in XP. Furthermore, for this
small enterprise the way the ‘user’ serves as context for
discussion and decision making seems more complex and
dynamic than described by Woolgar and by Sharrock & Anderson
in their studies of multinational organizations. For them the
contextual user was largely an imagined future user in another
place and time, of a ‘me’ or ‘everyman’ construction. In our case,
while these constructions are still apparent, the ‘users’ and
‘customers’ are more proximal and ‘real’; Developers do know
some of these people, either directly, through email, or through
the CRM, and they know something about their businesses and so
forth. That they have more direct knowledge of users and
customers is possible because they have a limited customer base.
This is a small company but one that is trying to expand its
market. As reported by Pollock et al [25], as a product develops
the company may have to develop a more ‘organised’ set of
procedures for dealing with customers and users, holding some in
positions of greater ‘privilege’ or ‘usefulness’, and it is worth
noting that some previously ‘revered’ users or ‘friends of the
company’ may have to be cast aside as the product moves in
different directions.

So how might procedures for dealing with customers and users
become more organized? This, it seems to us, is a key challenge
for CSCW and related areas. Much CSCW literature concentrates
on design for singular situations or for a reasonably generic or
consensual user base where it is theoretically possible to identify
a clearer set of requirements that mesh with local, situated work
practices. When producing a generic product, such work is not
always relevant. Product developers seek requirements that apply
across a number of user sites. Some site-specific requirements
will be addressed for a number of reasons (ease of
implementation, importance of customer, etc.) but ones deemed
‘idiosyncratic’ will not. Furthermore, software products are often
designed and sold as instruments of change. In the work of
Woolgar [33,34] we can see that product design involves
achieving a balance between meeting multifarious needs and
desires while also restricting the flexibility of the product,
pushing the users down a certain set of agreed upon paths of
interaction and use. In product design, as Pollock et al [25]
discuss: in order for the product to remain viable for a wide
market it cannot be tailored to the specificities of all its
consumers; product developers try to get customers to tailor their
requirements and processes to their product (at least as much as
they tailor the product to their consumers); and certain customers
and their requirements inevitably gain preference because they
suit the developers and their vision, and ‘fit’ with the product. The
business of good product development is getting the right balance
in designing (specifically) for (some of) your (particular) users
while reaching out to an ever more diverse customer base. We

therefore strongly suggest that product development should be
treated as having separate concerns to those of bespoke design.
Grudin and Pruitt [14] outline the problems of participatory
design and scenario based design for product development and
suggest instead persona based design. Whilst techniques such as
persona based design may be useful for products designed (in
multinational companies) to suit, as Grudin and Pruitt term it,
“millions of users”, we find that participatory, persona and
scenario based design approaches all fail to properly appreciate
the practical and economic contingencies that impinge upon and
shape the construction and evolution of a software product for
application development such as the one discussed here.

The issues we have identified are associated with XP for product
development. The developers we have studied do not attempt to
do ‘pure’ or ‘textbook’ XP and therefore our descriptions of their
practices cannot readily serve as criticisms of the method itself.
We have not found evidence for Stephens and Rosenberg’s [31]
claim that a problem with implementing one aspect of XP will
cause the whole method to collapse. We do not discount XP as a
viable approach for product development. When we look at the
kind of risks involved for this company we would argue that these
are not simply caused by either the use (or misuse) of XP or the
approach to involving users and customers in development.
Indeed, in the end this company may prosper or fail like many
other small software houses with a good idea and a malleable
market. We must be careful not to, as Suchman criticizes of
Woolgar, produce an “overestimation of the ways and extents to
which definitions of users and use are inscribed into an artifact”
([32, p192]) and understand that unlike Woolgar we are looking at
iterative development that can to some extent improve, correct
and change designs over time. Despite the problems of user
participation, for many reasons XP and other agile methods seem
a reasonable approach to development. As Boehm and Turner [3]
discuss, the choice of method cannot be made because one is
simply better than the other. Boehm and Turner argue that the
suitability of a method should be seen in terms of the particular
risks faced in the development in which that method is to be used.
The company is small, the project is manageable without the need
for a lot of documentation, XP allows them to be responsive to
changing requirements, and they are developers, developing a
product to be used by other developers. The market does not
expect (although it might like) a polished final product, instead it
has an evolving system. Given that many smaller product
companies like the one discussed in this paper will continue to
want to use agile methods, further work in this area can be useful
in articulating the particular contingencies of ‘generic’ product
development and to aid in minimising the risks associated with
bad decisions concerning product directions, users and customers.

