
Cooperative Work in Software Testing
David Martin1, John Rooksby2, Mark Rouncefield2, Ian Sommerville3

1XRCE, Grenoble. France.
2Computing Department, Lancaster University. UK.

3School of Computer Science, University of St Andrews. UK.
david.martin@xrce.xerox.com, [j.rooksby, m.rouncefield]@lancaster.ac.uk, ifs@dcs.st-and.ac.uk

ABSTRACT
Substantial effort in the development of any large system is
invested in testing. Studies of testing tend to be either technical
or concerned with the cognitive ability of testers. Our experience
is that testing is not technical but socio-technical, involving a
great deal of human and organisational effort, and that testing is
not simply the kind of decontextualised ‘puzzle solving’ many
cognitive approaches imply. We believe that cooperative work is
foundational to getting testing done. In this position paper, we
use data from four ethnographic studies to discuss just what that
cooperative work is.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]

General Terms
Human Factors

Keywords
Ethnography, Testing, Cooperative Work.

1. INTRODUCTION
This paper presents examples of testing as it is done “in the wild”.
Such examples highlight the cooperative and human aspects of
testing, aspects that are routinely overlooked in testing research
but which we believe are foundational to ‘getting testing done’.
In the light of a number of transformations to software testing
practice over recent years, we believe it is increasingly perilous to
overlook these human and cooperative aspects. Transformations
include: 1) a shift in focus from programs to systems; 2)
‘usefulness’ becoming relevant in testing alongside or in place of
correctness; 3) iterative development and reduced time to market
entailing issues being knowingly left until post-deployment; 4)
testing increasingly becoming a professional, team activity and
made accountable to the wider organization; and 5) technology
transfer from research entailing the reorganisation of current
practices and the acquisition of new skills.

2. EXAMPLES
We have written an example driven paper as we believe a ground-
up approach provides necessary contrast to the theory and
technology driven work that dominates testing research. Based
upon our examples we will discuss four ways in which we believe
socio-technical approaches can address practice relevant issues.
Our examples are taken from ethnographic fieldwork, undertaken
at four fieldsites in the UK: (1) A small, agile, software house
producing an IDE, at which we spent 30 days over one year; (2) a
large organisation developing an administration system in-house,
with which we have spent 38 days over 8 months (ongoing); (3)
development of scientific software by a professional programmer
based in a University with whom we spent one week and (4) the
distributed development of open source software, fieldwork on
which is progressing. Fieldsite two is the only site with
professional testers. Fieldsite one has scheduled testing phases,
with testing carried out by programmers. Fieldsites three and four
rely on regular regression testing, with other tests undertaken on
an informal, often opportunistic basis. We make no claims these
fieldsites represent ‘best practice’, but claim they encounter
common issues in testing and go about work in common ways.
We present our data thematically, beginning with a discussion of
how tests are cooperatively scoped.

2.1 Scoping Testing Cooperatively
During our fieldwork, issues such as the responsibilities of testers,
what tests could realistically be done in the allotted time, whether
testing and training could be done simultaneously, and whether
testing could be done with real or simulated tasks arose
repeatedly. The following example is from a user acceptance test
at fieldsite 2:

There are four ‘users’ testing the system. Barry (one of the users)
yawns. Laura (another user) says jokingly “For goodness sake
Barry!” Barry replies “It’s just hard to take in … I need to look
through it … I can’t [keep concentrating on the screen].” The
testers and users discuss whether it is possible for the users to
have a look at aspects of the system at another time. They discuss
what aspects could be looked at later, where and how this could
be done and the time by which it is required to get them done.

This ‘mundane’ example is packed with relevant detail; it shows
scope to be a problem that can repeatedly arise. This is a planned
session, during which it arises that the planned scope might not be
met. Planning and estimation of what can be achieved is an error
prone art, we do not think the above can be put down to bad
planning as we see that a scope achievable with one user (Laura)
is not with another (Barry); one simply has more stamina than the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE’08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/054…$5.00.

other. The possibility of reducing the workload by moving some
of the work to another time and place is discussed. This re-
scoping, as was the case with the initial scoping, is done with
reference to some practical organizational considerations: what,
where, how etc.. This, and all our examples, highlight the
thoroughly practical, situated nature of getting testing done.
We continue with two vignettes from fieldsite 1. The first
example is a jibe made by one programmer about another.

