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Abstract. We describe an approach to designing and implementing a distrib-
uted system as a family of related finite state machines, generated from a single 
abstract model. Various artefacts are generated from each state machine, in-
cluding diagrams, source-level protocol implementations and documentation. 
The state machine family formalises the interactions between the components 
of the distributed system, allowing increased confidence in correctness. Our 
methodology facilitates the application of state machines to problems for which 
they would not otherwise be suitable. 

We illustrate the technique with the example of a Byzantine-fault-tolerant 
commit protocol used in a distributed storage system, showing how an abstract 
model can be defined in terms of an abstract state space and various categories 
of state transitions. We describe how such an abstract model can be deployed in 
a concrete system, and propose a general methodology for developing systems 
in this style. 

1   Introduction 

The finite state machine (FSM) is a widely used abstraction for describing and rea-
soning about distributed algorithms [1]. Here we address the problem of developing a 
FSM formulation for an algorithm whose generality precludes its expression as a 
single FSM. Instead, the algorithm may be characterised as a family of related FSMs, 
each corresponding to a particular value of some parameter to the general algorithm. 
Although family members differ in their individual states and transitions, they share a 
common structure dictated by the general algorithm. 

Our approach is to develop an abstract model that captures the common architecture 
of the family of FSMs. This can be executed with chosen parameter values to generate 
any particular member of the FSM family. The output of the abstract model is a FSM 
representation, from which various concrete artefacts may be generated. These include 
textual FSM descriptions, FSM diagrams and source-level algorithm implementations. 

This approach can also be applied to the generation of a single extended finite state 
machine [2,3] from the abstract model. 

We describe the approach via the motivating example of a Byzantine-fault-tolerant 
(BFT) commit algorithm. We think that the technique could also be applied to devel-
opment of other fault-tolerant protocols, making it directly relevant to the area of 
architecting critical infrastructures. 
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2   Background 

The motivation for this work arose during development of a particular algorithm 
within a distributed storage system [4]. The aim of the ASA project is to develop a 
resilient, logically ubiquitous storage infrastructure with the following attributes: 

• ease of use 
• operation on non-trusted platforms 
• flexibility allowing users to trade-off resilience of data, performance and ca-

pacity 
• scalability 
• provision of an historical record of data 

Several aspects of our approach follow directly from these goals. From the scalability 
requirement, we avoid a physically centralised architecture. From the requirement for 
operation on non-trusted infrastructure (i.e. Byzantine fault-tolerance), we avoid reli-
ance on any single node behaving correctly. Thus all operations invoked by a user 
must be either intrinsically verifiable, or involve the agreement of multiple independ-
ent nodes. 

The high-level ASA architecture is shown in Fig. 1. File system adapters connect 
individual user operating systems to a single distributed abstract file system, which is 
in turn built on a generic distributed storage layer. This storage layer is itself imple-
mented on a peer-to-peer (P2P) key-based routing infrastructure [5], which dynami-
cally maps a given key to a unique live node, even though nodes may join and leave 
the network at arbitrary times. 

We have developed a P2P application framework, the purpose of which is to pro-
vide functionality useful in implementing various P2P style applications, and to ab-
stract over the details of particular P2P protocols. This allows the P2P layer to be 
varied without affecting the layers above. Currently we use a Java implementation of 

 

 

Fig. 1. Architecture of motivating distributed storage infrastructure 
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the Chord protocol [6]. In Chord, all participating nodes are organised into a logical 
circle, and messages routed around the circle. The protocol takes its name from the 
chords across the circle, which are additional ‘short-cut’ links maintained by each 
node, yielding routing performance that scales logarithmically with the size of the 
network. 

The generic key-based storage layer provides resilience by replicating data and 
meta-data on multiple P2P nodes, and actively maintaining those replicas as nodes 
fail, misbehave or leave the P2P overlay. 

The API presented to users by the generic storage layer does not include any de-
structive update operation; data can only be appended. Internal processes manage 
‘cleaning’ of the historical record, guided by user policies controlling the trade-off 
between completeness of the record and consumption of resources. 

The generic storage layer provides a ubiquitous resilient mutable storage facility 
for unstructured data, with an historical record. To support the historical record, up-
dates are appended rather than being destructive. The main entities supported are data 
blocks, PIDs, and GUIDs: 

• A data block contains unstructured data. Blocks have arbitrary size and are 
immutable. 

• A PID (Persistent Identifier) is used to denote a particular data block. This 
might correspond to a particular version of a file, a fragment of a file, or some 
other object. 

• A GUID (Globally Unique Identifier) is used to denote something with iden-
tity, such as a file or object. 

 

Fig. 2. Logical entities in the generic storage layer 

The main algorithms operating in the generic storage layer maintain two distrib-
uted services: the data storage service (mapping a PID to an immutable data block) 
and the version history service (mapping a GUID to a sequence of PIDs). In each 
case, the service is structured as a service endpoint communicating with a set of col-
laborating servers. Both services are required to be Byzantine-fault-tolerant [7]. 

