

Towards Simplification of the
Software Development Process
The Hyper-Code Abstraction

Evangelos T. Zirintsis

Thesis submitted for the Ph.D. degree
St Andrews August, 2000

School of Computer Science, University of St Andrews
St Andrews, Fife KY16 9SS, Scotland

I

Acknowledgements

Neither this thesis nor my academic upbringing would have

materialised without the sharp supervisory eye and tireless

commitment of Ron Morrison.

The completion of this thesis would have never been achieved

without the insightful comments of Graham Kirby, whose role

has been pivotal.

My warmest thanks and deepest gratitude goes to my parents,

whose support both financial and moral has made all this

possible.

Finally, I would also like to thank all those who intentionally

or unintentionally have shaped the strength of my character.

Their positive and negative comments kept me going

throughout this demanding process.

II

Abstract

Following Aristotle's theory of substances and accidents, the difficulties

in developing software can be categorised into essences and accidents.

Essences are the conceptual constructs that compose an abstract software

entity. Accidents are representations of these abstract entities in

programming environments, which quite often constitute noise in the

process of developing software.

The focus of this thesis is on improving the software life-cycle, by

introducing a new set of abstract concepts — hyper-code — that allows

the accidents of the traditional programming life-cycle to be lessened. The

hyper-code view of programming still contains accidental difficulties, but

these are fewer and more understandable. A plethora of concepts, which

exist only for reasons of efficiency, are hidden from the programmer, by

the hyper-code system thereby producing a simpler system. The main

hypothesis of the thesis is that this reduction in complexity increases

programmer productivity.

A concrete implementation of the hyper-code concepts is a Hyper-Code

System. This thesis reports on the design of the system using two

particular programming languages (ProcessBase and PJama), and on the

implementation of the user interface in PJama.

III

Contents
1 Introduction...1

1.1 Essences and Accidents ..1
1.2 Levels of Abstraction..2
1.3 Thesis Structure ..4

2 Related Work ..6
2.1 Traditional Programming Life Cycle..6
2.2 Software Development Environments ..7

2.2.1 EMACS...8
2.2.2 Metrowerks CodeWarrior...9
2.2.3 Visual Basic ..11
2.2.4 Smalltalk ...12
2.2.5 Trellis ..14
2.2.6 Integrated Project Support Environments (IPSEs)15

2.2.6.1 IPSE 2.5... 16
2.2.6.2 ECLIPSE IPSE... 17
2.2.6.3 APSE ... 17

2.2.7 Persistent Programming — Napier88...17
2.2.8 Hyper-Programming in Napier88 and PJama.................................20

2.3 Towards Hyper-Code..23
2.4 Summary...24

3 The Hyper-Code Abstraction — Towards Hyper-Code
Systems...26

3.1 The Hyper-Code View of the Programming Life-Cycle26
3.1.1 Defining the Domains...26
3.1.2 Domain Operations...27
3.1.3 Composing Domain Operations – Equivalences28
3.1.4 Interpretations of the Domain Operations29
3.1.5 Towards Concrete Systems...29

3.2 Hyper-Code Systems ..30
3.2.1 General Requirements for the Hyper-Code Operations..................30
3.2.2 A Particular Set of HCOs ...30
3.2.3 Accessing Data in a Persistent HCS ...32

3.3 Summary...33

4 Concrete Hyper-Code System ..34
4.1 The Hyper-Code Representation ..34
4.2 A Particular Set of Hyper-Code Operations ...35

4.2.1 Explode ...35
4.2.2 Implode ...36
4.2.3 Evaluate ..36

4.2.3.1 Viewing the Evaluation .. 36
4.2.3.2 Result of Evaluation ... 38

IV

4.2.4 GetRoot...38
4.2.5 Edit..38

4.3 Summary...40

5 A Hyper-Code System for ProcessBase41
5.1 Domains in ProcessBase...41
5.2 Equivalences in ProcessBase Hyper-Code ...42
5.3 Operations Over HCRs ...43

5.3.1 Explode ...43
5.3.2 Implode ...45
5.3.3 Evaluate ..45

5.3.3.1 Viewing the Evaluation .. 45
5.3.3.2 Result of Evaluation ... 47

5.3.4 Get Root..48
5.3.5 Edit..48

5.4 Summary...50

6 A Hyper-Code System for PJama ..51
6.1 Domains in PJama ..51
6.2 Equivalences in PJama ...52
6.3 Operations Over HCRs ...52

6.3.1 Explode ...53
6.3.2 Implode ...54
6.3.3 Evaluate ..54

6.3.3.1 Viewing the Evaluation .. 54
6.3.3.2 Result of Evaluation ... 56

6.3.4 Get Root..57
6.3.5 Edit..57

6.4 Summary...58

7 Implementing Hyper-Code in PJama59
7.1 Representing HCRs ..59
7.2 Implementation of the Evaluation Process ...60

7.2.1 The Storage Form ...61
7.2.2 Transforming an HCR into a Class Definition64
7.2.3 The Textual Form ...65
7.2.4 Inserting Code for Variable Tracking...67

7.2.4.1 Requirements for the Inserted Code.. 68
7.2.4.2 Meeting the Requirements - The Thread of Execution 68
7.2.4.3 Transforming the Example HCR .. 70
7.2.4.4 Transforming an Example HCR Representing a Class Definition...... 71

7.2.5 Compiling and Executing HCRs ..72
7.2.5.1 Compiling and Loading Class Definitions... 72
7.2.5.2 Executing Methods... 72
7.2.5.3 Compiling and Executing the Example HCR 74

7.2.6 Producing a new HCR ..74
7.3 Summary...74

V

8 Implementing the Hyper-Code Assistant Tool in PJama76
8.1 The Basic Editor ...76
8.2 The Window Editor ..78
8.3 The Hyper-Code User Editor..79
8.4 The Explode Operation...81

8.4.1 Generating an HCR for a Primitive Type81
8.4.2 Generating an HCR for an Array Type...81
8.4.3 Generating an HCR for a Class or Interface...................................82
8.4.4 Generating an HCR for a Primitive Value......................................82
8.4.5 Generating an HCR for an Array..82
8.4.6 Generating an HCR for a Class Instance ..83
8.4.7 Displaying the Generated HCR ..85

8.5 Summary...85

9 Conclusions..86
9.1 Simplification at the Abstract Level ...86
9.2 Simplification at the Concrete Level ..86
9.3 Hyper-Code Systems and Related Work ..87
9.4 Current Design and Implementation Status..87
9.5 General Discussion of HCSs ..88

9.5.1 Choosing the Particular HCR ...88
9.5.2 Choosing the Particular Set of HCOs ...89
9.5.3 Mapping Hyper-Code Into Particular Languages...........................89

9.5.3.1 Hyper-Linking ... 89
9.5.3.2 Generating Detailed HCRs for Entities ... 90
9.5.3.3 Information Hiding... 91
9.5.3.4 Mutable Locations.. 91
9.5.3.5 Openness.. 92
9.5.3.6 Persistence and Referential Integrity... 92
9.5.3.7 Compatibility ... 93

9.5.4 Essential and Desirable Features for Hyper-Code..........................93
9.6 Further Research Work...94
9.7 Final Thoughts ..94

10 Appendix ..96
10.1 Index of Tables ...96
10.2 Index of Figures..97

11 References ..99

1

1 Introduction

1.1 Essences and Accidents
According to Aristotle, the Greek philosopher, there is a distinction between the
way reality is structured and the way it is viewed. The basic logical distinction is
between substance and accident [Ros28].

A substance is whatever is a natural kind of thing and exists in its
own right.
An accident is the modification that a substance undergoes but does
not change the kind of thing that each substance is.
This distinction is logical and reflects the structure of reality.
Substances may exist without accidents but an accident must always
be associated with a substance.

Following Aristotle's theory of substances and accidents, [Bro86] categorises the
difficulties in software technology into essences and accidents. According to
Brooks

Essences are the complex conceptual structures that compose an
abstract software entity. The essence of a software entity is a
construct of interlocking concepts: data sets, relationships among
data items, algorithms, and invocations of functions.
Accidents are the representations of these abstract entities in
programming languages and the mapping of these onto machine
languages within space and speed constraints.

Therefore, an essence is the problem itself and is an amalgamation of data and
algorithms. Accidents are the problems arising from using tools to solve the
original problem. These may be hardware constraints, limitations by awkward
programming languages and such like. The hardest part in building software is to
specify, design and test the conceptual construct (essences), and not to represent
and test its fidelity (accidents).
Nevertheless, most work on software engineering has concentrated on solving
problems caused by accidental difficulties. Removing unnecessary complexity,
that is the accidental difficulties, produces a simpler system. This presents to the
programmer either fewer or more understandable concepts and forms. The main
hypothesis is that a simpler system is better for developing software, as it increases
programmer productivity.
The work to be described is based on the belief that the gap between essence and
accident is still with us. It is also believed that the specification of the appropriate
abstract concepts result in fewer accidents, and this allows the essences to be
viewed more appropriately. Using the Aristotelian terminology, this implies that a
better view of the reality is provided.
The focus of the thesis is on improving the software life cycle. This is achieved by
introducing a new set of abstract concepts — hyper-code —that allow accidents of

2

the traditional programming life-cycle to be lessened. As will be explained later in
detail, the hyper-code view of the programming life cycle still contains accidental
difficulties, but these are fewer and more understandable. A plethora of concepts,
which exist only for reasons of efficiency, such as interchange forms and tools, are
hidden from the programmer.

1.2 Levels of Abstraction
The task of programming may be viewed at different levels of abstraction, as
shown in Figure 1. Programming may be performed at any level, depending on the
problem to be solved. There is a trade off between efficiency and programmer
convenience when moving from one layer to another. A view of a system at the
lower layer is closer to what a machine may execute, which makes programming
more flexible and efficient. A view of a system at a higher layer is perceived to
have improved productivity in terms of programmer understandability compared
to a view at a lower layer. Language designers try to balance making computing
convenient for people with making efficient use of computing machines. However,
according to [Set96] convenience comes first. Without it, efficiency is irrelevant.

Modern Operating
Systems such as Unix

Assembler

High-Level
Programming
Environments

 Modern Programming
Environment Level

Database
Programming
Environments

Machine efficiency
flexibility

convenience

Machine Level

Operating System
Level

Figure 1: Programming at different levels of abstraction

Programming at each level requires manipulation of different abstractions,
representations and operations. Some of these concepts are essential for
programming at the particular level. The rest exist only for reasons of efficiency,
and they are considered accidents as they can be hidden either by specifying new
abstract concepts or by providing different tools. Typical abstract concepts and the
accidents for each layer of the programming life-cycle are shown in Table 1.

3

Level of Programming Abstract Concepts
(structure of reality)

Accidents
(view of reality)

High-Level
Programming
Environments

data-types, operations programming tools,
forms

Database
Programming
Environments

schemata, sub-schemata,
database models, attributes,
dependencies etc.

tools for
manipulating the
DB, such as SQL

Modern Operating
Systems such as Unix

file and library and I/O
manipulation, filters, pipes,
protection mechanism,
operations such as
compilation and linking

different interfaces,
such as shells,
programming tools,
different forms

Machine Language -
Assembler

registers, memory
mappings, bits, branches

instruction sets for
different CPUs

Table 1: Essential concepts and accidents at each level of programming
At the machine level, programs consist of instructions which can be executed
directly by the processor. The programmer has to be aware of the computer
architecture as well as the following [Lu91]:
• which registers are associated with which commands,
• available ways of memory mapping,
• different instruction sets for each CPU, which means that a program written for

a particular processor may not run on another,
• interrupts, branches, bits.
A more intelligible variation of the machine language at the lower level is
assembly language, in which symbolic names take the place of instructions,
making the latter more readable, and consequently programming easier than
coding using machine language.
Unix, the integrated programming environment [Bac86], [Tan87], is an interactive
time-sharing system, designed to support the development of software projects. It
manipulates processes, pipes, filters, I/O and supports protection. It also provides a
set of library procedures and common file formats, which allows tools like
optimisers to be used even where the original forms are from disparate sources.
These are defined by the POSIX committee, which produced standards that every
conformant Unix system must adhere to.
However, programming using Unix as a programming environment means that the
programmer has to be aware of different tools, that is the programming language,
the editor's environment, the system's command environment, the debugger's
environment. The system's command environment provides many commands,
which the programmer has to be aware of. Furthermore there is little consistency
in interfaces and the command names in Unix. For example, there are several
interpretations of the "-k" option, or there are several commands to achieve the
same goal. Finally, the fact that Unix is a text-based programming environment

4

may be considered a drawback in programming. GUI-based operating systems,
such as Mac-OS [App86], [Nai93] and Windows [Mic98+] are designed to make
such programming easier.
A solution to the complexity of operating systems as programming environments
is to make them "invisible" by building a collection of tools on top. Examples of
such collections are database environments and high-level integrated programming
environments. The principle, in terms of programming, is that these environments
hide the operating system, as the programmer can concentrate on the accidental
difficulties of the higher-level, rather than on the accidental difficulties of the
operating system level.
In database environments, such as MSAccess [Dow98], [Mic94] and dBase
[And99], the programmer is required to be aware of the basic principles of
databases. This involves building the logical schema and possible sub-schemata in
order to develop the desired application. Other concepts involved in this task are:
database models, attributes and dependencies, normalisation, etc [Tsi77], [Ull80].
The accidental difficulties in these environments are caused by the programmer
having to be aware of the tools, such as SQL [CB98], [Dat93] that manipulate a
database.
In high-level, integrated programming environments, such as Turbo Pascal
[Bor89], reality is structured in terms of abstract constructs, such as operations and
data-types. The programmer is required to be aware of accidents such as tools and
forms, rather than concepts that the underlying system is responsible for, such as
device drivers, processes etc.
Object-oriented languages provide a different structure of the essence by
introducing concepts such as classes, instances, methods and subclasses. The way
of thinking is at the application level, in terms of objects and interactions needed
to describe the application [Set96]. However, the programmer is still aware of
operations, data-types and tools.
The main observation of the description above is that each view of abstraction
removes the accidental difficulties of the view below it, by hiding or improving the
understandability of the concepts of that view. According to the assumption
introduced in section 1.1, this produces a simpler system, that increases the
programmer productivity.
The hyper-code view introduces different abstract concepts, in order to address the
accidental difficulties of the traditional software development life-cycle, which is
followed by most of the systems described above. This results in presenting the
programmer with fewer accidents, and thus - according to the original assumption
- in increasing programmer productivity.

1.3 Thesis Structure
Chapter 2 provides a survey of the related work in this area involving the
description of several programming environments, which attempt to simplify the
traditional programming life-cycle. Persistence and hyper-programming are also
involved in achieving this goal.

5

Chapter 3 describes the hyper-code view of programming, which simplifies the
traditional programming life-cycle. A set of abstract concepts provides a different
structure of the essence. These are then mapped into a more concrete level to
produce a set of concrete operations, which are performed in Hyper-Code Systems,
that is programming systems which implement the ideas of hyper-code.
Chapter 4 defines the concrete operations with respect to particular interpretations
of the underlying domain operations. This definition is combined with an
illustration of how the user interface looks for each of the concrete operations.
Chapters 5 and 6 map the description given in chapter 4 into two particular
languages: a simple persistent language, ProcessBase [MBG+99b], and a
persistent object oriented language, PJama [AJ96].
Chapters 7 and 8 describe the principal features of the implementation of a hyper-
code system in PJama.
Chapter 9 concludes this thesis by reviewing the hyper-code level of
programming. In addition to that, a conclusion is drawn related to mapping a
hyper-code system into a programming language. Researching the design and the
implementation of a hyper-code system in two particular languages indicated that
mapping is possible, but is not always satisfactory. Finally, future work in this area
involves further improvements of the current implementation in PJama, and the
mapping onto the ProcessBase language.

6

2 Related Work
This chapter describes the traditional programming life-cycle and outlines
programming environments that attempt to address the accidental difficulties of it.

2.1 Traditional Programming Life Cycle
In programming environments that follow the traditional life-cycle, such as Pascal
[Wir71], the programmer concentrates on abstract constructs, such as operations,
data-types, and accidents such as forms and tools, rather than concepts that the
underlying system is responsible for, such as bits, registers, branches, device
drivers, processes etc. In these environments, software is developed following the
traditional compose-compile-link-execute cycle illustrated in Figure 2.

 pre-processing compilation linkage

 execution

 debugging

 pre-processor compiler object code linker

 execution engine

debugger

start

 text

process tool conceptual form interchange form

 composition

 stream

 text

 file / stream
 text

 keyboard

 file

 file / stream

 object code
 file / stream

 text text

 file / stream

data
 file

 stream

 stream

 text
 file

 editor

denotes optional

 stream
 text

 executable code

 result

end

Figure 2: The traditional programming life cycle

The programmer composes a program by typing text or inserting text from a file.
In some cases, pre-processing is required to prepare the source code for
compilation. Compiling this piece of code produces either an error or object code.
In the former case the programmer returns to composing, finds the error and
recompiles the source. In the latter case, the programmer links explicitly the object
code produced by compilation with some external object code from the libraries. If
linking is successful, executable code is produced which can be used for either
execution or debugging. At this stage run-time errors are possible which means
that the programmer may have to restart the cycle from the beginning. Restarting
the cycle may also be required if the results from execution are unexpected.
Thus, there are five main processes: composition, compilation, linkage and
execution or debugging each with their appropriate tools such as editor, compiler,
linker, executor or debugger respectively. Each tool operates on a particular
translated form of the program such as source text, object code or executable code.
Traditional programming systems, such as Pascal [Bor89] and C [KR78] access
data in a file system or database as shown in Figure 3. Programs (“program 1” and
“program 2”) and their executable versions (“executable code 1” and “executable
code 2” respectively) are held outside the database boundary, commonly in a file

7

system. These are prepared independently of the data and include assertions to
specify access paths of the data they require. Linking with the data is performed
dynamically during program execution at which time a dynamic type check or
coercion may take place. As shown in Figure 3, this is done through the
dynamically checked access points.

References to dynamically checked access points
References to data in the database

program 1

database boundary

persistent data

dynamically checked
access points

access point
specification program 2

executable
code 1

executable
code 2

Figure 3: Traditional access to long-lived data

In programming environments that follow the traditional life-cycle, complexity
comes from the programmer having to be aware of concepts like forms and tools.
These often constitute noise in the execution cycle and a distraction from the task
of concentrating on the essential difficulties, that is constructing the application.

2.2 Software Development Environments
The programming systems described in this section attempt to simplify the
traditional software development life-cycle either by just hiding some accidental
difficulties or by specifying a new set of abstract concepts that result in different
accidents. Each of the systems represents a category of programming
environments, as shown in Figure 4.

8

General Text
Editors as

Programming
Environments

Editor-Based
Programming
Environments

Browser-Based
Programming
Environments

Persistent
Programming
Environments

Emacs CodeWarrior Smalltalk Trellis Napier88

Hyper-Programming
in Napier88

Hyper-Programming
in PJama

Hyper-Code

Several Programming Environments

Visual
Programming
Environments

Visual Basic

Integrated
Project
Support

Environments

ECLIPSE APSE

Figure 4: Systems that attack accidents of the traditional software life-cycle

The dashed-arrows denote that the system they point to inherits some features
from the system above, but still specify some new concepts and features. Note that
the box with the black background denotes programming systems that apply the
hyper-code ideas, that is Hyper-Code Systems.
The description, contained in the rest of this chapter, is focused on whether these
systems satisfy certain criteria. These criteria, listed below, are general and involve
abstract concepts and accidents.
• they hide concepts of the traditional programming life-cycle from the

programmer (Abstraction).
• they provide a single representation for both program and data (Unification).
• they provide a single tool for all operations (Simplification).

2.2.1 EMACS
Emacs is a display editor that supports multiple buffers and windows as well as
compiling, debugging, customisations, syntax colouring and such like. It is
described as advanced, customisable and extensible [Sta97] since:
• it provides facilities that go beyond simple insertion and deletion: automatic

indentation of programs; viewing two or more files at once; editing formatted
text; colouring expressions and comments in several programming languages

• it allows the changing of the definitions of commands as well as the
rearrangement of the command set.

• it allows the writing of entirely new commands, programs in the Lisp language
to be run by Emacs's own Lisp interpreter. Almost any part of Emacs can be
replaced [Gli97].

A snapshot of an Emacs window is shown in Figure 5. The window contains two
buffers each of which contains a definition of a Java class; the one at the top

9

displays class WindowEditor and the one at the bottom class UserEditor. Syntax
colouring allows comments, reserved words and class names to be displayed in a
different colour.
Emacs is a general editing tool that can be used for programming in any language.
Since it provides different buffers, every operation can be performed in the same
window, which provides the facility of pre-customising multiple fonts, styles,
colours and sizes. Programming in Emacs means that the programmer is aware of
all the accidents of the traditional software development cycle. Simplification is
achieved by allowing the programmer to specify macros for tools in order to
automate the relevant operations. However, the programmer is still aware of the
different forms resulting from each operation. Finally, it does not support any
browsing facilities.

Figure 5: A snapshot of editing Java programs in Emacs

2.2.2 Metrowerks CodeWarrior
The Metrowerks CodeWarrior programming environment [Met99] provides a
multi-host, multi-language, and multi-target design that gives engineers the
freedom to choose the best path to their goal [TT99]. In the context of the thesis
this implies that it reduces the accidental difficulties in order to solve the essential
difficulty, which is the problem itself.
Indeed, CodeWarrior is designed to accelerate the development process by
combining an editor, compiler, linker and debugger into a single application.
Source, libraries, graphic resources, and other files are gathered into a project. The
usage of a project hides some of the concepts of the traditional programming life-

10

cycle, such as forms. Information about the project is stored in a project file, and is
manipulated through the project manager tool.

Figure 6: A snapshot of an example project

A snapshot of an example project in Metrowerks CodeWarrior Java for Windows
is shown in Figure 6. This project contains the classes used for the implementation
of the Hyper-Code System, which will be described in the following chapters. The
buttons on the top-right of the light grey area are used to trigger syntax checking,
compilation, linking and execution. The red-tick symbol on the left of the window
indicates classes/packages that have to be compiled.
Apart from the project manager tool, CodeWarrior provides an editor and a
debugging tool. The editor supports multiple faces by colouring the keywords for
various high-level programming languages to allow easy recognition and
navigation. It can automatically verify the balance of parentheses, brackets and
braces. It also integrates source browsing facilities, as every word in the source
becomes a link to other locations in the code related to that symbol.

Figure 7: A snapshot of editing and browsing in CodeWarrior Java

Figure 7 shows an example editor window that contains a Java class definition.
The HyperLine symbol is considered as a hyper-link, as pressing the mouse button

11

over it results in a menu through which the programmer can browse the source
code of the linked class definition.
The debugger tool provides source-code level debugging. CodeWarrior requires
the programmer to specify explicitly when execution involves debugging, and this
achieved by entering the "Debugging" mode. A programmer can set breakpoints
and single-step through the editor window. During execution, a separate
representation from programs is used in order to browse data, such as variables,
arrays, and structures.

