
To appear in Interacting With Computers

1

Socio-technical systems: From design methods to
systems engineering

Gordon Baxter and Ian Sommerville

School of Computer Science, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SX,
UK.

Abstract

It is widely acknowledged that adopting a socio-technical approach to system development leads to
systems that are more acceptable to end users and deliver better value to stakeholders. Despite this,
such approaches are not widely practised. We analyse the reasons for this, highlighting some of the
problems with the better known socio-technical design methods. Based on this analysis we propose a
new pragmatic framework for socio-technical systems engineering (STSE) which builds on the
(largely independent) research of groups investigating work design, information systems, computer-
supported cooperative work, and cognitive systems engineering. STSE bridges the traditional gap
between organisational change and system development using two main types of activity:
sensitisation and awareness; and constructive engagement. From the framework, we identify an initial
set of interdisciplinary research problems that address how to apply socio-technical approaches in a
cost-effective way, and how to facilitate the integration of STSE with existing systems and software
engineering approaches.

Keywords: socio-technical systems; systems engineering; software engineering

 Corresponding author: phone +44 1334 463268; fax +44 1334 463278; email: gdb@cs.st-andrews.ac.uk



To appear in Interacting With Computers

2

1 Introduction

Socio-technical systems design (STSD) methods are an approach to design that consider human,
social and organisational factors1, as well as technical factors in the design of organisational systems.
They have a long history and are intended to ensure that the technical and organisational aspects of a
system are considered together. The outcome of applying these methods is a better understanding of
how human, social and organisational factors affect the ways that work is done and technical systems
are used. This understanding can contribute to the design of organisational structures, business
processes and technical systems. Even though many managers realise that socio-technical issues are
important, socio-technical design methods are rarely used. We suspect that the reasons for their lack
of use are, primarily, difficulties in using the methods and the disconnect between these methods and
both technical engineering issues, and issues of individual interaction with technical systems.

The underlying premise of socio-technical thinking is that systems design should be a process that
takes into account both social and technical factors that influence the functionality and usage of
computer-based systems. The rationale for adopting socio-technical approaches to systems design is
that failure to do so can increase the risks that systems will not make their expected contribution to the
goals of the organisation. Systems often meet their technical ‘requirements’ but are considered to be a
‘failure’ because they do not deliver the expected support for the real work in the organisation. The
source of the problem is that techno-centric approaches to systems design do not properly consider the
complex relationships between the organisation, the people enacting business processes and the
system that supports these processes (Norman, 1993; Goguen, 1999).

We argue here that there is a need for a pragmatic approach to the engineering of socio-technical
systems based on the gradual introduction of socio-technical considerations into existing software
procurement and development processes. We aim to address problems of usability and the
incompatibility of socio-technical and technical systems development methods. Our long-term
research goal is to develop the field of socio-technical systems engineering (STSE). By this, we mean
the systematic and constructive use of socio-technical principles and methods in the procurement,
specification, design, testing, evaluation, operation and evolution of complex systems.

We believe that it is not enough to simply analyse a situation from a socio-technical perspective and
then explain this analysis to engineers. We also must suggest how socio-technical analyses can be
used constructively when developing and evolving systems. Many companies have invested heavily in
software design methods and tools, so socio-technical approaches will only be successful if they
preserve and are compatible with these methods. We must avoid terminology that is alien to
engineers, develop an approach that they can use, and generate value that is proportionate to the time
invested.

These are challenging objectives and, to achieve them, we must draw on research from a range of
disciplines. There are at least four significant research communities that have explored and addressed
socio-technical issues that affect the specification, design and operation of complex computer-based
systems:

1. Researchers interested in work, in general, and the workplace. An interest in the design of work
was the original stimulus for proposing socio-technical approaches. Mumford (1983) and
Eason’s (1988) research typify the approach of this community. The original objective was to
make work more humanistic and the initial focus was on manufacturing systems. As computers
have become pervasive in the workplace, however, the community has also examined the
relationships between work and its computer-based support noting, for example, that the
computer system can shape and constrain work practices (Eason, 1997)

1 Here we use the term organisational to describe factors that are related to the company or business per se, whilst we use the term social to
describe factors that are related to the relationships between people who work together within and across organisations.



To appear in Interacting With Computers

3

2. Researchers interested in information systems. Information systems are large-scale systems that
support the work of the enterprise and this community recognised at an early stage that socio-
technical issues were significant (e.g., J. C. Taylor, 1982). This community has generally taken
a broad perspective on the relationships between information systems and the enterprise rather
than focusing on specific aspects of computer-supported work (e.g., Avison, et al., 2001).

3. Researchers interested in computer-supported cooperative work (CSCW). This community has
focused on the minutiae of work arguing that the details of work, as understood through
ethnographic studies, profoundly influence how computer-based systems are used. Suchman’s
seminal book (1987) which triggered work in this area, was followed by many ethnographic
studies of systems in different settings (Ackroyd, et al., 1992; Bentley, et al., 1992a; Heath &
Luff, 1992; Heath, et al., 1994; Rouncefield, 1998; Clarke, et al., 2003). Many of these were
concerned with co-located work (e.g. in control rooms) and most did not consider wider
enterprise issues that affect system requirements and design.

4. Researchers interested in cognitive systems engineering. This community, exemplified by the
work of Hollnagel and Woods (2005; Woods & Hollnagel, 2006), has been primarily interested
in the relationships between human and organisational issues and systems failure. Their main
focus has been on control systems and health care and this community has not been much
concerned with broader information systems.

Whilst these communities have had some mutual awareness, we believe that it is fair to say that there
has been relatively little cross-fertilisation across communities. For example, in Mumford’s (2006)
review article, there are no references to the strands of work in CSCW or cognitive systems
engineering, and few references to the information systems literature.

Sitting alongside these communities, with some awareness of socio-technical issues, is the HCI
research community. Some areas of HCI have clearly been influenced by socio-technical ideas,
including usability (e.g., Nielsen, 1993; Mayhew, 1999; Krug, 2005) and human/user centred system
design (e.g., Gould & Lewis, 1985; Norman & Draper, 1986; Gulliksen, et al., 2003). Holistic design,
for example, is identified by Gulliksen et al. (2003) as a key principle, and they note the need to
explicitly consider the work context and social environment. More generally, much of the focus has
been on sensitisation to socio-technical issues (e.g., Dix, et al., 2004 has a chapter on this topic).
There has been little work on how these socio-technical issues might directly influence the design of
an interface to a complex software system (understandably so: we believe this to be a significant
research challenge). By the same token, some researchers in the ubiquitous computing community
have been influenced by socio-technical thinking (Andy Crabtree, et al., 2006), although most
research in this general area focuses on the development and evaluation of new technologies.

We believe that we need to integrate the work of these disparate communities under a common
heading of socio-technical systems engineering. Our objectives here, therefore, are to summarise the
contributions of the different research communities in this area, and to propose a practical vision for
further developments. We do not provide a complete survey of socio-technical systems design (that
would be impossibly long). Instead we present different perspectives on STSD, which we use as a
basis for introducing a pragmatic framework for STSE that is deliberately limited in scope but which
leaves room for the application of different STSD approaches. In this paper we have focused our
discussions on organisational systems, but we believe that STSE applies to other types of systems
based on Commercial Off The Shelf equipment and applications, for example, or domestic systems.
After laying out our framework, we go on to propose a research agenda for socio-technical systems
engineering where we identify research problems that need to be addressed to make STSE a practical
reality.

Section 2 introduces the notion of STSD and Section 3 briefly discusses STSD approaches. Section 4
discusses shortcomings of these existing approaches. Section 5 introduces the notion of socio-
technical systems engineering, identifying two main types of STSE activities. We conclude by
identifying outstanding research issues that can be used to shape the discipline of socio-technical
systems engineering.



To appear in Interacting With Computers

4

2 Socio-technical Systems Design

The term socio-technical systems was originally coined by Emery and Trist (1960) to describe
systems that involve a complex interaction between humans, machines and the environmental aspects
of the work system—nowadays, this interaction is true of most enterprise systems. The corollary of
this definition is that all of these factors—people, machines and context—need to be considered when
developing such systems using STSD methods. In reality, these methods are more akin to
philosophies than the sorts of design methods that are usually associated with systems engineering
(Mumford, 2006). STSD methods mostly provide advice for sympathetic systems designers rather
than detailed notations and a process that should be followed.

The term socio-technical systems is nowadays widely used to describe many complex systems, but
there are five key characteristics of open socio-technical systems (Badham, et al., 2000):

 Systems should have interdependent parts.

 Systems should adapt to and pursue goals in external environments.

 Systems have an internal environment comprising separate but interdependent technical and
social subsystems2.

 Systems have equifinality. In other words, systems goals can be achieved by more than one
means. This implies that there are design choices to be made during system development.

 System performance relies on the joint optimisation of the technical and social subsystems.
Focusing on one of these systems to the exclusion of the other is likely to lead to degraded
system performance and utility.

STSD methods were developed to facilitate the design of such systems. We have restricted our scope
here to this class of systems, and do not consider deeply embedded systems, for example, where there
is usually no social subsystem involved.

From its inception in the period immediately after World War II, by what is now called The Tavistock
Institute, until the present day, there have been several attempts at applying the ideas of STSD. Some
of these were successful, others less so (Mumford, 2006). The prevailing climate within a particular
company (or sometimes within a country) affected attitudes towards the idea of STSD: where
attitudes were positive this often led to the successful uptake of the ideas.

Mumford (2006) provides an historical overview of developments in STSD. The general aim was to
investigate the organisation of work, with early work in STSD focused mostly on manufacturing and
production industries such as coal, textiles, and petrochemicals. The aim was to see whether work in
these industries could be made more humanistic. In other words, the intention was to move away from
the mechanistic view of work encompassed by Taylor’s (1911) principles of scientific management,
which largely relied on the specialisation of work and the division of labour.

The heyday of STSD was, perhaps, the 1970s and the early part of the 1980s. This was a time when
there were labour shortages, and companies were keen to use all means available to retain their
existing staff. Apart from the usual cultural and social reasons, companies could also see good
business reasons for adopting socio-technical ideas. The XSEL (eXpert SELler) system of the Digital
Equipment Corporation (DEC), for example, was developed using STSD (see Mumford &
MacDonald, 1989 for a retrospective view). It was an expert system designed to help DEC sales staff
assist customers in properly configuring their VAX computer installations. This system was a success
and at its peak the family of expert systems, including XSEL, that were being used to support
configuration and location of DEC-VAX computers was claimed to be saving the company tens of
millions of dollars a year (Barker & O’Connor, 1989). Of course, it is impossible to assess the
contribution of STSD to this success but the example illustrates that socio-technical approaches can
be used effectively in real systems engineering.

