
Design for failure: Software
challenges of digital
ecosystems

Prof. Ian Sommerville

School of Computer Science

St Andrews University

Scotland

2

St Andrews

 Small Scottish town, on
the north-east coast of
the UK

 Home of golf
 Scotland’s oldest

university (founded in
1413)

 Small university
focusing on research
and teaching excellence

3

Trust and dependability

 Trust is fundamental to business dealings
 Trust

 Reputation and recommendation
 Companies establish trust through reputation and

recommendation

 Regulation
 Organisations are trusted because they are externally

regulated

 Dependability
 Positive experiences lead to trust. If users of a system find

that it meets there needs, is available when required and
doesn’t go wrong then they trust the system.

4

What is dependability?

 System dependability is a critical factor in delivering a
high quality of service
 Availability. Is the system up and running?
 Reliability. Does the system produce correct results?
 Integrity. Does the system protect itself and its data

from damage?
 Confidentiality. Does the system ensure that

information is only accessed by agents authorised
agents?

 Timeliness. Are the system responses produced within
the required time frame?

5

Why dependability?

 Dependability is a major factor in establishing
reputation and brand.

 In e-business systems, undependability leads to loss of
confidence, business and revenue.

 Dependability is necessary for a service to be trusted
by its users.

6

Achieving system dependability

 Fault avoidance
 Detailed analysis of

specification
 Extensive reviews and testing

of system
 Careful configuration control

 Fault tolerance
 Redundancy

 Additional capacity that can
be used in the event of
failure

 Diversity
 Different ways of doing

things

7

Business system engineering

Specify Instantiate Deploy Evolve

Plan Enact Evolve

System

Process

8

Top-down software engineering

 System vision
 Single specification
 Control of changes
 Complicated but not complex
 Client-contractor-sub-

contractor relationships
 ‘Clear’ assignment of

responsibilities
 Scope for whole-system

analysis
 Trusted parties in

collaboration

9

Ownership and control

 In top-down software engineering, a single organisation owns all
parts of the system:

 Specification
 Architecture and services offered can be controlled

 Instantiation
 Engineering process can be controlled

 Deployment
 Use can be controlled

 Evolution
 Changes can be controlled

10

Ownership and dependability

 There is a close relationship between ownership
(control) and dependability

 The more that is under the control of a single owner,
the easier it is to produce dependable systems
 Dependability through process

 Fault avoidance

 Dependability by design
 Fault tolerance

11

Digital business ecosystems

 “A distributed environment that can support the
spontaneous evolution and composition of software
services, components, and applications”.

 DBEs are socio-technical entities that are not just
populated by digital species
 They include organisations, people, processes,

regulations, etc.
 Social, economic and political considerations are as

important as technical issues.

12

Software engineering in a DBE

 System of systems.
 System instantiation involves cooperation and

communication between entities in the ecosystem.
 Dynamic system re-configuration

 The entities in the ecosystem evolve and become
more/less suitable for some applications.

 Ecosystem evolution
 The ecosystem itself exhibits a degree of self-

organising behaviour. Applications may have to
adapt to changes in the underlying environment.

13

Application ownership in a DBE

 Specification
 Constrained by capabilities and entities of DBE

 Instantiation
 Many owners of different parts of the system
 The self-organising nature of the DBE means that the

system owner has only partial control.

 Deployment
 May be influenced by self-organising nature of DBE

 Evolution
 Uncontrollable!

14

System failure

 Failure is inevitable.
 Failure is generally due to some

conjunction of environmental
effects which system designers
have not considered.

 There are a huge number of
possibilities and, eventually, if a
system can fail, it will.

 Time to market pressures for
new systems increase the
chances of system failure.