8. CONCLUSION
In the use of XP (Extreme Programming) for software product
development customers and users cannot participate as they might
in other uses of XP, but are treated generically. This generic
treatment features in development work as typifications of users
and typifications of use. Such typifications are produced,
negotiated, refined and occasioned with respect to the work at
hand; that is, typifications are ‘contextual’.

9. REFERENCES
[1] Beck, K. 2000. Extreme Programming Explained, Embrace

Change Addison Wesley, Boston.
[2] Boden, D. 1994. The Business of Talk: Organisations in

Action Polity Press, Cambridge.
[3] Boehm, B., and Turner, R. 2004. Balancing Agility and

Discipline Addison Wesley, Boston.
[4] Bowers, J., and Martin, D. 2003. ‘Making the Organisation

Come Alive: Talking Through and About the Technology in
Remote Banking’ Human Computer Interaction vol.18 no.1-
2, 111-148.

[5] Bowers, J., and Pycock, J. 1993. ‘You and Whose Army? Or
Requirements, Rhetoric and Resistance in Co-operative
Prototyping’ SIGOIS Bulletin 14, 40-45.

[6] Button, G., and Sharrock, W. 1992. ‘Occasioned Practices in
the Work of Software Engineers’ IN Jirotka, M. and Goguen,
J. (eds.) Requirements Analysis: Social and Technical Issues
Academic Press, London. 217-240.

[7] Button, G., and Sharrock, W. 1998. ‘The Organisational
Accountability of Technological Work’ Social Studies of
Science vol.28 no.1, 78-102.

[8] Chong, J., and Hurlbutt, T. 2007. The Social Dynamics of
Pair Programming. Proc. ICSE, (May 20-26 2007,
Minneapolis MN, USA), .354-363.

[9] Cockburn, C., and Ormrod, S. 1993. Gendered Technology
in the Making Sage, London.

[10] DeSouza, C., Redmiles, D., and Dourish, P. 2003.
‘“Breaking the Code” Moving Between Private and Public
Work in Collaborative Software Development’ Proc.
SIGGROUP, November 09-12 2003, Sanibel Island, Florida,
USA, 105-114.

[11] Garfinkel, H. 1967. Studies in Ethnomethodology Prentice-
Hall, Englewood Cliffs.

[12] Garfinkel, H., Sacks, H. 1970. ‘On Formal Structures of
Practical Actions’ IN McKinney, J., and Tiryakian, E. (eds.)
Theoretical Sociology ACC, New York, 337-366.

[13] Grint, K., & Woolgar, S. 1997. The Machine at Work.
Technology Work and Organisation Polity Press, Cambridge.

[14] Grudin, J., & Pruitt, J. 2002. Personas, participatory. design,
and product development: An infrastructure for. engagement.
Proc. PDC, (June 23-25 2002, Malmö, Sweden), 144-161.

[15] Heath, C., Sanchez Svensson, M., Hindmarsh, J., Luff, P., &
Vom Lem, D. 2002. Configuring Awareness. Computer
Supported Cooperative Work vol.11, 317-347.

[16] Hunt, J., Romero, P., & Good, J. 2006. ‘Stories from the
Mobile Workplace. An Emerging Narrative Ethnography’
Proc. PPIG, (September 7-8 2006, Brighton, UK), 153-167.

[17] Jefferies, R. 2007. www.xprogramming.com (accessed
March 2007)

[18] Kristoffersen, S. 2006. ‘Designing a Program Programming
the Design’ TeamEthno-online 2, June 2006, 34-51.