2 Here Badham et al. are using the term social subsystem to refer to people, work context and organisations



To appear in Interacting With Computers

5

By contrast, the latter part of the 1980s and the 1990s were possibly the low point in STSD’s history.
The adoption of lean production techniques and business process re-engineering dominated, and
STSD was largely sidelined. Dankbaar (1997), however, suggested that these different methods
(STSD, BPR, etc.) can all learn from each other. The late 1980s and early 1990s also saw the
emergence of ethnographic studies of work, stimulated by Suchman’s (1987) seminal research at
Xerox PARC. These ethnographic approaches (e.g., Heath & Luff, 1991) highlighted the significance
of socio-technical issues in the design of software-intensive systems (e.g., Blomberg, 1988).

The 21st century has seen a revival of interest in socio-technical approaches as industries have
discovered the diminishing returns from investment in new software engineering methods. However,
socio-technical ideas and approaches may not always be explicitly referred to as such (Avgerou, et al.,
2004). The ideas appear in areas such as participatory design methods, CSCW and ethnographic
approaches to design. Indeed, one of the key tenets of STSD is a focus on participatory methods,
where end users are involved during the design process (e.g., Greenbaum & Kyng, 1991). However,
these methods, all of which have their roots in STSD, differ in important respects. Participatory
design, which covers a whole range of methods (e.g., see Muller, et al., 1993), often involves the users
(or user representatives) effectively moving into the territory of the system developers for the duration
of the project. By contrast, empathic design (Leonard & Rayport, 1997) and contextual design (e.g.,
Beyer & Holtzblatt, 1999), which reflect STSD ideas, adopt the inverse view and put the developers
into the users’ world as part of the development process.

The field of CSCW came about partly in response to a need to discuss the development of group
support applications (Grudin, 1994), but it has implicit roots in socio-technical thinking. Bowker et al.
(1997) make the link explicit, dealing with the socio-technical system and CSCW, as does the recent
special issue of the journal Computer Supported Cooperative Work which deals with CSCW and
dependability in health care systems (Procter, et al., 2006). The field of dependability3 (Laprie, 1985;
Avizienis, et al., 2004) is also intrinsically concerned with socio-technical systems, although this field
sometimes uses the term ‘computer-based systems’ to refer to socio-technical systems.

STSD methods continue to be advocated for systems development and appear to be particularly suited
to some application areas. Since the late 1990s, for example, STSD has been frequently advocated
within health informatics for the development of health care applications (e.g., Whetton, 2005). Many
such systems are under-utilised because they introduce ways of working that conflict with other
aspects of the user’s job, or they require changes to procedures that affect other people’s
responsibilities. One of the keys to developing systems that are acceptable to the users is a detailed
understanding of the underlying work structures. In other words, what is required is a socio-technical
approach (Berg, 1999, 2001; Berg & Toussaint, 2003).

Most recently, in the UK, the need for STSD has been highlighted by issues surrounding the National
Health Service’s ongoing National Programme for Information Technology (NPfIT; see Brennan,
2007 for a commentary on the programme). Even though many of the developments to date within the
NPfIT have been imposed in an essentially top-down manner, there are still areas where there is a role
for STSD, even if only at a local level (Eason, 2007).

Although the vast majority of applications have been implemented in the workplace, socio-technical
ideas are equally applicable in other settings where technology is deployed. In recent years, there has
been an increasing uptake of technology in the home, particularly as smart home technologies and
assistive technologies. The requirements for home-based systems are somewhat different from those
of workplace systems. Sommerville and Dewsbury (2007), for example, developed a model for the
design of dependable domestic systems, which adopts a socio-technical view in which the system
comprises the user, the home environment, and the installed technology.

3 See also www.dirc.org.uk



To appear in Interacting With Computers

6

3 Socio-technical Systems Design Approaches

Socio-technical systems design has been manifested in a wide range of different methods. Different
traditions developed in different countries at different times have led to different approaches (see
Mumford, 2006 for a fairly comprehensive historical review). The individual methods, to some extent,
reflect different national cultures and approaches to work and work organisation. The consequence
has usually been that each method is tailored to a particular market, which partly explains why there
have never been any significant or successful attempts to integrate approaches to create a more
general, standardised method of STSD.

There has been limited transferability of the available methods. In general, those who developed a
method have had most success in applying it. Mumford’s ETHICS (1983, 1995), for example, was
mostly used in the USA when Mumford worked directly with organisations based there, such as DEC
(see section 2).

As the nature of the different markets has changed, the methods have not always kept pace. In some
instances, the methods have been reactively refined—ETHICS, for example has recently been paired
with agile methods of software development (Hickey, et al., 2006). In most cases, however, there has
not been any reconsideration of the role of the earlier fundamental notions of STSD. Whether this is
because STSD is not deemed relevant to modern ways of working, or because there is simply
ignorance of these approaches is an open question. STSD remains an active field of research and
practice, although in many cases it is the ideas, rather than the original methods, that are being
applied.

Even though the notion of user participation lies at the heart of STSD, there has been a disappointing
uptake of user-centred methods in general. Eason (2001), for example, found that none of the 10 most
widely advocated methods (including socio-technical design) were in common use. Furthermore, even
where the methods were being used, user involvement was still largely to assist in the development of
a techno-centric system. Users were not seen as participants in an integrated systems development
process to produce a system that took appropriate account of social and organisational requirements.

One area where user participation has been taken seriously is in software development using agile
methods, such as extreme programming (XP), Dynamic Systems Development Method (DSDM), and
Scrum (see Abrahamsson, et al., 2002 for a review and analysis of these methods). These methods
incorporate at least some face-to-face user involvement—although in practice who plays the role of
the user can often depend on who is available to talk to the developers—and use short iterative
development cycles to develop evolutionary prototype solutions in a manner that takes account of
local contingencies (e.g., see Boehm & Turner, 2004). However, agile methods are mostly concerned
with end-user requirements, and make the simplistic assumptions that (a) suitable users are available
to interact with the development team and (b) the user requirements are congruent with broader
organisational requirements. While there are certainly interesting ideas emerging from agile methods,
their focus on interaction with individual users does not address the need for broader socio-technical
awareness in systems engineering.

In addition to the approaches covered by Mumford’s (2006) extensive review, we have also identified
several other approaches that encompass socio-technical ideas. We believe that these other approaches
can also help inform the development of socio-technical systems:

1. Soft Systems Methodology (SSM; Checkland, 1981; Checkland & Scholes, 1999), which builds
on ideas from action research, has its roots in systems engineering rather than the social
sciences. SSM treats purposeful action as a system: logically linked activities are connected
together as a whole, and the emergent property of the whole is its purposefulness. One of
SSM’s key features is its focus on developing an understanding of the problem (SSM uses the
more generic term problematic situation). This understanding takes into account the roles,
responsibilities, and concerns of the stakeholders that are associated with the particular
problem. The understanding of the problem provides the basis for the solution, which again
takes into account stakeholders’ differing viewpoints. SSM explicitly acknowledges that the
final solution is based on attempting to accommodate the views (and needs) of the various



To appear in Interacting With Computers

7

stakeholders. We believe that problem understanding is one of SSM’s principal strengths, but it
can also be used to develop information models of the more technical aspects of a system. It has
been used to evaluate existing information systems too (Checkland & Poulter, 2006).

2. Cognitive Work Analysis (CWA; Rasmussen, et al., 1994b; Vicente, 1999) was developed to
analyse the work that could be performed by complex socio-technical systems. It is therefore a
formative approach based on predicting what a system could do, in contrast to most approaches
which are either normative (how work should be done) or descriptive (how work is done).

3. The socio-technical method for designing work systems (Waterson, et al., 2002) focuses on
system design. It is used to identify tasks that have to be allocated to machines (and hence
implemented using IT) and also considers those tasks that have to be performed by humans
(both individually, and as teams). This method is designed for general use in function allocation
and socio-technical work systems.

4. Ethnographic workplace analysis (e.g., Suchman, 1987; Hughes, et al., 1997; Viller &
Sommerville, 2000; Martin & Sommerville, 2004) emphasises the situated nature of action, and
has investigated how the results from ethnographic studies can inform the design of socio-
technical systems. Ethnographic workplace analysis has largely focused on the operational
issues that affect the functionality and use of a system. It has highlighted how workarounds and
dynamic process modifications are commonplace and revealed the importance of awareness
and the physical workplace in getting work done.

5. Contextual design (Beyer & Holtzblatt, 1999) is aimed at designing products directly from the
designer’s comprehension of how the customer actually performs work. It is founded on the
notion that any system inherently embodies a particular way of working, which then largely
dictates how the system will be used and how it will be structured. Contextual Design gives rise
to activities that are focused on the front end of design, and, in particular, on customers and
their work.

6. Cognitive systems engineering (Hollnagel & Woods, 2005; Woods & Hollnagel, 2006) deals
with the analysis of organisational issues, and offers some practical support for systems design.
CSE uses observation as a tool for analysing work in context, and uses abstraction on the
results to identify patterns in the observations that occur across work settings and situations,
thereby increasing the understanding of sources of expertise and failure.

7. Human centred design (International Standards Organisation, 2010), which follows principles
such as basing the design upon an explicit understanding of users, their tasks, and the
environments in which those tasks are carried out. It also includes as one of the four main
design activities the understanding and specification of the context in which the system will be
used, and explicitly refers to consideration of social and cultural factors, including working
practices and the structure of the organisation.

STSD methods can be categorised based on the how well they deal with the three broad stages in the
systems engineering lifecycle: analysis, design and evaluation. There are also some general sets of
principles that provide abstract guidance for developing socio-technical systems, rather than directly
supporting detailed aspects of systems development. These include Cherns’ (1976, 1987) and Clegg’s
(2000) principles, which cover aspects such as power and authority (Cherns, 1987), and the fact that
design should reflect the needs of the stakeholders (Clegg, 2000).