2.2.3 Visual Basic
Microsoft® Visual Basic [Mic98], as a programming environment, is a fast and
easy way to create applications for Microsoft Windows [Mic97]. It allows the
creation of databases and front-end applications, using SQL, for most popular
database formats [War95]. It provides a set of tools such as composer, browser and
debugger. Simplification of the application development is achieved by hiding
some of the concepts of the traditional programming life-cycle, such as forms and
processes like compilation and linking. However, the programmer has to be aware
of newly introduced features, which make up an application, such as modules,
projects, forms and control files.
The main advantage of the Visual Basic interactive programming environment
[Mic96] is that it makes the composition process easier. The programmer may
drag and drop pre-built objects into place on screen rather than writing numerous
lines of code to describe the appearance and locations of the GUI elements. This is
illustrated in Figure 8. The objects to be inserted in the application are contained in
the toolbox on the left-hand side. Information about the tools included in the
project are positioned on the right-hand side. In the example, the application
consists of a frame that contains a combo box and a checkbox.

Figure 8: Composing an application in Visual Basic

The tools are called classes and can be browsed using a separate browsing tool.
Each class has a number of properties which are displayed in the browser window
(centre) and their values are displayed in properties window as shown in the figure

12

above (right-bottom window). Visual Basic supports hyper-links to allows
navigation between classes and properties in the browser window.
Source code is generated behind the scenes, which can be edited by the
programmer at any time. A facility that makes composition easier is the provision
of syntax colouring. In addition, during composition, source code is interpreted,
which results in catching and highlighting most syntax or spelling errors on the fly.
However, not every error is caught by the system, which requires the programmer
to find it, fix it and start the programming cycle over again. In addition, the
programmer is aware of two different representations, one for source code and one
for data. These are displayed in the editor and the object browser respectively.
Another tool provided is a standard, integrated, graphical debugger, which allows
source level debugging to be performed. This involves setting breakpoints,
monitoring values and such like. The debugging process is performed separately
from execution, and this is indicated by the presence of different set of menu items
for each process, as shown in Figure 8.

2.2.4 Smalltalk
The Smalltalk language is an object-oriented programming language which
supports a "snap-shot" form of persistence, as at any point an image of the current
state of the system can be dumped to non-volatile storage and later restored. The
Smalltalk programming environment is a graphical, interactive programming
environment that is based on a small number of concepts, but defined by unusual
terminology [GR83].
There are several programming environments implementing the concepts of the
Smalltalk language. One of them is the Dolphin Smalltalk programming
environment [Int99], which consists of several tools, such as a class hierarchy
browser, a workspace, a view composer and a debugger.
The browser displays information about classes, instances, message categories and
methods, but it does not support hyper-links, a facility that would make the
process of browsing objects easier. It also supports the creation of new classes and
the editing of existing class definitions.
Figure 9 illustrates a browser window, in which a new class definition is created.
The upper-left window contains the packages and the classes. The upper-centre
window contains the message categories. The upper-right window contains a list
of the methods. The lower window displays the class definition. Composing a
class definition is supported by the provision of the syntax colouring facility.

13

Figure 9: A snapshot of a Smalltalk browser window displaying a class

Programs can be composed in the workspace tool. Evaluation is performed over
the selected piece of text, and the result (if any) is printed after the selection. The
evaluate operation substitutes the compile-link-execute cycle. Figure 10 illustrates
a workspace that contains several examples of source code. The last example
creates a new instance of class Person, sets the name field and retrieves it using
the newly created object.
Execution may be interrupted when an error occurs or when a breakpoint is
reached, in which case the system informs the programmer about the cause of
interruption. This is done by activating the debugger tool, which displays the last
messages sent as well as allowing the inspection of the stack and causes the
evaluation to proceed from the selected point. Message-sends can be single-
stepped, in order to check the state of variables and determine the source of the
error.

14

Figure 10: Evaluating expressions in Dolphin Smalltalk

The advantage of the debugging process is that it is not a separate operation from
evaluation. However, there is no graphical way to insert breakpoints, and the
programmer is required to achieve that by inserting pieces of code in the program.
The view composer is a separate tool that allows the creation of user interface
components in a visual way, without having to compose program fragments.
Classes and instances are created behind the scenes. Similarly to the Visual Basic
programming environments, this makes programming easier.
The Smalltalk programming environment encapsulates fewer concepts than the
systems based on the traditional programming life-cycle. However, the
programmer is aware of different representations for programs and data as
instances and classes are displayed in a different way. In addition, each operation
requires a separate tool, thereby increasing the number of accidents presented to
the programmer.

2.2.5 Trellis
The Trellis [OHK87] programming environment supports programming in
Trellis/Owl, an object-based language with multiple inheritance and compile-time
checking. It uses the concept of the "message passing" metaphor and inheritance
hierarchies analogous to Smalltalk.
Each aspect of the programming task is supported by a separate tool. These tools
are: the browser, the editor, the evaluator, the debugger, the breakpoint tool and
the activity viewer.
Browsing in the Trellis programming environment is performed using windows
and selecting entities in those frames, without the provision of hyper-links. Figure
11 shows some browsing tools. The first window contains the categories of type
modules. Selecting the category frames in the first window results in a list of type
modules contained in the second window. Selecting Text_frame in the second
window results in the third frame that contains a list of method definitions.

15

compiler_interface
all_type_modules

debugger
env
frames
graphics
library
tools

List_frame
Lines_frame

Parent_frame
Region
Scrollbar
Scroller
Shaded_figure
Sorted_list_frame
Text_frame
Text_line

accept_mouse_input
accept_character_input

adjust_selection_to
changed_make_visible
create_lines_columns
define_blank_chars
define_control_u
define_delete
define_ident_chars
define_no_break_chars

Text_frameframes

type modules definitions

-categories -types
add

categories

remove

deletecreate
dump close

show new close

show show-inherit new
close

private
1 1

11

1

Figure 11: Browsing tools in the Trellis programming environment

The programmer may edit the selected method by pressing the edit button included
in an editor window. Composing a program both in the editor and the evaluator is
performed in a purely textual way, without the support of syntax colouring.
A definition is compiled using the Trellis incremental compiler, which checks for
and updates the cross-reference list related to that definition. Trellis/Owl source
code is parsed and interpreted in the evaluator tool. The resulting value is
displayed in the same window and saved in a variable for possible later use.
Debugging facilities are integrated in the evaluation process. The run-time system
provides multiple threads of control, called activities. When an activity is
interrupted, due to a run-time error or when a breakpoint is reached, Trellis creates
an activity viewer, which displays the stack, and allows the programmer to look at
the arguments and local variables in each stack frame.
The Trellis programming environment hides most of the concepts of the traditional
programming life-cycle. However, the programmer is aware of different
representations for program and data, which are displayed through the editor and
browser respectively. In addition, the existence of many tools to perform the
operations makes the task of programming complicated.

2.2.6 Integrated Project Support Environments (IPSEs)
Integrated project support environments provide an integrated toolkit to support all
life cycle phases from initial requirements definition to software maintenance, as
well as support for software management activities, configuration control and
office automation facilities such as word processors and electronic mail [MS87].
This implies that the task of programming is only one part of the whole process. In
many cases, users are themselves viewed as tools of the IPSE [War89]. A typical
IPSE architecture consists of several layers shown in Figure 12.

16

OS

DBS

Object
Management

Software
Tools

IPSE UI

Figure 12: An IPSE architecture

IPSEs are built around a portable operating system such as UNIX. The next layer
is the database system used to store all IPSEs objects. The object management
system specifies the relationships between objects and provides version
management facilities, which are used by configuration management tools. The
software tools provided support all phases of the project life cycle, including
designing and programming. The outermost layer is the graphical-based user
interface.
Simplification in IPSEs is achieved through the existence of a consistent interface
to all of the integrated IPSE tools, in which the programmer is not required to be
aware of a variety of interfaces to different tools. However, despite that
simplification, the programmer is still aware of those different tools.
IPSE 2.5 [Sno89], [War89], ECLIPSE [SWP89], [ST86], [Bot89] and APSE
[MS87] are examples of integrated project support environments.

2.2.6.1 IPSE 2.5
IPSE 2.5 is a support environment that provides the means by which the process of
developing, maintaining, supporting, and enhancing information systems is made
more efficient, in both quality and productivity terms. The view taken in the IPSE
2.5 project is to stand back from the position of "users and tools" and consider the
problem as a whole [War89]. This means that IPSE 2.5 supports the whole process
of building projects and it is not just a collection of tools to build software and
support activities.
IPSE 2.5 consists of three main features: the Process Control Engine (PCE), the
Users and the Process Modelling Language (PML). PCE is a computer system
that provides the working environments for its users, the people involved in the
process of developing projects. PML is used to describe and compose process
fragments, and this may involve "programming". PCE is the engine that supports
these descriptions. The Users interact with the system through PML descriptions.
PML involves the notions of Roles and Interactions. A Role represents an activity
of a development project. Interactions occur either between Roles or between a
user and a Role. An Interaction between Roles on the IPSE is represented by
Actions. The encapsulation of the resources owned by the Roles is represented by
Entities, which reflect the state of Roles at a particular time. Roles and Entities are

17

the principal class in PML and they defined a set of property categories, which
include resources, assocs and actions.

2.2.6.2 ECLIPSE IPSE
The ECLIPSE IPSE is built on top of existing facilities. The aim of the user
interface project was to construct a portable, consistent appropriate interface to a
project support environment which improved user's productivity by speeding up
system interaction, reducing learning time and reducing user errors [SWP89].
One of the key features of the ECLIPSE environment is that it provides facilities to
allow existing tools for programming support to be integrated. The tools available
include a design-editing system, host tools to support an Ada system such as
compiler, and a design-support system. It supports a graphical user interface with
sufficient functionality, involving control panels, a message system and a help
system. The end-user interacts with the user interface through the Applications
Interface, which is implemented using a description language called FDL (Frame
Description Language). Access to the ECLIPSE database is achieved through
SySL (System Structure Language).

2.2.6.3 APSE
The Ada [You84] IPSE or APSE (Ada Project Support Environment) is a portable
environment which consists of the following layers:
• System software: supports the host operating system, such as UNIX.
• A Kernel APSE (KAPSE): provides database access, tool communications

and run-time support.
• A Minimal-APSE (MAPSE): provides the basic toolkit for the development

of Ada systems, including editors, translators, debuggers, linkers, loaders, a
command interpreter, a file administrator and a configuration manager.

• An APSE: provides tools such as a program editor, a documentation system, a
version control system, a fault report system, a project control system and such
like.

2.2.7 Persistent Programming — Napier88
Napier88 [MBC+96b], [MCK+99] is a language that implements the concepts of
persistent programming. One of the original motivations for persistent
programming was to remove the conceptually unnecessary distinction between
short-term and long-term data [ABC+83]. The persistence of a data object is the
length of time that the object exists. In traditional programming languages, data
cannot last longer than the activation of the program without explicit storage in a
file system or a database. In orthogonally persistent programming systems, data
can outlive the program, and their persistence obeys the following principles, as
described in [AM95]:
• The Principle of Persistence Independence: the form of a program is

independent of the longevity of the data that it manipulates. Programs look the
same whether they manipulate short-term or long-term data.

18

• The Principle of Data Type Orthogonality: all data objects should be
allowed the full range of persistence irrespective of their type. There are no
special cases where objects are not allowed to be long-lived or are not allowed
to be transient.

• The Principle of Persistence Identification: the choice of how to identify and
provide persistent objects is orthogonal to the universe of discourse of the
system. The mechanisms for identifying persistent objects is not related to the
type system.

The benefits of persistence can be summarised as follows:
• Improved program productivity: the provision of persistence removes the

accidental difficulty of writing extra code related to the explicit movement of
data between main and backing store. This means that the programmer
concentrates more on the essence and the way it is structured rather than on the
complexity of the support system.

• The provision of protection mechanisms: the fact that orthogonally persistent
systems are strongly typed prevents accidental misuse. In most programming
languages, the simplest way to break the protection system is to output a value
as one type and input it again as another. In persistent systems it is possible for
the type system to extend over lifetime of data.

• The preservation of referential integrity: the referential integrity of an object
means that, once a reference to an object in the persistent environment has
been established, the object will remain accessible via that reference for as
long as the reference exists. It also means that the type correctness of all such
references is maintained, and that the identities of the objects are unique.

In most persistent programming systems [MCC+95], data are used as illustrated in
Figure 13. Programs and executable code are held outside the persistent store,
commonly in a file system and they contain, in addition to the access paths of
objects, type specifications for those objects. The type specifications are
represented in the figure by shaded boxes. The data inside the persistent store is
strongly typed and forms a graph of interconnected objects.

19

statically
checked
components
(persistent
data)

program 1

persistent data

dynamically checked
access points

access point
specification program 2

executable
code 1

executable
code 2

References to dynamically checked access points
References to data in the persistent store

Figure 13: Accessing data in an orthogonal persistent system

Programs and executable code may be bound to data with largely static type
checking. The graph of values inside the store may be described by purely static
type definitions; the access points to this graph in the shaded area are the points of
dynamic checking, about which assertions are made in programs, which use the
persistent data. These access points may be regarded as part of the persistent store
schema and checking may be organised as a prelude to the program execution, in
which case binding succeeds, and from that point on cannot fail with a dynamic
type error.
The conceptual unification between short-term and long-term data is followed by
the recognition that code and data can usefully be treated in a uniform way
[AM85]. Figure 14 illustrates the software development process in a persistent
system where executable code is treated as a first class value. That is, procedures
are allowed to have the same civil rights as any other typed data object in the
language, such as being assignable, the result of expressions or other procedures,
elements of constructed types, etc. Since executable code is a statically checked
component in the persistent store, it may contain direct references to other values
in the persistent store. However, source programs still have to contain assertions
which use the persistent data, and these assertions are dynamically checked.
Source programs may be instantiated into different versions of executable code, as
shown in Figure 14, where “program 1” is instantiated into “executable code 1.1”
and “executable code 1.2”. This introduces the notion of closure which includes all
the information required to execute a procedure correctly. Closure consists of the
code to execute the procedure and its environment, which contains the local and
free variables of the procedure.

20

persistent store
boundary

dynamically checked
access points

program 1
access point
specification

program 2

execu table
code 1.2

statically
checked
components
(persistent
data)

execu table
code 1.1

execu table
code 2

References to dynamically checked access points
References to data in the persistent store

Figure 14: First class executable code

Napier88's contribution in simplifying the task of programming is the introduction
of persistence.

2.2.8 Hyper-Programming in Napier88 and PJama
Hyper-Programming is a style of programming applicable to strongly typed
persistent systems, in which a program consists of a mixture of text and hyper-
links [Kir92]. The hyper-links denote references to entities in the persistent store.
Referential integrity guarantees that the appropriate entities will be accessible by
the source program for as long as the hyper-links exist.
The requirements for hyper-programming are:
• Persistent Store to contain the program representations and the entities

corresponding to the hyper-links in the programs.
• Linguistic Reflection to support the conversion of hyper-program

representations into executable programs. The hyper-program representations
must consist of denotable values within the persistent programming language
environment.

• Browsing Facilities to provide a graphical representation of entities in the
persistent store. The programmer can point to the representations of the entities
in a browser tool and obtain hyper-links for them to be incorporated into
hyper-programs.

The principal benefits of using hyper-programming as a style of software
development are [KCC+92]:
• Easier Program Composition and Program Succinctness: the programmer

composes programs interactively, navigating the persistent store and selecting
representations of entities to be incorporated into the programs. This removes
the need to write access specifications for persistent entities that are accessed
by a program, and this makes it more succinct.

21

• Safety and Early Checking: one of the ways to improve safety is to perform
checks earlier than normal, subsequently giving increased assurance of
program correctness. This is possible because entities are available for
checking before run-time. The way that checking and linking is performed is
described later in this section.

• Procedure Representations: hyper-programs can be used to represent
executable programs. When a procedure value is created, a hyper-link to its
hyper-program representation may be established. This representation may
contain hyper-links to other values in the persistent store, including links to
shared locations.

• Increased Range of Linking Times: in the hyper-programming system, linking
can be performed at any time during the software development process.
Deciding when components should be linked into a main program involves
trade-offs between program safety, flexibility and execution efficiency, and
this is described in detail in [KCC+92].

Implementations of hyper-programming can be found in both Napier88 [KCC+93]
and JavaTM [ZKM98], [ZDK+99], [ZKM99], [MCD+99]. These, together with
some other generic browsing tools [GR83], [OHK87], [DB88], [BOP+89],
[Coo90], [KM97], provide a convenient and natural way for persistent
programming environment users to browse the contents of the persistent store,
avoiding the necessity to write down dynamically checked specifications to
perform the equivalent accesses. The advantages of this style of access are
comparable to the advantages of an iconic operating system interface over a
traditional command-line based approach.
Although the two implementations are built using two different languages,
composing hyper-programs is performed in a similar way — the programmer
types text and inserts hyper-links from the browser to the editor. This style of
programming may be considered similar to the style introduced by the Visual
Programming Environments, as the browsing facilities provided allow the
visualisation of objects in the persistent store [CCK+94c].
Figure 15 shows a snapshot of the hyper-programming environment in Napier88.
The top and the right window are browser windows, whereas the lower left is the
editor window. A hyper-link may be inserted by selecting the desired item in the
browser, and pressing the "Link" button in the editor window. Compilation,
linking and execution are operations performed behind the scenes when evaluation
is performed. However, the programmer is aware of these operations if an error
occurs.

22

Figure 15: Hyper-programming in Napier88

Figure 16 shows a snapshot of the hyper-programming environment in PJama. The
upper window is the editor tool, and the lower is the browser. The programmer
inserts hyper-links in the editor and composes complete class definitions.
Compilation and linking may be integrated in the evaluation process or may be
performed separately. In the former case, the programmer is required to press the
"Go" button, which results in compiling, linking the class definition, and invoking
method main (if present). In the latter case, the programmer is required to press the
"Display Class" button, which results in compiling, linking the class definition and
display it in the browser.

Figure 16: Hyper-Programming in PJama

23

The main difference between this implementation of hyper-programming and the
one in Napier88 is that the former supports multiple fonts, sizes, styles and
colours, which can be customised by the programmer.
Hyper-programming itself involves a further unifying step that simplified the
programming development process. In hyper-programming, source programs are
themselves persistent data, along with other values, with which they were
manipulated [Kir92]. This is shown in Figure 17, where instead of textual
descriptions of the dynamically checked access points, direct links from the source
code to the persistent data are established. This is possible because these persistent
data are available at the time when the program is composed. Programs may still
contain assertions, which will be checked dynamically. Dynamic bindings only
remain if there are references from the program. In the particular example, access
to persistent data is achieved purely through direct links.
Hyper-programming systems hide most of the accidents of traditional
programming environments, such as different file formats. However, there are two
different tools to support the browsing and editing. Each of these tools provide a
different representation for data and programs respectively. Finally, both the
systems do not provide debugging facilities.

program 1.1

persistent store
boundary

dynamically checked
access points

hyper-links

program 2

e xe cu ta ble
co de 1 .1

execu table
code 1.2

executable
code 2

statically
checked
components
(persistent
data)

program 1.2

References to data in the persistent store

Figure 17: Accessing source and executable code in HP systems

2.3 Towards Hyper-Code
The hyper-code layer provides an abstract view of the software development
process. Figure 18 outlines the unification steps towards hyper-code, as illustrated
in Figure 4. Starting from traditional systems, each step has provided an extra
unification concept and each has a particular way of accessing long-lived data in a
file system, a database or a persistent store.

24

hyper-codehyper-
programs

PS with code
as data

persistent
systems (PS)unifying short-

term and long-
term data

unifying code
and data

unifying source
programs and
data

unifying source
and executable
code

traditional

strongly typed data code as first class values source in the persistent store single
representation

Figure 18: The unification chain towards a hyper-code system

Table 2 summarises the features provided by traditional programming
environments (TR), persistent programming systems (PS), persistent programming
systems with first class code (PS-FC), hyper-programming systems (HP) and
hyper-code systems (HC), which will be described in detail in the next chapters.
The features mentioned for each system involve:
• whether the system is strongly typed,
• whether the system supports first class code,
• whether there is visual interaction with the programmer, involving provision of

the relevant user interface,
• whether programs are held in the persistent storage area together with other

entities,
• whether source and executable code are unified.

 TR PS PS-FC HP HC

Strongly Typed * * * *

First class code * * *

Visual Interaction * * *

Source in PS * *

Unified Source & Executable *

Table 2: Comparison of features provided in various systems

2.4 Summary
This chapter provides a survey of the related work in the area of programming
environments, which attempt to hide accidental difficulties of the traditional
programming life-cycle.
Each of the programming environments described represents a category of
software development systems related to the concepts of the thesis. The
programming environments selected are: Emacs (General Editors), Visual Basic
(Visual Programming Environments), CodeWarrior (Editor Based Programming
Environments), Smalltalk and Trellis (Browser Based Programming
Environments), ECLIPSE and APSE (Integrated Project Support Environments)
and Hyper-Programming in Napier88 and PJama (Persistent Programming
Environments).

25

 Abstraction Unification Simplification

Emacs *
CodeWarrior *
Visual Basic *
Smalltalk 80 *
Trellis *
HP (Napier88, PJama) *
IPSEs * (Not applied)
Hyper-Code Systems * * *

Table 3: Comparing various programming environments
The description of these programming environments is based on whether these
systems satisfy certain criteria. These criteria specified earlier in section 2.2 are:
abstraction, unification and simplification. Table 3 summarises this description by
comparing these systems with each other. The last row indicates whether hyper-
code systems satisfy these criteria. Justification for this will be provided in the
next chapter. Note that for IPSEs there is no notion of unification, that is a single
representation for both programs and data, as these environments are built on top
of existing tools.
Hyper-Code extends the ideas related to persistence and hyper-programming. This
is described in detail in the next chapters.

 26

3 The Hyper-Code Abstraction — Towards Hyper-Code
Systems

This chapter describes the hyper-code view of a programming system in terms of
domains and operations over these domains. It then gives an overview of how
these ideas may be mapped into concrete systems. The description included in this
chapter is intended to be non-language specific.

3.1 The Hyper-Code View of the Programming Life-Cycle
A programming system may be described in terms of two domains and four
operations, which operate over the domains.

3.1.1 Defining the Domains
The two domains are called E and R. E is the domain of language entities that
contains all the first class values defined by the programming language – the
Universe of Discourse – together with various denotable non-first class entities,
such as types, classes and executable code. R is the domain of concrete
representations of entities in domain E. A simple example is the integer value two
in E and its representation 2 in R.
As shown in Figure 19, domain E may be partitioned into a set of executable
entities (Eexec) and a set of non-executable entities (Eno-exec). Furthermore, the
executable entities Eexec may be partitioned into a set of executable entities that
produce a result (Eexec-res), a set of executable entities that do not produce a result
(Eexec-no-res) and a set of executable entities that produce either a static or dynamic
error (Eexec-err).

