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ABSTRACT 
Middleware technologies often limit the way in which 
object classes may be used in distributed applications due 
to the fixed distribution policies that they impose. These 
policies permeate applications developed using existing 
middleware systems and force an unnatural encoding of 
application level semantics. For example, the application 
programmer has no direct control over inter-address-
space parameter passing semantics. Semantics are fixed 
by the distribution topology of the application, which is 
dictated early in the design cycle. This creates 
applications that are brittle with respect to changes in 
distribution. 
This paper explores technology that provides control over 
the extent to which inter-address-space communication is 
exposed to programmers, in order to aid the creation, 
maintenance and evolution of distributed applications. 
The described system permits arbitrary objects in an 
application to be dynamically exposed for remote access, 
allowing applications to be written without concern for 
distribution. Programmers can conceal or expose the 
distributed nature of applications as required, permitting 
object placement and distribution boundaries to be 
decided late in the design cycle and even dynamically. 
Inter-address-space parameter passing semantics may 
also be decided independently of object implementation 
and at varying times in the design cycle, again possibly 
as late as run-time. Furthermore, transmission policy may 
be defined on a per-class, per-method or per-parameter 
basis, maximizing plasticity. This flexibility is of utility 
in the development of new distributed applications, and 
the creation of management and monitoring 
infrastructures for existing applications. 
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1. INTRODUCTION 
Existing middleware systems suffer from several 
limitations which restrict the kinds of application that can 
be created using them and hamper their flexibility with 
respect to distribution and adaptability. In this paper we 
focus on four of these limitations, namely,  
1. They force decisions to be made early in the design 

process about which classes of object may 
participate in inter-address-space communication. 

2. They are brittle with respect to changes in the way in 
which the applications are distributed. 

3. It is difficult to understand and maintain distributed 
applications since the use of middleware systems 
may force an unnatural encoding of application level 
semantics. 

4. It is difficult to control the policy used to determine 
how objects are transmitted among the available 
address-spaces in a distributed application. 

Early Design Decisions – Existing middleware systems 
all require the programmer to decide at application design 
time which classes will support remote access and to 
follow similar steps in order to create the remotely 
accessible classes. The programmer must decide the 
interfaces between distribution boundaries statically then 
determine which classes will implement these interfaces 
and thus be remotely accessible. These classes, known as 
remote classes, are hard-coded at the source level to 
support remote accessibility and only instances of these 
classes can be accessed from another address-space. 
Therefore, the programmer must know how the 
application objects will be distributed at run-time before 
creating any classes. 
Some middleware systems require the manual creation of 
ancillary code such as skeletons, proxies and stub 
implementation classes, which must extend special 
classes, implement special interfaces or handle 
distribution related error conditions, based on 
programmer-defined interfaces. All require the creation 
of server applications that configure the middleware 
infrastructure then instantiate and register objects for 
remote access. 
Brittleness with Respect to Change - A distributed 
application created using an existing middleware system 
is brittle with respect to change because the distribution 
of the application must be known early in the design 
process. The possible partitions of a distributed 
application are dependent on which classes within the 
application support remote access, restricting the classes 
of object that can be referenced across address-space 
boundaries.  
Distorted Application Level Semantics - Existing 
middleware systems force remotely accessible classes to 
extend special classes, implement special interfaces or 
handle network related errors explicitly. It is not possible 
to make application classes remotely accessible unless 
their super-classes also meet the necessary requirements. 



At best, this forces an unnatural or inappropriate 
encoding of the application semantics because classes are 
forced to be remotely accessible for the benefit of their 
sub-classes and, at worst, application classes that extend 
library classes cannot be remotely accessible at all. 
Inflexible Parameter Passing Semantics - Existing 
middleware systems decide the parameter passing 
semantics applied during remote method call statically 
based on the remote accessibility of the application 
classes. The parameter passing semantics is tightly bound 
to the distribution of the application so changes to the 
distribution of an application have the side effect that 
application semantics may be altered. All objects of the 
same class must be transmitted in the same way, whether 
this is appropriate or not, and the programmer does not 
have the freedom to choose different parameter passing 
semantics for classes on a per-application or per-call 
basis. 