Table 1 indicates how some of the better-known approaches relate to the different phases of the
systems engineering life cycle. All of the methods tend to be most strongly related to one particular
phase of the life cycle, although they still provide some support for the other phases. Whilst several of
the approaches offer support for most phases in the systems engineering lifecycle, our belief is that
none of the approaches provide complete coverage for all of the phases.

Table 1. Relationship between socio-technical systems design approaches and the development
phases of the systems engineering life cycle. A double tick (√√) indicates that a particular design



To appear in Interacting With Computers

8

approach provides strong support for the associated phase of the life cycle; a single tick (√)
indicates some support.

General Analysis Design Evaluation

Cherns’ (1976, 1987) Principles √√

Clegg’s (2000) Principles √√

Scandinavian approaches (e.g.,
Bjerknes & Bratteteig, 1995)

√ √ √

Dutch Integral Organisation
Renewal (De Sitter, et al., 1997)

√ √ √

ETHICS (Mumford, 1983,
1995)

√ √√ √ √

Cognitive Work Analysis
(Rasmussen, et al., 1994a;
Vicente, 1999)

√√

Socio technical method for
designing work systems
(Waterson, et al., 2002)

√ √

Ethnographical Workplace
analysis (Hughes, et al., 1992)

√ √

Contextual Design (Beyer &
Holtzblatt, 1999)

√ √√ √

Cognitive systems engineering
(Hollnagel & Woods, 2005)

√ √√ √ √

Human-centred design
(International Standards
Organisation, 2010)

√ √ √ √

4 Problems with existing approaches to socio-technical systems
design

The development of STSD methods has identified and attempted to address real problems in
understanding and developing complex organisational systems which, nowadays, inevitably rely on
large-scale software-intensive systems. Despite positive experiences in demonstrator projects,
however, these methods have not had any significant impact on industrial software engineering
practice. The reasons for this failure to adopt and maintain the use of STSD approaches have been
analysed in several places, and from several viewpoints (e.g., Mathews, 1997; Mumford, 2000, 2006).
We summarise the main problems identified by these authors below, and also discuss other issues that
have arisen in our own use of STSD methods.



To appear in Interacting With Computers

9

4.1 Inconsistent terminology

There is considerable variation in what people mean by the term socio-technical system and this is
inevitably confusing to potential adopters of these approaches. The term has its original roots in
organisational and clinical psychology, in work carried out by the Tavistock Institute in the 1950s and
1960s. However, it is also often closely linked with the field of management science in the UK, where
the ETHICS method (Mumford, 1983, 1995) was developed at the Manchester Business School.

Nowadays, many different fields have adopted the term, often using their own interpretation—
sometimes focusing on the social system, sometimes on the technical, but rarely on both together.
This may help to explain the somewhat disparate nature of the literature (e.g., Griffiths & Dougherty,
2001).

It is important that people involved in a specific systems development project have an agreed
understanding of what is meant by the term socio-technical system. This particularly applies to the
development team, in order to make sure that they focus on the appropriate social and technical
aspects of the system and how these are interdependent and interact. The critical point is that there
needs to be agreement about the social and technical elements of the system that need to be jointly
optimised.

4.2 Levels of abstraction

Similar to the problems of terminology are problems in determining the appropriate levels of
abstraction to use when analysing and describing socio-technical systems. Rather than using different
terms to describe the same thing, though, here we are talking about people describing the same system
but using different levels of abstraction, often based on the fact that they draw the system boundaries
in different places. There is a tendency by some to decompose the system into separate social and
technical systems. The depth of analysis for each of the (sub-)systems is then given different
emphasis, with the focus often falling mostly on the technical aspects of the system (Eason, 2001).

Finding the appropriate level of abstraction is critical, but often not easy. Hollnagel (1998), for
example, criticises the work on socio-technical systems for over-emphasising the context, which
includes the organisational aspects, at the expense of neglecting the individual. He argues that current
approaches cannot satisfactorily explain why humans perform erroneous actions and, hence, cannot be
used in human reliability analysis. When this view is taken to the extreme, undesirable events are
simplistically seen as the result of organisational failings, which stack the odds against the human
operator, who is then portrayed as the innocent victim of these failings. In other words, it overlooks
the fact that the context includes individuals, often working as part of a team, who through their own
volition could still theoretically perform the correct action.

4.3 Conflicting value systems

In attempting to make sense of the literature, Land (2000) suggested that it can be divided into two
basic categories. Each category is based on a set of values that underpins much of the thinking around
socio-technical systems.

The first set of values is a fundamental commitment to humanistic principles. In other words, the
designer is aiming to improve the quality of working life and job satisfaction of the employee(s). It is
argued that increases in productivity will automatically follow, and that these will generate added
value for the company. Early approaches to STSD were particularly concerned with ensuring that
humanistic principles were considered during the design and deployment of new systems.

The second set is often described as managerial values. In this view, socio-technical principles are
regarded as a means of helping to achieve the company’s objectives (particularly economic ones).
Humanistic objectives are perceived as having limited inherent value, but if their achievement leads to
better employee performance, and the company benefits as a result, then all well and good.
Approaches such as Contextual Design are primarily geared to the use of STSD as a means of
building systems that provide more effective organisational support.



To appear in Interacting With Computers

10

Ethnographic analysis can be considered as an intermediate category. Most work in this area has
adopted an ethnomethodological approach where, it is claimed, the analysis of the work is not
influenced by any particular theoretical framework or intended outcome. The extent to which such
analysis is truly value-free is, of course, debateable.

Problems arise when these different sets of values come into conflict. The dichotomy between the first
two categories helps to explain why, in some cases, managers and employees (as represented by
trades unions, for example) can both be somewhat suspicious of socio-technical ideas, with the former
applying managerial values, and the latter, humanistic values.

4.4 Lack of agreed success criteria

There has been significant theorising about the way to design socio-technical systems, but recent
published examples of successful use in the design of software-intensive systems are comparatively
scarce. Consequently, there has generally been little evaluation of the efficacy of using STSD
approaches. Indeed, one of Majchrzak and Borys’ (2001) major criticisms is that existing socio-
technical systems theories are not specific enough to allow for empirical testing. Other reasons for the
lack of evaluation include the predominant research emphasis on system design rather than evaluation
and, in the UK at least, the difficulties of funding long-term, longitudinal research. Large scale
complex IT systems often have a lead time that is measured in years, rather than months—in a
hospital for example, it may take several years to introduce a new system throughout the organisation.

Another problem of assessing success is the difficulty in establishing evaluation criteria for the social
elements of the system. Whilst benchmark tests can be used to determine whether the technical part of
the system meets the appropriate criteria (response time, throughput, cost/benefit analysis), it is more
difficult to determine if a system is a better fit to organisational needs, or that a system has increased
the quality of working life of the staff. The latter often requires examining or measuring derived
effects. So, for example, if a system claims to increase job satisfaction (as a first order effect), this
might be measured by looking at the change in levels of absenteeism, improvements in health, and
increases in productivity (Land, 2000). This evaluation is made harder by the fact that there are other,
quite separate, influences on these factors and in many cases it may be impossible to link them
directly to some new system.

Furthermore, the success (or otherwise) of the implementation is defined by a range of stakeholders,
particularly operators, middle management and top-level management (Land, 2000). Each category of
stakeholder is likely to have a different viewpoint on the system and different criteria for success.

Related to the lack of criteria for success is the absence of work that demonstrates the cost-benefits of
STSD methods and tools. Similar problems have also affected other (related) fields such as HCI, and
more generally, human factors/ergonomics. New methods may be perceived by managers and systems
developers as simply adding extra time, effort and cost to what are already long and expensive
development projects. Demonstrating the cost effectiveness of STSD methods should be an important
goal, as is the need for them to integrate with existing system development processes.

4.5 Analysis without synthesis

Socio-technical design methods have mostly been used to analyse existing systems, but these methods
are limited in the support that they provide for the more constructive synthesis where the results of the
analyses are systematically used in the software design process. In other words, they have been used
to critique existing systems that (may) have failed, but without always suggesting how the problems
could be fixed by appropriate re-engineering of the system (e.g., see Kawka & Kirchsteiger, 1999).
There are not many recorded examples of the successful use of these ideas in a prospective manner,
particularly for the first instance of a new type of system. This may be due to the envisioned world
problem (Woods & Dekker, 2000) which arises because of the difficulty of imagining or predicting
the relation between people, technology and context in a domain that does not yet exist.

There are techniques that can be exploited in the construction of new systems ranging from the
general notion of learning from past experience, to utilising existing components (appropriately



To appear in Interacting With Computers

11

adapted to the situation at hand). Petroski (1986, 1994, 2006), for example, has documented how
engineering has progressed as a discipline over the centuries by learning from its past failures. At a
lower level, the work on patterns of co-operative interaction (Martin & Sommerville, 2004), offers a
way of supporting the re-use of insights gained from previous fieldwork in new system design.

4.6 Multidisciplinarity

Some of the failings of STSD can be attributed to the multidisciplinary nature of system development.
The need for several disciplines to be involved is widely accepted, but the borders between the
disciplines have been largely maintained, despite efforts at creating interdisciplinary teams by
involving domain specialists in the design process. The issue is mainly down to failures in
understanding and communication, where one discipline does not fully understand what the other
disciplines can do (Bader & Nyce, 1998), and hence does not ask them to deliver something that
assists the system development processes. Dekker et al. (2003), for example, have suggested that
practitioners of ethnography and contextual design fail to deliver products that can be used by other
disciplines. Their argument is that some of the work carried out by ethnographers and those involved
in contextual inquiry does not go far enough, because it essentially stops after collecting data, rather
than analysing the data to ascribe meaning to it so that it could be more readily used by others. This
was reflected in a report on cooperation between software engineers and sociologists, where it was
found that differences in both language and culture were major barriers to multidisciplinary work
(Sommerville, et al., 1992).

In general, the maintenance of boundaries between the various disciplines may be a result of the way
that systems development has traditionally been perceived and carried out. Specialised individuals or
teams were typically allocated responsibility for a particular stage of development, such as
requirements analysis or user interface design, and were rarely involved with other developers. Rather
than relying on specialised individuals (or teams), what is required is that an individual (or team) has
a working knowledge and appreciation of what the other disciplines have to offer, and can
communicate effectively with them.