2.1   Data Storage 

To store a new data block, the service endpoint calculates a unique PID for the data 
using a secure hashing algorithm (SHA1 [8]). It then determines which participating 
nodes should store replicas of the data, by applying a globally known function that 
deterministically generates a set of keys from a single PID. The service endpoint then 
uses the P2P routing layer to locate the nodes managing those keys. In the current 
prototype, the key generation function returns a set of keys that are evenly distributed 
in key space. The number of keys is determined by the data replication factor. Having 
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located the replication nodes, referred to as the peer set for the data key, the service 
endpoint sends a copy of the data to each of the hosts. To achieve Byzantine fault 
tolerance, the storage operation completes once (r-f) nodes have replied indicating 
that they have successfully stored the data, where r is the replication factor and f is the 
maximum number of faulty nodes that can be tolerated. In common with all Byzan-
tine fault tolerance schemes, r must be greater than 3f. This ensures that even if the  
(r-f) replies include f misleading ones from faulty nodes, at least (f+1) correctly func-
tioning nodes have stored replicas of the data. 

To retrieve a data block for a given PID, the replica nodes are located as above. It 
is then sufficient to pick a single replica node (at random, or guided by some ‘close-
ness’ metric) and request the data block from it. The secure hash function can then be 
used to verify that the block received does indeed correspond to the requested PID. If 
this check fails, another node can be tried. 

2.2   Version History 

The motivating example for this paper is provided by the commit protocol used to 
record a new GUID-PID mapping in the version history. The algorithm is executed by 
all members of the current peer set for the specified GUID; these are the nodes on 
which that GUID’s version history is replicated. 

Peer set members are located in a similar manner to that already described for the 
data storage service. Since the addition of a new version to the version history is an 
update operation, it is necessary to operate a serialisation algorithm to ensure that a 
globally consistent view emerges in the face of concurrent updates. Otherwise, it 
would be possible for different members of the peer set for a given GUID to record 
different orderings in the version history. This means that it is necessary for the mem-
bers of each peer set to maintain contact with one another, and to adjust their views of 
the set membership as the topology of the P2P network changes. When a request to 
store a new version is received by the members of a peer set they execute a commit 
protocol amongst themselves, only completing once all have agreed which is the next 
version to be recorded in the global history. Again, this protocol is tolerant of Byzan-
tine nodes in the peer set. 

On retrieval of a particular version, it is not possible for the service endpoint to 
verify the integrity of the result from any individual member of the peer set, since 
there are no constraints on what PID may be mapped to by a given GUID. It is thus 
necessary to compare the results as they arrive from the peer set members, and to 
select the (only possible) one that is returned consistently by at least f+1 nodes. 

We now sketch the operation of the commit protocol1. To simplify peer set mainte-
nance, all members of a peer set have equal status, so that there is no need for a leader 
election process when membership changes. The protocol is essentially a majority 
voting consensus algorithm, in which peer set members vote among potentially com-
peting update requests for the GUID. The result is an agreed ordering of the requests 
among all peer set members. This agreed ordering is achieved as follows: 

The protocol proceeds in two phases, involving the counting of vote and commit 
messages among peer set members respectively. When a client issues an update for a 

                                                           
1 Further details are available at http://asa.cs.st-andrews.ac.uk/abstractmodel/. 
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particular GUID, a request is sent to all members of the peer set for that GUID. Each 
peer set member votes for particular updates in the order in which it receives the re-
quests. Voting involves sending a vote message to all of the other members. Once a 
particular candidate update receives 2f+1 votes, all members agree that the update 
should be the next to be appended to the global history. This agreement is established 
by the exchange of commit messages. Consistent ordering arises since each commit-
ted update has been approved by a majority of the non-faulty members (of which 
there are between 2f+1 and 3f+1), and by allowing an update voted for by a suffi-
ciently high number of other peer set members to proceed ahead of a previous locally 
selected update. Since there is no guarantee that any one of a set of concurrent up-
dates will gain enough votes to reach this threshold, the algorithm may deadlock. It is 
thus necessary for the service endpoint to operate a timeout/retry scheme. Various 
schemes such as random or exponential back-off, or fixed or random server ordering, 
could be used to attempt to reduce the probability of repeated deadlocks. 

The protocol is tolerant to Byzantine-faulty behaviour by members of the peer set, 
to the extent that at least 3f+1 members are needed to give tolerance to f failures. 
Hence for a replication factor r, yielding r replicas of each version history, the proto-
col tolerates at most floor((r-1)/3) faulty participants. Some examples of practical 
values for r and f are given in section 4.4. 

Background processes regenerate missing replicas and replace faulty nodes, thus 
here the limit of f tolerable failures applies to the duration of a particular execution of 
the commit protocol, rather than to the lifetime of the system. Additional replicas need 
to be generated whenever the set of nodes storing replicas of a given data item is 
temporarily reduced. This may occur due to fail-stop faults, which are straightfor-
wardly detected through timeouts, or due to the detection of malicious nodes. Such 
nodes are eventually detected, with high probability, using periodic cross-checks 
between replica nodes. 

3   General Approach to State Machine Generation 

3.1   Mapping Algorithm to State Machine 

Initially, we designed a single generic algorithm that appeared to meet the require-
ments outlined in the previous section, parameterised by the replication factor. In an 
effort to gain greater insight into its operation, we then developed a FSM model for a 
selected replication factor—four, being the simplest scheme to yield a BFT algorithm. 
Although neither the algorithm (about 500 lines of pseudo-code) nor the FSM (33 
states with 3-4 transitions from each) is especially complex, they are non-trivial. 