 E

Eexec Eno-exec

Eexec-res Eexec-no-res

has subsets

has
subsets

set of all
entities

set of all non-
executable

entities

set of all executable entities

set of all executable
entities that produce

a result

set of all executable entities
that do not produce a result

Eexec-err

set of all executable entities
that produce an error

Figure 19: Sets in the entities domain
Figure 20 illustrates how domain R may be partitioned into a set of representations
of executable entities (Rexec) and a set of representations of non-executable entities
(Rno-exec). Rexec may be partitioned into a set of representations of executable
entities that produce a result (Rexec-res), a set of representations of executable

 27

entities that do not produce a result (Rexec-no-res) and a set of representations of
executable entities that produce an error (Rexec-err). R

Rexec Rno-exec

Rexec-res Rexec-no-res

has subsets

has
subsets

set of all
representations

set of all representations
of non-executable entities

set of all representations of
executable entities

set of all
representations of
executable entities

that produce a result

set of all representations of executable
entities that do not produce a result

Rexec-err

set of all representations of executable
entities that produce an error

Figure 20: Sets in the representation domain

3.1.2 Domain Operations
The four domain operations, reflect, reify, execute and transform, are used to
underpin the concrete operations that are visible to the programmer, as will be
described later. As shown in Figure 21, they operate on the two domains, E and R.
In the figure, the labelling is used to illustrate the correspondence between entities
and representations. For example, the entity labelled "1" is represented in domain
R by the representation labelled "1".

1

2
3

4
reflect

Domain E Domain R

execute

representation

transform

reify

Figure 21: Domains and domain operations

The four domain operations operate as follows:
• reflect: translates a representation to a corresponding entity, thus mapping

from the representation domain to the entity domain (R ⇒ E).
• reify: translates an entity to a corresponding representation, thus mapping from

the entity domain to the representation domain (E ⇒ R).
• execute: executes an executable entity, potentially with side effects to the state

of the entity domain. Depending on the entity being executed, there are three
cases:

 28

– the execution of an entity e ∈ Eexec-res produces a first class entity as a
result, thus mapping from the entity domain to the entity domain
(Eexec-res ⇒ Eno-exec).

– the execution of an entity e ∈ Eexec-no-res produces no result
(Eexec-no-res ⇒ no result).

– the execution of an entity e ∈ Eexec-err produces an error
(Eexec-err⇒ no result - error).

• transform: manipulates a representation to produce another representation,
thus mapping from the representation domain to the representation domain
(R ⇒ R).

3.1.3 Composing Domain Operations – Equivalences
The domain operations may be composed, and are used for the definition of the
concrete operations within a particular system.
The following equivalences hold:
• the result of reflecting the representation of an entity e is an entity that is

equivalent (≡≡≡≡en) to the original:

reflect (reify (e)) ≡en e

where e ∈ E and ≡≡≡≡en is equivalence over entities. The precise definition of the
≡≡≡≡en equivalence must be defined for each particular language when E is
defined for that language. To give a hint of the nature of this equivalence in a
particular setting, consider that some programming languages define
equivalence over complex structures as identity (pointer equality), whereas
others define it as (recursive) component equality.

• the result of reifying an entity produced by reflecting a representation r is
itself a representation that is equivalent (≡≡≡≡rep-en) to r:

reify (reflect (r)) ≡rep-en r

where r ∈ R and ≡≡≡≡rep-en is equivalence over representations i.e. r1 ≡≡≡≡rep-en r2 iff
r1 and r2 represent equivalent entities, that is reflect (r1) ≡≡≡≡en reflect (r2). The
implication here is that an entity may have more than one representation.
In some cases the representations will be exactly the same:

reify (reflect (r)) ≡rep r

where r ∈ R and ≡≡≡≡rep is equivalence over representations and is defined
precisely for a particular representation form.

• assuming that r is a representation of an entity e ∈ Eexec-res , the result of
reifying an entity produced by executing e is a representation that is
equivalent (≡≡≡≡rep-sub) to r:

reify (execute (reflect (r))) ≡rep-sub r

 29

where r ∈ Rexec-res , reify (execute (reflect (r))) ∈ Rno-exec and ≡≡≡≡rep-sub is
substitutability of representations, that is r1 ≡≡≡≡rep-sub r2 iff any occurrence of r1
in a valid representation could be substituted by r2 and yield a valid
representation. The intuition here is that the result of executing a fragment of
code may be legally substituted for that fragment in the original. In a strongly
typed language this means type equivalence.

3.1.4 Interpretations of the Domain Operations
The above description of the domain operations is general and is given in order to
explain the way that these operations map between the specified domains. Each
domain operation or any of the above combinations of domain operations may be
interpreted in various ways resulting in different semantics.
For example, the execute policy may be partial evaluation or lazy evaluation
[Dav92], [HM76] giving different semantics for the evaluation. Another example
of different interpretation is whether the execute operation provides feedback of its
state to the programmer, while it is performed. Finally, the result of evaluation
may either replace the original representation or may be returned separately.
However, the description of the domain operations, given in section 3.1.2, remains
valid for every possible interpretation. Details of policies chosen for particular
systems are given in section 4.2.

3.1.5 Towards Concrete Systems
For any programming system, the hyper-code view may be provided by a concrete
Hyper-Code System (HCS). Such systems may be categorised as shown in Figure
22. All these may be described in terms of the two domains and four operations.
However, these domain operations are not visible to the programmer. Instead,
various sets of concrete operations are defined, which are called the Hyper-Code
Operations (HCOs). This thesis focuses on a particular set of five HCOs, which
are used in a number of HCSs, to be described.

 Hyper-Cod e

Chosen se t
of 5 HCO s

Other set s
of HCO s

PPG-HCO s

PJama ProcessBas e PJama

Hyper-Code
Operations

(HCO)

Specific HCO
Policies

Specific
Hyper-Code

Systems

Other set of policie s

Other language s

Figure 22: Categorisation of HCSs
The precise definition for each of the particular sets of HCOs is given with respect
to a particular set of policies for the corresponding underlying domain operations.

 30

This thesis focuses on a particular set of policies, termed the PPG1 policy set, and
on two particular mappings of this set to specific HCSs. Note that the specification
of different policies result in different HCSs, even if these are applied on the same
language.

3.2 Hyper-Code Systems
The features common to all HCSs are:
• the HCS presents the programmer with a single, uniform representation, the

Hyper-Code Representation (HCR), for all code and data throughout all
stages of the software development process. One possible single representation
form is based on source code, which is in hyper-program form that can include
direct links to existing entities. This will be described in greater detail in
section 4.1.

• the HCS provides a single tool, the Hyper-Code Assistant (HCA), which
fulfils the functions of both the browser and the editor in the hyper-
programming system. It achieves this via the HCOs.

3.2.1 General Requirements for the Hyper-Code Operations
The hyper-code operations support the use of a single representation as well as
satisfying the following requirements:
• the construction of new programs;
• the editing of programs;
• the insertion of bindings to entities into programs;
• the browsing of representations of program and data in order to discover more

details about the internal structure of the entities they represent;
• the execution and debugging of hyper-code representations.
The above requirements are applicable to any set of HCOs. The thesis will now
focus on one particular example set of HCOs, which forms the basis for the PPG
policies set.

3.2.2 A Particular Set of HCOs
A set of five HCOs is introduced. These are sufficient to fulfil the above
requirements, and are applicable specifically to systems that involve the notion of
persistence. These operations are:
• explode: expands a selected HCR to show more detail, which is itself

expressed in the form of an HCR. The programmer may control the degree of
detail displayed. This is explained in the context of a particular HCR form in
section 4.2.5.

• implode: contracts a selected HCR to show less detail which is itself expressed
in the form of an HCR (an exploded hyper-code representation is contracted
back to its original form).

1 PPG stands for Persistent Programming Group and is a term that will be used for particular HCSs.

 31

• evaluate: executes a selected HCR and returns the result, if any, as a new
HCR.

• edit: encompasses all conventional editing facilities.
• get root: returns a selected persistent root as an HCR.
Explode and implode satisfy the requirement for browsing representations of
programs and data. Evaluate satisfies the requirement of executing and debugging
representations. Edit satisfies the requirement of constructing new programs as
well as editing existing ones. Finally, get root creates bindings to values. In
conjunction with the explode and edit operations, these bindings may then be
inserted into programs.
The HCOs are described in terms of the domain operations as follows:
• Explode is the reification of reflecting an HCR r ∈ R. Exploding r results in a

more detailed HCR which is equivalent (≡≡≡≡rep-en) to the original.
[explode (r) is reify (reflect (r))] ≡≡≡≡rep-en r,
where r, explode (r) , reify (reflect (r)) ∈ R

• Implode is also the reification of reflecting an HCR r ∈ R. Imploding r results
in a less detailed HCR which is equivalent (≡≡≡≡rep-en) to the original.

[implode (r) is reify (reflect (r))] ≡≡≡≡rep-en r,
where r, implode (r) , reify (reflect (r)) ∈ R

• Evaluate is described as follows, depending on the HCR r ∈ R being
evaluated:
– Evaluating an HCR r ∈ Rexec-res is the reification of executing the entity

e ∈ Eexec-res, produced by reflecting r. Evaluating r results in an HCR

which is equivalent (≡≡≡≡rep-sub) to the original.

[evaluate (r) is reify (execute (reflect (r)))] ≡≡≡≡rep-sub r,

where r ∈ Rexec-res, evaluate (r) , reify (execute (reflect (r))) ∈ Rno-exec

– Evaluating an HCR r ∈ Rexec-no-res is the execution of an entity
e ∈ Eexec-no-res produced by reflecting r.

evaluate (r) is execute (reflect (r)),

where r ∈ Rexec-no-res

– Evaluating an HCR r ∈ Rexec-err is either the execution of an entity
e ∈ Eexec-err produced by reflecting r, or just the reflection of r. The
particular set of domain operations that evaluate involves in this case
depends on whether the error is dynamic or static respectively. In either
case the error is produced and displayed to the programmer.

evaluate (r) is execute (reflect (r)), if the error is dynamic

evaluate (r) is reflect (r), if the error is static

 32

where r ∈ Rexec-err

– Evaluating an HCR r ∈ Rno-exec is the reification of reflecting an entity
e ∈ Eno-exec produced by reflecting r. Evaluating r results in an HCR which
is equivalent (≡≡≡≡rep—en) to the original.

[evaluate (r) is reify (reflect (r))] ≡≡≡≡rep-en r,

where r, evaluate (r) , reify (reflect (r)) ∈ Rno-exec
• Edit is the transformation of an HCR r ∈ R into another HCR.

edit (r) is transform (r),
where r, edit (r) , transform (r) ∈ R

• Get root is the reification of a hyper-code entity e ∈ Eno-exec that produces an
HCR r ∈ Rno-exec. Get root is applicable only over non-executable entities, that
is first class values.

get root (e) is reify (e),

where e ∈ Eno-exec, get root (e) , reify (e) ∈ Rno-exec

3.2.3 Accessing Data in a Persistent HCS
Sections 2.2.7 and 2.2.8 include a description of the way that persistent and hyper-
programming systems access data. This section compares these systems with
HCSs with respect to that particular aspect.
In persistent HCSs, data is accessed as shown in Figure 23. Programs (HCRs) are
held in the persistent store together with other entities and contain direct references
to those entities. Visual interaction between the programmer and the system is
achieved only through the HCRs at any stage of the software development process.
In constructing a program, the programmer writes HCRs. During execution, during
debugging, when an error occurs or when browsing existing programs and data,
the programmer is presented with, and only sees, HCRs. Thus, entities such as
object code, executable code, compilers and linkers, which are merely artifacts of
how the program is stored and executed, are hidden from the programmer, since
these are maintained and used by the underlying system. The aim of this approach
is that the programmer may concentrate on the inherent complexity of the
application rather than on that of the support system.

 33

program 1.1

persistent store
boundary

dynamically checked
access points

hyper-links

program 2

statically
checked
components
(persistent
data)

program 1.2

References to data in the persistent store

Figure 23: Accessing data in a hyper-code system

3.3 Summary
A simplified view of a programming system is provided through the hyper-code
layer, which unifies source and executable.
Any programming system can be described in terms of two domains and four
domain operations. The two domains are called E and R. E is the domain of the
entities and R the domain of the representations. The domain operations, reflect,
reify, execute and transform, are used to define various sets of concrete operations.
For any programming system the hyper-code view may be provided by a concrete
Hyper-Code System (HCS). The common features in all HCSs are: a single
representation, the Hyper-Code Representation (HCR), and a single tool, the
Hyper-Code Assistant (HCA).
Various sets of operations may be performed, which are called Hyper-Code
Operations (HCOs). This thesis focuses on a particular set of five concrete
operations. These operations, explode, implode, evaluate, edit and get root, are
described in terms of the domain operations.
The next chapter focuses on defining the HCOs with respect to particular policies
related to the underlying domain operations. This definition is combined with an
illustration of the user interface for each of the HCOs.

 34

4 Concrete Hyper-Code System
The purpose of a Hyper-Code System (HCS) is to provide the programmer with a
conceptually simple user interface with which to manipulate a single
representation of a program throughout its life time, the hyper-code representation
(HCR). This user interface is provided by the hyper-code assistant (HCA) through
which all the Hyper-Code Operations (HCOs) are performed.
The requirements for choosing an appropriate HCR and the operations performed
in a HCS through the HCA, will be described in this chapter. To illustrate the
hyper-code concepts, the examples given are for a non-language specific HCA.
Concrete examples in particular programming languages are given later.

4.1 The Hyper-Code Representation
Hyper-code may be implemented for any suitable language. The precise form of
the hyper-code representation will vary depending on the syntax of the particular
language, but will be guided by the following criteria that will apply for all
languages:
• The HCR must accommodate programs written in the convention of the

language. Normally this implies that the HCR must include pure text as a
subset.

• The HCR must accommodate the one to one mapping (unification) between
executable and source code. To achieve that, representation of closure is
required, which consists of code and the environment under which it is
executed. The environment may contain shared values that are bound into it at
the time it is formed, and in languages with update, the values in the locations
may change. Where the sharing is significant, such as in the preservation of
identity, then a purely textual representation is not sufficient. In order for the
HCR to completely represent closure, direct links to entities are used, to
preserve the sharing, as explained in [CCK+94c].

• The HCR must support views of linked entities, to arbitrary levels of detail.
• The views of entities must themselves include text and direct links in the same

form as could be constructed by the programmer, since there is only a single
HCR.

• Finally, the views must be self-contained and syntactically valid. Thus, for any
view of an entity, it should be possible to copy its representation, and evaluate
it without error. The result of this evaluation will depend on the semantics of
the particular language.

A hyper-program, which is a combination of text and hyper-links to entities, is
suitable for use as an HCR. An HCR can be produced for every entity in domain
E, with its precise form depending on the kind of entity being represented. This
form will be illustrated later in this thesis, where domain E will be defined for the
particular languages ProcessBase and PJama.
Similarly, the way that each hyper-link is presented depends on the kind of entity
that it represents. Figure 24 shows an example of the general form of a HCR

 35

contained in a HCA window, in which the horizontal lines indicate text. In this, a
hyper-link is represented by a rounded box with no label and a background colour
denoting the kind of entity it represents. Customisations may be applied in order to
change the way that hyper-links are displayed. For example, it should be possible
to customise hyper-links to be displayed as WWW links.
In Figure 24 there are three hyper-links. Hyper-Link 1 itself contains an HCR that
is text and a hyper-link to an entity (Hyper-Link 2).

Hyper-Code Assistant

Hyper-Link 1

Hyper-Link 2Hyper-Link 3
Figure 24: An example HCA window containing an HCR

4.2 A Particular Set of Hyper-Code Operations
The hyper-code operations, introduced in section 3.2.2, are performed in windows
provided by the HCA tool, an example of which is shown in Figure 24. Each of the
operations is described with respect to a particular interpretation (policy) of the
corresponding underlying domain operations. This interpretation is the system’s
default behaviour. Other interpretations may be available as add-in customisations.
One of the major features of these HCOs, which distinguishes them from
conventional programming operations, is the ability to inspect the entities
represented by hyper-links at any time of the software development process. This
includes inspection of the current values of variables during evaluation, where the
programmer is presented with a changing HCR, as will be explained later in
section 4.2.3.

4.2.1 Explode
The explode operation is performed for each hyper-link in the selected
representation. Exploding each hyper-link results in a more detailed HCR, that is
equivalent (≡≡≡≡rep-en) to the original contracted hyper-link. The semantics for
explode are determined by the interpretations chosen for the underlying operations,
which involve the following policies:
• reflection is a direct translation of source code.
• reification returns a more detailed HCR that replaces the original hyper-link.
The HCR resulting from explode is non-editable. This ensures that a representation
accurately denotes the entity at all times. The exploded representation still denotes
the same entity as the original hyper-link. However, the programmer is able to
copy this representation and manipulate the copy elsewhere. In Figure 24, Hyper-

 36

Link 1 is an exploded hyper-link that contains a non-editable HCR. The
programmer may copy this representation and paste it in another HCA window,
and manipulate it appropriately.

4.2.2 Implode
The implode operation is performed for each exploded hyper-link in the selected
representation. Imploding each hyper-link results in a less detailed HCR, that is
equivalent (≡≡≡≡rep-en) to the original exploded hyper-link. The semantics for implode
are determined by the interpretations chosen for the underlying operations, which
involve the following policies:
• reflection is a direct translation of source code.
• reification returns a less detailed HCR that replaces the original hyper-link.
In Figure 24, imploding the hyper-link in the second row will result in the HCR
shown in Figure 25.

Hyper-Code Assistant

Figure 25: The HCR of Figure 24 after imploding its hyper-links

4.2.3 Evaluate
This operation evaluates a selected HCR. The semantics for evaluate are
determined by the interpretations chosen for the underlying operations, which
involve the following policies:
• reflection is a direct translation of source code for example, no optimisation

is performed.
• execution provides feedback of its current state, as will be explained in section

4.2.3.1.
• execution involves strict and complete evaluation.
• reification returns an unexploded hyper-link as a result, which is kept

separately from the HCR being evaluated. This is explained in section 4.2.3.2.

4.2.3.1 Viewing the Evaluation
During evaluation the HCA tool progressively changes the HCR being evaluated
— when an identifier comes into scope it is replaced by a hyper-link to its current
value. Such a hyper-link is a temporary representation. When evaluation exits the
scope of the identifier, the hyper-link returns to its textual representation. Defining
when an identifier is in scope depends on the scope rules of the particular
language.

 37

Identifiers are the only entities that are replaced by hyper-links during evaluation.
Statically defined hyper-links remain unchanged. The HCR may also contain
representations of executable entities that return a result, e.g. "1+1". Depending on
the execution policy such expressions may be presented to the programmer in
various ways — for example during evaluation the programmer could be presented
with a hyper-link representing the result of executing this expression. However,
since the execution policy defined here involves strict and complete evaluation,
such representations remain unchanged during evaluation.
As the HCR is evaluated, a progress bar on the left of the HCR denotes the current
line. As with statically defined hyper-links, hyper-links to identifiers can be
exploded in order to inspect their current values. Exploding can be performed at
any time, whether the HCR is being evaluated or evaluation has been interrupted.
Any exploded hyper-link to a mutable location, where provided by the language, is
automatically updated to display any new values assigned to the location.
The evaluation process may be interrupted either when an error occurs, or when a
breakpoint is reached. In the case of a static error, the programmer is notified of
the position where the error is detected. In the case of a dynamic error or when a
breakpoint is reached, evaluation is suspended. Breakpoints are set during
composition, as will be explained later in this chapter.
Figure 26 illustrates three snapshots of evaluating an example HCR, which
initially contains two hyper-links and an identifier (x). The indentation of lines
indicates different scope levels. Figure 26(a) shows the HCR during composition,
where the identifier x is represented textually. The hyper-links here are links to
entities in the persistent store. These can be thought of as anonymous values that
are always in scope for the HCR being evaluated. When evaluation reaches the
point indicated by the progress bar shown in Figure 26(b), i.e. when x comes into
extent, all textual representations of the identifier x currently in scope are replaced
by hyper-links. On exiting the scope of x, the hyper-link representing the identifier
x is returned to its textual representation; this is illustrated in Figure 26(c).

Hyper-Code Assistant Hyper-Code Assistant

(a) (b) (c)

Scope Level 0
Scope Level 1 Scope Level 1 Scope Level 1

Scope Level 0Scope Level 0

Entering scope level 0
(Identifier x out of scope)

Entering scope level 1
(Identifier x is declared)

Exiting scope level 1
(Identifier x out of scope)

<declaration of x>

Hyper-Code Assistant

<declaration of x>

x
<declaration of x>

x

Figure 26: Snapshots of the evaluation process

 38

4.2.3.2 Result of Evaluation
The evaluation of an HCR r returns a result if r represents:

• an executable entity that returns a result (r ∈ Rexec-res)

• a non-executable entity (r ∈ Rno-exec)
When evaluation produces a result, this is returned as a hyper-link. By default, as
introduced earlier, the result of evaluation is kept separately from the original
HCR and is inserted in the same HCA window as the original HCR, right after that
representation. A possible customisation is for the resulting hyper-link to replace
the original HCR. Another is to preserve the original HCR and insert the resulting
hyper-link in another position, such as the clipboard or a newly created HCA
window.

The resulting hyper-link is an HCR equivalent (≡≡≡≡rep-sub) to the original. In the
case of evaluating a single hyper-link, the resulting HCR is defined to be ≡≡≡≡rep
equivalent to the original. The ≡≡≡≡rep equivalence is defined as follows (if two
representations are ≡≡≡≡rep equivalent, they are automatically ≡≡≡≡rep-sub equivalent):

≡≡≡≡rep : two hyper-code representations are equivalent (≡≡≡≡rep) iff each
corresponding hyper-code character is equivalent. A hyper-code character
may either be an ASCII character or a hyper-link. Two hyper-links are
equivalent if they represent equivalent (≡≡≡≡en) entities. Equivalence over
hyper-code entities is language specific.

4.2.4 GetRoot
This operation produces a hyper-link for each persistent root. The semantics for
getRoot are determined by the interpretations chosen for the underlying operations,
which involve the following policy:
• reification returns an unexploded hyper-link as a result, which is inserted in a

specific HCA window.
All the resulting hyper-links are contained in a non-editable hyper-code window,
as shown in Figure 27.

Hyper-Code Assistant

a link to a
persistent root

Figure 27: The persistent roots HCA window

4.2.5 Edit
This operation encompasses the conventional editing facilities and other facilities
related to the manipulation of the hyper-code representations. The semantics for
edit are determined by the interpretations chosen for the underlying operations,
which involve the following policy:

 39

• transformation is unconstrained in that any sequence of text and hyper-links
may be constructed2.