15

DBE technology stack

Implementation infrastructure (SOA, P2P…)

Shared business data

Domain/business knowledge

Business ‘services’

E-business applications

RAD support
Construction

Communication

Organisation

Dependability

16

Technical failures in DBEs

 Infrastructure failure
 Technology infrastructure is unavailable/corrupt

 Data failure
 Required data is incorrect or unavailable

 Knowledge failure
 Required knowledge does not exist, is unavailable, is

incomplete or is incorrect
 Service failure

 DE components are faulty/unavailable
 RAD support failure

 RAD run-time system is faulty
 Application composition mechanism is faulty
 Application composition is faulty

17

Security failures in DBEs

 Malicious component
 Deliberate interference with the functioning of the

application system

 Malicious data and knowledge
 Deliberate introduction of incorrect data/knowlege

 Insecure infrastructure
 DBE infrastructure is compromised by malicious

components

 Insecure component
 Digital ‘species’ is compromised by malicious code

18

Socio-technical systems

Technical system

Laws, regulations, custom & practice

Organisational culture

Business
processes

System
users

19

Coping with failure

 Socio-technical systems are remarkably robust because
people are good at coping with unexpected situations when
things go wrong.
 We have the unique ability to apply previous experience

from different areas to unseen problems.
 Processes are designed to recognise and deal with

exceptions.
 We often have channel redundancy ie email, phone, walk

up and talk.
 Information is held in diverse forms (paper, electronic).

Failure of software does not mean that information is
unavailable.

 Coping with failure often involves ‘breaking the rules’.

20

Consequences of automation

 Increasing automation reduces
minor human error but makes it
more difficult to cope with serious
failures

 Rules enforced by system
 Lead to dependability by

catching failures and errors.
 But it makes it harder to

break the rules.
 Information redundancy is

minimised
 There is a single copy of

information, maintained by
the system and inaccessible
in the event of failure.

21

What’s different about DBEs

 Many rules enforced in different ways by different
systems.

 No single manager or owner of the system
 Who do you call when failures occur?

 Information is distributed - users may not be aware of
where information is located, who owns information,
etc..

 Probable blame culture
 Owners of components will blame other components

for system failure. Learning is inhibited and trust
compromised.

22

Dependability challenges

 Trust and confidence
 Reasoning about DBEs
 Fault tolerance and recovery
 Self-organisation
 Socio-technical reconfiguration

23

Trust in technology

 Provenance
 Who are the suppliers of the technology? What

business environment do they operate in?

 Transparency
 What information is available about the operation,

structure and implementation of the technology?

 Predictability
 Does the technology behave in the way we expect

each time that we use it? Is it dependable?

24

Trusting systems of systems

 What mechanisms do we need to convince ourselves that DBEs
and application systems in these DBEs are trustworthy and
dependable
 New approaches to constructing dependability arguments

because existing approaches are designed for top-down
software engineering

 Methods and tools for testing DBE infrastructures and
configurations

 Self-aware systems that make information about their
operation and failure available for scrutiny and use

 Regulatory and social mechanisms to ensure that
undependable and untrustworthy elements of the system
are excluded from the DBE

25

Reasoning about DBEs

 We need to be able to reason about DBE
configurations to convince ourselves that they are
‘good enough’
 What abstractions should be used to represent DBEs?
 How do we express assumptions about DBE instances

and how do we monitor the DBE to ensure that these
assumptions remain valid?

 How do current approaches to risk analysis need to
evolve to reason about system risks?

26

Fault tolerance

 The DBE has the potential to be a fault-tolerant
execution environment as it may contain multiple
diverse instances of the same service.
 What mechanisms are required to create fault-tolerant

configurations?
 How are faults automatically detected?
 How do we recognise redundant and diverse services?
 How do we handle partial computations and

compensating actions?

27

Self-organising DBEs

 It has been suggested that DBEs will have some degree of self-
organisation where the system will organise itself without human
intervention.

 How do we know that each possible reorganisation is
trustworthy?

 Does the reorganisation optimise service to the community or to
an individual?

 How do we ensure that QoS to a community member is not
unacceptably degraded?

 How do we know that each possible instance of the DBE
conforms to regulations?

28

Socio-technical reconfiguration

 To cope with failure, DBEs must have the capacity to
dynamically reconfigure themselves to replace
automated with non-automated components.
 How do we describe failures that might be solved by

socio-technical reconfiguration? How do we recognise
the symptoms of these failures?

 How do we find a person with the appropriate
knowledge to address the problem?

 How do we ensure that they are provided with the
necessary information and access to resources to solve
the problem?

29

Conclusions

 DBEs offer an opportunity to
radically change the business
environment for SMEs.

 Their adoption is dependent on
users trusting the resultant
socio-technical systems.

 Failure by researchers and
practitioners to design for
failure will inevitable lead to the
failure of the vision of digital
business ecosystems.