4.7 Perceived anachronism

Changes in ways of working at organisational, national and global levels were at least partly reflected
in changes in attitudes towards STSD. In the late 1980s, for example, companies started to move
towards lean production methods and business process re-engineering (BPR), often based on the use
of new enterprise systems. The philosophy that underpins these methods ostensibly runs counter to
many of the humanistic ideas behind STSD (e.g., Niepce & Molleman, 1998), and there were no
attempts to try and adapt the STSD methods to the changing business management methods. It is
somewhat ironic that it was BPR that made the explicit link to IT innovations, while the socio-
technical systems community expended significant energy in the preceding decades on ideological
debates (Mathews, 1997) rather than trying to keep pace with technical and organisational
developments.

In addition, STSD approaches were largely developed during the 1960s and 1970s, before the advent
of the personal computer, and widespread use of interactive computing systems. It was only in the
1980s, however, that HCI achieved widespread recognition as a separate discipline, with its inherent
focus on the importance of the interaction between people and technology at the lowest level rather
than just the design of the user interface. It explicitly recognised the importance of the roles of the
social and technical aspects of work. Many STSD approaches, however, fail to take account of the
work in HCI and hence have little to say about interaction design.

The failure to reflect developments in organisational methods and technology can make STSD appear
rather anachronistic and unfashionable. This is particularly true when designing new systems that are
based on innovative ways of working and novel technology.



To appear in Interacting With Computers

12

4.8 Fieldwork issues

Although STSD methods such as participatory design prescribe the involvement of users, it is
comparatively silent on issues such as which users to select, what level of experience in design they
need and so on (Damodoran, 1996; Scacchi, 2004). More generally for fieldwork, there are problems
with identifying the system stakeholders in the first place, before deciding which groups of
stakeholders (and which individuals) should be involved. Traditional approaches involving an
embedded ethnographer are expensive and prolonged, although notions such as ‘quick and dirty’
ethnography address this to some extent (A. Crabtree, 2003)

The key issue, perhaps, is the identification of the focus, extent and level of detail required in the
fieldwork. This is not just a problem for STSD. Within HCI, for example, there have often been
discussions about the pragmatics of using available methods, which are seen as overly time
consuming and unwieldy. Discounted engineering (Nielsen, 1993) and lightweight methods (e.g.,
Monk, 1998) offer possible solutions.

4.9 Summary

The problems that we have identified all need to be solved if socio-technical approaches are to be
accepted and effectively used by the systems engineering community. None of them are
insurmountable, although the solution to some of the problems, such as the lack of agreed success
criteria (4.4) will only emerge as people apply the framework. We have used the problems to inform
the requirements for a discipline of socio-technical systems engineering, which we describe next.

5 Socio-technical systems engineering

In reflecting on the history of socio-technical methods, Mumford (2006) suggested that these methods
continue to be relevant, arguing that there is still a role for humanistic, socio-technical ideas in the
21st Century. In addition to the humanistic arguments, we believe there is a strong pragmatic case for
applying socio-technical approaches to systems engineering. Simply put, the failure of large complex
systems to meet their deadlines, costs, and stakeholder expectations are not, by and large, failures of
technology. Rather, these projects fail because they do not recognise the social and organisational
complexity of the environment in which the systems are deployed. The consequences of this are
unstable requirements, poor systems design and user interfaces that are inefficient and ineffective. All
of these generate change during development, which leads to delays in the delivery of the system, and
to a delivered system that does not reflect the ways that different stakeholders work.

We have noted that the system stakeholders inevitably have different concerns. The main concern of
the system developers is usually whether the system meets the specified requirements. The main
concern of the users is usually whether the system will help them do their job, without adversely
affecting other parts of their work. The main concern of management is whether the system will
generate added value to the organisation in a timely manner and whether it is compliant with
regulatory requirements. Reconciling these different concerns is not a simple task.

We argue that these concerns can be addressed, at least in part, by evolving current socio-technical
methods into a discipline of socio-technical systems engineering (STSE), in which a socio-technical
approach pervades the entire systems engineering life-cycle. Our vision is for a discipline that
combines the philosophies of the STSD approaches with the complementary methods identified in
section 3. STSE has to be founded on the recognised strengths of socio-technical approaches but must
also address the recognised problems in existing approaches (see Section 4). Furthermore, we have to
take into account the barriers to introducing any new approach namely:

1. New methods require upfront investment for an unknown later return.

2. There is often a high entry cost in terms of tooling and training to use new methods.



To appear in Interacting With Computers

13

3. The challenge of method usability–experience is required to improve method usability but if
initial usability is poor, the methods will not be used.

These constraints mean that, whatever the academic credentials of new techniques and methods, it is
hard to get practitioners to adopt them. If STSE is to become a reality, we need to recognise these
barriers and develop approaches that minimise the costs of introduction and the associated risks.

In promoting STSE, our intention is to focus on the development of complex IT systems, as well as
providing a more effective basis for analysing existing systems. In this way, we hope to overcome the
tendency to simply analyse existing systems that has often affected STSD methods (see Section 4.5).
Instead, we intend to use the results of the analysis to exploit what we have learned about socio-
technical systems (including how they can go wrong, for example) and synthesise the results to help
in designing better systems (Coiera, 2007; Walker, et al., 2008).

We consider a complex IT system to be a system that includes one or more networked, software
intensive systems that is used to support the work of different types of stakeholder in one or more
organisations. In general, we assume that these systems are ‘systems of systems’ involving databases,
middleware and personal applications such as MS Excel. We make no assumptions about the
technologies used to develop the system, but note that it is increasingly the case that such systems are
constructed by configuring off-the-shelf ERP systems such as those provided by SAP (Pollock &
Williams, 2009). Nowadays, new systems are rarely completely new, but instead incorporate and
inter-operate with a wide range of existing systems. The costs of integration are likely to exceed the
costs of developing the new components of the system (Hopkins & Jenkins, 2008).

We fully realise that in order for STSE to be successful we need to bring about something of a change
of mind-set among systems engineers. This is no small task, because engineering per se has developed
its own culture over a long period of time, and is often slow to change (Vincenti, 1993). It does,
however, have a history of changing as a result of learning from failures (Petroski, 1986, 1994, 2006),
so we intend to promote STSE by highlighting the socio-technical nature of system failures, and
indicating the lessons that need to be learned. In this way we believe that we can help systems
engineers become more aware of the usefulness of the social sciences, and hence make them more
amenable to socio-technical ideas.

We strongly believe that if we want to make an impact on practical systems engineering, we have to
start with existing systems engineering processes. Socio-technical considerations are not just a factor
in the systems development process: social-technical factors have to be considered at all stages of the
system life-cycle. While systems engineering processes differ considerably between organisations, we
have observed four fundamental activities in all complex organisational IT systems development
projects (Figure 1):

1. Procurement Decisions are made on what systems to reuse and what new systems to procure
from internal or external suppliers. Some analysis will normally precede this, but this is rarely
an in-depth analysis of the areas of the organisation where the system will be used.

2. Analysis Stakeholders in the system are involved in a process that results in requirements for
the new components of the system that is to be introduced.

3. Construction The new components of the system are constructed and integrated with existing
systems and databases.

4. Operation The system is deployed and put into use. Over time, changes to the system are
proposed and the development activity continues to create new releases that are deployed and
used.

--

Figure 1 Systems engineering activities (about here)

--

In Figure 1, we have deliberately avoided showing these activities as sequential. We believe that they
are fundamental to all complex IT systems and that these activities interchange information. The



To appear in Interacting With Computers

14

nature and extent of the information interchange varies considerably. For example, a military system
may involve an extended analysis phase which culminates in the publication of a detailed
requirements document. This is then input to the construction phase with a tightly controlled change
management mechanism for feedback to the analysis phase. In contrast, agile development
approaches interleave analysis and construction with informal requirements used to drive the
construction of the system.

When new business systems (or systems of systems) are introduced, this is often in conjunction with a
change process where there is a goal of (usually) implementing significant changes to the business or
its processes. Segarra (1999), for example, highlighted the importance of making sure that IT
developments and business change were integrated in the manufacturing of aircraft and cars in
Europe. The organisational change process has a structure comparable to the development process, as
shown in Figure 2. While this change process should (and to some extent does) take into account
social and organisational issues, the changes are often deliberately disruptive because the organisation
wants to impose process change. There is likely to be a reluctance to invest in understanding existing
processes and their fit with the organisation because these processes are seen as obsolete and due for
replacement.

This attitude can lead to serious problems because existing processes have been adapted by the people
involved to take particular organisational and workplace concerns into account. A failure to
understand the details of actual processes may mean that replacement processes are less suited to the
work as it is really done and, hence, are considerably less efficient than current processes.

--

Figure 2 The organisational change process (about here)

--

A major problem in many organisations that we believe is an important contributor to system failure
is that there are often only weak connections between change processes and system development
processes (although see Segarra, 1999 for one attempt at integrating business processes and IT
innovations). There are separate change and systems engineering teams, with the principal
communication between them being a requirements document or a set of process workflows. Those
involved in the change process may be unaware of technical factors that limit the flexibility of the
system that is being developed. Those involved in the development process may have no real
understanding of the ways that the proposed workflows will be instantiated in practice, nor of the
environment where the system will be deployed.

Proponents of STSD have regularly referred to the process of design as being a socio-technical system
itself. However, as noted above, there are actually two distinct processes that often only communicate
infrequently. In the worst case, they are linked at the start of the project, when some form of
requirements are gathered, and at the end of the project when the system is delivered. In the interim
period, both processes are operating simultaneously, usually at different rates, and rarely
interchanging information, even though the operation of one often has an impact on the operation of
the other. The organisational issues being addressed by the change team are not communicated to the
systems engineering team; the technical issues that constrain organisational change are not fed back to
the change team.

Our vision of STSE is that it can serve as a means to bridge the system development and change
processes as shown in Figure 3. The application of this approach should feed information to the
development team about socio-technical issues and provide support for using this information
constructively in making design decisions in a timely manner. Similarly, STSE should provide the
change team with cost-effective approaches to socio-technical analysis and provide information to
them about technical factors that constrain the possibilities of change.

--

Figure 3 Socio-technical systems engineering (about here)



To appear in Interacting With Computers

15

--

To realise our vision we need to improve communications between system stakeholders about socio-
technical issues, and provide constructive support for using information about socio-technical factors
in both technical systems design and organisational change processes. We therefore envisage two
types of STSE activities:

1. Sensitisation and awareness activities These are concerned with sensitising stakeholders across
the system to the concerns of other stakeholders, and with convincing stakeholders of the value
of a socio-technical approach. For example, engineers involved in designing the system
database might be made aware of the fact that collecting complete data in some settings may be
practically impossible.