The following editing facilities are provided through the HCA window:
• create a new hyper-code window.
• compose HCRs: HCRs are edited in a similar way to text in conventional

text-editors. The HCA supports navigation using keyboard and mouse,
embedded hyper-links of arbitrary size, which are treated in the same way as
characters, and the standard editing facilities such as:
– typing: inserts and deletes plain text.
– drag and drop: drags a selected HCR and drops it in the same or in a

different HCA window. The programmer may choose whether this
operation results in copying or moving.

– cut: deletes the selected HCR and stores it in the clipboard.
– copy: creates a copy of the selected HCR and stores it in the clipboard.
– paste: inserts the HCR stored in the clipboard at the current insertion point

of the HCA window, replacing any selected HCR.
• set/remove a breakpoint: adds a breakpoint at the line containing the

insertion point, in which case a bullet is displayed on the left of the line.
The PPG-HCS also provides the following facilities:
• editable clipboard: the programmer is able to see the contents of the clipboard

via the clipboard window, which is an editable HCA window.
• multiple faces: the programmer is able to change the way that HCRs are

displayed in the HCA window, since the system supports multiple fonts, sizes,
styles and colours.

• update of locations: the programmer is able to update the value of a location,
where provided by the language, without having to compose a new HCR. Such
an update is achieved by dragging a hyper-link representing a first class value
and dropping it over a hyper-link to a location of the appropriate type. This
operation is only applicable if locations are treated as first class values.

• customisation mechanism: the user is able to customise the way HCRs are
displayed. The customisation mechanisms provided are:
– customise hyper-links: this changes the way unexploded hyper-links are

displayed. There are two kinds of customisation:
– customise particular hyper-links: the programmer may add a label to

a hyper-link or display it as an image or display it as an WWW link.
– customise hyper-links representing values of a particular type: the

programmer can customise hyper-links representing values of a
particular type. The system lets the programmer customise these

2 In contrast, for example, a different strategy could be used in a syntax-directed editor, where only

certain HCRs could be constructed.

 40

hyper-links as an image or a string or a WWW link. The user interface
for this kind of customisation depends on the language.

– customise levels of expansion for explode: this specifies the levels of
expansion when the explode operation is performed. The system's default
value is one, which means that explode results in a detailed HCR that
contains text and unexploded hyper-links. If, for example, the programmer
sets the value to two, then when a hyper-link is exploded it produces an
HCR, in which the hyper-links included are exploded in turn.

• other features: HCRs may be printed. There is also a search facility where the
programmer may search for an HCR. HCR matching is defined by the ≡≡≡≡rep
equivalence. In Figure 28, the programmer searches for the specified hyper-
link in every HCA window.

Search for :

Search Close

Figure 28: Searching in a HCS

4.3 Summary
A Hyper-Code System (HCS) provides the programmer with a conceptually
simple user interface through which specific Hyper-Code Operations (HCOs)
are performed over a single representation, the Hyper-Code Representation
(HCR). A representation that fulfils certain criteria is the hyper-program form, as
explained in section 4.1.
The particular HCOs are: explode, implode, evaluate, get root and edit. This
chapter defines the chosen operations with respect to particular interpretations of
the corresponding underlying domain operations. The appearance of the user
interface for each of these operations is also illustrated.
The description in chapters 5 and 6 is given for completeness, that is to illustrate
the way that mapping of the PPG-HCS policy set into particular HCSs in particular
languages can be achieved. The languages are: ProcessBase [MBG+99b], a simple
persistent language, and PJama [ADJ+96], a persistent version of Java.

 41

5 A Hyper-Code System for ProcessBase
ProcessBase [MBG+99b], [MBG+99d] is the simplest of a family of languages
and support systems designed for process modelling. It consists of the language
and its persistent environment. The persistent store is populated and the system
uses objects within the persistent store to support itself. The model of persistence
in ProcessBase is that of reachability from a root object.
ProcessBase obeys the principles of correspondence, abstraction and type
completeness [Mor79]. It is the belief of the designers that such an approach to
language design yields more powerful and less complex languages.
The ProcessBase type system philosophy is that types are sets of values from the
value space. The type system is mostly statically checkable, a property highly
desirable wherever possible. The type equivalence rule in ProcessBase is by
structure and both aliasing and recursive types are allowed in the type algebra.

5.1 Domains in ProcessBase
There are two distinct domains in the ProcessBase HCS, domain E and domain R.
Domain E contains all the first class values, identifiers, types and code. Code is
any executable entity, e.g. an expression performing addition between two
integers. Identifiers are of specific types. Types are classified into base types and
constructed types. Base types are: scalars, type string, type any. Type constructors
are: location, vector, view, procedure. These are defined in the ProcessBase
language specification [MBG+99b].
Every entity in domain E has its corresponding HCR in the domain R. Each
representation is a combination of text and hyper-links to entities. A hyper-link is
displayed by default as a rounded box with no label. The background colour
indicates if the hyper-link represents a type, or a value or an identifier3. Hyper-
links representing identifiers have different appearance from first class values.
Table 4 illustrates the appearance of representations of entities in domain E. Every
entity in domain E, except code, can be represented by a single hyper-link in
domain R.

3 White for first class values, black for types and patterned-grey for identifiers.

 42

Entity in E HCR in R

identifier
scalar value, string, any,
location, vector, view,
procedure, interrupt, op-code

type
code any combination of text and hyper-links

e.g. the representation of an expression that
adds two integers could be

 +
Table 4: Appearance of representations of ProcessBase entities

5.2 Equivalences in ProcessBase Hyper-Code
As stated earlier, four kinds of equivalences are defined in a HCS; three
equivalences over HCRs (≡≡≡≡rep, ≡≡≡≡rep-en and ≡≡≡≡rep-sub), which have already been
defined, and an equivalence over hyper-code entities (≡≡≡≡en). Table 5 defines the
≡≡≡≡en equivalence over ProcessBase entities.

Entity in E ≡≡≡≡en

identifier Same name and scope
first class value,
interrupt, op-code

Equality as defined in ProcessBase language
specification (PBLS)

type Type equivalence as defined in PBLS
code Same sequence of instructions

Table 5: Definition equivalence over ProcessBase entities in E
Type equivalence and equality between values are defined in the ProcessBase
language specification [MBG+99b]. Type equivalence in ProcessBase is based
upon the meaning of types, and is independent of the way types are expressed
within the type algebra. This style of type equivalence is normally referred to as
structural equivalence. According to the structural equivalence rules, every base
type is equivalent only to itself, and for two constructed types to be equivalent,
they must have the same constructor and be constructed over equivalent types.
All values in ProcessBase have first class citizenship except interrupts and op-
codes. This implies that they have the right to be declared, to be assigned, to have
equality defined over them, and to persist. The ProcessBase language specification
defines equality over first class values, as follows:
• Two strings are equal if they have the same characters in the same order and

are of the same length.
• Two values of type any are equal if they can be projected onto equivalent types

and the projected values are equal.

 43

• Two locations or vectors or views are equal if they have the same identity, that
is, the same pointer.

• Two procedures are equal if their values are derived from the same evaluation
of the same procedure expression, that is, they have the same closure.

5.3 Operations Over HCRs
The HCOs are performed through the HCA over the HCRs. The HCOs, explode,
implode, evaluate, get root and edit, will be described in the following sections.

5.3.1 Explode
In the explode operation, each hyper-link in the selected representation is enlarged
to show a more detailed HCR which is equivalent (≡≡≡≡rep-en) to the original
contracted hyper-link. The exploded representation is a valid ProcessBase
fragment. Operation explode follows the reflection and reification policies
introduced in section 4.2.1.
Table 6 shows examples of exploding hyper-links to identifiers, first class values,
interrupts and op-codes.

 44

Hyper-link
to...

Examples of exploded
hyper-links

Description

identifier 2

value of the identifier

int, real, bool

2 2.0 true, , literal values of types integer,
real and boolean respectively

string "vangelis"

string value

any any()

a value, represented by a
hyper-link, injected into any

location loc ()

a location containing a value
represented by a hyper-link

vector

vector @1 of [, ,] a vector with values

represented by hyper-links as
elements

view

view (name <- ; age <-) a view with its fields

initialised with values
represented by hyper-links

procedure

fun() -> ;

a procedure with no
parameters, return type
represented by the first
hyper-link and a value
represented by the second
hyper-link as body

interrupt clocktick

an identifier of an interrupt

op-code opcode1

an identifier of an op-code

Table 6: Exploding hyper-links to ProcessBase values and identifiers
Table 7 shows examples of exploding hyper-links to base and constructed
ProcessBase types. Note that interrupt and op-code types can not be hyper-linked.

 45

Hyper-link
to...

Examples of exploded
hyper-links

Description

int, real,
bool type

int real bool,, literal types int, real, bool

string type

string

string type

any type

any any type

location
type

loc []

a location type containing a type
represented by a hyper-link

vector type

*

a vector type with elements of a type
represented by a hyper-link

view type

view[name: ; age:] a view type containing fields of the

types represented by hyper-links

procedure
type

fun() ->

a procedure type with a parameter of
a type represented by the first hyper-
link and a return type represented by
the second hyper-link

Table 7: Exploding hyper-links to ProcessBase types

5.3.2 Implode
In the implode operation, each hyper-link in the selected representation is
contracted to show a less detailed HCR. Operation implode follows the reflection
and reification policies introduced in section 4.2.2. In Table 6 and Table 7,
imploding a hyper-link in the second column results in a hyper-link that looks like
one of the HCRs shown in Table 4.

5.3.3 Evaluate
This operation evaluates a selected HCR, following the execution and reification
strategies introduced in section 4.2.3.

5.3.3.1 Viewing the Evaluation
During evaluation the HCA tool progressively changes the HCR being evaluated
 when an identifier comes into scope it is replaced by a hyper-link to its current
value. Such a hyper-link can be exploded in order to inspect its current value.
When evaluation exits the scope of the identifier, the hyper-link returns to its
textual representation. However, in some cases identifiers can escape the scope
they are defined; this will be explained later in this section.
The scope of an identifier starts immediately after its declaration and continues up
to the next unmatched closing brace (either "}" or "end") [MBG+99b]. If the same
identifier is declared in an inner sequence, then while the inner name is in scope
the outer one is not.

 46

The evaluation process may be interrupted when an error occurs or when a
breakpoint is reached. In case of a static error, the programmer is notified of the
position where the error is detected – the line on which the error is detected is
highlighted. Figure 29 shows an example of such an error (type incompatibility).
In the case of a dynamic error or when a breakpoint is reached, evaluation is
suspended. Resuming evaluation is possible only if interruption occurred due to a
breakpoint.

Output Window

Hyper-Code Assistant

age := Program composition error :
 Incompatible types

let age <- loc(26)

a link to a
string

Figure 29: A ProcessBase HCR that produces an error
Figure 30 illustrates three snapshots of evaluating an example HCR, which
initially contains a hyper-link to a procedure that prints out an integer, and two
identifiers, both a, declared and used in different scope levels. Figure 30(a) shows
the HCR during composition, where identifiers are represented textually. The
hyper-links here are links to entities in the persistent store. When evaluation
reaches the point indicated by the progress bar shown in Figure 30(b), i.e. when
the first a comes into extent, all textual representations of the identifier a currently
in scope are replaced by hyper-links. When evaluation enters the new scope the
new a is declared. As shown in Figure 30(c), all occurrences of the new identifier
a are replaced by hyper-links. However, the first two hyper-links represent
different values from the last two. When evaluation leaves the scope levels, the
reverse process of replacing hyper-links with identifiers takes place. Thus, when
evaluation finishes the HCR again is as shown in Figure 30(a).

if = 1 do {
let <- 1

let <- 2
()

}

(a)

Hyper-Code Assistant

if a = 1 do {
let a <- 1

let a <- 2
(a)

}

(b) (c)

let <- 1
if = 1 do {

let a <- 2
(a)

}

Hyper-Code Assistant Hyper-Code Assistant

Composition time
(Identifier a out of scope)

Entering scope level 0
(Identifier a is declared)

Entering scope level 1
(A new identifier a is declared)

Figure 30: Snapshots of evaluating a ProcessBase HCR
As introduced earlier, there are some cases where identifiers can escape the scope
in which they are defined. Such a case is shown in Figure 31. Figure 31(a) shows
the HCR during composition, where identifier a is represented textually. When

 47

evaluation reaches the point indicated by the progress bar shown in Figure 31(b),
i.e. when a comes into extent, all textual representations of the identifier a
currently in scope are replaced by hyper-links. When evaluation terminates, these
hyper-links are replaced again by the textual representations of a.

(a)

Hyper-Code Assistant

fun() -> int; 'a
let a <- loc(1)

(b)

let <- loc(1)
fun() -> int; '

Hyper-Code Assistant

Composition time
(Identifier a out of scope)

Entering scope level 0
(Identifier a is declared)

Figure 31: An example of an identifier that escapes its scope
As will be explained later, the result of this evaluation is a hyper-link representing
the procedure. When this hyper-link is exploded, to show the procedure code, the
identifier a is denoted by a hyper-link to its value. This follows since the
procedure source code is recorded at the point of closure formation, at which point
the identifier a has been replaced by the link.
Figure 32 shows the result of evaluating the particular HCR, where the hyper-link
representing the location is exploded in turn.

Hyper-Code Assistant

fun() -> int; ' loc(1)

Figure 32: An HCR representing a closure

5.3.3.2 Result of Evaluation
The result of evaluation depends on the HCR being evaluated. Table 8 illustrates
examples of representations that return a result, where the first column contains
the domain of the HCR being evaluated, the second column an example HCR and
the third column the result of evaluating this HCR. The HCR in the first row
represents an executable entity that returns a result – two values of type int are
added and the result is returned as a hyper-link. The HCR in the second row
represents a non-executable entity – a single hyper-link is evaluated. Evaluating
any other representation returns either no result or an error.

 48

Representation
category – Domain

Example of representation Result of evaluating
the representation

An executable
representation that
returns a result
(Rexec-res)

+

a link to an
integer

a link to an
integer

a link to an
integer

A non-executable
representation
(Rno-exec)

a link to an
integer

a link to an
integer

Table 8: Evaluating ProcessBase HCRs

The resulting hyper-link is an HCR equivalent (≡≡≡≡rep-sub) to the original. In the
case of evaluating a single hyper-link, as in row 2, the resulting HCR is defined to
be ≡≡≡≡rep equivalent to the original.

5.3.4 Get Root
In ProcessBase, this operation produces a hyper-link for a persistent root. The
hyper-link is contained in a non-editable hyper-code window, as shown in Figure
33. Operation get root follows the reification policy introduced in section 4.2.4.

Hyper-Code Assistanta link to a
persistent root

Figure 33: The persistent roots HCA window

5.3.5 Edit
This operation follows the transformation policy introduced in section 4.2.5. It
encompasses the basic conventional editing facilities and some other facilities
related to the graphical user interface.
Composing HCRs involves typing, drag and drop, cut, copy and paste. A snapshot
of composing an HCR is shown in Figure 34.

Hyper-Code Assistant

:= n
loc ()

1

let myFunction <- fun(n:) ->int
* int

begin

end
vector to using

5 fun(a :) -> ; aintint

Figure 34: Composing a ProcessBase HCR

 49

A breakpoint may be added or removed as explained earlier in this chapter. In
Figure 34, the bullet at the beginning of line 3 denotes that the programmer has set
a breakpoint. Figure 34 also illustrates the ability to support multiple styles, fonts
and colours.
Updating a location is achieved by dragging a hyper-link to a first class value and
dropping it over a hyper-link to a location of the appropriate type, as shown in
Figure 35.

loc ()

2

direction in which the
hyper-link is being

dragged across

Figure 35: Updating a ProcessBase location

Customising the way that hyper-links are displayed involves either labelling a
particular hyper-link or labelling hyper-links that represent values of a particular
type. In the former case, the programmer selects the appropriate option in the pop-
up menu associated with a particular hyper-link as shown in Figure 36(a). The
programmer then provides a string for the label, for example the string "Person".
Figure 36(b) shows the unexploded hyper-link after customisation.

Hyper-Code Assistant

Copy
Represent as String

Hyper-Code Assistant

Person

(a) (b)

Represent as WWW link

Figure 36: Customising a particular hyper-link

To customise hyper-links representing values of a particular type, the programmer
specifies the type and a fragment of code. This fragment is executed each time a
corresponding hyper-link is displayed and the result is used as a label for that
hyper-link. The label is a string.
Figure 37 shows an example of such a customisation, which is performed for all
hyper-links representing values of a particular type specified in the first field. The
fragment of code, specified in the second field, accesses the value through the
theObject parameter. After applying this customisation, each hyper-link
representing a value of the given type will be displayed with the string resulting
from executing the fragment of code in the second field, and that is the name field
of the value.

 50

Customise Type:
(using theObject)

Customise as String: theObject.name

Customise Cancel

view(name:string; age:int)

Customise as WWW link:

Figure 37: Customising hyper-links representing values of the specified type

5.4 Summary
This chapter described the mapping of a particular HCS into ProcessBase. The
domain E, in a concrete HCS in ProcessBase, contains identifiers, code, types and
the first class values as specified in the ProcessBase language specification.
Every entity in domain E has a corresponding HCR in R. The particular HCOs,
explode, implode, evaluate, get root and edit, operate over these HCRs. This
chapter illustrated the user interface for each of these operations.

 51

6 A Hyper-Code System for PJama
JavaTM is an object-oriented, architecture-neutral, interpreted language that
supports multithreaded programming and distribution and provides encapsulation,
inheritance and polymorphism [NA99].
An example of adding persistence to Java is an orthogonally persistent Java,
PJama [ADJ+96], which obeys the design principles of persistence as stated in
[AM95].
The particular implementation of adding persistence to JavaTM was motivated by
attempting to achieve a much broader set of facilities in an industrially supported
language to demonstrate that orthogonal persistence is beneficial for large
commercial programming projects [AJD+96].
The main goal of PJama was to add persistence to the existing language with
minimal change to its initial semantics and implementation. This requires the
language to provide a basic number of facilities, which are stated in [MCK+96],
and involve an infinite union type with injection and projection operations,
facilities for linguistic reflection, and a persistent store with root(s), reachability
and referential integrity.
The following sections describe the design of a HCS in PJama.

6.1 Domains in PJama
There are two distinct domains in the PJama HCS, domain E and domain R.
Domain E contains code, variables, types, and all the first class values. Code is
any executable entity. The variable is the basic unit of storage in a Java program
and is defined by the combination of an identifier, a type and a value. A first class
value is: a primitive value, that is value of a primitive type, an array, or an instance
of a class. Types are classified into elemental (primitive) types and reference types.
Primitive types include integers (byte, short, int, long), floating-point numbers
(float, double), characters (char) and booleans (boolean). Reference types include
classes, interfaces and array types.
Every entity in domain E has its corresponding HCR in the domain R. Each
representation is a combination of text and hyper-links to entities. A hyper-link is
displayed by default as a rounded box with no label. The background colour
indicates if the hyper-link represents a type, or a value or a variable4. Every hyper-
link representing a type or a first class value can be manipulated in the same way,
which means that every hyper-code operation can be performed over it. Hyper-
links to variables are transient and are only created during evaluation, as will be
explained later.
Table 9 illustrates the appearance of representations of entities in domain E. Every
entity in domain E, except code, can be represented by a single hyper-link in
domain R.

Entity in E Hyper-Code Representation in R

4 White for first class values, black for types and patterned-grey for variables.

 52

variable
primitive value, Array, Object
primitive type, class, interface,
array Type

code any combination of text and hyper-links
e.g. the HCR of an expression that adds

two integers could be +

Table 9: Appearance of representations of PJama entities

6.2 Equivalences in PJama
As stated earlier, four equivalences are defined in a HCS; three equivalences over
HCRs (≡≡≡≡rep, ≡≡≡≡rep-en and ≡≡≡≡rep-sub), which have already been defined earlier, and an
equivalence over hyper-code entities (≡≡≡≡en). Table 10 defines the ≡≡≡≡en equivalence
over PJama entities.

Entity in E ≡≡≡≡en

variable Same name and scope
primitive value,
array, object

Equality as defined in Java language specification

primitive and
reference type

Type equivalence as defined in Java language
specification

code Same sequence of instructions

Table 10: Definition of the ≡en equivalence over PJama entities in E
Type equivalence and equality between values are defined in the Java Language
Specification (JLS) [GJS96]. According to the JLS, two arrays or objects are equal
if they have the same identity. Type equivalence is based upon the following rules:
• Every primitive type is equivalent only to itself,
• Two reference types are equivalent if:

– either they are loaded by the same class loader, and have the same fully-
qualified name, in which case they are said to be the same class or the
same interface.

– or they are both array types, and have the same component type.

6.3 Operations Over HCRs
The HCOs are performed through the HCA window over HCRs. The HCOs,
explode, implode, evaluate, get root and edit, will be described in the following
sections, using the class definitions shown in Figure 38.

 53

public class Person extends Animal {
 public String name;
 public Person(String name) {
 this.name = name;
 noOfLegs = 2;
 }
}
public class Animal {
 public int noOfLegs;
}

Figure 38: The definition of class Person and its superclass

6.3.1 Explode
In the explode operation, each hyper-link in the selected representation is enlarged
to show a more detailed HCR which is equivalent (≡≡≡≡rep-en) to the original
contracted hyper-link. The exploded representation is a valid Java fragment.
Operation explode follows the reflection and reification policies introduced in
section 4.2.1.
Table 11 shows examples of exploding hyper-links to variables, primitive values,
arrays and objects.

Hyper-
link to...

Examples of exploded
hyper-links

Description

Variable 2 current value (either primitive value,
array or object) of the variable

Primitive
Value

2 2.0 'V' true literal values of the types int, float,

char, boolean
Array

.newArray(,) a hyper-link to a class that contains a

static method, which returns a new
instance of an array. The elements
of the array are initialised with
values represented by the hyper-
links passed as parameters to the
static method.

Object

.newPerson(,) a hyper-link to a class that contains a
static method, which returns a new
instance of class Person. The fields
of the object are initialised with
values represented by the hyper-
links passed as parameters to the
static method.

Table 11: Exploding hyper-links to variables and objects
Table 12 shows examples of exploding hyper-links to Java types.

 54

Hyper-link
to...

Examples of exploded
hyper-links

Description

Primitive
Type

byte

boolchardoublefloat

longintshort literal types byte, short, int, long,
float, double, char, bool

Class

public class Person extends {

public name;

}

public Person(name) {
this.name = name; noOfLegs = 2; }

a class definition containing a hyper-
link to its superclass and two hyper-
links to class String respectively.

Interface

public interface Serializable { } an interface definition

Array Type

[]

an array type whose elements are of
type represented by the hyper-link

Table 12: Exploding hyper-links to types

6.3.2 Implode
In the implode operation, each hyper-link in the selected representation is
contracted to show a less detailed HCR. Operation implode follows the reflection
and reification policies introduced in section 4.2.2.
In Table 11 and Table 12, imploding a representation in the second column results
in a hyper-link that looks like one of the HCRs shown in Table 9.