Mick makes a little jibe at Tom: “Not all of us are doing testing”.
The jibe is said towards Paul and Dale, but a gesture towards
Tom makes it clear who he is talking about. The programmers are
in a ‘test phase’ but Tom is still writing code.

Coordination of effort is an important issue in testing. The jibe
would seem to assume that Mick thinks Tom knows full well that
what he is doing is incompatible with the purposes of software
testing. Tom is publically shamed rather than instructed in correct
procedure. The next, similar, vignette is also from fieldsite 1.

Mick jokes about the pile of pink cards produced by Dale “bloody
hell, we’re testing, not finding faults!”. Mick goes through the
cards: “so what!” “Don’t care!” “no!” “none of them!”. He says
“Dale is making trouble!”. Paul asks Dale “So you’ve found
three other faults except for the defects?”. Mick asks “What are
they?” Dale says angrily “You just read them!” Mick, referring
to Dale’s handwriting, replies angrily “I couldn’t actually read
them! No one can read them!”

Finding faults is disputed here as being an appropriate task for the
testing being done. However, faults must be taken seriously, the
joking “so what!” etc., would not work without it, and Paul is
interested to know what the faults are. As with the previous
vignette from fieldsite 1, there is no dispute over whether work is
being done, but the timing of that work is called into question.
Although the period of time allocated to testing at fieldsite 1 is
predetermined, what substantiates that phase is partly emergent
through how people organize themselves and each other during
that phase. Testing is replete with negotiation, with regulation,
and ultimately ongoing definitions of what is and is not the
‘correct’ thing to do during the testing phase. These issues are
compounded by the fact that there simply isn’t much time to do
testing, and also that those doing testing, if they are to do an
effective job in the time available must put some effort into
coordinating their work with others. Amongst other things, this
coordination involves doing agreed things during agreed times,
and communicating with others (ideally without confrontation,
and with legible handwriting). What should also be apparent
from these examples is that testing can be emotional, involving
joking, confrontation, etc.. Programmers at fieldsite 1 sometimes
spoke of the boredom of testing and even that people who enjoy
testing are “freaks”. We did not encounter similar attitudes at the
other fieldsites, but emotions could sometimes run high.

2.2 Making Use of Available Resources
This next example is again taken from fieldsite 1. In this example
they are testing something called “the push server”. This push
server should, in short, send a single message to multiple mobile
devices. The push server was required by a customer who the
programmers estimated to have around 1000 mobile device users.
The programmers also recognized that they would hopefully soon
have bigger customers who could potentially make use of a push
server. The test is carried out by each of the four programmers

plus the customer relationship manager installing software on
their machines that simulates multiple connections to the server.
They start by testing the server with 5000 messages, with 1000
connections simulated from each machine.

Pete remarks “5000 – Amazing! Now I’m going to send one
message to all 5000 back”. As the messages get sent back the
programmers comment on them coming through. This is
successful, so after a joke about testing being finished they decide
to double the amount of messages. Pete says “I’m thinking about
trying 10000, so we have to change to 2000 messages each … I
think my machine will potentially [fail] with 10000 sockets, we
need to change our offsets. Double them both, all of you.”

So why did this test start with 5000 messages? Firstly, this
number is divisible by 5; there are 5 of them testing. It should be
a rather obvious point, but is nevertheless worth emphasizing, that
tests and how something is tested draws from the resources at
hand. These resources include who is available to run the tests.
Additionally, 5000 is a number that is an order of magnitude
greater than the 1000 connections they believe their customer
may peak at. Therefore it is ‘big’, but, it is also not too big:
running these sorts of tests can take time and it is better if an error
can be found quickly. At this company, the user manual is
written during the test phase. The tests serve not just as tests but
as exemplars of how to use the system. The tests are written up in
the manual as demonstrating how to use the system; again a
sensibly sized example that does not break the system is
necessary. Testing can be “to look for errors” as Myers [1]
famously recommended, but we find sometimes this is sensible
only after the software is shown to work, something that Myers
specifically does not recommend. We can see that whilst trying to
break software is, in theory, a sensible approach to testing, in
practice it is sometimes helpful and sometimes not helpful to do
so.