The original algorithm maintains the following variables for every ongoing commit 
operation: 

• update_received: a flag recording whether an update request for the given up-
date has been received 

• votes_received: a count of vote messages received 
• vote_sent: a flag recording whether a vote message has been sent 
• commits_received: a count of commit messages received 
• commit_sent: a flag recording whether a commit message has been sent 
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• could_choose: a flag recording whether a future update could be voted for: this 
is false if another update is currently in progress 

• has_chosen: a flag recording whether the update currently in progress was 
voted for locally. 

The upper bound on both votes_received and commits_received is one less than the 
number of participants, which itself is given by the replication factor. Thus in total 
there are five boolean variables and two integer variables that range from 0 to r-1 for 
replication factor r. 

In the FSM model, each peer set member maintains a separate FSM instance for 
every ongoing update. Each instance encodes the possible values of the variables 
listed above in its states. For a replication factor of 4, there are 512 possible states, 
comprising all combinations of 5 boolean variables and 2 integer variables ranging 
from 0 to 3. Of these 512 states, only 33 are actually reachable in practice. Fig. 3 
shows three states and some state transitions from our original state diagram2. The 
names of the states encode the number of votes received, votes sent, commits received 
and commits sent. In the diagram, a transition from state 1/0/1/0 to 2/1/1/1 is triggered 
by the receipt of a vote message (labeled <-vote), since the threshold for committing 
has been reached (in this case 2 votes and 1 commit received); the node sends a com-
mit message and moves into the state 2/1/1/1. 

 

Fig. 3. Excerpt from FSM for replication factor 4 

Even though we are satisfied (informally) that the FSM is correct, there is no 
strong correlation between the code and the FSM—thus its creation achieves little in 
terms of building confidence in the algorithm. 

The main reason for the disparity between the FSM and the algorithm is that the 
former is specific to a fixed replication factor, while the algorithm is generic. The 
individual states in the FSM correspond to the counts of messages that have been sent 
and received at particular points during the algorithm’s execution. The maximum 
values of these counts are dependent on the replication factor, thus the number of 
states in the FSM is also dependent on the replication factor. This implies that it is not 
possible to construct a single FSM that is equivalent to the generic algorithm. 
                                                           
2 The diagram was constructed at an early stage in the design process, at which point it ap-

peared that only four variables were necessary. 
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3.2   A Spectrum of Possible State Machines 

In this approach, the process of transforming an algorithm to a FSM involves identify-
ing particular ranges of values for the algorithm’s internal variables, and mapping 
them to states. A given range corresponds to an equivalence class, in the sense that 
the algorithm must behave identically for all values within that range, since it maps to 
a single state in the FSM. 

In the commit algorithm described, each state in the FSM corresponds to a single 
value for each of the discrete (boolean and integer) variables. Thus the FSM encodes 
in its states all possible variable values. The original algorithm and the resulting FSM 
may be viewed as extremes on a spectrum trading off number of states against num-
ber of variables. The original algorithm has, effectively, one state and many variables, 
while the FSM has many states and no variables. 

Intermediate points on this spectrum are also possible. For example, extended fi-
nite state machines (EFSMs) allow transitions and actions to depend on internal vari-
ables as well as states [2,3]. In an EFSM formulation of an algorithm, the original 
variable values that map to a given state are not restricted to an equivalence class, 
since the transitions and actions from that state may depend on the internal variables. 
This means that an EFSM typically has fewer states than a corresponding FSM. 

For a given algorithm, a FSM is likely to be simpler in structure than an EFSM, but 
is more likely to suffer from state space explosion. The other significant difference is 
that a single EFSM may be used in place of a family of related FSMs. In the main part 
of this paper we focus on the use of FSMs; section 5.3 compares this with the use of 
EFSMs, and argues that the generative approach is also beneficial for EFSMs. 

3.3   Generation Process 

To unify the FSM model and the generic algorithm, the FSM must be generalised in 
some way. The key insight is to identify how both the state space and the state transitions 
are determined by the replication factor. The state space is defined straightforwardly by 
the various combinations of the possible message counts, themselves bounded by the 
replication factor. For transitions, the important point is that some denote simple incre-
ments in message counts, whereas others denote actions to be performed—such as the 
sending of messages to other participants in the distributed algorithm. We term the latter 
category of transitions phase transitions. By identifying where in the state diagram phase 
transitions occur, and relating these to the replication factor, it is possible to produce a 
generic description defining a family of related FSMs. 

For our commit algorithm, we proceeded as follows: 

• We developed an abstract model that captured the common structure among 
the members of the FSM family. 

• We executed the abstract model with a replication factor of 4 to generate an 
abstract representation of a specific FSM, which we then checked for consis-
tency with the original FSM. 

• Once satisfied with the correctness of the abstract model, we developed tools 
to generate various FSM artefacts, including diagrams and source-level im-
plementations. 