6.3.3 Evaluate
This operation evaluates a selected HCR, following the execution and reification
strategies introduced in section 4.2.3.

6.3.3.1 Viewing the Evaluation
During evaluation the HCA tool progressively changes the HCR being evaluated
 when a variable comes into scope it is replaced by a hyper-link to its current
value. When evaluation exits the scope of the variable, the hyper-link returns to its
textual representation. However, in some cases variables can escape the scope they
are defined; this will be explained later in this section.
The scope of a variable is defined by a block, which begins with an opening curly
brace and ends by a closing curly brace. In Java the two major scopes are those
defined by a class and those defined by a method [NA99]. Variables declared
inside a scope cannot be used directly in code outside that scope, but in some
cases5 they may still be accessed indirectly via a call to a method defined within
the original scope. Scopes can be nested, that is variables declared in an outer
scope are visible in the inner scope, but a variable with the same name cannot be
declared in the inner scope.

5 Local variables declared final and accessed within the body of a method of an anonymous class.
This is explained at: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HCS/Scopes

 55

The evaluation process may be interrupted when an error occurs or when a
breakpoint is reached. In the case of a static error, the programmer is notified of
the position that the error is detected – the line that the error is detected is
highlighted. Figure 39 shows an example of such an error (type incompatibility).
In the case of a dynamic error or when a breakpoint is reached, evaluation is
suspended. Resuming evaluation is possible only if interruption occurred due to a
breakpoint.

Output Window

Hyper-Code Assistant
....

....

age = ;
Program composition error :
 Incompatible types

a link to an
int type

a link to an instance
of class Person

Figure 39: A PJama HCR that produces an error
Figure 40 illustrates three snapshots of evaluating an example HCR, which
contains the variables a, b and c. Variable c is declared inside the body of the first
if statement. A new variable with the same name (c) is declared and used in the
second. Figure 40(a) shows the HCR during composition, where the variables are
represented textually. When evaluation reaches the point indicated by the progress
bar shown in Figure 40(b), i.e. when variable c comes into extent, the occurrences
of c within its scope (lines 5 and 6) are replaced by hyper-links. When evaluation
exits that scope level and enters the scope level of the body of the second if
statement, a new variable with the same name c is declared. Hyper-links replace
the textual representations of that variable (lines 10-11), and this is illustrated in
Figure 40(c). When evaluation finishes, the reverse process of replacing hyper-
links with textual representations takes place, and the HCR returns to its original
state, shown in Figure 40(a).

 56

Hyper-Code Assistant

int a;
a = 3;
int b = 0;
if (b == 0) {
 int c;
 c = 2;
}
if (a > b) {
 a ++;
 int c;
 c = 2;
 if (a < 5) {
 System.out.println(a);
 }
}

int ;
 = 3;
int = 0;
if (== 0) {
 int ;
 = 2;
}
if (>) {
 ++;
 int c;
 c = 2;
 if (< 5) {
 System.out.println();
 }
}

Hyper-Code Assistant Hyper-Code Assistant

int ;
 = 3;
int = 0;
if (== 0) {
 int c;
 c = 2;
}
if (>) {
 ++;
 int ;
 = 2;
 if (< 5) {
 System.out.println();
 }
}

(a)
Composition time

(All variables out of scope)

(b)
Entering scope level of the

first if statement
(Variable c is declared)

(c)
Exiting scope level of the first if statement. Scope
level of the second if statement has been entered

(Variable c is declared)
Figure 40: Snapshots of evaluating a PJama HCR

6.3.3.2 Result of Evaluation
The result of evaluation depends on the HCR being evaluated. Table 13 illustrates
examples of representations that return a result.

Representation
category

Example of representation Result of evaluating
the representation

An executable HCR that
returns a result
(Rexec-res)

+

a link to an
integer

a link to an
integer

a link to an
integer

A non-executable HCR
(Rno-exec) a link to an

integer
a link to an

integer
Table 13: Evaluating PJama HCRs

In this table, the first column contains the domain of the HCR being evaluated, the
second column an example HCR and the third column the result of evaluating this
HCR. The HCR in the first row represents an executable entity that returns a result
– two values of type int are added and the result is returned as a hyper-link. The
HCR in the second row represents a non-executable entity – a single hyper-link is
evaluated.

The resulting hyper-link is an HCR equivalent (≡≡≡≡rep-sub) to the original. In the
case of evaluating a single hyper-link, as in row two, the resulting HCR is defined
to be ≡≡≡≡rep equivalent to the original.

 57

6.3.4 Get Root
In PJama, this operation produces a hyper-link for each of the persistent roots.
These hyper-links are contained in a non-editable HCA window, as shown in
Figure 41(a). Operation get root follows the reification policy introduced in
section 4.2.4.
Persistent classes can also be retrieved in a similar way, in which case a hyper-link
is produced for each persistent class. These hyper-links are contained in a non-
editable HCA window, as shown in Figure 41(b).

Hyper-Code Assistant

a hyper-link to an
array of instances
of class Person

a hyper-link to an
array of instances

of class Image

Hyper-Code Assistant

a hyper-link to
class Image

a hyper-link to
class Animal

a hyper-link to
class Person

(a) (b)
Persistent Roots Persistent Classes

Figure 41: The persistent roots and classes HCA windows

6.3.5 Edit
This operation follows the transformation policy introduced in section 4.2.5. It
encompasses the basic conventional editing facilities and some other facilities
related to the graphical user interface.
Composing HCRs involves typing, drag and drop, cut, copy and paste. A snapshot
of composing a hyper-code representation is shown in Figure 42.

Hyper-Code Assistant

public class AnotherPerson extends {

public class Person extends {
public name;

}

public Person(name) {

public static void main(String[] args) {

Person p =

}
}

String

public class Animal {
public int noOfLegs;

}

.newPerson(,)
;

this.name = name; noOfLegs = 2; }
String

Figure 42: Composing a PJama HCR

Breakpoints may be added or removed as explained in section 4.2.5. In Figure 42,
the bullet at the beginning of line 3 denotes that the programmer has set a
breakpoint. Figure 42 also illustrates the ability to support multiple styles, fonts
and colours.
The way that a particular hyper-link is displayed can be specified through the
customisation mechanism. The programmer may add a label to the hyper-link or

 58

may display it as an image or may make it appear like a WWW link, by selecting
the appropriate option in the pop-up menu associated with a particular hyper-link
as shown in Figure 43(a). The programmer then provides either a string or the path
of the image file — in the particular example the programmer has provided the
string "Person". Figure 43(b) illustrates the appearance of the hyper-link after
customisation.

Hyper-Code Assistant

Represent as Image
Represent as String

Hyper-Code Assistant

Person

(a) (b)

Represent as WWW link

Figure 43: Customising a particular hyper-link

To customise hyper-links representing instances of a particular class, the
programmer specifies the class and a fragment of code. This fragment is executed
each time a corresponding hyper-link is displayed and the result is used as a label
for that hyper-link. The label is either a string or an image.
Figure 44 shows an example of such a customisation, which is performed for all
hyper-links representing instances of class Person. The fragment of code, specified
in the second field, accesses instances through the theObject parameter. After
applying this customisation, each hyper-link representing an instance of that class
will be displayed with the string resulting from executing the fragment of code in
the second field, which returns the value of the name field.

Customise Class:
(using theObject)

Customise as String: ((Person)theObject).name

Customise Cancel

Person

Customise as WWW link:

Customise as Image:

Figure 44: Customising hyper-links to instances of the specified class

6.4 Summary
This chapter described the mapping of a particular HCS into PJama. The domain
E, in a concrete HCS in PJama, contains variables, code, types, classes, interfaces,
instances of classes and arrays as specified in the Java language specification.
Every entity in domain E has a corresponding HCR in R. The particular HCOs,
explode, implode, evaluate, get root and edit, operate over these HCRs. This
chapter illustrated the user interface for each of these operations.

 59

7 Implementing Hyper-Code in PJama
This chapter describes the implementation of a HCS in PJama (PJ-HCS). The
various representation forms for HCRs are described, as are the way in which
these forms support the user operations. The implementation of the particular HCS
is based on the implementation of the Hyper-Programming System (HPS) in
PJama [ZDK+99].
PJ-HCS is implemented using the Java language and the standard JVM. The
motivation for that is interoperability, which allows the implementation of the
hyper-code system to comply with any future release of Java running on any
platform.
The implementation of the PJ-HCS will be illustrated using the HCR shown in
Figure 45.

Hyper-links to
instances of
class Person

.marry(a , b) ;

a = ;

b = ;

if (a != null) {
 int c;
 c = a.name.length();
 System.out.println(c) ;
}
if (b != null) {
 int c = b.name.length();
 System.out.println(c) ;
}

Hyper-links to
class Person

Figure 45: An example HCR in PJama

The HCR contains three links to class Person, and links to two persistent instances
of class Person. Class Person is partially defined in Figure 46.

public class Person {
 public String name;
 public Person spouse;
 public javax.swing.ImageIcon image;
 public static void marry(Person a, Person b) {
 a.spouse = b; b.spouse = a;
 }
}

Figure 46: The definition of class Person

7.1 Representing HCRs
PJ-HCS uses three different representations for HCRs at various stages of the
program development process. These representations are:
• The storage form, which is optimised for storage.
• The textual form, which is designed for use with a standard Java compiler.
• The editing form, which is optimised for editing, including selection, insertion

and deletion of text and hyper-links.
Translation between these forms occurs when it is necessary for the underlying
system to perform several operations, as shown in Figure 47. Translation between

 60

the editing form and the storage form, and vice versa, takes place when the HCA
saves or loads a HCR in/from the persistent store respectively. The textual form is
generated from the storage form during the evaluation process, as will be
explained in the next section. Finally, files containing purely textual program
fragments may be loaded from an external file system and transformed into the
HCA editing form.

Editing Storage

Textual

load

save

generate
textual form

generate
editing form

Figure 47: Transforming between the three HCR forms

7.2 Implementation of the Evaluation Process
The evaluate operation, behind the scenes, performs all the standard operations
included in the traditional programming life cycle, that is pre-processing,
compiling, executing and returning a result (if any).
This is illustrated in Figure 48. If the HCR represents a primitive type, an array
type or a class name then compilation and execution are unnecessary and
evaluation produces a single hyper-link as explained in section 7.2.6. Otherwise,
the system generates a new program fragment in the form of source code, invokes
a dynamically callable compiler, and finally links the result of the compilation into
its own execution. For the rest of the chapter, it will be assumed that the HCR to
be evaluated does not represent a primitive type or array type or a class name.
In order to compile an HCR, it must first be translated into a valid Java program,
which is a purely textual class definition. This is defined in the Java Language
Specification [GJS96] as the CompilationUnit syntactic production. This
transformation, which is performed during the pre-processing stage, is required in
order to use standard Java compilers.

 61

true

false

transform compile

execute

execute?

result?

is HCR
primitive type or

array type or
class name?

produce a
hyper-link

for the entity

text

yes

yes

no

no

class

Start Stop

HCR

Figure 48: The evaluation algorithm

The transformation is illustrated in Figure 49. It involves the following tasks:
• The storage form of the HCR is wrapped up in a class definition, only if

necessary, producing a new HCR in storage form.
• This is then transformed into the textual form, which contains textual

denotations representing the hyper-links.
• Some additional program fragments are then inserted, in order to achieve

breakpoint manipulation and variable tracking.
The resulting textual class definition is then ready for compilation.

class {

}

class {

}

class {

}

wrapping generate
textual form

variable
tracking

fragment class class class

class
ready for

compilation

storage form textual form
Figure 49: Transforming storage form into textual form

The following sections describe the storage form data structure of an HCR and
how this form is used for the various stages of evaluation.

7.2.1 The Storage Form
The storage form stores the textual part of the HCR as a string, and the hyper-links
in a vector. Figure 50 shows the storage form of the example HCR.

 62

"Y"

15

false

false

"X"

6

false

false

" a = ;
b = ;
.marry(a,b);

if (a!=null) {
int c;
c=a.name.length();
System.out.println(c);

}
if (b!=null) {

int c=b.name.length();
System.out.println(c);

}"
vector of hyper-links

label for hyper-link

position of hyper-link
in the string

boolean denoting whether
hyper-link denotes a class
or method
boolean denoting whether
hyper-link denotes a
primitive value

StorageForm

"Person"

9

true

false

Class
instance

Person
instance

Person
instance

StorageFormHL

"Person"

18

true

false

"Person"

0

true

false

StorageFormHL

textual part of HCR

Figure 50: An instance of the storage form

The storage form is represented by the class StorageForm, which is shown in
Figure 51. Each instance contains a string and a vector of StorageFormHL
instances. The string contains the textual part of the HCR, while the vector
contains references to the hyper-linked entities. An instance of class StorageForm
can be transformed into its textual form through method generateTextualForm. As
will be explained later in detail, this method replaces each hyper-link with an
expression that will retrieve the hyper-linked entity from the persistent store. This
expression contains a call to method getLink.

public class StorageForm {
 protected String theText; // The textual part of the HCR
 protected Vector theLinks; // A vector of StorageFormHL instances
 public StorageForm () { … }
 public StorageForm (String theText) { … }
 public StorageForm (String theText, Vector theLinks) { … }
 // Other constructors
 // Methods for retrieving and updating the fields
 public String generateTextualForm() { … }
 public static getLink(int passwd, int hcr, int hl) { … }
}

Figure 51: The definition of class StorageForm
The class StorageFormHL is defined in Figure 52. The entityObject field stores
either an object or an instance of class Class. The isClass field is used to
distinguish between object and represented class. The isPrimitive field is used to
distinguish between a primitive value and an instance of a class. The position field
denotes the position of the hyper-link in the HCR.

 63

public class StorageFormHL implements EntityRepresentation {
protected Object entityObject;
protected boolean isClass;
protected boolean isPrimitive;
protected int position;
// Other declarations and initialisations
public StorageFormHL(Object entityObject, boolean isClass,

boolean isPrimitive, int position) { … }
// Other constructors
// Methods for retrieving and updating the fields
// Other methods

}

Figure 52: The definition of class StorageFormHL
Class StorageFormHL implements the EntityRepresentation interface, defined in
Figure 53. This interface contains methods for retrieving and updating a set of
values representing an entity. In class StorageFormHL, these values are included
in the protected fields entityObject, isClass and isPrimitive.

public interface EntityRepresentation {
public void setEntityObject(Object anObject);
public Object getEntityObject();
public void setEntityClassBool(boolean classBool);
public boolean getEntityClassBool();
public void setEntityPrimBool(boolean primBool);
public boolean getEntityPrimBool();

}

Figure 53: The definition of interface EntityRepresentation
The use of the fields in class StorageFormHL depends on the represented entity. In
the example, for the link to the class Person, the entityObject field refers to an
instance of class Class representing class Person. For a link to an instance of class
Person, the entityObject field refers to that instance.
Table 14 shows the use of the StorageFormHL fields for each category of entity
that can be hyper-linked. In row 3, distinction between a class and an interface is
achieved by invoking method Class.isInterface on the class of the entityObject
field. Similarly, in row 5, distinction between an array and a non-array instance is
achieved by invoking method Class.isArray on the class of the entityObject field.
In the case of a variable, the hyper-link represents its current value, that is one of
the entities in rows 4 and 5. In the case of code, there is no set of values to store
the relevant information, as code cannot be represented by a single hyper-link.

Entity entityObject isClass isPrimitive

primitive
type

instance of class Class
wrapping the primitive type

true true

array type instance of class Class
representing the array type

true false

class or
interface

instance of class Class
representing the class or
i f

true false

 64

interface

primitive
value

instance of a class which
wraps the value

false true

array or
object

array or object instance false false

variable instance of a class or array false true if the value is
primitive or false
otherwise

code Not applicable N/A N/A

Table 14: Use of StorageFormHL fields for each category of entity

7.2.2 Transforming an HCR into a Class Definition
The first step in transforming a HCR into a suitable form for the standard Java
compiler is to transform it into a complete class definition. This step is necessary if
the result of evaluating the HCR represents a primitive value, an array or a non-
array instance of a class.
In this case, the system creates a new HCR representing a class definition, which
contains a static method, whose body contains the original HCR. The return type
of the static method corresponds to the type of the entity represented by the HCR,
and it is void if the HCR represents an executable entity that does not produce a
result.
The example HCR of Figure 45 is transformed into the HCR illustrated in Figure
54. The original HCR becomes the body of the static method evaluateVoid, of
class EvaluateVoid. The names of both the class and the method are generated by
the system in such a way to reflect the type of the entity that is represented. The
name of the class, in particular, is always the same for every evaluation of the
same HCR. In Java, this is perfectly acceptable as long as a different class loader
is used for each evaluation. In the hyper-code system, each evaluation uses a new
class loader.

 public class EvaluateVoid {
 public static void evaluateVoid() {

Hyper-links to
instances of
class Person

.marry(a , b) ;

a = ;

b = ;

if (a != null) {
 int c;
 c = a.name.length();
 System.out.println(c) ;
}
if (b != null) {
 int c = b.name.length();
 System.out.println(c) ;
}

Hyper-links to
class Person

 }
}

Figure 54: Transforming the example HCR into a class definition

 65

The generated class definition has a different form if the entity represented is not
void. Figure 55 shows the result of transforming an HCR, containing an expression
that creates a new instance of class Person, into a class definition.

 public class EvaluateObject {
 public static Person evaluatePerson() {

return new ();
 }
}
Figure 55: Transforming a non-void HCR

Transforming an HCR representing a primitive value results in a class definition
that contains a static method, whose return type is the type of the primitive value.
Figure 56 shows the result of wrapping up the addition of two hyper-links, each of
which represents the value 1.

 public class EvaluateInt {
 public static int evaluateInt() {
 return + ;
 }
}

Figure 56: Transforming an HCR representing a primitive value
The examples in Figure 55 and Figure 56 illustrate how a class definition results
from transforming an HCR containing a single-line, non-void expression, in which
case the system inserts a return statement at the end of the body of the static
method. However, if the HCR contains a multi-line, non-void expression that
already includes a return statement, the system makes that HCR the body of the
method without inserting any extra fragments of code.
At this stage, the HCR is ready for transformation into the textual form.

7.2.3 The Textual Form
The textual form of a HCR is produced by replacing each hyper-link with a textual
denotation. To ensure that every hyper-link has a textual form, the system records
a reference to each HCR submitted for translation, in a password-protected
location in the persistent store. The HCR and all the hyper-linked entities will thus
remain accessible by the compiled form even if the original reference to the HCR
is discarded. The textual denotation of an individual hyper-link is an expression
that will retrieve the hyper-linked entity from the password-protected data
structure, and the password protection prevents any accidental or malicious
tampering with the data structure. This is shown in Figure 57. The shaded part
illustrates the storage form of an HCR as described in Figure 50.

access via password
checking method

persistent
root

vector of StorageForm instances

Storage Form data structure
Figure 57: Accessing a hyper-linked entity in the persistent store

HCRs are always accessible as they are reachable by a persistent root through the
vector of StorageForm instances. This implies that they will remain persistent, as

 66

there is always a reference from that vector. Therefore, to enable these instances to
be garbage collected, the system periodically removes the references to those
StorageForm instances that do not have a corresponding persistent class associated
with them. The corresponding class is the class resulting from transforming,
compiling and loading the original HCR.
The association between an HCR and its corresponding class is achieved using a
hashtable of weak references (class java.util.WeakHashMap, provided in the
standard JDK 2) and a vector containing HCRs. The hashtable is used to store the
corresponding class as key and the index of the original HCR in the HCRs vector
as value. The use of WeakReferences ensures that the class will be garbage
collected, if it is not made persistent. The system then removes, from the vector of
StorageForm instances, those HCRs that do not have an associated class as the key
in the hashtable.
After ensuring that there will always be an access path for each hyper-linked
entity, the textual form of a HCR is generated by the method
StorageForm.generateTextualForm. A textual equivalent is generated for each
hyper-link.
For example, the textual equivalent for a hyper-link representing a primitive value
is the value itself converted into a string. This expression has the form:

<StorageFormHL instance>.getEntityObject().toString()
The textual representation of a hyper-link to a class, interface or primitive type is
obtained by an expression which retrieves the hyper-linked entity, that is the class
or interface, and obtains its name. This expression has the following form:

((Class)< StorageFormHL instance >.getEntityObject()).getName()
The textual representation of a hyper-link to an array type is obtained by an
expression which retrieves the name of the component type, as explained before,
and adds the "[]" at the end. This expression has the following form:

((Class)< StorageForm instance >
.getEntityObject()).getComponentType().getName()+"[]"

The textual representation of a hyper-link to an object includes a unique id
allocated to each HCR when it is processed, and the index of the hyper-link within
the HCR. This has the form:

((class name) StorageForm.getLink(secret password,

 unique id for HCR,

 unique id for hyper-link).getObject())

The static method StorageForm.getLink retrieves a specified StorageFormHL
instance from the persistent data structure of Figure 57, taking as parameters the
password and indices for the HCR and the hyper-link. The call to the getObject
method returns the hyper-linked object itself, which is then cast to its specific
class. The entire expression thus gives an access path to the hyper-linked object
that may be evaluated correctly at run-time.
Figure 58 shows the resulting textual form for the example HCR of Figure 45.
The hyper-link textual equivalents in lines 5-7 are generated as follows:

 67

• The name of the class Person in lines 5, 6, and 7 is obtained by calling the
getName method on the instance of class Class recorded in the corresponding
StorageFormHL instances.

• The password used in the calls to getLink is built into the system, and is
required to prevent from unauthorised access to the relevant instances. This
provides a bare minimum of protection; a more sophisticated scheme could be
added if required.

• The HCR and hyper-link indices in lines 5 and 6 are the offsets in the
respective persistent vectors.

import StorageForm;
import Person;
public class EvaluateVoid {

public static void evaluateVoid() {
Person a = (Person) StorageForm.getLink("passwd", 0, 1).getObject();
Person b = (Person) StorageForm.getLink("passwd", 0, 2).getObject();
Person.marry (a , b);
if (a!= null) {

int c;
c = a.name.length();
System.out.println(c);

}
if (b!= null) {

int c = b.name.length();
System.out.println(c);

}
}

}

Figure 58: Transforming the example HCR into its textual form
The last task of the pre-processing stage before compilation is to rewrite the code
in order to implement variable tracking and breakpoint manipulation. This is
described in the next section.

7.2.4 Inserting Code for Variable Tracking and Breakpoint Manipulation
The hyper-code system is designed to support the following during the evaluation
process:
• display to the programmer a single changing HCR in which textual

representations of variables in scope, both local variables and class fields, are
replaced by hyper-links.

• allow the programmer to interactively manipulate the thread of execution by
suspending or resuming it.

In order to achieve the former, the system inserts fragments of code, which
explicitly duplicate information related to the variables. The motivation for this is
inter-operability, as introduced earlier, which means that the variable tracking
mechanism is built using the PJama language. An alternative solution to extracting
information related to variables is to create an API to access the standard JVM
stack of variables. However, this requires modification of the existing JVM.