2.3 Failure
There are two parts to this section. This first part is taken from
fieldsite 4. It is from an interview with a programmer working on
the distributed, open source project. In this interview the
programmer discusses the different mailing lists belonging to the
project, and shows the lists to the interviewer as he does so:

“So the regressions mailing list tells you about, erm, whether
things are passing or failing regression tests. So if I put
something into the repository and it breaks everything. Then, I’ll
know here [in the email]. But this is typical [scrolling through
email], erm, we’re breaking lots of things. But they’ve actually
been broken for months and months and months [laughing]. So
you just get to the, you just get used to the fact that you fail 77
tests at the moment, and then normally it gets better, err,
sometimes it gets massively worse, but then you kind of get told by
the steering committee “don’t worry too much about it”. Heh
heh. We’re going to fix this eventually. … People will follow
things in the regressions mailing list saying “this failed for this
reason” or, “we need to look at this” or something.”

In this second vignette the same programmer tells us about a new
development in the mailing lists.

“So we ran this many tests, we failed this many. So erm one of
the things that’s being changed at the moment is … He’s changed
it so that erm, it says how many we passed and how many we

failed but it tells you what are new failures and what are new
successes. … with colour and, so you can tell a bit more
information then previously. .. so I mean, this is kind of the thing
that helps the development community.”

Testing research is often focused upon correctness, we find some
irony in being told the thing that helps the development
community is software to help overlook long-term failures. This
requirement to overlook failures and the very means with which
failures are presented are in most respects dependent on the way
this project is organized. That is, a fix is not always urgent in this
project and is sometimes best left to or coordinated with others.
Conversely, at fieldsite 2 they were keen to keep and present to
managers a low average fix time. At fieldsites 1 and 3 bugs were
sometimes left until a user ‘noticed’. An example of this from
fieldsite 1 follows.

We observed the programmers spending a great deal of time
trying to figure out why their software would not work well in a
virtual machine (VM), and what they might do to resolve this.
The programmers talked through and explored a variety of
possible causes and solutions but were unable to find an answer.
It was then that they discussed the ‘value’ of coming up with a
solution:

Paul says “But you would never develop in a VM. Our stuff
doesn’t work well in a VM, but you wouldn’t develop in a VM.
And our guys are developers.” Soon after, Mick says “Its good
that you’re using that and that we’ve found it. If we got a call
coming in we could say “Are you using it on a VM?” and they
would say “oh yeah!”. It would be interesting to see how many
we got of that nature.”

It is seems common that after exhausting the possibility of a quick
or obvious fix that the value of actually doing any fix is
discussed. Deciding not to fix this problem but to record it as a
‘known issue’ is not laziness on the programmers’ part. The
effort to be put into solving this is unlikely to be worth it. The
value of a fix is usually decided in talk according to the things the
testers figure out as relevant and is not the subject of any numeric
calculation. We find that value is “calculated discursively”.
However, in such calculations, the developers do not usually say
anything for sure; here they are interested to see if they have calls
“coming in”. This is a feature of iterative development: decisions
can turn out to be wrong and changed later.

2.4 Knowing the ‘Users’
A substantial part of testing is concerned with users. Whilst a
focus on ‘users’ is most readily associated with usability and user
acceptance testing, we have found that in all forms of testing,
ideas about users regularly arise in deciding what kinds of tests
are necessary and the implications of a particular test result. In
the last example we saw ‘users’ appearing in a justification for
doing a fix. In this example, taken from fieldsite 3, the vignette
concerns the programmer (Max) discussing the user interface with
a scientist (Alex).