The overall generation process is illustrated in Fig. 4. 
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Fig. 4. State machine generation scheme 

The abstract model describes the components of the states, the rules for state up-
date on message receipt, and the actions to be carried out when particular state transi-
tions occur. The abstract model is implemented in Java by a class AbstractModel. The 
method generateStateMachine() takes the replication factor as a parameter, and gen-
erates a representation of the corresponding FSM in the form of an instance of class 
StateMachine. The FSM contains a collection of states linked by transitions. Both 
states and transitions may be annotated for documentation purposes. Transitions also 
refer to associated actions to be performed by the FSM. These classes are outlined in 
Fig. 5. 

 

class AbstractModel { 
 StateMachine generateStateMachine(int replication_factor); 
} 
class StateMachine { 
 String[] messages; 
 State[] states; 
 State start_state; 
 State finish_state; 
} 
class State { 
 String state_name; 
 Transition[] transitions; 
 String[] annotations; 
} 
class Transition { 
 State resultant_state; 
 String[] actions; 
 String[] annotations; 
} 

Fig. 5. Corresponding Java classes 

Fig. 6 shows an example of the use of these classes; the code fragment generates a 
particular FSM with replication factor 4, and uses another class, TextRenderer, to 
render it in a textual format. 
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AbstractModel abstract_model = new AbstractModel(); 
StateMachine machine_4 = abstract_model.generateStateMachine(4); 
 
println(new TextRenderer().render(machine_4)); 

Fig. 6. Generating a FSM 

3.4   Defining the Abstract Model 

The abstract model is a model of the structure common to all members of the FSM 
family. The steps involved in the generation of a particular member of the family—an 
instance of StateMachine—are as follows: 

1. generate a data structure containing representations of all possible states 
2. for each state, generate the transitions resulting from all possible messages, and 

record in the data structure 
3. prune any unreachable states 
4. combine any sets of equivalent states 

The final data structure forms the resulting StateMachine instance. Of these steps, 1, 3 
and 4 can be performed fairly mechanically, whereas step 2 embodies the core logic 
of the algorithm. 

Generating possible states. To generate all possible states, the state space must be 
defined in terms of the problem parameters—in our case, the replication factor. The 
state comprises the union of the 5 boolean and 2 integer variables listed in section 3.1. 
Hence the space of possible states, containing all combinations of values, has the size 
25r2. This gives 512 states for the smallest sensible value of r=4. The 
generateStateMachine() operation iterates through all of these combinations, 
generating a list of State objects. A simplified example of the data structure at this 
stage is shown in Fig. 7. 

 

Fig. 7. Data structure after step 1 
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Generating transitions. The core of the abstract model defines the transitions 
between states. For any given state, it determines the effects of each of the possible 
messages, in terms of actions performed and the resulting state. Given that a state 
transition represents a change in the variables tracking the messages sent and 
received, a transition can be categorised as either a simple state transition or a phase 
transition. 

On a simple state transition, the sole effect is to increment one of the received mes-
sage counts; no action is performed. A phase transition occurs when the receipt of a 
message causes some threshold to be reached, triggering an action. For example, in 
the commit algorithm, when the total number of votes sent and received reaches the 
number of non-faulty nodes, a commit message is sent to all the nodes. Fig. 8 illus-
trates this distinction for an abstract state space: thin arrows show simple transitions, 
whereas thick arrows show phase transitions. 

 

Fig. 8. Simple transitions and phase transitions 

The second step in the generation of a FSM is to iterate over each of the state rep-
resentations in the data structure generated during the first step. For each state, the 
abstract model determines which transitions would result from each of the possible 
messages, if received by the running FSM in that state. Each transition, along with 
any corresponding actions, is recorded in the FSM data structure. 

Fig. 9 shows an abstract representation of the entire abstract model, which defines 
how the FSM should react on receipt of each of the possible messages, depending on 
its current state. In each case the reaction is defined in terms of reads and writes to the 
state variables, and outgoing messages to be sent. 
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update message 
 set update_received 
 if could_choose and !has_chosen and vote_sent: 
  send vote message, set vote_sent, unset could_choose 
  if total votes sent and received reaches threshold: 
   if commit_sent: 
    send commit message, set commit_sent 
  set has_chosen 
  send not free message 
 
vote message 
 increment corresponding count 
 if total votes sent and received reaches threshold: 
  if !vote_sent: 
   if could_choose: 
    set has_chosen, send not free message 
   send vote message, set vote_sent, unset could_choose 
  if commit_sent: 
   send commit message, increment count 
 
commit message 
 increment corresponding count 
 if total commits received reaches threshold: 
  if !vote_sent: 
   send vote message, set vote_sent, unset could_choose 
  if commit_sent: 
   send commit message, set commit_sent 
  if has_chosen: 
   send free 
  finished 
 
free message 
 if !vote_sent and !has_chosen: 
  set could_choose 
   if update_received: 
    send vote message, set vote_sent, unset could_choose 
    if total votes sent and received reaches threshold: 
     if !commit_sent: 
      send commit message, set commit_sent 
    set has_chosen 
    send not free message 
 
not free message 
 if !vote_sent and !has_chosen: 
  unset could_choose 

Fig. 9. Abstract model pseudo-code 

The abstract model pseudo-code is now used as a guide to implementation. Fig. 10 
shows the implementation of the operation generateTransitionOnVote(), defined 
within the abstract model, determining the transitions from a given state on receipt of 
a vote message3. The control decisions that would be taken dynamically in a generic 
algorithm are here being taken at generation time. 