2. Constructive engagement These activities are concerned with integrating STSD approaches into
the practical systems development and change management processes in an organisation. The
nature of the constructive engagement varies depending on the development or change
activities that are involved.

We discuss below in a little more detail what we mean by sensitisation and constructive engagement.
Rather than just noting that we need to take account of the social and technical factors and their
interdependencies, we explicitly identify who needs to be made aware of which factors, and provide a
focus for the activities that are needed to integrate STSD approaches into the engineering life cycle.
We note here, however, that identifying appropriate approaches to sensitisation and constructive
engagement and integrating these into development and change processes are the key challenges
facing STSE researchers.

As well as bridging the change and system development processes, STSE can inform the change and
systems development processes of broader organisational goals and constraints. It therefore acts as an
information bridge between the wider organisation and specific projects to develop new complex IT
systems.

This notion of STSE as a means of linking and coordinating change processes and systems
engineering processes is pragmatic and deliberately limited. Our intention is to provide a framework
through which we can use socio-technical approaches in practice and convince practical engineers of
their value. While a broader notion encompassing humanistic work practices or organisational re-
design could be adopted, we believe that our less ambitious approach has a better chance of adoption.
Our approach is less threatening to existing management and can be introduced in an incremental
way. If we can succeed in a limited way, we will then be in a better position to extend the scope of
STSE.

We cannot and do not claim that this deliberately limited view of socio-technical systems engineering
solves all of the problems that we identified in section 4 of this paper. However, by rooting the
approach in the language of business, by explicitly linking to the notion of change management and
by proposing close interaction between development and change management teams, we believe that
we address some of these problems including inconsistent terminology, lack of agreed success criteria
(success is related to the success of the change proposals), analysis without synthesis,
multidisciplinarity and perceived anachronism. Other work that we are involved with is concerned
with using responsibilities as an abstraction to represent work (Lock, et al., 2009; Sommerville, et al.,
2009). This focuses on appropriate abstractions for STSE and may be incorporated into the approach
described here at some later date.

5.1 Sensitisation and awareness

The primary aim of sensitisation activities is to ensure that system stakeholders, including the
development engineers, are made aware of the socio-technical issues that may affect the design and
use of the system. In short, they have to be convinced that adopting a socio-technical approach is
worthwhile and persuaded to actively participate in the process. Based on our experience, we have
noted several types of sensitisation activity:



To appear in Interacting With Computers

16

1. Sensitising system engineers to the notion that socio-technical factors should be considered
during system design, and to the cultures of the organisation’s different stakeholder groups. In
large organisations, different parts of the organisation may have their own cultures and there is
a need for better cross-organisational understanding of these.

2. Sensitising those involved in procuring a new, complex IT system to the socio-technical
considerations that may influence the design and use of the system.

3. Sensitising system stakeholders to the socio-technical issues that, almost inevitably, are a
source of conflict with other stakeholders.

4. Sensitising system stakeholders to the notion that an analyst will be studying their work with a
view to a deeper understanding of it, rather than to assess or audit what they do. Here, concerns
such as snooping and reporting to management have to be addressed.

5. Sensitising stakeholder groups to the different world views of other groups, perhaps from
different disciplines, in the organisation. For example, accountants think about financial
transactions in one way and are concerned about ensuring accounting regulations are followed;
users of financial data may think about these transactions in a totally different way, reflecting
their own management responsibilities.

6. Sensitising management and other system stakeholders to the real technical constraints that
limit what is possible with a software system.

The need for sensitisation varies depending on the people in an organisation and the organisation
itself. In line with the pragmatic nature of STSE, activities are selectively employed as circumstances
dictate. It is clear from our extensive experience in ethnographic studies, however, that sensitisation is
essential if the later stages of systems engineering are to succeed. Failure at an early stage will
inevitably mean that key system stakeholders will not understand the impact of socio-technical factors
on systems and why systems design is not simply a technical process.

A key issue here, of course, is how to we achieve sensitisation in practice. The academic literature is
of little help because, naturally, existing socio-technical studies have already crossed this barrier and
have convinced companies and other organisations to become involved in these studies. Clearly,
practitioners rarely read academic papers and appealing to the canon of work on socio-technical
systems is unlikely to be an effective approach. There are three possible approaches that we have
previously investigated and that we believe have some potential here:

1. Taking engineers to the workplace. The idea of bringing users to the software development
team is one that is widely accepted (e.g. in agile methods) but we believe that taking software
developers into the workplace, even for a short time, can reveal to them the complexity of work
and the difficulties faced by system users. This approach is one that we have found to be
successful in a number of different situations (Bentley, et al., 1992b; Lock, et al., 2008).

2. Workplace vignettes. Of course, the practicalities of achieving this can be daunting, so we have
explored the notion of ‘ethnographic vignettes’, textual and video descriptions of situated work,
that highlight socio-technical issues for engineers and managers. (Clarke, et al., 2003; Martin,
et al., 2006).

3. War stories. War stories are short illustrative descriptions of problematic situations (Orr, 2005)
that have arisen and how these have been addressed. We have catalogued a set of war stories
relating to problems that arose in the development and deployment of an electronic patient
record system. (Martin, et al., 2004; Mackie, 2006).

We cannot claim that these are complete solutions to the problems of sensitisation and there are real
practical difficulties in presenting both vignettes and war stories. However, the availability of social
media such as YouTube, may offer some opportunities to make this information widely and easily
accessible.



To appear in Interacting With Computers

17

5.2 Constructive engagement

Constructive engagement activities provide a means of integrating STSD approaches into the systems
engineering and the organisational change processes, and synchronising the two processes at
appropriate points. The precise nature of the constructive engagement will vary from project to
project, largely determined by which particular activities in the development and change processes are
involved. Here we discuss three types of constructive engagement.

5.2.1 Problem definition

Software design methods are geared towards developing a solution to ‘the problem’, so if that
‘problem’ is not understood, applying the methods will generate an inappropriate solution. The nature
of the identified problem, though, is rarely simple because each group of stakeholders has its own
viewpoint about what it really is. Instead of there being one single problem, there is usually a set of
overlapping problems with conflicting characteristics. Indeed, some of these ‘problems’ may be no
such thing – some stakeholders may be perfectly happy with the status quo and their ‘problem’ is that
a new system is being imposed on them because of the requirements of other stakeholders.

STSD approaches have recognised that understanding ‘the problem’ that the system is intended to
address is one of the keys to success, which is why many STSD methods are oriented towards
analysis and problem understanding. Using an STSD approach will therefore help the stakeholders to
focus on the nature of the problems and issues and come to some agreement about what these really
are. It will also help systems developers to understand the real problems—rather than what they
perceive as being the ‘problem’—their system is supposed to solve.

The alignment of the systems engineering and organisational change processes during problem
definition is facilitated by organising, presenting and analysing the process and environmental issues
using a coherent framework. The result should be a description of the work context that has been
agreed by the stakeholders, accompanied by a set of corresponding requirements based on work
performed in that context. These requirements, in principle at least, will define: the purpose of the
system within the wider organisational context; the practicalities of its use in its operational
environment; and the functionality it provides to system users. Achieving an appropriate balance
between these different requirements forms the basis for the construction of a system that will be
acceptable to, and used by the end users, as well as delivering the expected benefits to the
stakeholders.

In practice, however, expressing what is really required by system stakeholders as a set of
requirements means losing some of the richness that is typical of socio-technical analysis.
Requirements can state broad functionality, but the way that the functionality is realised and the ways
that the system presents information to stakeholders cannot be described using requirements
statements. We know that HCI design, for example, depends on prototyping and experimentation;
other aspects of STSD such as support for cooperation and collaboration must also be explored and
discovered rather than pre-determined.

5.2.2 Constructing the solution

We use the term construction rather than design and implementation because approaches such as agile
development and configuration of ERP systems do not distinguish between these activities. The key to
success lies in ensuring that the engineers involved in systems construction are aware of socio-
technical issues—particularly the interdependence of technical and organisational aspects—and the
realities of the environment in which the system will be used. It is also important that there is
agreement within the organisation about which methods will be used during development. In this way
we can alleviate design and implementation decisions that make it more difficult to incorporate the
system into everyday, routine work.

Getting the construction right is not simply a matter of writing better system requirements. In the
same way that requirements for a user interface cannot adequately express the richness of the
interaction with a particular system, social and organisational complexity cannot be simply distilled
into ‘social’ or ‘cooperation’ requirements. System requirements are still needed to provide engineers



To appear in Interacting With Computers

18

with a broad understanding of what has to be constructed. The agile approach of involving end-users
as ‘owners’ of requirements is a good one but needs to be extended to take into account a broader set
of system stakeholders.

An unavoidable constraint on construction is the need to fit with existing procurement and systems
engineering processes. For good reasons, organisations are very reluctant to make radical changes to
these processes, so STSE has to integrate with them rather than be presented as a new, additional
approach. If the procurement process does not consider usability then it should be extended to include
it. If it is left to the supplier to decide on the levels of usability, these will be determined by the time
and resources available during development, rather than seen as a requirement that has to be met (e.g.,
see Artman, 2002).

The human-centred design methods that have been developed in the field of HCI provide one way of
making sure that technical and social aspects are considered together. The use of prototyping, for
example, allows users to think about how they would use the system, and offer feedback on the way
that the system will look and feel before the final system is delivered. It also provides a way of
synchronously linking the systems development and organisational processes.

5.2.3 Evaluation

The evaluation of a socio-technical system involves assessing the deployed system to understand how
well it has met the expectations of its stakeholders. In the ideal world, where perfect knowledge of the
future was available, it would be possible to lay out all the criteria for evaluation during the analysis
of the system, when the system goals are set. In reality, systems are frequently oversold with inflated
expectations of how they will perform in a situation that often is unknown during the construction
stage—Woods and Dekker’s (2000) envisioned world problem—with the net effect that the final
system fails to satisfy those expectations. It is therefore important to recognise that the nature of
evaluation changes as the design and the organisation evolve, and that the expectations of the
stakeholders will also change accordingly.

