
Design for failure: Software
challenges of digital
ecosystems

Prof. Ian Sommerville

School of Computer Science

St Andrews University

Scotland

2

St Andrews

 Small Scottish town, on
the north-east coast of
the UK

 Home of golf
 Scotland’s oldest

university (founded in
1413)

 Small university
focusing on research
and teaching excellence

3

Trust and dependability

 Trust is fundamental to business dealings
 Trust

 Reputation and recommendation
 Companies establish trust through reputation and

recommendation

 Regulation
 Organisations are trusted because they are externally

regulated

 Dependability
 Positive experiences lead to trust. If users of a system find

that it meets there needs, is available when required and
doesn’t go wrong then they trust the system.

4

What is dependability?

 System dependability is a critical factor in delivering a
high quality of service
 Availability. Is the system up and running?
 Reliability. Does the system produce correct results?
 Integrity. Does the system protect itself and its data

from damage?
 Confidentiality. Does the system ensure that

information is only accessed by agents authorised
agents?

 Timeliness. Are the system responses produced within
the required time frame?

5

Why dependability?

 Dependability is a major factor in establishing
reputation and brand.

 In e-business systems, undependability leads to loss of
confidence, business and revenue.

 Dependability is necessary for a service to be trusted
by its users.

6

Achieving system dependability

 Fault avoidance
 Detailed analysis of

specification
 Extensive reviews and testing

of system
 Careful configuration control

 Fault tolerance
 Redundancy

 Additional capacity that can
be used in the event of
failure

 Diversity
 Different ways of doing

things

7

Business system engineering

Specify Instantiate Deploy Evolve

Plan Enact Evolve

System

Process

8

Top-down software engineering

 System vision
 Single specification
 Control of changes
 Complicated but not complex
 Client-contractor-sub-

contractor relationships
 ‘Clear’ assignment of

responsibilities
 Scope for whole-system

analysis
 Trusted parties in

collaboration

9

Ownership and control

 In top-down software engineering, a single organisation owns all
parts of the system:

 Specification
 Architecture and services offered can be controlled

 Instantiation
 Engineering process can be controlled

 Deployment
 Use can be controlled

 Evolution
 Changes can be controlled

10

Ownership and dependability

 There is a close relationship between ownership
(control) and dependability

 The more that is under the control of a single owner,
the easier it is to produce dependable systems
 Dependability through process

 Fault avoidance

 Dependability by design
 Fault tolerance

11

Digital business ecosystems

 “A distributed environment that can support the
spontaneous evolution and composition of software
services, components, and applications”.

 DBEs are socio-technical entities that are not just
populated by digital species
 They include organisations, people, processes,

regulations, etc.
 Social, economic and political considerations are as

important as technical issues.

12

Software engineering in a DBE

 System of systems.
 System instantiation involves cooperation and

communication between entities in the ecosystem.
 Dynamic system re-configuration

 The entities in the ecosystem evolve and become
more/less suitable for some applications.

 Ecosystem evolution
 The ecosystem itself exhibits a degree of self-

organising behaviour. Applications may have to
adapt to changes in the underlying environment.

13

Application ownership in a DBE

 Specification
 Constrained by capabilities and entities of DBE

 Instantiation
 Many owners of different parts of the system
 The self-organising nature of the DBE means that the

system owner has only partial control.

 Deployment
 May be influenced by self-organising nature of DBE

 Evolution
 Uncontrollable!

14

System failure

 Failure is inevitable.
 Failure is generally due to some

conjunction of environmental
effects which system designers
have not considered.

 There are a huge number of
possibilities and, eventually, if a
system can fail, it will.

 Time to market pressures for
new systems increase the
chances of system failure.