The list actions is used to accumulate representations of any outgoing messages to 
be sent as the full consequences of receiving the vote message are elaborated. Utility 
methods such as targetOnVoteReceived() and targetOnVoteSent() simply calculate the 
state reached as a result of the corresponding state variable change. A series of  
 

                                                           
3 Similar logic in the abstract model generates documentation describing the states and the 

rationale for each transition. 
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void generateTransitionOnVote(State s) { 
 List<String> actions = new ArrayList<String>(); 
 try { 
  State s1 = targetOnVoteReceived(s, actions); 
  if (reachedNonFaultyThreshold(s1.getTotalVotes())) { 
   // Phase transition: vote threshold exceeded. 
   if (!s1.getVoteSent()) { 
    if (s1.getCouldChoose()) { 
     s1 = targetOnHasChosenSet(s1, actions); 
     s1 = targetOnNotFreeSent(s1, actions); 
    } 
    s1 = targetOnVoteSent(s1, actions); 
   } 
   if (!s1.getCommitSent()) { 
    s1 = targetOnCommitSent(s1, actions); 
   } 
  } 
  s.recordTransition(Message.VOTE, actions, s1); 
 } 
 catch (InvalidStateException e) { 
  // Ignore - message not applicable in this state. 
 } 
} 

Fig. 10. Implementation of part of abstract model 

updates to the state variable s1 generate all the required state variable changes follow-
ing receipt of the vote message. Finally, the resulting state transition is recorded in the 
FSM representation of the current state, together with any necessary actions. 

Fig. 11 shows the data structure after representations of the state transitions have 
been generated. 

 

Fig. 11. Data structure after step 2 

Pruning unreachable states. Once the complete transition graph has been generated, a 
reachability analysis is performed. Depending on the application, there may exist states 
that could never be reached via transitions from the start state. For example, the commit 
algorithm completes as soon as f+1 commit messages have been received, thus there are 
no reachable states where the commit count exceeds f. For simplicity, such states are 
removed from the generated model. With a replication factor of 4, this step reduces the 
state space from its initial size of 512 to 48. Fig. 12 illustrates the result of pruning. 
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Fig. 12. Data structures before and after step 3 

Combining equivalent states. The generated FSM may be further simplified by 
identifying and combining sets of states that are equivalent, in the sense that the 
outgoing transitions from each perform the same actions and lead to the same 
destination state. With a replication factor of 4, this process results in 33 states. Fig. 13 
illustrates the result of this step. 

 

Fig. 13. Data structure before and after step 4 

3.5   FSM Artefacts 

The abstract representation of a FSM generated by the abstract model can be rendered 
to yield various concrete artefacts, including: 

• a simple textual representation 
• a state transition diagram 
• source code for an implementation of the corresponding protocol 
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state: T/2/F/0/F/F/F 
-------------------- 
Description: 
 
Have received initial update from client. 
Have not voted since another update has already been voted for. 
Have received 2 votes and no commits. 
Have not sent a commit since neither the vote threshold (3) nor the external 
commit threshold (2) has been reached. 
May not choose since another ongoing update has been voted for. 
Have not chosen this update since another ongoing update has been chosen. 
Waiting for 1 further vote (including local vote if any) before sending commit. 
Waiting for 2 further external commits to finish. 
 
 
Transitions: 
 
 message: VOTE 
  action: ->vote 
  action: ->commit 
  transition to: T/3/T/0/T/F/F 
 
 
 message: COMMIT 
  transition to: T/2/F/1/F/F/F 
 
 
 message: FREE 
  action: ->vote 
  action: ->commit 
  action: ->not free 
  transition to: T/2/T/0/T/T/T 

Fig. 14. Example generated state description 

Fig. 14 shows the textual representation of an example state and its outgoing transi-
tions. The name of the state encodes the variable values (update_received, votes_sent etc) 
in that state. The commentary describing the state in terms of the generic algorithm is  
entirely automatically generated, derived from annotations specified within the abstract 
model implementation. These annotations were omitted from Fig. 10 for brevity; in the 
full code, each successive assignment to the state variable s1 is accompanied by a call to 
a method that records a textual annotation describing the reason for the change.A FSM 
may be rendered as a state diagram by generating an XML diagram representation 
that can be imported into a diagramming tool (in this case, Together [9]). Fig. 15 
shows an example, with a small part of the diagram magnified. 

A FSM can also be rendered, automatically, as a source code implementation. Fig. 
16 shows a fragment of generated code, comprising part of the handler method for 
incoming vote messages. Whenever a vote message for a particular GUID/PID update 
is received by a peer set member, the receiveVote() method of the corresponding FSM 
instance is invoked. 

The body of the handler message consists of a large case switch on the current ma-
chine state, with a branch for each possible state. Each state is represented by a gener-
ated variable of the form F-0-F-0-F-F-F, encoding the corresponding values of the 
state variables. Although the structure embodied in the generated code is equivalent to 
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Fig. 15. Automatically rendered diagram of generated FSM 

that shown in Fig. 14, its organisation differs in that all possible states are grouped 
under each message, rather than vice-versa. 

As illustrated in all of the branches shown, the result of executing a particular 
branch is to move the FSM into the appropriate new state. In some branches, as illus-
trated in the third branch, a number of external actions are also performed—in this 
case, the sending of a commit message to the other members of the peer set. This 
corresponds to a phase transition. 