 68

In order to achieve the latter, that is to allow the interactive manipulation of the
thread of execution, the system inserts fragments of code to suspend execution and
transfer control to the programmer. This involves resuming or killing of the thread
of execution.

7.2.4.1 Requirements for the Inserted Code
The inserted fragments of code perform operations required to achieve the
following:
• Keep track of local variables when they are declared.
• Keep track of fields of a class on entering the scope level of the body of a

method.
• Keep track of the value of variables when assignment is performed.
• Remove the information related to variables when they leave scope.
• Trigger the redrawing of the HCR in the HCA when any of the above

operations is performed.
• Keep track of the current execution line for display to the programmer when

interruption due to an error or a breakpoint occurs.
• Suspend the thread of execution on reaching breakpoints.

7.2.4.2 Meeting the Requirements - The Thread of Execution
The thread of execution and the data structure for variable tracking are stored in
instances of class HyperCodeThread, partially defined in Figure 59. The thread is
created and manipulated by the hyper-code system, after compilation and loading
of the transformed class definition, and this will be explained later in section 7.2.5.
Each instance of class HyperCodeThread is associated with a particular execution
of an HCR. During the code transformation stage of the evaluation process, the
system adds fragments of code to retrieve the current thread of execution and
suspend it, when a breakpoint is detected.

 69

public class HyperCodeThread extends Thread {
protected int lineCounter;
protected Stack stack;
protected Method method;

public HyperCodeThread(Method method) { … }
public void run() { … }
public void threadStart() { … }
public void threadResume() { … }
public void threadSuspend(String message) { … }
public void threadKill(String message) { … }

public void incLine() { … }
public int getLine() { … }
public void setLine(int lc) { … }

public void push(String variableName, boolean isField, boolean isPrimitive) {…}
public void update(String variableName, boolean isField, Object entityObject) {…}
public void pushLevel() { … }
public void popLevel() { … }

}

Figure 59: The definition of class HyperCodeThread
Variable tracking is performed through the same instance of class
HyperCodeThread. Representations of variables are stored in a stack of variables
as instances of a class Variable, defined in Figure 60, that implements the
EntityRepresentation interface. Each instance contains methods for retrieving and
updating a set of fields that represent the current value of the variable. In addition,
it stores the name of the variable and whether the variable is a class field or not.
public class Variable implements EntityRepresentation {

protected String variableName;
protected boolean isField;
protected Object entityObject;
protected boolean isClass, isPrimitive;
public Variable (String variableName, boolean isField, boolean isPrimitive) {…}
// Methods for retrieving and updating the fields.

}
Figure 60: The definition of class Variable

The information stored in instances of class Variable is manipulated by methods
push and update of class HyperCodeThread. On declaring a new variable, method
push is invoked, which adds a new entry in the stack. On assigning a value to a
variable, method update is invoked.
On entering a scope level, the system records this by invoking method pushLevel.
On exiting a scope level, the system removes those entries from the stack that
represent variables declared in that scope. This is done by invoking method
popLevel.
The system also records the current line of execution. This counter is increased, at
the beginning of each line, by invoking method incLine.

 70

Updating the HCR displayed in the HCA is required when assigning a value to a
variable or when exiting a scope. This is done through methods update, and
popLevel. These methods, which are called by the newly generated programs,
invoke the updateHCR method of class WindowEditor, defined in a later section.
The method takes the stack of variables as parameter, and updates the HCR
displayed in the HCA window by replacing the textual representations of the
variables included in the stack with hyper-links.

7.2.4.3 Transforming the Example HCR
The example textual form illustrated in Figure 58, after inserting the appropriate
fragments of code, is transformed to the class definition shown in Figure 61. It is
assumed that the programmer has inserted a breakpoint at the beginning of line 4
of the example HCR shown in Figure 45. The textual form of the HCR resulting
from the stage of evaluation described in the previous section is underlined, in
order to emphasise the fragments of code inserted for variable tracking and thread
manipulation.
import HyperCodeThread;
import StorageForm; import Person;
public class EvaluateVoidExpression {

public static void evaluateVoid() {
// Record the current thread of execution
HyperCodeThread t = (HyperCodeThread)Thread.currentThread();
// Increase the scope level counter, as a new scope level is created
t.pushLevel();
t.incLine(); Person a = (Person)StorageForm.getLink("passwd",0,1).getObject());
//Push variable "a" on the stack and update its value
t.push("a", false, false); t.update("a", false, a);
t.incLine();

Person b = (Person)StorageForm.getLink("passwd",0,2).getObject());
//Push variable "b" on the stack and update its value
t.push("b", false, false); t.update("b", false, b);
t.incLine(); Person.marry(a, b);
// Trigger the suspension of the current thread of execution
t.threadSuspend("Breakpoint at line "+t.getLine());
// No declaration, assignment of breakpoints. Just increase the line number
t.incLine(); if (a!=null) {
t.pushLevel();
t.incLine(); int c; t.push("c", false, true); // Push variable "c" on the stack
// Update the value of variable "c"
t.incLine(); c = a.name.length(); t.update("c", false, new Integer(c));
t.incLine(); System.out.println(c);
t.popLevel();// Remove variable "c" from the stack
t.incLine(); }
t.incLine(); if (b!=null) {
t.pushLevel();
//Push variable "c" on the stack and update its value
t.incLine(); int c = b.name.length();

t.push("c", false, true); t.update("c", false, new Integer(c));
t.incLine(); System.out.println(c);
t.popLevel();// Remove variable "c" from the stack
t.incLine(); }

 71

t.popLevel(); // Remove variables "a" and "b" from the stack
}

}

Figure 61: The result of transforming the example HCR

7.2.4.4 Transforming an Example HCR Representing a Class Definition
The example of Figure 61 illustrated how local variables are pushed and popped
to/from the stack respectively. However, in the case of an HCR defining a class
that contains several fields, transformation involves tracking of those fields. When
a method is invoked, these fields are considered global variables, contained in the
scope level 0. Thus, the system inserts fragments of code to push them onto the
stack at the beginning of the method.

public class X {
static String message = "The value of the integer is: ";
int theInt = 2;
public void printTheValueOut() {

System.out.println(message+theInt);
}

}

Figure 62: An example class definition
To illustrate this, the class definition shown in Figure 62 is used as an example.
The class contains two fields and a method that prints out the value of the second
field.
Figure 63 shows the class definition after inserting the appropriate fragments of
code, where the original HCR is underlined. The method initially retrieves the
current thread of execution, and sets the line counter to 4, that is the number of
lines, in the original HCR, up to the first line of the method to be executed. The
fields of the class are then pushed on the stack and their values are updated
accordingly. The second parameter of both the methods push and update is true,
denoting that the variable is a field of a class, rather than local in the execution of
the method. Just before the execution of the method terminates, variables
"message" and "theInt" are removed from the stack. On every invocation of the
method, these fields are pushed on the stack before any other local variable, since
they are global.

import HyperCodeThread;
public class X {

static String message = "The value of the integer is: ";
int theInt = 2;
public void printTheValueOut() {

HyperCodeThread t = (HyperCodeThread)Thread.currentThread();
t.setLine(4); // Increase the scope level counter.
t.pushLevel(); //Push static field "message" and update its value
t.push("message", true, false); t.update("message", true, X.message);
//Push field "theInt" and update its value
t.push("theInt", true, true); t.update("theInt", true, new Integer(theInt));
t.incLine(); System.out.println(message+theInt); // Increment the line counter
t.popLevel(); // Remove variables "message" and "theInt" from the stack

 72

}
}

Figure 63: Transforming the example class definition of Figure 62

7.2.5 Compiling and Executing HCRs

7.2.5.1 Compiling and Loading Class Definitions
The result of transformation is a purely textual class definition, which contains
access paths to the hyper-linked entities and additional fragments of code for
variable tracking and thread manipulation. This form is suitable for compilation
using a compiler that dynamically translates the textual form into a sequence of
byte code, and then loads a class using a ClassLoader. In order to achieve both the
tasks the system uses the Dynamic Compiler, which provides linguistic reflection
facilities to standard Java [KMS98], since the Java environment only provides
facilities for introspection and not for dynamic compilation.
Figure 64 shows several compilation methods provided by the class
DynamicCompiler.
public class DynamicCompiler {

public DynamicCompiler() { … }
public Class compileClass(String defn) throws CompilationException {…}
public Class[] compileClasses (String[] defns) throws CompilationException { …}
// Other methods

}
Figure 64: The definition of class DynamicCompiler

The main compilation method is compileClasses, which takes an array of source
code strings defining a number of classes and attempts to compile them by
invoking the standard Java compiler directly as a Java class. If this fails, then a
new operating system process is started to call the Java compiler. If the
compilation is successful, the result is an array of instances of class Class,
otherwise an exception is thrown.
The first mechanism has the advantage of fewer run-time overheads. The
disadvantage is the reliance on knowledge of the Java implementation, in
particular of the compiler interface and of which package contains the compiler.
Thus a change in the Java implementation — such as placing the compiler in a
different package or re-implementation of the compiler in a different language —
would prevent this approach from working. The disadvantages of the second
mechanism are that significant additional run-time resources are involved in
creating a new instantiation of the JVM and that it is more platform-specific.
Dynamic compilation, if successful, creates class definitions in the form of byte
code sequences (.class files). To be useful these must then be loaded into the
running system and converted to instances of class Class. This is achieved using a
subclass of class Classloader − details are given in [KMS98].

7.2.5.2 Executing Methods
The processes described in the previous sections involved the following tasks:
• An HCR is transformed into a class definition (if necessary).

 73

• Since the class definition may contain hyper-links, it is transformed into a
purely textual Java class definition.

• Additional fragments of code are inserted for variable tracking and breakpoint
manipulation.

• After transforming, the class definition is compiled and loaded.
• Once a class has been loaded at run-time, it is available for use. At this stage

execution may take place and this involves invocation of the method included
in the instance of class Class resulting from compilation and loading. For the
example HCR, illustrated in Figure 54, this implies that method
EvaluateVoid.evaluateVoid is invoked.

Execution takes place if the original HCR represents any void or non-void
expression that is not a class or interface definition. If execution is required, the
static method of the class resulting from compilation and loading is invoked using
the standard Java reflection package.
Each invocation of a method is associated with a particular Java thread and is
performed through it. A Java thread is an instance of a class that extends class
java.lang.Thread. The extending class must override the run method, which is the
entry point for the new thread. It must also call start to begin execution of the new
thread.
Class HyperCodeThread extends class Thread. A new thread is created and started
by instantiating the extending class and calling method threadStart. The
expression to achieve that has the form shown in Figure 65, where the method
passed as parameter to the constructor is the static method included in the
generated class. This Method instance is stored in the method field of the newly
created instance of class HyperCodeThread.

HyperCodeThread t = new HyperCodeThread(<Method instance to be invoked>);
t.threadStart();

Figure 65: Initialising and starting a thread
The invocation of the method, passed to the constructor, takes place in the body of
method HyperCodeThread.run, which is called when a thread starts. The
expression to invoke a method is shown in Figure 66, where the Method instance
is the value of the relevant field of class HyperCodeThread.

try {
 Object o = <Method instance to be invoked>.invoke(null, new String[0]);
} catch (Exception ex) {
 threadKill("Exception "+ex.getMessage()+" occurred at line "+getLine());
} catch (Error er) {
 threadKill("Internal error "+er.getMessage()+" occurred at line "+getLine());
}

Figure 66: Code in the body of the run method
The invocation of the relevant method is included in a try-catch statement, in order
to catch any exceptions or errors. An Exception is thrown when a run-time error
occurs in executing the body of the method, such as division by zero. An Error is
thrown when an error related to the JVM occurs, such as lack of memory. In both
the cases, method threadKill is invoked and execution is terminated.

 74

If there is no interruption, the body of the invoked method will be executed and the
result (if any) is returned as a hyper-link, as will be described later.

7.2.5.3 Compiling and Executing the Example HCR
This section describes the process of compiling and executing HCRs using the
example class definition of Figure 61. Compilation results in the creation of a file
EvaluateVoidExpression.class. The class returned is then loaded, and a new thread
is initialised and started using the following expression:

Class aClass = <Instance of class Class resulting from compilation>;
Method m = aClass.getMethod("evaluateVoid", null);
HyperCodeThread t = new HyperCodeThread(m);
t.threadStart();

Figure 67: Starting a thread for executing the evaluateVoid method
This expression triggers the invocation of method evaluateVoid, which occurs in
the body of method run, as shown in Figure 68. Note that the variable method is
the field that stores the instance of class Method associated with the particular
thread of execution.

try {
 Object o = method.invoke(null, new String[0]);
} catch …

Figure 68: Invoking method evaluateVoid inside method run
Since a call to threadSuspend is included in the body of method evaluateVoid, the
thread of execution is suspended and remains in that state until the programmer
resumes it.

7.2.6 Producing a new HCR
If execution produces a result, this is returned as a hyper-link in a HCA window
and is manipulated by the programmer accordingly. The hyper-link represents the
entity that is returned from execution. As an example, evaluating the HCR
included in the body of method EvaluateInt.evaluateInt shown in Figure 56 results
in a single hyper-link representing the integer two.

7.3 Summary
This chapter discusses the principal implementation issues of a particular
implementation of a HCS in PJama (PJ-HCS). The system is implemented on top
of the existing PJama language and JVM. The motivation for this approach is
interoperability, which allows the implementation of the hyper-code system to
comply with any future release of PJama and Java running on any platform.
The HCR is not a suitable form for the standard Java compiler. Thus
transformation between various forms is introduced. These forms are:
• the storage form, which is optimised for storage.
• the textual form, which is designed for use with a standard Java compiler.
• the editing form, which is optimised for editing.
The evaluate process performs the following operations:

 75

• transformation of the storage form of a HCR into the textual form. This
involves: wrapping up the HCR into a class definition, generating the textual
form and inserting code for variable tracking and breakpoint manipulation,
which is required in order to display to the programmer a changing HCR, and
provide debugging.

• compilation and loading of the resulting class definition.
• execution, if necessary, and
• creation of a new HCR, if required.
The next chapter discusses implementation issues related to the Hyper-Code
Assistant tool and to operation explode.

 76

8 Implementing the Hyper-Code Assistant Tool in PJama
The Hyper-Code Assistant (HCA) tool is used to compose and evaluate HCRs. It
supports exploding and imploding of hyper-links, embedded hyper-links, basic
editing facilities, drag and drop of HCRs, multiple fonts, styles and colours. It
performs as a normal editor, but it does not support justification or wrap-around.
The HCA tool implementation is structured using three layers, as shown in Figure
69, which allows implementations of different logical components to be changed
independently.

Window Editor

Basic Editor

Hyper-Code
User Editor

Alternative
implementation
of User Editor

Alternative
implementation
of User Editor

Figure 69: The layers implementing the HCA

The Basic Editor (BE) stores and manipulates the editing form and supports the
manipulation of the HCR data structure. The Window Editor (WE) supports the
graphical display and editing of the HCR, and this involves the manipulation of
multiple fonts, styles, sizes and colours. The User Editors (UE) are high-level
tools built on top of the WE. One of these tools is the hyper-code UE, which
implements the hyper-code concepts.

8.1 The Basic Editor
The BE contains the data structure used for storing an HCR. The data structure is
the editing form which is similar to the storage form. In the editing form, the
textual part of each program line is stored in a separate string. The position of each
hyper-link is defined by its offset in the line. This design is optimised for the
common editing operations, as their application does not affect the whole data
structure, but usually only a small part of it.
Figure 70 shows the editing form data structure for the example of Figure 45. For
each line, represented by an instance of class HyperLine, the data structure
contains the textual part and a vector of hyper-links. The vector of hyper-links
contained in the first line includes one to an instance of class Class and one to an
instance of class Person. Similarly, the vectors included in the other hyper-lines
contain hyper-links to other entities as shown in the figure. Hyper-links are
represented by instances of class HyperLink, which is defined later in section 8.2.
Similarly to class StorageFormHL, class HyperLink implements the
EntityRepresentation interface.

 77

vector of
HyperLine
instances

HyperLine
" a = ;"

6

false

false

6

false

false

vector of
HyperLink
instances

other fields, including the
label of the hyper-link

position of hyper-link
in the line

boolean denoting whether
hyper-link denotes a class
or method
boolean denoting whether
hyper-link denotes a
primitive value

0

true

false

Class
instance

Person
instance

Person
instance

0

true

false

0

true

false

EntityRepresentation
" b = ;"

" .marry (a , b);"

"if (a!=null) {"

" int c;"

" c=a.name.length();"

" System.out.println(c);"

"}"

"if (b!=null) {"

" int c=a.name.length();"

"}"

" System.out.println(c);"

... ...

......

...

EntityRepresentation

EntityRepresentation EntityRepresentation

EntityRepresentation

vector of
HyperLink
instances

Figure 70: The editing form data structure

Class BasicEditor, which is shown in Figure 71, defines the editing form and
implements the BE layer. Translation between the editing and the storage form and
vice versa is performed through methods importHCR and exportHCR respectively.
Methods for editing, navigating and searching within the data structure are also
included.

class BasicEditor {
protected Vector theLines;
 // Other fields
BasicEditor() { … }
// Other constructors
public void importHCR(StorageForm hcr) { … }
public StorageForm exportHCR() { … }
// Methods for retrieving or updating the fields
// Methods for cut, copy, paste, insert and delete
// Methods for navigating and searching within the data structure
// Other methods

}

Figure 71: The definition of class BasicEditor

 78

8.2 The Window Editor
The WE displays HCRs and is implemented by a WindowEditor instance, defined
in Figure 72.

class WindowEditor extends JPanel {
protected TextPointer startSelected; // Record start of selected area
protected TextPointer endSelected; // Record end of selected area
protected BasicEditor basicEditor; // Record the BasicEditor instance
protected BasicEditor prevBE; // Record a BasicEditor instance for undo
protected Vector theStyles; // Record the styles of the HCR
// Other fields
protected WindowEditor() { … }
// Other constructors
public void updateHCR(Stack stack) { … }
// Methods for editing, navigating and scrolling
// Methods for handling undo, redo actions, key and mouse events and styles
// Methods for drawing, inverting and un-inverting hyper-text
// Methods for selecting and searching hyper-text

}

Figure 72: The definition of class WindowEditor
Each instance of class WindowEditor is associated with a BasicEditor instance. If
the programmer has selected a fragment of the HCR this is specified by fields
startSelected and endSelected. The system records a copy of the current version of
the BasicEditor instance after each common editing operation is performed. This
version is retrieved when the programmer activates the undo action.
The HCR is drawn in the WE, using the styles recorded in an instance of class
java.util.Vector. Each element in the vector holds information about a particular
style, and this is represented by an instance of class StyleRun, partially defined in
Figure 73. Each instance stores the style's start and end as well as details about the
font, colour and size. When a new style is introduced, a new instance of class
StyleRun is inserted in the vector of styles.

class StyleRun {
 protected TextPointer start;
 protected TextPointer end;
 protected Font thisFont;
 protected Color thisColor;
 StyleRun(TextPointer start, TextPointer end, Font font, Color color) {…}
 // Methods for retrieving and updating the fields
}

Figure 73: The definition of class StyleRun
Class WindowEditor also contains methods for editing hyper-text in the drawing
area, for manipulating the insertion point, scrolling, and for drawing and printing.
Method updateHCR draws the current state of the HCR, where textual
representations of the variables in scope are replaced by hyper-links. This method
takes an instance of class java.util.Stack as parameter, which is the field stack in

 79

class HyperCodeThread. This instance contains representations - instances of class
Variable - of the variables that have to be replaced.
Another task of the WE editor is to position and draw the hyper-links. The hyper-
links are represented by instances of class HyperLink, which is partially defined in
Figure 74. Class HyperLink implements the EntityRepresentation interface,
defined in Figure 53. Each instance is a panel that displays the current view of the
entity represented by the hyper-link, that is a panel containing no label, customised
label or exploded view as appropriate.
Fields label and image store customisations for the hyper-link. Field windowEditor
records the drawing panel included in this hyper-link, when the latter is exploded.
If the hyper-link is imploded, the field windowEditor has the value null.
class HyperLink extends JPanel implements EntityRepresentation {

protected Object entityObject;
protected boolean isClass;
protected boolean isPrimitive;
protected int position
protected String label;
protected ImageIcon image;
protected WindowEditor windowEditor;
// Other fields
HyperLink(Object entityObject, boolean isClass, boolean isPrimitive) {…}
// Other constructors
protected void explode() { … }
protected void unexplode() { … }
// Methods for retrieving and updating the fields as well as painting and redrawing

}

Figure 74: The definition of class HyperLink

8.3 The Hyper-Code User Editor
The hyper-code UE supports the hyper-code operations. It is implemented by class
UserEditor, partially defined in Figure 75.

 80

class UserEditor extends javax.swing.JFrame {
protected WindowEditor windowEditor; // Record the WE instance
protected static Hashtable customDisplayTable; // Record the customisations
// Other fields
public void open(StorageForm hcr) { … } // Insert a HCR in the window
protected void close() { … } // Close the window
protected void save() { … } // Save the HCR in the PS
protected void evaluateHCR() { … } // Trigger evaluation
public static Hashtable getCustomTable() { ... }
// Adds a customisation in the table for class customised
public static void addCustomDisplay(Class custom, Class customised) { … }
// Retrieves the HCR for the given class
public static StorageForm getStorageForm (Class class)
 throws HCRNotFoundException { … }
// Other methods

}
Figure 75: The definition of class UserEditor

Each instance stores the WE associated with the UE. Methods for displaying a
given HCR, saving the currently displayed HCR in storage form, closing the
frame, and evaluating a HCR, as explained earlier in section 7.2, are also included.
The UE also contains fields and methods related to customising the display of
hyper-links representing instances of a particular class. The hyper-links, when
unexploded, can be customised to be displayed either as an image or a string or a
WWW link. Customisation adds to the relevant table, field customDisplayTable,
the class to be customised and a class that contains methods to generate either an
image or a string (the customising class). The class implements the CustomDisplay
interface, which is illustrated in Figure 76. All the methods take as parameter an
instance of the customised class.

public interface CustomDisplay {
public ImageIcon objectToImage(Object object);
public String objectToString(Object object);
public String objectToWWWLink(Object object);

}

Figure 76: The definition of the interface CustomDisplay
The customisation mechanism as originally proposed by [KM97] required the
programmer to compose a class definition, which implemented the interface
CustomDisplay, compile it and add the resulting class in the customisation table.
Through the hyper-code system user interface, the programmer is only required to
provide the bodies of the three methods. The system then generates a class
definition that includes these three methods.
An example of a generated customising class is illustrated in Figure 77. The
generated class customises instances of class Person, which has been defined in
Figure 46, to be displayed as the image specified by the relevant field (field
image).
In the particular example, the bodies of the methods, provided by the programmer
are in purely textual form. However, these can be in the form of HCRs, which
means that the class definition that wraps these methods, may contain hyper-links.