[19] Lindsay, C. 2003. ‘From the Shadows: Users as Designers,
Producers, Marketers, Distributers and Technical Support’

IN Oudshoorn, H. and Pinch, T. (eds.) How Users Matter:
The Co-Construction of Users and Technologies MIT Press,
Cambridge MA, 29–50.

[20] Lippert, M., Roock, S., and Wolf, H. 2002. Extreme
Programming in Action. Practical Examples from Real
World Projects John Wiley and Sons, New York.

[21] Lynch, M. 1995. ‘Preliminary Notes on Judges’ Work: The
Judge as a Constituent of Courtroom Hearings’ IN Travers,
M., and Manzo, J. (eds.) Law in Action.
Ethnomethodological and Conversational Analytic
Approaches to the Law Ashgate, Dartmouth, 99-129.

[22] Mackenzie, A., Monk, S. 2004. ‘From Cards to Code: How
Extreme Programming Re-Embodies Programming as a
Collective Practice’ Computer Supported Cooperative Work
Vol.13 No.1 91-117.

[23] Mackay, H., Carne, C., Beynon-Davies, P., & Tudhope, D.
2000. ‘Reconfiguring the User. Using Rapid Application
Development’ Social Studies of Science Vol.30 No.5 737-
757.

[24] Nardi, B. 1993. A Small Matter of Programming.
Perspectives on End User Computing MIT Press, Cambridge
MA.

[25] Pollock, N., Williams, R., and D’Adderio, L. 2007. Global
Software and its Provenance: Generification Work in the
Production of Organizational Software Packages. Social
Studies of Science Vol.37 No.2 254-280.

[26] Sacks, H. 1995. Lectures on Conversation (Volumes 1 and
2). Blackwell, Malden.

[27] Schutz, A. 1964. Collected Papers (Volume 2) Studies in
Social Theory Nijhoff, The Hague.

[28] Sharrock, W. and Anderson, B. 1993. ‘Working Towards
Agreement’ IN Button, G. (ed) Technology in Working
Order Routledge, London, 149-161.

[29] Sharrock, W., and Anderson, B. 1994. ‘The User as a Scenic
Feature of Design Space’ Design Studies Vol.15 No.1. .5-18.

[30] Sharp, H., and Robinson, H. 2004. ‘An Ethnographic Study
of XP Practice’ Empirical Software Engineering Vol.9 353-
375.

[31] Stephens, M., and Rosenberg, D. 2003. Extreme
Programming Refactored: The Case Against XP APress,
New York.

[32] Suchman, L. 2007. Human-Machine Reconfigurations:
Plans and Situated Actions 2nd Edition Cambridge University
Press.

[33] Woolgar, S. 1991. ‘Configuring the User, The Case of
Usability Trials’ IN Law, J. (ed.) A Sociology of Monsters.
Essays on Power Technology and Domination Routledge,
London, 58-100.

[34] Woolgar, S. 1994. ‘Rethinking Requirements Analysis:
Some Implications of Recent Research into Producer
Consumer Relationships in IT Development’ IN Jirotka, M.
and Goguen, J. (eds.) Requirements Analysis: Social and
Technical Issues Academic, London, 201-216.

	1. INTRODUCTION
	2. BACKGROUND
	3. ETHNOGRAPHY OF AN EXTREME PROGRAMMING TEAM
	4. THE CUSTOMER IN EXTREME PROGRAMMING
	5. TALK IN DEVELOPMENT WORK
	5.1 Example One: Usability and Sale-ability
	5.2 Example Two: Causes and Solutions to Technical Problems
	5.3 Example Three: Customer Requests and Complaints

	6. USERS IN CONTEXT
	6.1 Users as Typifications
	6.2 Users as Courses of Action
	6.3 Users as Timely Arrivals
	6.4 Users as Different to Customers

	7. DISCUSSION
	8. CONCLUSION
	9. REFERENCES