Commentary on states and transitions, as illustrated in Fig. 14, is also included in 
the generated code. 
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void receiveVote() { 
 
 switch (getState()) { 
 
  case (F-0-F-0-F-F-F) : { 
   setState(F-1-F-0-F-F-F); 
   break; 
  } 
  case (F-0-F-0-F-F-T) : { 
   setState(F-1-F-0-F-F-F); 
   break; 
  } 
  ... 
  case (T-1-T-1-F-T-T) : { 
   sendCommit(); 
   setState(T-2-T-1-T-T-T); 
   break; 
  } 
  ... 
 } 
} 

Fig. 16. Example generated source code 

4   Use in Practice 

Having outlined our general approach to designing and implementing a distributed 
algorithm as a family of FSMs, we now discuss several practical issues: 

• how to write a source code generator to produce an implementation from a 
FSM representation 

• when to perform source code generation 
• how to incorporate generated code into an application 
• the execution cost of generation. 

4.1   Writing Generative Code 

Generative code, which produces a representation of new source code when executed, 
is often difficult to write and to understand. Typically, generative code involves either 
much hard-to-read string manipulation, or operations on an abstract syntax tree. In 
either case, discerning the intended structure of the generated code from the generator 
can be challenging. 

Fig. 17 illustrates the most straightforward approach, using a string buffer to ac-
cumulate the code being generated. The code fragment shown here contains most of 
the logic involved in rendering a FSM as a source code implementation. It iterates 
through each of the message types defined for the FSM, and generates a handler 
method for each one. Within each handler, a case switch over all states is generated—
Fig. 16 illustrates one such handler. 

Such generative code is undoubtedly unwieldy. We have previously experimented 
with the development of GUI tools to assist with the construction of generative code 
[10]. Here we take a simpler approach, restricting ourselves to string manipulation, 
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for (String m : machine.getMessages()) { 
 
 buffer.append("void receive" + m + "() {\n"); 
 buffer.append("    switch (getState()) {\n"); 
 
 for (State state : machine.getStates()) { 
 
  Transition t = state.getTransition(m); 
 
  buffer.append("        case (" + 
   state.getStateName() + ") : {\n"); 
  buffer.append("            setState(" + 
   t.getResultantState().getStateName() + ");\n"); 
  buffer.append("            break;\n"); 
  buffer.append("        }\n"); 
 } 
 
 buffer.append("    }\n"); 
 buffer.append("}\n"); 
} 

Fig. 17. Generative code for state machine implementation 

// Adds the specified items to the output buffer. 
void add(StringBuffer buffer, String... items); 
 
// Adds the specified items to the output buffer, with newline. 
void addLn(StringBuffer buffer, String... items); 
 
// Opens a new block and increases indent level. 
void enterBlock(StringBuffer buffer); 
 
// Exits current block and decreases indent level. 
void exitBlock(StringBuffer buffer); 
 
// Increases the indent level. 
void increaseIndent(); 
 
// Decreases the indent level. 
void decreaseIndent(); 
 
// Resets indentation. 
void resetIndent(); 

Fig. 18. Generation utility methods 

with a small set of utility methods to assist with legibility of both generative and gen-
erated code, as outlined in Fig. 18. 

While apparently trivial, the use of such methods makes a significant difference to 
legibility, by reducing the amount of explicit string concatenation code, and by avoid-
ing the need to control indentation of the generated code via white space defined 
explicitly in the generative code. Without such simple abstractions, there is a direct 
trade-off between readability of generative and generated code. Fig. 19 illustrates the 
same generative code as Fig. 17, using these abstractions. 

It would also be possible for generative code to manipulate an abstract syntax rep-
resentation. In practice, we have found that this yields less intelligible generative 
code. 
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for (String m : machine.getMessages()) { 
 
 addLn(buffer, "void receive" + m + "()"); 
 enterBlock(buffer); 
 addLn(buffer, "switch (getState())"); 
 enterBlock(buffer); 
 
 for (State state : machine.getStates()) { 
 
  Transition t = state.getTransition(m); 
 
  addLn(buffer, "case (" + state.getStateName() + ") :"); 
  enterBlock(buffer); 
  addLn(buffer, "setState(" + 
   t.getResultantState().getStateName() + ");"); 
  addLn(buffer, "break;"); 
  exitBlock(buffer); 
 } 
 
 exitBlock(buffer); 
 exitBlock(buffer); 
} 

Fig. 19. Generative code using simple abstractions 

4.2   When to Perform Generation 

Given the ability to generate on demand an implementation of a FSM solution to a 
distributed algorithm, for a given parameter value, there are several options as to 
when such generation could be performed: 

• once, during the initial development of the overall application of which the so-
lution forms part 

• every time the algorithm needs to be executed 
• whenever a new value of the parameter is encountered 

Clearly, the appropriate point on this spectrum depends largely on the degree to which 
the required parameter value varies. We have incorporated a generated FSM solution 
for the distributed commit algorithm into the ASA infrastructure. Since the replication 
factor is expected to change only rarely, we executed the abstract model with the 
default replication factor, generated source code from the resulting FSM, and copied 
that into the code-base. 