Human-centred design approaches advocate evaluation throughout the development process and in the
longer term (International Standards Organisation, 2010). Full systematic evaluation of a deployed
system is rare, however, partly because organisational issues get marginalised (e.g., Doherty & King,
2001). The original system stakeholders may have moved on, and the new stakeholders may have
different expectations, based on their experience of the deployed system. Some stakeholders also take
a fatalistic approach: they see themselves as being stuck with the system, so there is no point in
complaining about it. Other stakeholders who are in a position to complain, simply refuse to use a
system that they do not like, and disassociate themselves from it.

Nevertheless, we argue that there is a place for lightweight evaluation as part of the STSE cycle. This
should not be seen as a means of criticising the original stakeholders or requirements, but rather as a
constructive activity that leads to a more effective operational system. Essentially, the evaluation
should be concerned with ‘filling in the gaps’ in the analysis of the system which may arise because
of incompleteness or incorrectness, or because of subsequent organisational change. In other words,
when new requirements arise, or existing requirements change on the organisational side, or when
problems arise with satisfying the original requirements on the systems development side, these need
to be assessed in their own right, and in terms of the wider development project. This is because they
are likely to change the shape of the delivered system, and hence the nature of the evaluation of
whether the system meets its goals.

We see the one of the primary roles of evaluation as being its contribution to the process of
‘domestication’ (Williams & Edge, 1996) where the system gets bedded into the organisation.
Domestication is the activity of familiarisation with new software and changing both the software and
business processes so that the software becomes an integral part of everyday work. The types of
questions asked during evaluation are therefore not ‘does this work?’ but ‘how can we make this
work?’ This may, of course, lead to change proposals and further iterations of the analysis and
construction activities. However, the changes required may be process changes that people carry out
to fit the system into their normal work practice.



To appear in Interacting With Computers

19

6 An STSE research agenda

In this paper, we have briefly reviewed several methods for developing socio-technical systems and
suggested why these methods have not entered the mainstream of system design practice. Based on
this and on our own extensive experience—both authors have over 15 year’s experience of working
with industry, understanding industrial concerns and transferring research results into practice—we
have proposed a pragmatic framework for socio-technical systems engineering. We believe that this
framework can be used as a basis for integrating socio-technical analysis and practical, technical
systems engineering. We have deliberately designed it as a means of linking organisational change
processes and technical systems development and make no claims that our framework provides
complete coverage of all socio-technical issues.

The framework is based on almost 20 years of experience of attempting to integrate social and
organisational insights from workplace studies into the systems engineering process. The key lesson
that we have learned from this work is that there cannot be one simple way to achieve this and that a
variety of different techniques, appropriate to the organisations involved should be adopted. We
believe that the framework we propose provides a basis for focusing socio-technical analysis around
real business concerns and hence increasing the probability of uptake. It establishes a general model
that will, inevitably, be instantiated in different ways in different organisations.

The fact that the framework does not exist in isolation from its instantiation and situated use means
that an empirical evaluation of the framework is not currently practical. Separating the value of the
framework from its instantiation (essential for empirical framework evaluation) is, in our view,
impossible. We have qualitatively evaluated our ideas through discussions with industrial
collaborators and have received positive feedback from them.

In outlining our framework for STSE we have been particularly influenced by work on ethnographic
workplace analysis and on cognitive systems engineering. The STSE framework is also compatible
with Resilience Engineering (Hollnagel, et al., 2006). In particular, STSE addresses the way that
people use everyday workarounds to keep systems running, and how people often intervene to
mitigate the effects of failures that could otherwise have serious adverse consequences. Furthermore,
the framework is also consonant with human-centred design approaches (International Standards
Organisation, 2010), although our framework makes explicit the relationship between system
development and organisational change.

We believe that the different socio-technical design methods have much in common and our notions
of the basic activities of STSE allow any method of socio-technical analysis to be used. Methods of
analysis, in our view, are not the issue. Rather, research in STSE should address the engineering
problems of applying socio-technical approaches in a cost-effective way and integrating STSE with
existing systems and software engineering processes.

Research in this area requires an interdisciplinary approach and may involve computer scientists,
software engineers, HCI designers, psychologists, sociologists and human factors specialists. We
believe that all of these areas still have much to learn from each other. We would advocate the use of
techniques such as action learning (Revans, 1982) here, so that people can learn to know what things
they do not know about, and to ask people in similar positions questions so that they can explore and
overcome their ignorance.

Some of the most important areas are:

1. STSE processes Our model of STSE is based around the notions of sensitisation and
constructive engagement. The research issues here relate to the specific activities that might be
involved in the STSE process to manifest these notions and how these can be integrated with
systems engineering process activities.

How can requirements be made richer to incorporate information about socio-technical
processes? In reality, the model of system development where systems are built to a
specification of requirements is not going to change for complex systems. Nor, in our view,
should it change. However, current requirements documents are usually impoverished



To appear in Interacting With Computers

20

descriptions of how work is done and what is really needed. We need to develop guidance for
requirements writers that allows them to express a richer picture of the socio-technical systems
to the engineers responsible for systems development.

How do we transfer knowledge and experience from one organisation to another? The issue
here is discovering how to separate the essential (what applies to all organisations in a sector)
from the accidental (the specific ways in which an organisation works). We will then be in a
position to transfer process knowledge across organisations.

What tool support is effective in supporting STSE processes? We need to make use of existing
tools—both software engineering tools and Web 2.0 tools—that support collaboration and
communication (wikis, social networks, and so on). We need to know more about how to
deploy existing tools for distributed project support, how to use these tools to support problem
solving, how to integrate technical and social tools, etc.

2. Modelling and abstraction Modelling and abstraction is fundamental to software engineering,
with models of different types being used by engineers to communicate. The practical use of
socio-technical approaches has to acknowledge this by providing a means of modelling, and by
integrating with existing approaches. Examples of research issues in this area are:

What models and abstractions are useful when thinking about systems design and interaction in
a distributed multi-organisational system? The abstractions currently used in technical system
modelling (e.g. use-cases, objects, etc.) do not seem to us to be sufficient to represent socio-
technical considerations.

Can current approaches to system modelling (e.g. the UML) be adapted to reflect socio-
technical considerations? What are the benefits and problems of adopting this approach?

Can organisations be meaningfully modelled to provide useful information for socio-technical
systems design? This is a longer term issue which involves extending the scope of our
framework beyond the change process in organisations to consider broader issues of
organisational politics and dynamics.

3. Integrated Human-Centred Design The importance of effective human-centred design is now
generally recognised, if not universally practised (Woods, et al., 2007). However, most methods
of socio-technical analysis have paid little attention to those areas of design relating to
individuals (Hollnagel, 1998). Furthermore, there is a tendency in the engineering community
to identify all human, social and organisational issues as problems of the human interacting
with the technology (such as “finger trouble”). In doing so, they ignore the relationship between
individual interaction and the social organisation of work, and particularly how the latter can
influence the former. Research issues here include:

How can we integrate methods of socio-technical analysis with methods that support HCI
design and evaluation? Many HCI methods have focused on the individual whereas socio-
technical methods focus on the organisation and groups within the organisation. We need to
develop practical process guidance that allows organisations to use these methods together and
to integrate their results.

How can we use the interface to highlight relevant socio-technical issues, such as awareness of
work? The CSCW research community has addressed this issue and there have been a range of
proposed techniques to support awareness (e.g., Gross, et al., 2005). Much of this depended on
special purpose systems and has been overtaken by the use of web-based systems. This work
should be extended and developed to reflect modern interaction and to take organisational
rather than situational considerations into account.

How can evaluation methods be extended to take organisational issues into account? Current
approaches to evaluating HCI design are often based around the individual using the proposed
interface. However, the organisational setting where work is done has a profound influence on
the use of systems, and we need to extend evaluation methods to consider how organisational



To appear in Interacting With Computers

21

considerations affect the use of an interface. This is particularly relevant when things go wrong
and the system has to support coping behaviour.

4. Organisational learning In many cases, the socio-technical problems that affect a system are
not new. They have occurred before but the organisation has no means of learning from these
problems or, indeed, from the problems of comparable organisations. We believe that we have
to revisit the notion of organisational memory (Walsh & Ungson, 1991) with a view to
supporting the organisational learning process and thus reducing the chances of mistakes being
repeated. Research issues in this area include:

How can different types of knowledge be captured at low cost and maintained in an accessible
way? The problem of low-cost knowledge capture was, we believe, one reason why many
attempts to implement organisational memory systems in the 1990s were ineffective. Capturing
knowledge for the future distracts people from their everyday work so we need to discover
techniques that capture information from normal work activities with minimal intervention
from the people involved in these processes.

How can the use of organisational memories and other support for organisational learning be
embedded in the STSE process? Organisational memories and learning from experience can
only be effective if they are actually used. We need to invent ways of easily accessing such
information as part of routine processes and ensuring that the information can be updated with
accounts of practical usage experience.

How can we deploy modern tools and technologies (wikis, Google etc.) to develop a workable
organisational memory system? People are becoming increasingly familiar with Web 2.0
collaboration tools. Using these as a basis for organisational learning means that initial barriers
to tool use are lowered. We are convinced that using these web-based systems is the most
effective way to reduce the costs of collecting and using organisational information. To do so,
however, we need to investigate how to structure these tools to maintain long-term information
about an organisation and its processes.

5. Global systems Existing approaches to STSD are virtually all based on an assumption that
systems are located within a coherent organisation where the system stakeholders have similar
cultural values and assumptions. However, there is now an increasing trend to create global
systems, which may involve several disparate organisations that are located around the world.
Similarly, the teams involved in complex systems engineering projects are geographically
distributed across timezones and cultures. Research issues in this area of global systems and the
globalisation of systems engineering include:

How should socio-technical systems design methods evolve to cover work that is not co-
located? The evolution of socio-technical methods to address differences in organisational and
social culture that cause problems to be understood and addressed in different ways.

How can fieldwork techniques evolve to collect information about everyday practice at remote
sites? Many STSD methods rely on interaction with end-users either through interviews or
direct observation of work. This direct interaction is often impractical when users are
distributed across the world. Methods of information collection about work practice have to
evolve to cope with this situation.

How are electronically mediated computer systems integrated with everyday work? Interaction
of distributed teams is normally mediated by electronic systems. While there have been many
studies of the use of systems such as email (e.g., Bellotti, et al., 2003), we need to understand
how teams work around the problems that they encounter when using such systems. We also
need to understand how social networks and social media can be used effectively in
professional situations to support socio-technical systems engineering.