15

DBE technology stack

Implementation infrastructure (SOA, P2P…)

Shared business data

Domain/business knowledge

Business ‘services’

E-business applications

RAD support
Construction

Communication

Organisation

Dependability

16

Technical failures in DBEs

 Infrastructure failure
 Technology infrastructure is unavailable/corrupt

 Data failure
 Required data is incorrect or unavailable

 Knowledge failure
 Required knowledge does not exist, is unavailable, is

incomplete or is incorrect
 Service failure

 DE components are faulty/unavailable
 RAD support failure

 RAD run-time system is faulty
 Application composition mechanism is faulty
 Application composition is faulty

17

Security failures in DBEs

 Malicious component
 Deliberate interference with the functioning of the

application system

 Malicious data and knowledge
 Deliberate introduction of incorrect data/knowlege

 Insecure infrastructure
 DBE infrastructure is compromised by malicious

components

 Insecure component
 Digital ‘species’ is compromised by malicious code

18

Socio-technical systems

Technical system

Laws, regulations, custom & practice

Organisational culture

Business
processes

System
users

19

Coping with failure

 Socio-technical systems are remarkably robust because
people are good at coping with unexpected situations when
things go wrong.
 We have the unique ability to apply previous experience

from different areas to unseen problems.
 Processes are designed to recognise and deal with

exceptions.
 We often have channel redundancy ie email, phone, walk

up and talk.
 Information is held in diverse forms (paper, electronic).

Failure of software does not mean that information is
unavailable.

 Coping with failure often involves ‘breaking the rules’.

20

Consequences of automation

 Increasing automation reduces
minor human error but makes it
more difficult to cope with serious
failures

 Rules enforced by system
 Lead to dependability by

catching failures and errors.
 But it makes it harder to

break the rules.
 Information redundancy is

minimised
 There is a single copy of

information, maintained by
the system and inaccessible
in the event of failure.

21

What’s different about DBEs

 Many rules enforced in different ways by different
systems.

 No single manager or owner of the system
 Who do you call when failures occur?

 Information is distributed - users may not be aware of
where information is located, who owns information,
etc..

 Probable blame culture
 Owners of components will blame other components

for system failure. Learning is inhibited and trust
compromised.

22

Dependability challenges

 Trust and confidence
 Reasoning about DBEs
 Fault tolerance and recovery
 Self-organisation
 Socio-technical reconfiguration

23

Trust in technology

 Provenance
 Who are the suppliers of the technology? What

business environment do they operate in?

 Transparency
 What information is available about the operation,

structure and implementation of the technology?

 Predictability
 Does the technology behave in the way we expect

each time that we use it? Is it dependable?

24

Trusting systems of systems

 What mechanisms do we need to convince ourselves that DBEs
and application systems in these DBEs are trustworthy and
dependable
 New approaches to constructing dependability arguments

because existing approaches are designed for top-down
software engineering

 Methods and tools for testing DBE infrastructures and
configurations

 Self-aware systems that make information about their
operation and failure available for scrutiny and use

 Regulatory and social mechanisms to ensure that
undependable and untrustworthy elements of the system
are excluded from the DBE

25

Reasoning about DBEs

 We need to be able to reason about DBE
configurations to convince ourselves that they are
‘good enough’
 What abstractions should be used to represent DBEs?
 How do we express assumptions about DBE instances

and how do we monitor the DBE to ensure that these
assumptions remain valid?

 How do current approaches to risk analysis need to
evolve to reason about system risks?

26

Fault tolerance

 The DBE has the potential to be a fault-tolerant
execution environment as it may contain multiple
diverse instances of the same service.
 What mechanisms are required to create fault-tolerant

configurations?
 How are faults automatically detected?
 How do we recognise redundant and diverse services?
 How do we handle partial computations and

compensating actions?

27

Self-organising DBEs

 It has been suggested that DBEs will have some degree of self-
organisation where the system will organise itself without human
intervention.

 How do we know that each possible reorganisation is
trustworthy?

 Does the reorganisation optimise service to the community or to
an individual?

 How do we ensure that QoS to a community member is not
unacceptably degraded?

 How do we know that each possible instance of the DBE
conforms to regulations?

28

Socio-technical reconfiguration

 To cope with failure, DBEs must have the capacity to
dynamically reconfigure themselves to replace
automated with non-automated components.
 How do we describe failures that might be solved by

socio-technical reconfiguration? How do we recognise
the symptoms of these failures?

 How do we find a person with the appropriate
knowledge to address the problem?

 How do we ensure that they are provided with the
necessary information and access to resources to solve
the problem?

29

Conclusions

 DBEs offer an opportunity to
radically change the business
environment for SMEs.

 Their adoption is dependent on
users trusting the resultant
socio-technical systems.

 Failure by researchers and
practitioners to design for
failure will inevitable lead to the
failure of the vision of digital
business ecosystems.