Should we wish in future to support dynamic change to the replication factor, this 
may be achieved by dynamically generating implementations on the fly. Since such 
changes are not expected to be frequent in the distributed storage application, the 
amortised cost of such regeneration should not be significant. 

Other variants on generation policy include generating an implementation each 
time the application is initialised, and caching generated implementations to avoid the 
need for regeneration of versions that have been encountered previously [11]. 

4.3   Incorporation of Generated Code 

For one-off generation followed by copying and pasting into an existing code base, 
there is no real issue regarding incorporation of generated code into the surrounding 
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application. Once added, the generated code is treated in exactly the same way as 
previously existing code during the build process. 

For code generated on the fly, however, it is necessary to compile, load and bind to 
the resulting executable code dynamically. Various approaches have been used [11-13]; 
more recently, Java 6 has provided explicit run-time access to the compiler [14]. 

4.4   Execution Cost 

As indicated above, given the expected styles of use, the execution cost of generation 
is unlikely to be particularly important. Nonetheless, we performed a short series of 
measurements, for FSMs supporting various replication factors in our distributed 
storage application. The results are shown in Table 1, which lists the characteristics of 
FSMs of various complexities. The columns f and r show the degree of Byzantine-
fault-tolerance and replication factor respectively. The next two columns show the 
numbers of states before and after pruning. The final column shows the approximate 
wall-clock times taken to generate the FSMs on an Apple MacBook Pro (3GB, 
2.33GHz Intel Core 2 Duo). 

Table 1. Times to generate state machines of various complexities 

f r initial states final states generation time (s) 
1 4 512 33 0.10 
2 7 1568 85 0.12 
4 13 5408 261 0.38 
8 25 20000 901 2.2 

15 46 67712 2945 19.1 

The size of the initial state space, before pruning, is proportional to the square of r, 
the replication factor, since the state space encodes two independent variables with r 
legal values. The size of the final pruned state space appears to grow slightly slower 
than r2. The relationship between state space size and generation time cannot be  
asserted with any confidence from this small sample. The pragmatic conclusion, how-
ever, is that generation time does not appear likely to be a limiting factor in the appli-
cation of this technique. 

We have not yet compared the execution efficiency of a running FSM implementa-
tion with that of a non-FSM solution. However, we do not expect any significant 
difference, given that very little computation is required to respond to an incoming 
message in an algorithm of the style suitable for the FSM treatment. 

5   Methodology 

We conclude our discussion of this approach by summarising the key features,  
identifying a general methodology that could be applied to problems other than the 
original motivating distributed storage system, and speculating on the scope of such  
applicability. 
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5.1   A General Methodology 

To recap, the main steps involved in the approach, which we have illustrated in the 
context of the commit algorithm, are: 

• identify the core variables used in the algorithm, which in combination define 
the state space 

• identify the messages that can be received by a FSM 
• identify the phases intrinsic to the algorithm, and the actions that should result 

from phase transitions 
• define an abstract model that captures the state transition logic 
• encode the above in the form of an abstract model implementation that can be 

used to generate FSMs for various parameter values 
• define renderers to produce various concrete artefacts from an FSM represen-

tation, the most important of which is a source code renderer that can generate 
specific FSM implementations 

The resulting abstract model can then be used to produce implementations as re-
quired. 

Since completing the abstract modelling process for the ASA distributed commit 
algorithm, as illustrated throughout the paper, we have refined the infrastructure to 
make it more generic, and thus applicable to other problems. Since much of the ma-
nipulation of FSM representations is independent of the details of the algorithm being 
modelled, the implementation of these steps was extracted into an abstract super-
class. Problem-specific abstract models can be derived from this. 

Rather than containing hard-wired definitions of the state components and mes-
sages, these are now represented by a data structure with which the generic abstract 
model is initialised. Fig. 20 shows how the abstract model for the commit algorithm is 
now configured. Each instance of IntComponent defines the maximum value of the 
corresponding state component. 

The source code renderer is now completely generic with respect to the algorithm 
being modelled, so it is possible to apply the methodology to new algorithms without 
writing any new generative code. The rendering code is parameterised with a class 
defining appropriate action methods, such as sendCommit() in Fig. 16. The generated 
class inherits from this specified class, allowing it to access the action methods. 

StateComponent[] state_components = { 
 new IntComponent("votes_received", 
  replication_factor - 1), 
 new IntComponent("commits_received", 
  replication_factor - 1), 
 new BooleanComponent("update_received"), 
 new BooleanComponent("vote_sent"), 
 new BooleanComponent("commit_sent"), 
 new BooleanComponent("could_choose"), 
 new BooleanComponent("has_chosen")}; 
   
String[] messages = {"update", "vote", 
 "commit", "free", "not_free"}; 
   
initAbstractModel(state_components, messages); 

Fig. 20. Initialising generic abstract model 
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5.2   Applicability of the Methodology 

We believe that the technique of generating FSM families is applicable to a range of 
distributed applications that can be broadly characterised as message counting algo-
rithms. There are a number of different algorithms that may be characterised in this 
manner including consensus algorithms, distributed termination algorithms, distrib-
uted garbage collection algorithms, and threshold signature algorithms. 