 81

The HCR representing this class is transformed into its textual form, as explained
in section 7.2.3. The system then compiles and loads the transformed generated
class, resulting in an instance of class Class. A new instance of that class is then
created, and this is added in the customisation table (field customDisplayTable of
class UserEditor).

public class CustomisePerson implements CustomDisplay {
public ImageIcon objectToImage(Object object) {

return ((Person)object).image;
}
public String objectToString(Object object) {

return null;
}
public String objectToWWWLink(Object object) {

return null;
}

}
Figure 77: An example customising class

8.4 The Explode Operation
One of the main operations of the HCA is the explode operation, which generates
an HCR for the entity represented by a hyper-link. The exact form of the HCR
depends on the entity that is represented, but in all cases is an expression that is
equivalent (≡≡≡≡rep-en) to the original hyper-link.
When the programmer activates the explode operation, the system invokes method
explode, contained in instances of class HyperLink. This involves the following
tasks:
• generate an HCR for the entity that is represented, and
• display the HCR in a new drawing area, which is included in the hyper-link

panel.
The exact form of the HCR depends on the entity that is represented. The
following sections illustrate the HCR generated for every first class hyper-code
entity.

8.4.1 Generating an HCR for a Primitive Type
The system generates an HCR depending on the primitive type that is represented,
using the following expression.

return new StorageForm(((Class) getEntityObject()).getName());

8.4.2 Generating an HCR for an Array Type
The system generates an HCR that includes a hyper-link representing the type of
the array’s components and the “[]” string. This is shown in Figure 78.

 82

Vector tempVector = new Vector();
Class componentType = ((Class)getEntityObject()).getComponentType();
tempVector.addElement(new StorageFormHL(componentType, true, false, 0));
return new StorageForm(" []",tempVector);

Figure 78: Code to generate an HCR for an array type

8.4.3 Generating an HCR for a Class or Interface
The system retrieves the HCR from the vector of persistent HCRs, using method
getStorageForm of class UserEditor, with the class or interface represented by the
hyper-link as parameter. Any class definition created through the hyper-code
system has its corresponding HCR. However, some classes do not have a
corresponding persistent HCR, such as the classes included in the standard JDK 2.
Generating HCRs for those classes is possible, but these would be incomplete as
source code cannot be generated for methods and constructors using the Java
reflection package. Thus, the system simply generates an HCR containing the
name of the class.
This process is shown in Figure 79.

try {
 return UserEditor.getStorageForm(((Class)getEntityObject()).getName());
} catch (HCRNotFoundException e) {
 // HCR not found, so it returns the name of the class
 return new StorageForm(((Class)getEntityObject()).getName());
}

Figure 79: Code to generate an HCR for a class or interface

8.4.4 Generating an HCR for a Primitive Value
The system generates an HCR representing the primitive value, as shown in the
following expression:

return new StorageForm(getEntityObject().toString());

8.4.5 Generating an HCR for an Array
Ideally, exploding a hyper-link representing an array should return an informative
expression that would be syntactically valid and sufficient to create a copy of the
array. The standard JDK 2 provides the static method System.arrayCopy, which
duplicates an array. However, an HCR containing such an expression would not be
informative, as it would not contain hyper-links to the elements of the array.
Therefore, the hyper-code system generates a HCR representing an array by
performing the following tasks:
• create a class definition that contains a static method. The static method takes

as parameters the elements of the original array. Inside the body of the method
a new array is created and its elements are initialised by the parameters
provided.

• compile and load the generated class definition. This results in an instance of
class Class.

• create a HCR containing a hyper-link to the resulting class, an expression to
invoke the static method, and hyper-links to the elements of the original array.

 83

An example of a class generated for an array of integers is shown in Figure 80.
public class GenerateArray {
 public static int[] newArray(int param0, int param1) {
 int[] anArray = { param0, param1 };
 return anArray;
 }
}

Figure 80: The definition of a generated class for an array
Class GenerateArray is compiled and loaded. The generated HCR contains a
hyper-link to that class, an expression to invoke the static method and two hyper-
links representing the elements of the original array. This is shown in Figure 81.

.newArray(,)

Hyper-link to class
GenerateArray

Hyper-links to
integers

Figure 81: HCR representing an array

8.4.6 Generating an HCR for a Class Instance
Similarly to arrays, there is no straight forward way of generating an informative
HCR for non-array objects. The standard JDK 2 provides cloning of objects.
However, such an HCR would not be informative, that is would not provide
information about the fields. In addition, this requires the classes of the objects to
implement the java.lang.Cloneable interface. This implies that instances of class
that do not implement this interface, can not be "cloned". Thus, following this
approach, not every hyper-link to a class instance can be exploded.
Therefore, the hyper-code system generates an HCR representing a non-array
object, by performing the following tasks:
• create a class definition that contains a static method. The static method takes

as parameters all the fields of the class, including those that are private or
protected or inherited from its superclasses. Inside the body of the method a
new instance of the same class as the original object is created. The fields of
the newly created instance are then initialised by the parameters provided.

• compile and load the generated class definition. This results in an instance of
class Class.

• create a HCR containing a hyper-link to the resulting class, an expression to
invoke the static method, and hyper-links to the fields of the original object.

The set of operations described above is performed successfully only if the class of
the original object is public. This is a limitation of the Java language, which does
not allow access to non-public classes outside the package which they are defined.
However, JDK 2 allows accessing non-public members, that is fields, constructors
and methods. This is done by changing their accessibility flag through class
java.lang.reflect.AccessibleObject. During generation, changing the accessibility is
attempted is two cases: when creating a new instance of the class of the object and

 84

when assigning the value of a field contained in the original object to the
corresponding field of the new object.
A new instance of the object's class can be created by invoking method
Globals6.createInstance. The method takes an instance of class Class, and creates
a new instance of the original object's class. This is done by performing the
following tasks:
• retrieve all the constructors of the given class. This results in an array of

instances of class java.lang.reflect.Constructor. If there are no constructors
declared in the class, get the default constructor. Otherwise, make an arbitrary
choice, such as get the first constructor in the array.

• check the accessibility of the constructor. If it is not public, make it accessible,
as explain earlier.

• create the new instance by invoking the newInstance method on the given
instance of class Class and return that instance.

Assigning a value to a field of the newly created object is achieved by invoking
method Globals.assignValue. The method takes the new object, the name of the
field and the new value as parameters. Similarly to constructors, if the field is not
accessible, the system changes its accessibility, and then assigns the new value.
public class GeneratePerson {

public static Person newPerson(String param0, javax.swing.ImageIcon param1,
 Person param2) {

Person anObject=Globals.createInstance(Globals.getClassForName("Person"));
Globals.assignValue(anObject, "name", param0);
Globals.assignValue(anObject, "image", param1);
Globals.assignValue(anObject, "spouse", param2);
return anObject;

}
}

Figure 82: The definition of a generated class for an object
An example of a class generated for an instance of class Person is shown in Figure
82. Note that method Globals.getClassForName returns an instance of class Class
for the given class name.
The generated class definition is then compiled and this results in an instance of
class Class representing class GeneratePerson. The resulting HCR contains a
hyper-link to that class, an expression to invoke the static method and three hyper-
links representing the values of the fields of the original instance. The HCR
resulting from this process is shown in Figure 83.

.newPerson(, ,)

Hyper-link to
class

GeneratePerson

Hyper-link to
an instance of
class String

Hyper-link to
an instance of
class Person

Hyper-link to
an instance of
class ImageIcon

6 Class Globals contains global settings and general purpose public static methods

 85

Figure 83: HCR representing a non-array object

8.4.7 Displaying the Generated HCR
The last stage of the explode operation is to draw the HCR in a newly created WE.
The WE is then added in the hyper-link panel, which is resized automatically.
Exploding hyper-links at any level results in creating new nested WEs, which may
contain more hyper-links. This combination of WEs included in hyper-links forms
a tree of instances of class WindowEditor and HyperLink respectively.

8.5 Summary
This chapter discusses the implementation issues related to the Hyper-Code
Assistant tool and to operation explode.
The HCA is the only tool visible to the programmer. It is used to composed and
evaluate HCRs. It is designed to support exploding and imploding of hyper-links,
basic editing facilities and multiple fonts, colours and styles. It is structured using
three layers:
• the Basic Editor (BE) stores and manipulates the editing form and supports

the manipulation of the HCR data structure.
• the Window Editor (WE) supports the graphical display and editing of the

HCR, and this involves the manipulation of multiple fonts, styles, sizes and
colours.

• the User Editors (UE) are high-level tools built on top of the WE. One of
these tools is the hyper-code UE, which implements the hyper-code concepts.

The explode operation generates an HCR for the entity represented by a hyper-
link. This involves generating an HCR for that entity and displaying the HCR in a
new drawing area. Exploding a hyper-link at any level may result in several nested
WEs and hyper-links.
The source code for the classes described in chapters 7 and 8 can be found at the
following URL:

http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HCS

 86

9 Conclusions
The research described in this thesis is based on the Aristotelian distinction
between the way reality is structured and the way it is viewed. In the context of the
thesis, this means that the problem of building software can be approached in
different ways. As an example, the task of programming may be viewed at
different levels of abstraction, such as at the machine level, at the operating system
level and at the higher level. Programming at each level requires manipulation of
different abstractions, representations and operations. Some of these concepts are
essential for programming at the particular level. The rest are considered accidents
as they can be hidden either by specifying new abstract concepts or by providing
different tools.
The motivation for the research is to improve programmers' productivity in the
task of developing software. The hypothesis of the thesis is that this can be
achieved by making a system simpler. A simple system may be produced by
removing unnecessary complexity, for example by presenting to a programmer
either fewer or more understandable concepts and forms.
In programming environments following the traditional life-cycle, the programmer
is required to be aware of various operations and many different forms and tools.
Simplification may be achieved both at an abstract level and at a concrete level
[ZKM00].

9.1 Simplification at the Abstract Level
The thesis presents a different way of structuring the reality, which simplifies the
traditional programming life-cycle. A new set of abstract concepts is introduced.
These shape the hyper-code abstraction, which describes the software life-cycle in
terms of two domains and four abstract operations.
The two domains are: the domain of language entities (hyper-code entities) and the
domain of concrete representations of entities, which is the only domain made
explicit to the programmer. The domain operations map between and within the
two domains. These are purely definitional and they are not visible to the
programmer. These operations are: reflect, reify, execute and transform.
The hyper-code abstraction is designed to structure the reality in a more
understandable way than the traditional life-cycle, thus easing the task of
programming.

9.2 Simplification at the Concrete Level
Hyper-code continues the chain of simplification steps starting from the
introduction of persistence. Orthogonal persistence brought about several
simplifications of the programmer’s task. One was to unify short-term and long-
term data. Another was to unify data and code, in the sense that executable code
became first-class and could be manipulated in the same way as other data.
Hyper-programming involved a further unifying simplification step. In hyper-
programming, source programs are themselves persistent data and are manipulated
in the same way as other values.

 87

Hyper-code builds on these simplifications by further unifying source code and
executable code. The result is that the distinction between them is completely
removed. The programmer sees only a single program representation form, the
Hyper-Code Representation, throughout the software life-cycle, during program
construction, execution, debugging, and viewing existing programs and data.
As a consequence, only a single programming tool is required to manipulate this
uniform representation form, rather than the various program editors, data
browsers, debuggers, etc needed otherwise. This single tool is the Hyper-Code
Assistant Tool. Various processes such as compilation and linking are accidental
and hidden from the programmer.
The hyper-code view of a programming system may be implemented through a
Hyper-Code System, which provides through the single tool a suitable set of
operations so that the design goals can be met. One set of operations is: explode,
implode, evaluate, edit and getRoot.
The consequence is that the hyper-code abstraction structures the reality in a way
that results in fewer and more understandable accidents. The one-representation /
one- tool model simplifies the task of programming; according to the original
hypothesis this improves programmers' productivity. Quantitative testing of this
hypothesis would require extensive user evaluation.

9.3 Hyper-Code Systems and Related Work
Several other programming environments attempt to simplify the traditional
programming life-cycle. However, most of these environments attempt to solve
problems caused by accidental difficulties, rather than introducing a new way of
viewing the reality. The survey of the related work indicated that most modern
programming environments hide concepts of the traditional programming life-
cycle in one way or another. Hiding interchange forms, or providing a better user
interface for composing programs are some examples of attempts towards that
goal.
Nevertheless, all of these systems present the programmer with different
representations for programs and data during all stages of the software
development process. In addition, the operations performed require multiple tools,
each one of which may consist of several windows. As an example, in some
systems debugging requires a window containing breakpoints, which is usually the
editor window, and a window to monitor values at run-time.
Therefore, there is an indication that a hyper-code system provides a better
solution to the problem of simplifying the traditional programming life-cycle than
other systems. Extensive user evaluation may be required in order to test this on a
quantitative basis.

9.4 Current Design and Implementation Status
The thesis reports on mapping the hyper-code concepts to particular languages
(ProcessBase and PJama). This includes the specific definition of the domains and
the definition of the concrete operations with respect to the particular

 88

interpretations of the underlying domain operations. The user interface for each of
the concrete operations is also described.
In addition, at the time of writing (September 2000), a prototype implementation
of a HCS in PJama (PJ-HCS), demonstrating the hyper-code concepts, has been
completed. The implementation of variable tracking and breakpoint manipulation
is ongoing. More details about the current status of implementation can be found at

http://www-ppg.dcs.st-and.ac.uk/Research/HyperCode/.

9.5 General Discussion of HCSs
The thesis reports on a particular style of HCSs, which involves the specification
of a particular set of HCOs performed over HCRs. This section discusses several
issues related to:
• the particular HCR chosen.
• the particular set of HCOs chosen.
• the mapping of the hyper-code concepts into concrete HCSs in particular

languages. Two issues may be of interest:
– the way that the features of particular languages affect the mapping of

those languages to hyper-code.
– the essential and desirable features of a language for which hyper-code is

being implemented.

9.5.1 Choosing the Particular HCR
The HCR is defined to have the hyper-programming form. Although the particular
HCR form chosen fulfils the criteria introduced earlier in section 4.1, it does not
deal adequately with displaying cyclic data structures, which means that the HCR
does not explicitly show cyclic data structures.
For this problem, a possible solution would be to alter the default behaviour of the
explode operation. When exploding a hyper-link that represents an entity that is
part of a cycle, explode would draw an arrow starting from the hyper-link to be
exploded and pointing to an already exploded hyper-link representing that entity.
This is shown in Figure 84 where Hyper-Link 3 represents the same entity as
Hyper-Link 1. When exploding Hyper-Link 3, an arrow indicates that the
requested detailed representation is already included in Hyper-Link 1. The arrow
also denotes the cyclic data structure.

Hyper-Code Assistant

Hyper-Link 1

Hyper-Link 2

Hyper-Link 3

Figure 84: Denoting cyclic data structures

 89

9.5.2 Choosing the Particular Set of HCOs
The set of concrete HCOs described, that is explode, implode, evaluate, edit and
get root, is just one example of the many possible sets that could support the
required programming activities. It does appear to be simple and minimal, at least
in comparison with some of the earlier operation sets from which it evolved during
this work. For example, in one version there was a distinction between inspection
of an entity, which generated a read-only representation, and modification, in
which a representation could be edited and then reflected into a new entity that
would replace the original. This scheme turned out to be unnecessarily complex
and was too closely coupled with issues of mutability in a particular language.
In a later version separate operations for expanding a hyper-link in place and for
expanding it to give a new hyper-code fragment were defined. This was
unnecessary given the ability to copy the hyper-code within an exploded link, so
the two operations were replaced by the single explode.
It is not clear whether this operation set is suitable for all languages (without the
get root operation for non-persistent languages); it appears to be suitable for
PJama and for ProcessBase.

9.5.3 Mapping Hyper-Code Into Particular Languages
Several general conclusions can be drawn from the experience of designing and
implementing particular HCSs in ProcessBase and PJama, as described in chapters
4, 5, 6 and 7. These conclusions are related to the following:
• The entities that can be hyper-linked.
• The way that a language affects the form of the representation of entities.
• The way that a particular language protects data and how this affects the

HCOs.
• Whether the language supports mutable locations and how this affects HCOs.
• Whether the system supports third-party executable code without source code.
• Whether the language provides persistence and referential integrity.
• Whether a HCS preserves compatibility with a language and its components.

9.5.3.1 Hyper-Linking
One of the decisions in designing a HCS for a particular language is related to
which language entities can be represented by a single hyper-link. The simplest
choice is to allow hyper-linking of all the language constructs. However, not all
constructs can be hyper-linked in practice. For example, in a HCS for PJama,
constructs that are not hyper-linked are locations, methods and constructors. In a
HCS for ProcessBase, constructs that are not hyper-linked are interrupt and op-
code types.
In Java, fields, array elements and local variables are all locations. Location
expressions are dereferenced implicitly and can be considered either as L or R
values depending on the context. Allowing hyper-linking to L values is

 90

problematic since there is no self-contained representation for them. Therefore, for
the particular implementation, hyper-linking is not supported for L values.
Java methods and constructors are not first class values, as they are not assignable
and cannot be passed as parameters. They are not self-contained, as they can only
be defined within a class. Consequently, no full self-contained HCR can be
generated when a hyper-link is exploded. Therefore, for the particular
implementation, hyper-linking of methods and constructors is not supported.
ProcessBase interrupt and op-code types cannot be hyper-linked since there is no
valid syntax in the language for them.
Based on these observations related to which language constructs cannot be hyper-
linked, the following guidelines are used to specify the constructs that can be
hyper-linked:
• The language constructs must be self-contained, which means that they must

be consistent when defined in isolation.
• There is a valid syntax in the language for them.

9.5.3.2 Generating Detailed HCRs for Entities
Explode is defined to present the programmer with a detailed representation of the
hyper-linked entity. When exploding a hyper-link to an entity, this representation
is sufficient to create a new entity, if evaluated separately.
The exploded HCR captures the entity’s current state and not the way it was
created. This may be a problem as the HCR, when evaluated separately, may cause
undesirable side-effects or may not cause desirable side-effects. There is no way
for the system to predict which case is suitable as this depends on the context of
the particular application.
In Java, for example, the HCR resulting from explode contains an invocation of an
object constructor, which creates a new instance, if evaluated separately, possibly
causing side-effects. Depending on the application, these side-effects may or may
not be desirable. Thus, no conclusion can be drawn related to whether the resulting
HCR is suitable or not, as this is application dependant.
However, a desirable language feature for the explode operation is to provide
single expression constructs for creating new entities. For example, ProcessBase
provides such convenient constructs to create new views and vectors, that is the
closest analogues to objects. The generated HCR resulting from exploding in this
case contains a single view or a vector expression, which initialises all the fields,
as explained earlier in section 5.3.1.
In PJama, objects are created using one of the constructors included in a class. In
order to generate a representation for an object, the system simulates the
ProcessBase approach; a class containing a method, which invokes a constructor
and initialises all the fields, is generated. The system makes an arbitrary choice for
selecting a constructor, and that is selecting the default constructor. The desirable
representation is an expression that invokes the generated method. This approach
is necessary since there is no single expression to achieve these tasks.

 91

9.5.3.3 Information Hiding
The explode operation relies on the system’s ability to introspect over entities and
is required since explode should be able to discover the internal structure of the
entity, in order to generate an HCR. However, exploding entities that hide
information is problematic, as the system does not have access to this information
in order to generate HCRs. Consequently, the programmer is presented with less
information than an HCR that fulfils the requirements described in section 4.1.
Different languages provide different approaches to the way that data is hidden
from general access. Nevertheless, in some cases this data can be revealed.
Consequently a HCS can produce a full HCR. This precludes real information
hiding, as the programmer is presented with information that is meant to be
hidden.
Java, for example, supports information hiding by encapsulation. This is specified
by the protected and private modifiers, which restrict access to them outside the
package or class they are used respectively. Data is encapsulated in a class or an
object and may only be accessed through the corresponding methods, which means
that private or protected members cannot be accessed directly. Therefore when the
system attempts to generate an HCR for an entity, only public members can be
accessed, resulting in a representation that is not complete.
Class java.lang.reflect.AccessibleObject provides a solution to accessing hidden
fields. This class allows changing the accessibility permissions of private or
protected fields and consequently allows this information to be presented to the
programmer. In this case, a HCS uses this class when exploding a hyper-link
representing an object.
A restriction that cannot be bypassed is that explode cannot be performed over
hyper-links that represent instances of a non-public class. In this case, the HCS in
PJama attempts to refer to this class in the body of the corresponding generated
method that creates a new object and initialises all the fields. This attempt fails as
the class is not public, which means that it cannot be accessed outside the package
it is defined.
In ProcessBase the only information hiding mechanism is the procedure closure, in
which the access path to data used by the procedure may be hidden from general
access. The way to bypass this is to hyper-link this data and reveal it when the
procedure closure is exploded. In order to achieve that, the system changes textual
representations of identifiers into hyper-links during evaluation and records them
on closure formation.

9.5.3.4 Mutable Locations
The issue here is that in some languages, such as Java, an identifier may denote
either a location or the current value of that location, depending on its context. As
explained earlier in section 9.5.3.1, L values are not hyper-linked in that case. This
affects operation evaluate, where a special class of identifier link is required,
which behaves differently from all others in that the linked value changes during
evaluation on each update.

 92

Another problem in the HCS in PJama is that during evaluation, the programmer
may copy a link to the location of a variable on the stack, which represents its
current value, and paste it in another window. The semantics of this after exiting
the scope of the variable are not clear. The pragmatic, but unsatisfactory solution
for the HCS in PJama is that copying the link gives only the corresponding textual
identifier.
Both of these problems are avoided if mutable locations are first class, as in
ProcessBase, which provides an explicit location constructor. This simplifies
matters — in the first example, the value bound to a link now never changes,
although if the value is a location its contents may. In the second example, the
location automatically persists beyond the method invocation, and so the link
continues to denote the same location wherever it is pasted.

9.5.3.5 Openness
The hyper-code scheme relies on source code being either recorded or generated as
required for all entities, so that the explode operation can show details. This is
feasible in a self-contained persistent system, in which all entities are originally
derived from the evaluation of source code.
However, it does not work in an open system that has to deal with third-party code
for which source is not available. As an example, this is true for much of the
standard Java class libraries, as well as for most commercial Java software.
An example of the problems that this may cause is when exploding a hyper-link to
a standard Java class. Since there is no source code to generate an HCR, the
system provides merely the name of the class as the HCR. Such a representation
complies with all the requirements related to HCRs, but it is not as informative as
desired.
Another solution would be to generate approximations to the source code, using
reflection facilities. For example, when exploding a hyper-link to a class, the
resulting HCR would contain the fields and only the declaration of constructors
and methods without including source for their bodies. This approach results in a
more informative HCR than the previous solution but still does not accurately
denote the represented entity.