2. RELATED WORK 
The creation of remotely accessible objects using 
industry standard middleware systems such as Java RMI 
[1] and Microsoft .NET Remoting [2] requires the 
programmer to take the following steps: 

• The programmer is forced to decide statically the 
interfaces between distribution boundaries. 

• The programmer is forced to decide statically which 
classes of component will implement these interfaces 
and thus be remotely accessible. 

• These remotely accessible classes must extend a 
special base class that provides the functionality 
necessary for remote accessibility. This has two 
effects: to force the static identification of accessible 
classes, as above, and, in languages without multiple 
inheritance, to prevent the creation of accessible 
subclasses of existing non-accessible classes. 

• Once a remotely accessible class is instantiated, the 
instance is associated with a naming service that 
allows remote callers to obtain a remote reference to 
it. 

Only instances of classes that support remote access may 
be separated into different address-spaces from their 
reference holders, constraining the ways in which 
applications can be distributed. To change an 
application’s distribution, programmers may be forced to 
introduce support for distribution into classes without it. 
Conversely, programmers must determine whether the 
additional application complexity inherent in 
unnecessarily supporting remote access outweighs the 
cost of removing it in terms of programmer effort. 
Without the ability to expose objects to remote access 
dynamically, application distribution is inflexible. Yet, it 
is not possible to introduce support for remote access into 
every application class using existing systems because of 
the semantic restrictions placed on remote classes. For 
instance, application classes cannot pass remote 

references to instances of pre-defined library classes that 
do not support remote access.  
Thus, the requirement to follow the above steps leads to 
the problems of inflexibility exhibited by industry 
standard middleware systems with respect both to static 
design-level changes and to dynamic run-time changes in 
application partition. Programmers can attempt to 
overcome these problems by explicitly creating 
distributed objects that can access objects for which static 
type information was not available at compilation time. 
The tie approach and Dynamic Skeleton Interface (DSI) 
provided by CORBA [3] illustrate the manner in which 
this can be achieved. 
Using the CORBA DSI, specially constructed remotely 
accessible objects can extract operation names and any 
associated arguments from incoming remote method call 
requests, then perform the requisite calls. CORBA does 
not serialize objects in a self-describing manner and so 
programmers must write code to extract type information 
from the requests and deserialize the arguments. 
Consequently, it is possible to construct applications in 
which methods are invoked with inappropriate arguments 
[4]. This leads to unexpected application semantics and 
may cause run-time problems in strongly typed 
languages. 
CORBA DSI and similar ad-hoc approaches to increased 
flexibility can be adopted only at the cost of increased 
complexity. Programmers lose the abstraction over the 
inter-address-space communication afforded when using 
proxies and objects created from IDL. Middleware level 
functionality must be implemented at the application 
level, obviating the primary benefits that middleware 
systems offer. 
Several research-based systems have been developed in 
order to overcome the limitations of industry standard 
systems. However, these systems only partially tackle the 
limitations of industry standard systems. 

2.1.1 Early design decisions 
Some research based systems, such as JavaParty [5] and 
Do! [6], employ custom compilers to generate 
distribution-related code based on source code that has 
been annotated by the programmer. Consequently, 
programmers are still forced to make early design 
decisions. These systems simplify the process of creating 
distributed applications through automated code 
generation but it is the programmers that must determine 
which classes will support remote access. 
Tools such as J-Orchestra [7] and Pangaea [8] are 
designed to transform a single non-distributed application 
into an isomorphic version that distributes itself across 
the distributed system at run-time. These systems 
perform static code analysis to help programmers choose 
suitable distributions. The distributed version of an 
application is generated automatically and in this respect 
these systems allow separation of application logic from 
distribution. However, both transform only local 
applications and are unsuitable tools for the creation of 