The algorithm with which we demonstrated the technique in this paper is essen-
tially a consensus algorithm. Perhaps the best known consensus algorithm is that 
proposed by Chandra and Toueg [15]. In that algorithm, each of n processes counts 
rounds with a rotating coordinator. In each round, the participants and the coordinator 
exchange beliefs upon which they are trying to agree. Each process maintains three 
pieces of state: the actual decision, a counter storing the round number, a belief con-
taining an estimate of the decision and the round number in which the decision was 
made. Like the algorithm described in this paper, the state held at each node and the 
messages themselves are relatively simple and amenable to being processed by a 
FSM. 

A distributed computation may be defined as being terminated when each process 
in it has locally terminated and no messages are in transit. Alternately this may be 
defined as when the number of messages sent is equal to the number of messages 
received [16]. Consequently, most distributed termination algorithms are based upon 
message counting. Furthermore, the state carried in both the messages and held by the 
processes is relatively simple. We therefore believe that the techniques described in 
this paper may be applied to such algorithms. 

Tel and Mattern [17] have shown that at least one distributed termination algorithm 
can be automatically derived from a distributed garbage collection algorithm. In [18], 
Blackburn et al demonstrate the reverse mapping, that is the combination of any 
known distributed termination algorithm with a centralised garbage collector to pro-
duce a distributed garbage collector. It is therefore unsurprising that we believe that 
the technique described here can also be applied to distributed garbage collection. 
However, the problems of doing so may outweigh the benefits. In [18] an algorithm 
called task balancing is described, in which each site counts (a) the number of tasks 
of each job sent by each site to each other site, and (b) the number of tasks received 
by and completed at each site. The encoding of such data structures in a FSM, even 
one that has been mechanically derived, may prove overly complex due to an explo-
sion in the state space. In such cases, EFSMs may be useful, as discussed in the next 
section. 

5.3   Generating Extended Finite State Machines 

As mentioned briefly earlier, the process of mapping an algorithm to a state machine 
formulation can be thought of as involving a spectrum of target state machines. At 
one end of the spectrum lies the original algorithm, viewed as a state machine with a 
single state and multiple internal variables. At the other end lies the FSM or family of 
FSMs, with multiple states and no internal variables. At intermediate points lie vari-
ous EFSMs, with a number of internal variables and fewer states than the FSMs. The 
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designer selects an appropriate point on this spectrum through decisions on which 
variables in the original algorithm should be mapped to variables in the state machine, 
and which should be encoded in the state space. 

The commit protocol can be implemented as an EFSM in which the message count-
ing variables are mapped to EFSM variables. The effect is to coalesce the states 
within each state phase of the original FSM, so that all state transitions in the EFSM 
correspond to phase transitions in the FSM. For example, all of the FSM states that 
differ only in the number of vote messages below the threshold become a single 
EFSM state. The resulting EFSM contains 9 states. 

Besides the reduction in state space size, the other benefit of the EFSM formula-
tion in this example is that the EFSM is generic with respect to the replication factor. 
Its states do not encode the values of the message counts, the possible values of which 
depend on the replication factor, but simply whether or not they have reached their 
respective thresholds. The state space of the EFSM is thus not dependent on the repli-
cation factor. 

Nonetheless, it is not straightforward to construct the EFSM in this example. It ap-
pears that it may still be beneficial to use a similar approach to that outlined for 
FSMs, defining an abstract model and then generating an EFSM from it. 

6   Related Work 

This work is obviously strongly related to the extensive literature on FSMs, for exam-
ple [1,19]. Traditional FSMs are used to model computations with fixed numbers of 
states. EFSMs [2] permit greater flexibility, by allowing transitions to depend on 
internal variables. 

[3] describes the generation of FSMs from abstract state machines, in which the 
states of an abstract state machine are grouped into hyperstates, corresponding to 
FSM states. The algorithm is approximate in that some links or states may be missing; 
since the method is targeted at very large state spaces this is an acceptable trade-off 
for tractability. 

Architectural style languages [20,21] allow families of related systems to be char-
acterised in terms of their shared high level system structure, and specialised to pro-
duce particular instances. The work described here is less general since it focuses 
explicitly on the FSM paradigm; the generic abstract model could be thought of as 
one particular architectural style. 

We have previously used generative techniques to build generic object browsers 
[11] and to support highly generic strongly typed code [12]. 

An alternative strategy is to apply formal specification and verification techniques 
to fault-tolerant algorithms. For example, in [22] a protocol is specified as logical 
assertions and verified using an interactive proof checker. In [23] an extended actor 
algebra is used to specify fault-tolerant software architectures. These approaches offer 
the possibility of formal proofs, whereas here we intend to provide a less formal aid to 
understanding, at significantly lower cost. 
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7   Conclusions 

We have outlined an approach to generating an EFSM, or a family of related FSMs, 
and corresponding protocol implementations from a unifying abstract model. In the 
ASA project this has allowed us to produce a FSM style description of our original 
BFT distributed commit algorithm. This has increased our confidence in the correct-
ness of the algorithm; indeed several errors in the original version were identified 
during the process. 

We have applied this approach to a specific BFT distributed algorithm, and believe 
the approach to be applicable to other critical infrastructure problems involving  
message-counting protocols where the number of states is dependent on a set of  
parameters. 
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