9.5.3.6 Persistence and Referential Integrity
The issue here is that in a persistent HCS, HCRs can be stored together with other
values in the persistent store, without requiring an explicit save operation from the
programmer. This means that when exploding a hyper-link representing a
procedure closure or a class, there is always a corresponding HCR, which can be
retrieved from the persistent store and presented to the programmer.
At the implementation level, persistence with referential integrity is a desirable
feature for a system when transforming hyper-links into textual representations. In
this, a textual specification of the path of the hyper-linked entity replaces the
original hyper-link. This transformation is required if the compiler only accepts
purely textual specifications.

 93

Such a transformation is required for the particular implementation of a HCS, as
explained in section 7.2.3. In this, the path that replaces the original hyper-link
denotes an entity which is referenced through a vector of references to objects.

9.5.3.7 Compatibility
An implementation decision for the particular HCSs described in the thesis is to
build the system on top of existing tools. The particular implementation of a HCS
in PJama uses the Java language, the standard JVM and the standard reflection
mechanisms. The motivation for this is compatibility with future releases of Java
running on any platform.
This decision affects several hyper-code operations, such as explode and evaluate.
An example is the use of reflection facilities provided by standard Java libraries.
Package java.lang.Reflect provides good support for introspection over class
structure. It does not, however, provide introspection over method code, even at
the byte level, or dynamic access to the compiler. The current implementation
provides dynamic compilation, but it would be simpler if it was supported directly.
Another issue is that current Java compilers, including the one provided by the
current implementation, work only at the granularity of complete textual class
definitions. This requires the system to transform a HCR from its hyper-
programming form into textual form. In addition there is a considerable overhead
involved in processing small expressions since they must also been wrapped up
into complete classes.

9.5.4 Essential and Desirable Features for Hyper-Code
The following mechanisms are essential for hyper-code:
• Structural reflection over types: a HCS must be able to introspect over

entities in order to produce an HCR when required. For the particular set of
operations introduced in this thesis, this is required by explode and get root.

• Dynamic compilation facilities: a HCS must be able to dynamically compile
representations in order to produce their corresponding entities. For the
particular set of operations introduced in this thesis, this is required by
evaluate.

• Graphical user interface: a HCS must be able to provide the environment
through which programmers compose HCRs. For the particular set of
operations introduced in this thesis, this is required by edit.

Sections 9.5.3.1 — 9.5.3.7 described several desirable language features for hyper-
code, without which the mapping onto languages is unsatisfactory. The thesis
demonstrates that it is possible to implement hyper-code in a language that does
not provide all these features, such as PJama. However, it is believed that it would
be cleaner and simpler to implement hyper-code in languages that do provide most
of these features, such as ProcessBase.
The desirable language features are beneficial when designing a HCS. Some affect
the simplicity and elegance of the resulting system, while others impact on the
ease of implementation. Summarising the above, these features are:

 94

• all the values being first class, and types with syntax in the language.
• single expressions to create new entities.
• direct access to programs and data without any restrictions—no information

hiding.
• first class locations.
• control over source of executable code.
• persistence and referential integrity.
• structural reflection over code and compiler accepting HCRs.

9.6 Further Research Work
Further research work may include:
• Investigation of alternative hyper-code operations: the set of operations

described here was designed to fulfil certain criteria, but it is likely that other
completely different operations could also fulfil them.

• Investigation of alternative hyper-code representation: the HCR described
here was designed to fulfil certain criteria, but it is likely that other completely
different HCRs could also fulfil them.

• Provision of HCR transformation at the user level to/from other formats,
such as HTML and XML.

• Investigation of byte code transformation as opposed to pre-compile time
transformation: the hyper-code system inserts additional fragments of code
just before compilation in order to perform variable tracking and breakpoint
manipulation. An alternative technique would be to perform byte code
transformation at class loading time [MZB+00], [Chi00]. This would probably
give considerably better performance for the evaluate operation, at the cost of
greater complexity.

• Mapping hyper-code to the ProcessBase language: the design of a HCS in
ProcessBase indicated that mapping hyper-code to ProcessBase is possible. It
is intended to provided such an implementation as part of current research into
compliant architectures [MB00], [MBG+00].

9.7 Final Thoughts
A HCS provides a good, convenient and non ad-hoc solution to the problem of
developing software, but it is not a panacea for every problem. It is just a better
view of the reality.

 95

My fellow Athenian,
I wish I knew about hyper-code
when I talked about reality.

 96

10 Appendix

10.1 Index of Tables

Table 1: Essential concepts and accidents at each level of programming................3
Table 2: Comparison of features provided in various systems...............................24
Table 3: Comparing various programming environments......................................25
Table 4: Appearance of representations of ProcessBase entities............................42
Table 5: Definition equivalence over ProcessBase entities in E42
Table 6: Exploding hyper-links to ProcessBase values and identifiers44
Table 7: Exploding hyper-links to ProcessBase types..45
Table 8: Evaluating ProcessBase HCRs...48
Table 9: Appearance of representations of PJama entities52
Table 10: Definition of the ≡≡≡≡en equivalence over PJama entities in E....................52
Table 11: Exploding hyper-links to variables and objects......................................53
Table 12: Exploding hyper-links to types...54
Table 13: Evaluating PJama HCRs...56
Table 14: Use of StorageFormHL fields for each category of entity64

 97

10.2 Index of Figures

Figure 1: Programming at different levels of abstraction...2
Figure 2: The traditional programming life cycle...6
Figure 3: Traditional access to long-lived data...7
Figure 4: Systems that attack accidents of the traditional software life-cycle8
Figure 5: A snapshot of editing Java programs in Emacs ..9
Figure 6: A snapshot of an example project ...10
Figure 7: A snapshot of editing and browsing in CodeWarrior Java10
Figure 8: Composing an application in Visual Basic ...11
Figure 9: A snapshot of a Smalltalk browser window displaying a class13
Figure 10: Evaluating expressions in Dolphin Smalltalk14
Figure 11: Browsing tools in the Trellis programming environment15
Figure 12: An IPSE architecture...16
Figure 13: Accessing data in an orthogonal persistent system...............................19
Figure 14: First class executable code ..20
Figure 15: Hyper-programming in Napier88..22
Figure 16: Hyper-Programming in PJama..22
Figure 17: Accessing source and executable code in HP systems..........................23
Figure 18: The unification chain towards a hyper-code system.............................24
Figure 19: Sets in the entities domain...26
Figure 20: Sets in the representation domain ...27
Figure 21: Domains and domain operations...27
Figure 22: Categorisation of HCSs...29
Figure 23: Accessing data in a hyper-code system...33
Figure 24: An example HCA window containing an HCR35
Figure 25: The HCR of Figure 24 after imploding its hyper-links.........................36
Figure 26: Snapshots of the evaluation process..37
Figure 27: The persistent roots HCA window..38
Figure 28: Searching in a HCS ...40
Figure 29: A ProcessBase HCR that produces an error..46
Figure 30: Snapshots of evaluating a ProcessBase HCR..46
Figure 31: An example of an identifier that escapes its scope47
Figure 32: An HCR representing a closure...47
Figure 33: The persistent roots HCA window..48
Figure 34: Composing a ProcessBase HCR ...48
Figure 35: Updating a ProcessBase location ..49
Figure 36: Customising a particular hyper-link..49
Figure 37: Customising hyper-links representing values of the specified type......50
Figure 38: The definition of class Person and its superclass..................................53
Figure 39: A PJama HCR that produces an error ...55
Figure 40: Snapshots of evaluating a PJama HCR ...56
Figure 41: The persistent roots and classes HCA windows57

 98

Figure 42: Composing a PJama HCR...57
Figure 43: Customising a particular hyper-link..58
Figure 44: Customising hyper-links to instances of the specified class58
Figure 45: An example HCR in PJama...59
Figure 46: The definition of class Person...59
Figure 47: Transforming between the three HCR forms ..60
Figure 48: The evaluation algorithm ..61
Figure 49: Transforming storage form into textual form..61
Figure 50: An instance of the storage form ..62
Figure 51: The definition of class StorageForm...62
Figure 52: The definition of class StorageFormHL ...63
Figure 53: The definition of interface EntityRepresentation63
Figure 54: Transforming the example HCR into a class definition........................64
Figure 55: Transforming a non-void HCR ...65
Figure 56: Transforming an HCR representing a primitive value..........................65
Figure 57: Accessing a hyper-linked entity in the persistent store65
Figure 58: Transforming the example HCR into its textual form67
Figure 59: The definition of class HyperCodeThread ..69
Figure 60: The definition of class Variable ..69
Figure 61: The result of transforming the example HCR.......................................71
Figure 62: An example class definition ..71
Figure 63: Transforming the example class definition of Figure 6272
Figure 64: The definition of class DynamicCompiler ..72
Figure 65: Initialising and starting a thread..73
Figure 66: Code in the body of the run method..73
Figure 67: Starting a thread for executing the evaluateVoid method74
Figure 68: Invoking method evaluateVoid inside method run74
Figure 69: The layers implementing the HCA ...76
Figure 70: The editing form data structure ...77
Figure 71: The definition of class BasicEditor...77
Figure 72: The definition of class WindowEditor...78
Figure 73: The definition of class StyleRun..78
Figure 74: The definition of class HyperLink ...79
Figure 75: The definition of class UserEditor ..80
Figure 76: The definition of the interface CustomDisplay80
Figure 77: An example customising class ..81
Figure 78: Code to generate an HCR for an array type ..82
Figure 79: Code to generate an HCR for a class or interface82
Figure 80: The definition of a generated class for an array....................................83
Figure 81: HCR representing an array..83
Figure 82: The definition of a generated class for an object84
Figure 83: HCR representing a non-array object..85
Figure 84: Denoting cyclic data structures ...88

 99

11 References
[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. &

Morrison, R. “An Approach to Persistent Programming”. Computer
Journal 26, 4 (1983) pp 360-365.

 [ADJ+96] Atkinson, M.P., Daynès, L., Jordan, M.J., Printezis, T. & Spence, S.
“An Orthogonally Persistent Java™”. ACM SIGMOD Record 25, 4
(1996) pp 68-75.

[AJ96] Atkinson, M.P. & Jordan, M.J. (eds) Persistence and Java. Sun
Microsystems SMLI-TR-96-58 (1996).

[AJD+96] Atkinson, M.P., Jordan, M.J., Daynès, L. & Spence, S. “Design
Issues for Persistent Java: a Type-Safe, Object-Oriented,
Orthogonally Persistent System”. In Proc. 7th International
Workshop on Persistent Object Systems, Cape May, NJ, USA,
Connor, R.C.H. & Nettles, S. (eds) (1996) pp 33-47.

[AM85] Atkinson, M.P. & Morrison, R. “Procedures as Persistent Data
Objects”. ACM Transactions on Programming Languages and
Systems 7, 4 (1985) pp 539-559.

 [AM95] Atkinson, M.P. & Morrison, R. “Orthogonally Persistent Object
Systems”. VLDB Journal 4, 3 (1995) pp 319-401.

 [And99] Andersen, V. “dBase IV 2.0 Programmer's Reference”, ISBN
1583483969 (1999).

[App86] Apple Computer Inc. “Inside Macintosh”. Addison-Wesley,
Reading, Massachusetts (1986).

[Bac86] Bach, M.J. “The Design of the UNIX Operating System”. Prentice-
Hall, Englewood Cliffs, New Jersey (1986).

[BOP+89] Bretl, B., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J.,
Williams, E.H. & Williams, M. “The GemStone Data Management
System”. In Object-Oriented Concepts, Databases and
Applications, Kim, W. & Lochovsky, F. (eds), ACM Press and
Addison Wesley (1989) pp 283-308.

[Bor89] Borland International “Turbo Pascal”. Borland International, Scotts
Valley, California (1989).

[Bot89] Bott, M.F. (ed) ECLIPSE: An Integrated Project Support
Environment. Peter Peregrinus (1989).

[Bro86] Brooks, F.P. “No Silver Bullet – Essence and Accidents of Software
Engineering”. In Proc. Information Processing 86 (1986) p 1069.

[CB98] Connolly, T.M. & Begg, C.E. “Database Systems” (2nd Edition).
Addison-Wesley, Harlow, UK, ISBN 0-201-34287-1 (1998).

 100

[CCK+94c] Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Moore, V.S. & Morrison,
R. “Unifying Interaction with Persistent Data and Program”. In
Interfaces to Database Systems, Sawyer, P. (ed), Springer-Verlag,
Proc. 2nd International Workshop on User Interfaces to Databases,
Ambleside, Cumbria, 1994, In Series: Workshops in Computing, van
Rijsbergen, C.J. (series ed) (1994) pp 197-212.

 [Chi00] Chiba, S. “Load-Time Structural Reflection in Java”. To Appear:
ECOOP 2000 (2000).

[Coo90] Cooper, R.L. “On The Utilisation of Persistent Programming
Environments”. PhD Thesis, University of Glasgow (1990).

[Dat93] Date, C.J. & Darmen, H. “A guide to the SQL” (3rd Edition).
Addison- Wesley (1993).

[Dav92] Davie, A. “A Introduction to Functional Programming Systems
using Haskell”. Cambridge University Press, ISBN 0 521 27724 8
(1992).

[DB88] Dearle, A. & Brown, A.L. “Safe Browsing in a Strongly Typed
Persistent Environment”. Computer Journal 31, 6 (1988) pp 540-544.

 [Dow98] Dowling, N. “Database Design & Management”. Ashford Colour
Press (1998).

[GJS96] Gosling, J., Joy, B. & Steele, G. “The Java™ Language
Specification”. Addison-Wesley, ISBN 0-201-63451-1 (1996).

[Gli97] Glickstein, B. “Writing GNU Emacs Extensions” (First Edition).
O'Reilly & Associates Inc, ISBN 1-56592-261-1 (1997).

[GR83] Goldberg, A. & Robson, D. “Smalltalk-80: The Language and its
Implementation”. Addison Wesley, Reading, Massachusetts (1983).

[HM76] Henderson, P. & Morris, J. “A Lazy Evaluator”. In Proc. 3rd ACM
Symposium on principles of Programming Languages (1976).

[Int99] Intuitive Systems “Dolphin Smalltalk”. (1999)
[KCC+92] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M.

& Morrison, R. “Persistent Hyper-Programs”. In Persistent Object
Systems, Albano, A. & Morrison, R. (eds), Springer-Verlag, Proc.
5th International Workshop on Persistent Object Systems (POS5),
San Miniato, Italy, In Series: Workshops in Computing, van
Rijsbergen, C.J. (series ed), ISBN 3-540-19800-8 (1992) pp 86-106.

 [KCC+93] Kirby, G.N.C., Cutts, Q.I., Connor, R.C.H. & Morrison, R. “The
Implementation of a Hyper-Programming System”. University of St
Andrews Technical Report CS/93/5 (1993).

 [Kir92] Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems”. PhD Thesis, University of St Andrews.
Technical Report CS/93/3 (1992).

 [KM97] Kirby, G.N.C. & Morrison, R. “OCB Object Class Browser”.
University of St Andrews (1997).

 101

URL: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/OCB/
[KMS98] Kirby, G.N.C., Morrison, R. & Stemple, D.W. “Linguistic Reflection

in Java”. Software - Practice & Experience 28, 10 (1998) pp 1045-
1077.

 [KR78] Kernighan, B.W. & Ritchie, D.M. “The C Programming
Language”. Prentice-Hall, New Jersey (1978).

[Lu91] Luce, T. “Computer Hardware, System Software, and Architecture”.
Mitchell Publishing Inc (1991).

[MB00] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby,
G.N.C., Mayes, K., Munro, D.S. & Warboys, B.C. “A Compliant
Persistent Architecture”. Software - Practice and Experience, Special
Issue on Persistent Object Systems 30, 4 (2000) pp 363-386.

 [MBC+96b] Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A.,
Kirby, G.N.C. & Munro, D.S. “Napier88 Release 2.2.1”. University
of St Andrews (1996).

[MBG+00] Morrison, R., Balasubramaniam, D., Greenwood, R.M., Kirby,
G.N.C., Mayes, K., Munro, D.S. & Warboys, B. “An Approach to
Compliance in Software Architectures”. To Appear: IEE Informatics
1, Sommerville, I. (ed) (2000).

[MBG+99b] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C.,
Mayes, K., Munro, D.S. & Warboys, B.C. “ProcessBase Reference
Manual (Version 1.0.6)”. Universities of St Andrews and Manchester
(1999).

 [MBG+99d] Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G.N.C.,
Mayes, K., Munro, D.S. & Warboys, B.C. “ProcessBase Standard
Library Reference Manual (Version 1.0.4)”. Universities of St
Andrews and Manchester (1999).

 [MCC+95] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby,
G.N.C. “Exploiting Persistent Linkage in Software Engineering
Environments”. Computer Journal 38, 1 (1995) pp 1-16.

 [MCD+99] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.,
Kirby, G.N.C., McGettrick, R. & Zirintsis, E. “Current Directions in
Hyper-Programming”. In Lecture Notes in Computer Science 1755,
Bjorner, D., Broy, M. & Zamulin, A. (eds), Springer-Verlag, Proc.
3rd International Andrei Ershov Memorial Conference on
Perspectives of System Informatics (PSI), Novosibirsk, Russia, ISBN
3-549-67102-1 (1999) pp 316-340.

 [MCK+96] Morrison, R., Connor, R.C.H., Kirby, G.N.C. & Munro, D.S. “Can
Java Persist?”. In Proc. 1st International Workshop on Persistence for
Java (PJW1), Drymen, Scotland (1996), Technical Report Sun
Microsystems Laboratories SMLI TR-96-58.

 102

 [MCK+99] Morrison, R., Connor, R.C.H., Kirby, G.N.C., Munro, D.S.,
Atkinson, M.P., Cutts, Q.I., Brown, A.L. & Dearle, A. “The Napier88
Persistent Programming Language and Environment”. In Fully
Integrated Data Environments, Atkinson, M.P. & Welland, R.
(eds), Springer, In Series: Esprit Basic Research Series, ISBN 3-540-
65772-X (1999) pp 98-154.

[Met99] Metrowerks Inc “CodeWarrior”. (1999) URL:
http://www.metrowerks.com/

[Mic94] Microsoft Corporation “Microsoft Access: User's Guide”. (1994).
[Mic96] Microsoft “Microsoft Visual Basic”. (1996) URL:

http://www.microsoft.com
[Mic97] Microsoft, C. “Microsoft Visual Basic Online”. (1997).
[Mic98] Microsoft Corporation “Microsoft® Visual Basic® 6.0

Programmer's Guide”. Microsoft Press, ISBN 1-57231-863-5
(1998).

[Mic98+] Microsoft “Microsoft® Windows 98”. (1998) URL:
http://www.microsoft.com

[Mor79] Morrison, R. “On the Development of Algol”. PhD Thesis,
University of St Andrews (1979).

 [MS87] Morrison, R. & Sommerville, I. “Software Development with Ada”.
Addison-Wesley Publishers Ltd, ISBN 0-201-14227-9 (1987).

[MZB+00] Marquez, A., Zigman, J.N. & Blackburn, S.M. “Fast Portable
Orthogonally Persistent Java”. Software - Practice and Experience,
Special Issue on Persistent Object Systems 30, 4 (2000) pp 449-479.

[NA99] Naughton, P. & Schildt, H. “Java 2 - The Complete Reference”
(3rd Edition). Brandon A. Nordin (1999).

[Nai93] Naiman, A., Dunn, E., MacAllister, S. & Kadyk, J. “The Macintosh
Bible”. Peachpit Press (1993).

[OHK87] O’Brien, P.D., Halbert, D.C. & Kilian, M.F. “The Trellis
Programming Environment”. ACM SIGPLAN Notices 22, 12. Proc.
International Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA'87), Orlando, Florida (1987)
pp 91-102.

[Ros28] Ross, W.D. “The Works of Aristotle Translated in English”.
Oxford University Press (1928).

[Set96] Sethi, R. “Programming Languages”. Addison-Wesley Publishing
Company (1996).

[Sno89] Snowdon, R.A. “An Introduction to the IPSE 2.5 Project”. ICL
Technical Journal 6, 3 (1989) pp 467-478.

[ST86] Sommerville, I. & Thomson, R. “The ECLIPSE System Structure
Language”. In Proc. 19th International Conference on System
Sciences, Hawaii (1986).

 103

[Sta97] Stallman, R. “GNU Emacs Manual” (13 Edition). Free Software
Foundation (1997).

[SWP89] Sommerville, I., Welland, R., Potter, S. & Smart, J. “The ECLIPSE
User Interface”. Software—Practice and Experience 19, 4 (1989) p
371.

[Tan87] Tanenbaum, A.S. “Operating Systems: Design and
Implementation”. Prentice Hall (1987).

[Tsi77] Tsichritzis, D. & Lochovsky, F. “Data Base Management Systems”.
Academic Press Inc (1977).

[TT99] Thompson, T. & Trudeau, J. “CodeWarrior's Architectural
Advantage”. Metrowerks, Inc (1999).

[Ull80] Ullman, J. “Principles of database Systems”. Computer Science
Press Inc (1980).

[War89] Warboys, B. “The IPSE 2.5 Project: Process Modelling as the Basis
for a Support Environment”. In Proc. 1st International Conference on
System Development Environments and Factories, Berlin, Germany
(1989).

[War95] Warhol, M. “The art of programming with VISUAL BASIC” (Tim
Ryan Edition). John Wiley (1995).

[Wir71] Wirth, N. “The Programming Language Pascal”. Acta Informatica 1
(1971) pp 35-63.

[You84] Young, S.J. “An Introduction to ADA” (2 Edition). Ellis Horwood
(1984).

[ZDK+99] Zirintsis, E., Dunstan, V.S., Kirby, G.N.C. & Morrison, R. “Hyper-
Programming in Java”. In Advances in Persistent Object Systems,
Morrison, R., Jordan, M. & Atkinson, M.P. (eds), Morgan Kaufmann,
Proc. 8th International Workshop on Persistent Object Systems
(POS8) and 3rd International Workshop on Persistence and Java
(PJW3), Tiburon, California, 1998, ISBN 1-55860-585-1 (1999) pp
370-382.

 [ZKM00] Zirintsis, E., Kirby, G.N.C. & Morrison, R. “Hyper-Code Revisited:
Unifying Program Source, Executable and Data”. (In Preparation
2000).

[ZKM98] Zirintsis, E., Kirby, G.N.C. & Morrison, R. “Java Hyper-Program
System”. University of St Andrews (1998).
URL: http://www-ppg.dcs.st-and.ac.uk/Languages/Java/HPS/

[ZKM99] Zirintsis, E., Kirby, G.N.C. & Morrison, R. “Demonstration of
Hyper-Programming in Java”. In Proc. 25th International Conference
on Very Large Databases (VLDB'99), Edinburgh, Scotland,
Atkinson, M.P., Orlowska, M.E., Valduriez, P., Zdonik, S. & Brodie,
M. (eds) (1999) pp 734-737. o