general distributed applications since programmers 
cannot include multiple entry points. Programmers define 
initial application partitions using the provided tools and 
though both systems support changes to application 
distribution using migration, it is not possible to migrate 
arbitrary application objects. If fundamental changes are 
made to application distributions then the applications 
must be re-transformed, limiting the effectiveness of 
these systems in dynamically changing systems. 
ProActive [9] and JavaSymphony [10] allow 
programmers to expose objects to remote access 
dynamically. However, both adopt the active object [11] 
model which associates a thread with each remotely 
accessible application object. The conversion of existing 
application objects into active objects alters the threading 
semantics of the application. Further, active objects may 
not have shared access to any non-active objects. 
Programmers may need to alter the structure of the 
application to ensure that this strict separation of active 
object closures is preserved. 
The JBoss Enterprise Middleware System [12] provides 
AOP Remoting, which uses aspect-oriented programming 
techniques to instrument instances of existing classes for 
remote access. AOP Remoting allows the exposure of 
application objects to remote access as services using 
SOAP [13] or Java RMI. AOP Remoting places semantic 
restrictions on the classes of object that can be exposed. 
All classes must provide default constructors and all 
method arguments and return values must be 
Serializable. AOP Remoting adopts a service-oriented 
model, rather than a complete Distributed Object Model, 
in which methods of the underlying objects are provided 
to remote clients, providing the objects meet the above 
semantic requirements. 

2.1.2 Brittleness with respect to change 
In addition to forcing decisions early in the design 
process, which results in static inflexibility to change, 
distributed applications created using existing 
middleware systems also exhibit brittleness with respect 
to dynamic change. Brittleness and inflexibility to change 
occurs in middleware systems that do not allow dynamic 
re-partitioning of applications, hindering the adaptability 
of those applications to changing execution 
environments. For example, objects on heavily loaded 
machines cannot migrate to other machines. It also has 
implications for long running systems as applications 
cannot be re-distributed as machines join and leave the 
distributed system. Several of the research based systems 
support object mobility, including JavaParty [5], J-
Orchestra [7], ProActive [9], JavaSymphony [14] and 
Pangaea [8].  

2.1.3 Distorted application level semantics 
Application semantics are affected by the restrictions 
placed on application classes that support distribution. 
Inheritance relationships between classes are affected and 
it is difficult to make application classes remotely 
accessible if their super-classes do not meet the necessary 
requirements. This causes an unnatural or inappropriate 

encoding of application semantics because classes are 
forced to support remote access for the benefit of their 
sub-classes, entangling application logic and distribution. 
This is particularly a problem for application classes that 
need to extend pre-compiled classes without support for 
remote access. 
Industry standard middleware systems decide statically 
which parameter passing semantics should be applied 
when remote methods are called. In Java RMI [15], only 
classes that implement the java.rmi.Remote interface and 
handle network related errors explicitly in application 
logic can be exposed to remote access or passed by-
reference. All other objects that are passed as arguments 
or return values to remote methods must be instances of 
classes that implement the Serializable interface. 
Parameter passing semantics are affected by static design 
level decisions and are tightly coupled with application 
distribution. 
Microsoft .NET remoting [16] adopts semantics that are 
similar to Java RMI. Instances of classes that extend the 
MarshalByRefObject class are passed by-reference and 
all other objects that are passed to remote methods must 
be instances of Serializable classes. The .NET remoting 
framework incrementally improves on Java RMI by 
applying these semantics consistently to objects. 
However, parameter passing semantics are still fixed 
statically and are dependent on the distribution of the 
application. 
In CORBA and COM, arguments are marked in IDL with 
the passing semantics to be applied. Further, CORBA 
component classes are defined statically as either pass-
by-reference or pass-by-value. CORBA and COM allow 
only components and data structures that have been 
explicitly described to be passed across address-space 
boundaries. 
The research-based middleware systems strive to 
preserve local Java method calling semantics and so fix 
parameter passing semantics statically. Consequently, 
programmers cannot employ the most advantageous 
parameter passing semantics for the circumstances of 
each application. Programmers cannot take control over 
application semantics, hindering the reuse of library 
classes in distributed contexts since the parameter 
passing semantics cannot be specified independently of 
class implementation.  
In general, reusability and application semantics are 
restricted for the following reasons: 
Some systems allow no programmer control over 
parameter passing semantics at all - These systems 
lack flexibility as programmers cannot employ the most 
suitable parameter passing mechanisms on a per-
application basis. With control over passing semantics, 
programmers can manage the trade-offs between 
different parameter passing mechanisms to reduce 
network traffic, introduce resiliency or permit caching. 
When programmers can decide parameter passing 
semantics, they cannot do so dynamically - Application 
programmers have limited dynamic control over inter-