We are under no illusions about the problems of introducing new methods and approaches or the
length of time required to introduce them into an organisation. However, we are convinced that the



To appear in Interacting With Computers

22

increasing awareness in industry that systems problems are not just technical problems means that
there is a real possibility of introducing a cultural change in the practice of systems development.

Whilst this is no easy task, we believe that we can achieve our goal by taking inspiration from Vicente
(2008). His starting point was to understand the failure to date of the human factors/ergonomics field
to satisfy one of its main goals of bringing about societal change. So, in particular, we believe that we
need to raise the profile of STSE within organisations; to highlight socio-technical failures as a way of
promoting a move towards the use of STSE; and to exploit the opportunities presented by failures and
service disruptions in a way that will encourage a shift towards the use of STSE. In this way we
believe that we can establish a discipline of socio-technical systems engineering that meets the needs
of the 21st century.

Acknowledgements

The authors would like to thank Denis Besnard, John Rooksby and Phil Tetlow for comments on an
earlier draft, and the anonymous reviewers whose comments have helped to improve the paper. This
work was funded by the EPSRC as part of the Large Scale Complex IT Systems Project.

7 References:

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development Methods:
Review and Analysis (No. VTT 478). Oulou, Finland: VTT Technical Research Centre of
Finland.

Ackroyd, S., Harper, R., Hughes, J. A., & Shapiro, D. (1992). Information technology and practical
police work. Milton Keynes, UK: Open University Press.

Artman, H. (2002). Procurer usability requirements: Negotiations in contract development
Proceedings of NordiCHI 2002 (pp. 61-70). New York, NY: ACM Press.

Avgerou, C., Ciborra, C., & Land, F. (2004). The social study of information and communication
technology. Oxford, UK: Oxford University Press.

Avison, D., Baskerville, R., & Myers, M. (2001). Controlling action research projects. Information
Technology & People, 14(1), 28-45.

Avizienis, A., Laprie, J.-C., & Randell, B. (2004). Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33.

Bader, G., & Nyce, J. M. (1998). When only the self is real: Theory and practice in the development
community. Journal of Computer Documentation, 22(1), 5-10.

Badham, R., Clegg, C., & Wall, T. (2000). Socio-technical theory. In W. Karwowski (Ed.), Handbook
of Ergonomics. New York, NY: John Wiley.

Barker, V. E., & O’Connor, D. E. (1989). Expert systems for configuration at Digital: XCON and
beyond. Communications of the ACM, 32(3), 298-318.

Bellotti, V., Ducheneaut, N., Howard, M., & Smith, I. (2003). Taking email to task: the design and
evaluation of a task management centered email tool. Paper presented at the Proceedings of
the SIGCHI conference on Human factors in computing systems.

Bentley, R., Hughes, J. A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D., et al. (1992a).
Ethnographically-informed systems design for air traffic control. Paper presented at the
Proceedings of the 1992 ACM conference on Computer-supported cooperative work.

Bentley, R., Rodden, T., Sawyer, P., & Sommerville, I. (1992b). An architecture for tailoring
cooperative multi-user displays Proceedings CSCW '92 (pp. 187-194). New York, NY: ACM
Press.

Berg, M. (1999). Patient care information systems and healthcare work: a sociotechnical approach.
International Journal of Medical Informatics, 55(2), 87-101.

Berg, M. (2001). Implementing information systems in health care organizations: myths and
challenges. International Journal of Medical Informatics, 64(2), 143-156.



To appear in Interacting With Computers

23

Berg, M., & Toussaint, P. (2003). The mantra of modelling and the forgotten powers of paper: a
sociotechnical view on the development of process-oriented ICT in health care. International
Journal of Medical Informatics, 69(2-3), 223-234.

Beyer, H., & Holtzblatt, K. (1999). Contextual design. Interactions, 6(1), 32-42.
Bjerknes, G., & Bratteteig, T. (1995). User participation and democracy: A discussion of

Scandinavian research on system development. Scandinavian Journal of Information Systems,
7(1), 73-98.

Blomberg, J. L. (1988). The variable impact of computer technologies on the organization of work
activities Computer-supported cooperative work: a book of readings (pp. 771-789). San
Francisco, CA: Morgan Kaufmann Publishers Inc.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Boston,
MA: Addison-Wesley.

Bowker, G. C., Star, S. L., Turner, W., & Gasser, L. (1997). Social science, technical systems, and
cooperative work: Beyond the great divide. Mahwah, NJ: LEA.

Brennan, S. (2007). The biggest computer programme in the world ever! How’s it going? Journal of
Information Technology, 22(3), 202-211.

Checkland, P. (1981). Systems thinking, systems practice. Chichester, UK: Wiley.
Checkland, P., & Scholes, J. (1999). Soft systems in action (2nd ed.). Chichester, UK: Wiley.
Checkland, P., & Poulter, J. (2006). Learning for action: A short definitive account of soft systems

methodology and its use for practitioners, teachers and students. Chichester, UK: Wiley.
Cherns, A. (1976). Principles of socio-technical design. Human Relations, 29(8), 783-792.
Cherns, A. (1987). Principles of socio-technical design revisited. Human Relations, 40(3), 153-162.
Clarke, K., Hughes, J. A., Martin, D., Rouncefield, M., Sommerville, I., Gurr, C., et al. (2003).

Dependable red hot action. Paper presented at the Proceedings of the eighth conference on
European Conference on Computer Supported Cooperative Work.

Clegg, C. (2000). Sociotechnical principles for system design. Applied Ergonomics, 31, 463-477.
Coiera, E. (2007). Putting the technical back into socio-technical systems research. International

Journal of Medical Informatics, 76S, S98-S103.
Crabtree, A. (2003). Designing collaborative systems: A practical guide to ethnography. London, UK:

Springer.
Crabtree, A., Benford, S., Greenhalgh, C., Tennent, P., Chalmers, M., & Brown, B. (2006).

Supporting ethnographic studies of ubiquitous computing in the wild Proceedings of the 6th
conference on Designing Interactive systems (pp. 60-69). University Park, PA: ACM.

Damodoran, L. (1996). User involvement in the systems design process - a practical guide for users.
Behaviour & Information Technology, 15(6), 363-377.

Dankbaar, B. (1997). Lean production: Denial, confirmation or extension of sociotechnical systems
design? Human Relations, 50(5), 567-583.

De Sitter, L. U., Den Hertog, J. F., & Dankbaar, B. (1997). From complex organizations with simple
jobs to simple organizations with complex jobs. Human Relations, 50(5), 497-534.

Dekker, S. W. A., Nyce, J. M., & Hoffman, R. R. (2003). From contextual inquiry to designable
futures: What do we need to get there? IEEE Intelligent Systems, 18(2), 74-77.

Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human Computer Interaction, 3rd ed. Harlow,
UK: Addison-Wesley.

Doherty, N., & King, M. (2001). The treatment of organisational issues in systems development
projects: The implications for the evaluation of information technology investments.
Electronic Journal of Information Systems Evaluation, 4(2), 13pp.

Eason, K. (1988). Information technology and organisational change. London, UK: Taylor & Francis.
Eason, K. (1997). Understanding the organisational ramifications of implementing information

technology systems. In M. Helander, T. Landauer & P. Prabhu (Eds.), The handbook fo
human-computer interaction (Second ed., pp. 1475-1494). Amsterdam, The Netherlands:
Elsevier Science.

Eason, K. (2001). Changing perspectives on the organizational consequences for information
technology. Behaviour & information technology, 20(5), 323-328.

Eason, K. (2007). Local sociotechnical system development in the NHS national programme for
information technology. Journal of Information Technology, 22(3), 257-264.



To appear in Interacting With Computers

24

Emery, F. E., & Trist, E. L. (1960). Socio-technical systems. In C. W. Churchman, & Verhulst, M.
(Ed.), Management Science Models and Techniques (Vol. 2, pp. 83-97). Oxford, UK:
Pergamon.

Goguen, J. (1999). Tossing algebraic flowers down the great divide. In C. S. Calude (Ed.), People and
ideas in theoretical computer science (pp. 93-129). Berlin, Germany: Springer.

Gould, J., & Lewis, C. (1985). Designing for usability: Key principles and what designers think.
Communications of the ACM, 28(3), 300-311.

Greenbaum, J., & Kyng, M. (Eds.). (1991). Design at work: Cooperative design of computer systems.
Hillsdale, NJ: LEA.

Griffiths, T. L., & Dougherty, D. J. (2001). Beyond socio-technical systems: introduction to the
special issue. Journal of Engineering and Technology Management, 18(3-4), 207-218.

Gross, T., Stary, C., & Totter, A. (2005). User-centred awareness in computer-supported cooperative
work-systems: Structured embedding of findings from social science. International Journal of
Human-Computer Interaction, 18(3), 323-360.

Grudin, J. (1994). Computer-supported cooperative work: History and focus. Computer, 27(5), 19-26.
Gulliksen, J., Görannson, B., Boivie, I., Blomkvist, S., Persson, J., & Cajander, Å. (2003). Key

principles for user-centred system design. Behaviour & Information Technology, 22(6), 397-
409.

Heath, C., & Luff, P. (1991). Collaboration and control: crisis management and multimedia
technology in London underground line control rooms. Computer Supported Cooperative
Work, 1, 69-94.

Heath, C., & Luff, P. (1992). Collaboration and control: Crisis Management and Multimedia
Technology in London Underground Line Control Rooms. Computer Supported Cooperative
Work, 1(1-2), 69-94.

Heath, C., Jirotka, M., Luff, P., & Hindmarsh, J. (1994). Unpacking collaboration: the interactional
organisation of trading in a city dealing room. Computer Supported Cooperative Work, 3(2),
147-165.

Hickey, S., Matthies, H., & Mumford, E. (2006). Designing human systems: An agile approach to
ETHICS.: Lulu.com.

Hollnagel, E. (1998). The cognitive reliability and error analysis method. Oxford, UK: Elsevier.
Hollnagel, E., & Woods, D. D. (2005). Joint cognitive systems: Foundations of cognitive systems

engineering. Boca Raton, FL: CRC Press.
Hollnagel, E., Woods, D. D., & Leveson, N. (2006). Resilience engineering: Concepts and precepts.

