Design for failure: Software
challenges of digital
ecosystems

Prof. lan Sommerville
School of Computer Science
St Andrews University
Scotiand




St Andrews

Small Scottish town, on
the north-east coast of
the UK

Home of golf

Scotland’s oldest
university (founded in
1413)

Small university
focusing on research
and teaching excellence




Trust and dependability

B Trustis fundamental to business dealings
B Trust

4 Reputation and recommendation

@® Companies establish trust through reputation and
recommendation

4 Regulation

@® Organisations are trusted because they are externally
regulated

¢ Dependability

@ Positive experiences lead to trust. If users of a system find
that it meets there needs, is available when required and
doesn’t go wrong then they trust the system.




What is dependability?

B System dependability is a critical factor in delivering a
high quality of service
Availability. Is the system up and running?
Reliability. Does the system produce correct results?

Integrity. Does the system protect itself and its data
from damage?

Confidentiality. Does the system ensure that
information is only accessed by agents authorised
agents?

Timeliness. Are the system responses produced within
the required time frame?




Why dependability?

Dependability is a major factor in establishing
reputation and brand.

In e-business systems, undependability leads to loss of
confidence, business and revenue.

Dependability is necessary for a service to be trusted
by its users.




Achieving system dependability

B Fault avoidance
¢ Detailed analysis of
specification
¢ Extensive reviews and testing
of system
¢ Careful configuration control
B Fault tolerance
4 Redundancy

@® Additional capacity that can
be used in the event of
failure

€ Diversity

® Different ways of doing
things




Business system engineering

Specify Instantiate Deploy

Process
Plan Enact Evolve




Top-down software engineering

System vision

Single specification

Control of changes
Complicated but not complex

Client-contractor-sub-
contractor relationships

‘Clear’ assignment of
responsibilities

Scope for whole-system
analysis

Trusted parties in
collaboration




Ownership and control

In top-down software engineering, a single organisation owns all
parts of the system:

Specification
¢ Architecture and services offered can be controlled
Instantiation
4 Engineering process can be controlled
Deployment
€ Use can be controlled
Evolution
4 Changes can be controlled




Ownership and dependability

There is a close relationship between ownership
(control) and dependability

The more that is under the control of a single owner,
the easier it is to produce dependable systems
¢ Dependability through process
@® Fault avoidance
4 Dependability by design
@® Fault tolerance




Digital business ecosystems

B “A distributed environment that can support the
spontaneous evolution and composition of software
services, components, and applications”.

DBEs are socio-technical entities that are not just
populated by digital species

€ They include organisations, people, processes,
regulations, etc.

€ Social, economic and political considerations are as
important as technical issues.




Software engineering in a DBE

System of systems.

System instantiation involves cooperation and
communication between entities in the ecosystem.

Dynamic system re-configuration

¢ The entities in the ecosystem evolve and become
more/less suitable for some applications.

Ecosystem evolution

¢ The ecosystem itself exhibits a degree of self-
organising behaviour. Applications may have to
adapt to changes in the underlying environment.




Application ownership in a DBE

B Specification

¢ Constrained by capabilities and entities of DBE
B Instantiation

4 Many owners of different parts of the system

¢ The self-organising nature of the DBE means that the
system owner has only partial control.

B Deployment

4 May be influenced by self-organising nature of DBE
B Evolution

4 Uncontrollable!




System failure

Failure is inevitable.

Failure is generally due to some
conjunction of environmental
effects which system designers
have not considered.

There are a huge number of
possibilities and, eventually, if a
system can fail, it will.

Time to market pressures for
new systems increase the
chances of system failure.




DBE technology stack

E-business applications

Business ‘services’

Domain/business knowledge

Shared business data

Implementation infrastructure (SOA, P2P...)