address-space parameter passing semantics. Within a 
single application, it may be required that objects are 
transmitted by-value or by-reference depending on the 
circumstances; in most existing middleware systems this 
would require that different classes be created. 
Complexity is introduced into applications due to the 
limitations of the middleware system.  
The parameter passing semantics and application 
distribution are tightly bound - The parameter passing 
semantics and application distribution are tightly 
coupled. Reuse of large-grained components, composed 
of instances of multiple classes, is hindered because 
concrete class implementations must be developed in the 
context of some planned deployment environment. 
Various physical considerations dictate the nature of the 
implementation, such as the available computational 
resources, network connectivity, latency or bandwidth. 
These considerations influence the implementation of 
classes, limiting reuse [17]. For example, in a poorly 
connected environment, it may be appropriate that pass-
by-value semantics are adopted in order that the called 
methods can continue to perform computation over 
arguments, even if the network connection to the caller is 
lost transiently. Conversely, in a well-connected 
environment, it may be appropriate to adopt pass-by-
reference semantics to allow shared access to arguments 
and ensure coherency. 

3. THE RAFDA SYSTEM 
This paper introduces RAFDA [18, 19] a Java 
middleware system that provides control over the extent 
to which inter-address-space communication is exposed 
to programmers, in order to aid the creation, maintenance 
and evolution of distributed applications. The described 
technology adopts a plain old Java object (POJO) 
approach and permits arbitrary application objects to be 
exposed for remote access dynamically. Object instances 
are exposed as Web Services [20] through which remote 
method invocations may be made. RAFDA has four 
notable features that differentiate it from other 
middleware technologies. 
1. The programmer does not need to decide statically 

which application classes support remote access. 
Any object instance from any application, including 
compiled classes and library classes, can be exposed 
as a Web Service without the need to access or alter 
the application’s source code. 

2. The system integrates the notions of Web Services 
and Distributed Object Models by providing a 
remote reference scheme, synergistic with standard 
Web Services infrastructure, extending the pass-by-
value semantics provided by Web Services with 
pass-by-reference semantics. Specific object 
instances rather than classes are exposed as Web 
Services, further integrating the Web Service and 
Distributed Object Models. This contrasts with 
systems such as Apache Axis [21] in which only 
classes are exposed as Web Services. 

3. Parameter passing mechanisms are flexible and may 
be dynamically controlled through policies. An 
exposed component can be called using either pass-
by-reference or pass-by-value semantics on a per-
call basis. 

4. The system automatically exposes referenced objects 
on demand. Thus an object b that is returned by 
method m of exposed object a is automatically 
exposed before method m returns. 