Aldershot, UK: Ashgate.
Hopkins, R., & Jenkins, K. (2008). Eating the IT elephant: Moving from greenfield development to

brownfield. Upper Saddle River, NJ: IBM Press.
Hughes, J. A., Randall, D., & Shapiro, D. (1992). Faltering from ethnography to design. Proceedings

of CSCW '92 (pp. 115-122). New York, NY: ACM Press.
Hughes, J. A., O’Brien, J., Rodden, T., Rouncefield, M., & Blythin, S. (1997). Designing with

ethnography: A presentation framework for design. Proceedings of the conference on
designing interactive systems: processes, practices, methods, and techniques, DIS ’97 (pp.
147-158). New York, NY: ACM Press.

International Standards Organisation (2010). Ergonomics of human-system interaction - Part 210:
Human-centred design for interactive systems. Geneva, Switzerland: ISO.

Kawka, N., & Kirchsteiger, C. (1999). Technical note on the contribution of sociotechnical factors to
accidents notified to MARS. Journal of Loss Prevention in the Process Industries, 12, 53-57.

Krug, S. (2005). Don't make me think! A common sense approach to web usability (Second ed.).
Berkeley, CA: New Riders.

Land, F. (2000). Evaluation in a socio-technical context. In R. Baskerville, Stage, J., & DeGross, J.I.
(Ed.), Organisational and social perspectives on information technology (pp. 115-126).
Dordrecht, The Netherlands: Kluwer Academic Publishers.

Laprie, J.-C. (1985). Dependable Computing and Fault Tolerance: Concepts and terminology
Proceedings of 15th IEEE International Symposium on Fault-Tolerant Computing (pp. 2-11).
Ann Arbor, MI: IEEE.



To appear in Interacting With Computers

25

Leonard, D., & Rayport, J. F. (1997). Spark innovation through empathic design. Harvard Business
Review, 75(6), 102-113.

Lock, R., Storer, T., Harvey, N., Hughes, C., & Sommerville, I. (2008). Observations of the Scottish
elections, 2007. Transforming Government: People, Process and Policy, 2(2), 104-118.

Lock, R., Sommerville, I., & Storer, T. (2009). Responsibility modelling for civil emergency
planning. Risk Management, 11, 179-207.

Mackie, J. (2006). War stories: A collection of potential hazards. Retrieved 6th April, 2010, from
http://www.comp.lancs.ac.uk/~mackie/WarStoriesWeb/hazards.php

Majchrzak, A., & Borys, B. (2001). Generating testable socio-technical systems theory. Journal of
Engineering and Technology Management, 18(3-4), 219-240.

Martin, D., Mariani, J., & Rouncefield, M. (2004). Implementing an EPR project: Everyday features
and practicalities of NHS project work Proceedings of the 9th International Symposium for
Health Information Management Research (ISHIMR 2004) (pp. 120-132). Sheffield, UK:
Sheffield University Press.

Martin, D., & Sommerville, I. (2004). Patterns of cooperative interaction: linking ethnomethodology
and design. ACM Transactions on Computer-Human Interaction (TOCHI), 11(1), 59-89.

Martin, D., Rouncefield, M., & Sommerville, I. (2006). Patterns for dependable design. In K. Clarke,
G. Hardstone, M. Rouncefield & I. Sommerville (Eds.), Trust in technology: A socio-
technical perspective (pp. 147-168). Dordrecht, The Netherlands: Springer.

Mathews, J. A. (1997). Introduction to the special issue. Human Relations, 50(5), 487-496.
Mayhew, D. (1999). The usability engineering lifecycle: A practitioner's handbook for user interface

design. San Francisco, CA: Morgan Kaufmann.
Monk, A. (1998). Lightweight techniques to encourage innovative user interface design. In L. Wood

(Ed.), User interface design: Bridging the gap from user requirements to design (pp. 109-
129). Boca Raton, FL: CRC Press.

Muller, M. J., Wildman, D. M., & White, E. A. (1993). Taxonomy of PD practices: A brief
practitioner’s guide. Communications of the ACM, 36(4), 26-27.

Mumford, E. (1983). Designing human systems for new technology - The ETHICS method. Retrieved
from http://www.enid.eu-net.com/C1book1.htm

Mumford, E., & MacDonald, W. B. (1989). XSEL’s progress: The continuing journey of an expert
system. New York, NY: Wiley.

Mumford, E. (1995). Effective systems design and requirements analysis: The ETHICS method.
Basingstoke, UK: Macmillan Press.

Mumford, E. (2000). Socio-technical design: An unfulfilled promise or a future opportunity? In R.
Baskerville, Stage, J., & DeGross, J.I. (Ed.), Organisational and social perspectives on
information technology (pp. 33-46). Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Mumford, E. (2006). The story of socio-technical design: reflections in its successes, failures and
potential. Information Systems Journal, 16, 317-342.

Nielsen, J. (1993). Usability Engineering. London, UK: Academic Press.
Niepce, W., & Molleman, E. (1998). Work design issues in lean production from a sociotechnical

systems perspective: Neo-Taylorism or the next step in sociotechnical design? Human
Relations, 51(3), 259-287.

Norman, D. A. (1993). Things that make us smart: Defending human attributes in the age of the
machine. Boston, MA: Addison-Wesley.

Norman, D. A., & Draper, S. (Eds.). (1986). User Centred System Design. Hillsdale, NJ: LEA.
Orr, J. (2005). Talking about machines: An ethnography of a modern job. Ithaca, NY: ILR Press.
Petroski, H. (1986). To engineer is human: The role of failure in successful design. New York, NY: St

Martin's Press.
Petroski, H. (1994). Design paradigms: Case histories of error and judgement in engineering.

Cambridge, UK: Cambridge University Press.
Petroski, H. (2006). Success through failure: The paradox of design. Princeton, NJ: Princeton

University Press.
Pollock, N., & Williams, R. (2009). Software and organisations. New York, NY: Routledge.

http://www.comp.lancs.ac.uk/~mackie/WarStoriesWeb/hazards.php
http://www.enid.eu-net.com/C1book1.htm


To appear in Interacting With Computers

26

Procter, R., Rouncefield, M., Balka, E., & Berg, M. (2006). Special issue: CSCW and dependable
healthcare systems. Computer Supported Cooperative Work, 15(5-6), 413-418.

Rasmussen, J., Pejtersen, A.-M., & Goodstein, L. P. (1994a). Cognitive systems engineering.
Chichester, UK: Wiley.

Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994b). Cognitive systems engineering.
Chichester, UK: Wiley.

Revans, R. (1982). What is action learning? Journal of Management Development, 1(3), 64-75.
Rouncefield, M. (1998). An ethnography of ‘everyday admissions work’. Lancaster, UK: Lancaster

University.
Scacchi, W. (2004). Socio-technical design. In W. S. Bainbridge (Ed.), The encyclopedia of human-

computer interaction (pp. 656-659). Great Barrington, MA: Berkshire Publishing Group.
Segarra, G. (1999). The advanced information technology innovation roadmap. Computers in

Industry, 40, 185-195.
Sommerville, I., Rodden, T., Sawyer, P., & Bentley, R. (1992). Sociologists can be surprisingly useful

in interactive system design Proceedings of HCI'92 (pp. 341-353). Cambridge, UK:
Cambridge University Press.

Sommerville, I., Lock, R., Storer, T., & Dobson, J. E. (2009). Deriving information requirements from
responsibility models Proceedings CAiSE 2009: 21st international conference on advanced
information systems engineering (pp. 515-529). London, UK: Springer.

Sommerville., I., & Dewsbury, G. (2007). Dependable domestic system design: a socio-technical
approach. Interacting with Computers, 19, 438-456.

Suchman, L. (1987). Plans and situated actions. Cambridge, UK: Cambridge University Press.
Taylor, F. W. (1911). Principles of scientific management. New York: NY: Harper & Row.
Taylor, J. C. (1982). Designing an Organization and an Information-System for Central Stores - a

Study in Participative Socio-Technical Analysis and Design Systems Objectives Solutions
2(2), 67-76.

Vicente, K. (1999). Cognitive work analysis. Mahwah, NJ: LEA.
Vicente, K. (2008). Human factors engineering that makes a difference: leveraging a science of

societal change. Theoretical Issues in Ergonomics Science, 9(1), 1-24.
Viller, S., & Sommerville, I. (2000). Ethnographically informed analysis for software engineers.

International Journal of Human-Computer Studies, 53, 169-196.
Vincenti, W. (1993). What engineers know and how they know it: Analytical studies from

aeronautical history. Baltimore, MD: Johns Hopkins University Press.
Walker, G. H., Stanton, N. A., Salmon, P. M., & Jenkins, D. P. (2008). A review of sociotechnical

systems theory: A classic concept for new command and control paradigms. Theoretical
Issues in Ergonomics Science, 9(6), 479-499.

Walsh, J. P., & Ungson, G. R. (1991). Organizational memory. The Academy of Management Review,
16(1), 57-91.

Waterson, P. E., Older Gray, M. T., & Clegg, C. W. (2002). A sociotechnical method for designing
work systems. Human Factors, 44(3), 376-391.

Whetton, S. (2005). Health informatics: A socio-technical perspective. South Melbourne, Australia:
Oxford University Press.

Williams, R., & Edge, D. (1996). The social shaping of technology. Research Policy, 25, 856-899.
Woods, D. D., & Dekker, S. W. A. (2000). Anticipating the effects of technological change: a new era

of dynamics for human factors. Theoretical Issues in Ergonomics Science, 1(3), 272-282.
Woods, D. D., & Hollnagel, E. (2006). Joint cognitive systems: Patterns in cognitive systems

engineering. Boca Raton, FL: CRC Press.
Woods, D. D., Patterson, E. S., & Cook, R. I. (2007). Behind human error: Taming complexity to

improve patient safety. In P. Carayon (Ed.), Handbook of human factors and ergonomics in
health care and patient safety (pp. 459-476). Mahwah, NJ: LEA.



To appear in Interacting With Computers

27

Figure captions

Figure 1 Systems engineering activities

Figure 2 The organisational change process

Figure 3 Socio-technical systems engineering



To appear in Interacting With Computers

28

Figure 1 Systems engineering activities

Procurement

ConstructionOperation

Analysis

Information
flow



To appear in Interacting With Computers

29

Figure 2 The organisational change process

Process designProcess execution

Process mapping

Information
flow

Goal setting



To appear in Interacting With Computers

30

Figure 3 Socio-technical systems engineering

Sensitisation

Constructive

engagement

Systems
eng ineering

process

Change
process

Socio-

technical

systems
eng ineering