RAD support

Construction
Communication
Organisation

Dependability




Technical failures in DBEs

Infrastructure failure

¢ Technology infrastructure is unavailable/corrupt
Data failure

€ Required data is incorrect or unavailable
Knowledge failure

¢ Required knowledge does not exist, is unavailable, is
incomplete or is incorrect

Service failure
¢ DE components are faulty/unavailable
RAD support failure
¢ RAD run-time system is faulty
¢ Application composition mechanism is faulty
¢ Application composition is faulty




Security failures in DBEs

B Malicious component

¢ Deliberate interference with the functioning of the
application system

B Malicious data and knowledge
¢ Deliberate introduction of incorrect data/knowlege
B Insecure infrastructure

¢ DBE infrastructure is compromised by malicious
components

B Insecure component
¢ Digital ‘species’ is compromised by malicious code




&%

Laws, regulations, custom & practice

System Technical svst Business
users echnical system processes

Organisational culture



Coping with failure

B Socio-technical systems are remarkably robust because
people are good at coping with unexpected situations when
things go wrong.

¢ We have the unique ability to apply previous experience
from different areas to unseen problems.

Processes are designed to recognise and deal with
exceptions.

up and talk.

Information is held in diverse forms (paper, electronic).
Failure of software does not mean that information is
unavailable.

B Coping with failure often involves ‘breaking the rules’.

*
¢ We often have channel redundancy ie email, phone, walk
*




The Business Process Defined

Increasing automation reduces

minor human error but makes it
more difficult to cope with serious
failures

Rules enforced by system

OUTPUT

¢ Lead to dependability by
catching failures and errors.

& But it makes it harder to
break the rules.

Information redundancy is
minimised
¢ There is a single copy of
information, maintained by

the system and inaccessible
in the event of failure.




What’s different about DBEs

Many rules enforced in different ways by different
systems.
No single manager or owner of the system

4 \Who do you call when failures occur?
Information is distributed - users may not be aware of
where information is located, who owns information,
etc..
Probable blame culture

¢ Owners of components will blame other components
for system failure. Learning is inhibited and trust

compromised.




Dependability challenges

Trust and confidence
Reasoning about DBEs

Fault tolerance and recovery
Self-organisation
Socio-technical reconfiguration




Trust in technology

B Provenance

¢ Who are the suppliers of the technology? What
business environment do they operate in?

B Transparency

¢ \What information is available about the operation,
structure and implementation of the technology?

B Predictability

4 Does the technology behave in the way we expect
each time that we use it? Is it dependable?




Trusting systems of systems

B What mechanisms do we need to convince ourselves that DBEs
and application systems in these DBEs are trustworthy and
dependable

¢ New approaches to constructing dependability arguments
because existing approaches are designed for top-down
software engineering

Methods and tools for testing DBE infrastructures and
configurations

Self-aware systems that make information about their
operation and failure available for scrutiny and use

Regulatory and social mechanisms to ensure that
undependable and untrustworthy elements of the system
are excluded from the DBE




Reasoning about DBEs

B We need to be able to reason about DBE
configurations to convince ourselves that they are
‘good enough’

€ What abstractions should be used to represent DBES?

4 How do we express assumptions about DBE instances
and how do we monitor the DBE to ensure that these
assumptions remain valid?

4 How do current approaches to risk analysis need to
evolve to reason about system risks?




Fault tolerance

B The DBE has the potential to be a fault-tolerant
execution environment as it may contain multiple
diverse instances of the same service.

4 \What mechanisms are required to create fault-tolerant
configurations?

4 How are faults automatically detected?
4 How do we recognise redundant and diverse services?

4 How do we handle partial computations and
compensating actions?




Self-organising DBEs

It has been suggested that DBEs will have some degree of self-
organisation where the system will organise itself without human
intervention.

How do we know that each possible reorganisation is
trustworthy?

Does the reorganisation optimise service to the community or to
an individual?

How do we ensure that QoS to a community member is not
unacceptably degraded?

How do we know that each possible instance of the DBE
conforms to regulations?




Socio-technical reconfiguration

B To cope with failure, DBEs must have the capacity to
dynamically reconfigure themselves to replace
automated with non-automated components.

4 How do we describe failures that might be solved by

socio-technical reconfiguration? How do we recognise
the symptoms of these failures?

4 How do we find a person with the appropriate
knowledge to address the problem?

4 How do we ensure that they are provided with the
necessary information and access to resources to solve
the problem?




Conclusions

DBEs offer an opportunity to
radically change the business
environment for SMEs.

Their adoption is dependent on
users trusting the resultant
socio-technical systems.

by researchers and
practitioners to design for

will inevitable lead to the

of the vision of digital
business ecosystems.