Max asks Alex “Why do you not like the bold? Do you not like the
bold?” Alex replies “Its just a bit ambiguous I think. If I’m just
coming into, I mean I’m trying to, imagine myself just being,
using this for the first time” Max “yeah”. Alex “It it could be, it
could be a lot of different things”. Max ”err, Yeah” Alex ”And,

also because, imports for me is kind of a, a tertiary function, that
you learn to use a bit later on” Max “Mm Mm, Mm Mm”.

In this example we see Alex, the participant user, put himself in
the shoes of somebody using this for the first time (i.e.
“…imagine myself just being…”). Then we see him talking
generally about what users do (i.e. “… you learn to …”). This is
a phenomenon we have noticed with product development, that
users are always set in the context of other users. Developers do
this, and as we see, participant users also do this. Although ideas
of what the user wants and will do are very important in testing, it
seems that there is rarely a definite idea of who the user is; whilst
some users can be spoken about with a high degree of certainty,
and in cases such as in this vignette, even spoken to, other, vaguer
ideas about other more vaguely defined users are never far away.
The user is important in settling issues in testing, but ‘user’ is
often not just a category referring to a definite person but also
encompasses social and organizational knowledge about who
users are or might be. Developers therefore are regularly required
to fall back on practical social reasoning.

2.5 What Not to Test
We have observed decisions both to do with whether a particular
test is done or not, and to do with levels of coverage or detail to
which a test goes. Decisions not to test are often accountable, that
is reasons and justifications are given for any particular course of
action or non-action. Our example in this section comes from
fieldsite 2. In this example we summarise how aspects of load
testing are organised.
A proposal to the project board regarding the first go-live phase
reads “The approach has been discussed with [the infrastructure
department] and the preferred option is to carry out an in-house
load test without support from the external supplier”. Elsewhere
the document reads “A decision on the extent of load testing for
[Phase 2] will be made following testing for [Phase 1].” A board
member says it “makes sense”. Later, another asks “Is [a test in
phase 1] the best use of your time … for a massively over-
provisioned infrastructure?” After much discussion, the board
decide to take a consultant’s offer to do, for now, a technical
audit of the COTS system regarding load.
Documents are very important in the work of fieldsite 2. These
are not standalone information but are constituent in ongoing
discussions and decision making. A number of discussions
preceded the writing of this proposal. The infrastructure at this
organization had been load tested recently and a general outcome
from discussions was that phase 1 of the project was unlikely to
increase load. Not doing the tests for now is a risk ‘calculated’
over time though ongoing discussions in meetings, corridors,
emails and in documents. This risk is set in terms of resources
(i.e. “is this the best use of your time”). The decision to load test
and the extent to which this will be done is delayed, not
dismissed. The choice might turn out to be wrong, and
irrespective of that, might be different to choices made later as
conditions clarify.
Tests are discussed in terms of importance or associated risk and
scoped, scheduled or delayed (perhaps indefinitely delayed)
accordingly. In section 2.3 we saw the developers at fieldsite 1
acknowledging that a problem that does not seem worth
addressing now might well become worth addressing at some
indeterminable time in the future. It seems to be the case with

continuous or iterative development that aspects of development
work that are seen as unimportant, including the undertaking of
various tests, are put off rather than dismissed.

3. DISCUSSION
 “’Technical work’ viewed from the point of getting it done
involves the determination of such matters as how much work
there is to be done, how long it will take, how many must be
involved, how much time is available, how those involved are to
combine their activities to carry the work through, and how they
are to ensure that their activities will remain coordinated and
synchronised over its course, what is to be done in various
eventualities, who will make the judgement as to whether the
work has been done satisfactorily and what it will take to satisfy
them.” (Sharrock and Anderson [2] p.161)

Software testing problems appear, from our empirical evidence, to
be set within the range of mundane organizational issues
recognized by Sharrock and Anderson. The overwhelming
feature of the everyday, mundane reality of “getting it done”
seems to be how to deploy limited testing resources to find faults
or design problems, or to see if the system operates in the desired
manner and meets customer needs. Testing, we have seen,
involves finding satisficing solutions, often to ill defined
problems. We use this term “satisficing” not to refer to any
laziness or making easy on the testers’ part but, following Simon
(below), to refer to getting useful work done in organizational
contexts.

“In the face of real-world complexity, the business firm turns to
procedures that find good enough answers to questions whose
best answers are unknowable. Because real-world optimization,
with or without computers, is impossible, the real economic actor
is in fact a satisficer, a person who accepts “good enough”
alternatives, not because less is preferred to more but because
there is no choice.” (Simon [3] p28)

To borrow Simon’s terms, in the face of real world complexity,
the tester becomes a satisficer. We see this complexity in terms
of the everyday but nevertheless important, organizational issues
Sharrock and Anderson describe. These issues are of human and
cooperative work. Building upon our examples, we finish this
paper with a discussion of four directions we believe socio-
technical research into testing might usefully purse: rationale,
organisation, resource, and time.

In our studies, we have noticed a great deal of thought,
discussion, documentation, argument, etc, being put into the
reasons for doing or not doing a test. Testing is done in a way
that is sensible to and practicable for the system being developed,
or is not-done with a reason relevant to that software. As systems
develop within a project, as understandings develop, and as the
projects themselves develop, the tests and the reasons for doing or
not doing a test also develop. We think more attention may be
paid to the rationale behind the tests particular organizations do.
Actually keeping track of this rationale, we believe, could
sometimes be useful. Whether we feel testing is done with the
right reasons or the wrong reasons it is important to attend to what
those reasons might be and how they are important.

We have noticed there are strong organisational demands on
testing, and testing is shaped and scheduled to suit the work of the
organisation. Firstly we have seen how economic concerns,
insomuch as a concern for where the money is coming from and
what is it paying for, pervade testing. We have seen how efforts
to figure out who users are and what they might want are related
to these concerns, and related also to practical design decisions.
We have also discussed how testers must supply effort into
staying coordinated with other testers and also with people
working in or with the wider organization. Software testers it
seems put much effort into staying organized and into doing work
that is seen as relevant and productive for their organization at
large. Organisation, here, can therefore be read as both a noun
and a verb.

We have claimed that testers are routinely trying to use limited
resources in the most effective way. What are those resources?
Of course it is possible to speak of time and money as a resource,
but we have also found that testing involves working with and
around resources local (e.g. Who is available, what equipment is
to hand, how the workplace is arranged) to the testing work being
done. Not only that, but a great deal of effort is placed into
getting appropriate resources there at the right time. Testing is
done by and with people, in rooms people can get to, using and
working around the artefacts and equipment in place. When the
“economics of testing” is referred to we would do well to
remember this encompasses practical matters such as “how much
time?”, “who will do it?”, “who might care?” etc..

Finally, what is perhaps the prime problem facing testers, that
there just isn’t enough time, seems to stem from the fact that other
work is also being done. There is the development work that
seems almost inevitably to overrun and slip into the time allocated
for testing. Secondly, during testing we have noticed that testers
are rarely just testing. We have noticed that this is when the
manual gets written, that this is when users get trained, that this is
when users see the software for the first time and generate a
whole raft of new requirements, that this is where wider research
is prompted into understanding exactly why something is some
way or exactly how something works, and that this is when tests
are done alongside other tests. To treat testing as some sort of
puzzle solving activity doesn’t seem right to us because it seems
hard for testers to focus on one thing. Testers must balance their
testing with other work going on and either organize their testing
to suit this other work, or organize other work (often battle other
work) to suit testing.

4. REFERENCES
[1] Myers, G.J. 1976. The Art of Software Testing. John Wiley

& Sons, New York.
[2] Sharrock, W., Anderson, B. 1993. Working Towards

Agreement. In Technology in Working Order, G. Button,
Ed., Routledge, London. 149-161.

[3] Simon, H.A. 1969. The Sciences of the Artificial. MIT
Press, Cambridge MA.

	1. INTRODUCTION
	2. EXAMPLES
	2.1 Scoping Testing Cooperatively
	2.2 Making Use of Available Resources
	2.3 Failure
	2.4 Knowing the ‘Users’
	2.5 What Not to Test

	3. DISCUSSION
	4. REFERENCES