The process of implementing the application logic is thus 
separated from the process of distributing the application. 
Since any object can be made remotely accessible, 
changes to distribution boundaries do not require re-
engineering of the application, making it easier to change 
the application’s distribution topology. This separation of 
concerns simplifies the software engineering process to 
the programmer’s advantage, both when creating a 
distributed application and introducing distribution into 
an existing application. This simplifies the creation of 
tools such as monitoring and management components 
that need to access and modify object state from outwith 
those objects’ local address space. Using traditional 
middleware systems, it is difficult to attach such tools to 
existing objects without access to source code and 
extensive engineering effort. 
This functionality is provided by the RAFDA Run-Time 
(RRT), a middleware system for Java development that 
tackles the problems inherent in existing middleware 
systems. The RRT simplifies the kinds of tasks that are 
common to the creation of distributed application such as 
dynamically exposing objects for remote access, 
obtaining remote references to remotely accessible 
objects, and remote method invocation.  
The RRT conceals the complexity of distribution where 
appropriate, allowing distribution to be introduced into 
applications quickly. This reduces the software 
engineering effort required to create distributed 
applications, leading to quick application prototyping. 
However, the RRT also permits programmers to expose 
aspects of application distribution as required, allowing 
the creation of applications that can exploit their 
distributed nature and are flexible with respect to change. 
The RRT has advantages over traditional middleware 
approaches as it adapts its behaviour to suit the 
requirements of a given distributed application, rather 
than forcing the programmer to adapt the application to 
the requirements of the middleware system. 
Applications access the functionality provided by the 
RAFDA system by calling methods on infrastructure 
objects called RRTs. There is an RRT in each address-
space in the distributed system, analogous to a CORBA 
ORB. Each RRT provides two interfaces to application 
programmers. The first, called IRafdaRunTime, provides 
server-side operations to application objects collocated 
with the RRT, allowing programmers to expose objects 
or access frameworks that control transmission policy 
and distribution policy. The second, called 
IRafdaRunTime-Remote, provides client-side 
functionality to application objects that are remote with 



respect to the RRT, allowing programmers to obtain 
remote references to existing objects or to perform object 
migration.  
Figure 1 shows the RRT instances present in two 
address-spaces. The large circles represent objects in the 
distributed application. Each RRT instance is represented 
by a shaded box with the IRafdaRunTime and 
IRafdaRunTimeRemote interfaces shown. Each RRT is 
accessible locally via the IRafdaRunTime interface and 
remotely via the IRafdaRunTimeRemote interface. 
In addition to the functionality examined in this paper, 
the RRT provides remote object instantiation, object 
migration and a distribution policy framework that is 
used to automate object placement. A complete 
description of the RRT and its implementation, including 
the features described in this paper, can be obtained in 
Walker [22]. Although the RRT is written in Java and is 
designed to support Java, it does not employ any 
language-specific features unique to Java. The techniques 
described here are applicable in other languages. 

Address Space 1 Address Space 2

RRTIRafdaRunTime

IRafdaRun-

TimeRemote

RRT IRafdaRunTime

IRafdaRun-

TimeRemote

 
Figure 1: RRT instances exposing different interfaces 

to local and remote objects. 

4. EXPOSING ARBITRARY OBJECTS 
FOR REMOTE ACCESS 
The RRT permits arbitrary application objects to be 
exposed for remote access. Specific application objects, 
rather than application classes, are exposed via Web 
Services. In order to make an object remotely accessible 
it is first registered with the RRT. Registration of an 
application object creates a Web Service running within 
the RRT that uses the exposed object as the underlying 
service object on which incoming Web Service requests 
are performed. In effect, the RRT maps Web Service 
requests to method calls on object instances and performs 
appropriate encoding of the results. Exposed objects may 
be referenced by other local objects; neither the reference 
holders nor the exposed objects are aware that 
registration has taken place. 
Each RRT implements the IRafdaRunTime interface 
shown in Figure 2. Only a subset of the functionality 
provided by this interface is shown. The omitted methods 
are used to control object migration and to automate 
object placement using programmer-defined policies. 

public interface IRafdaRunTime { 
  void expose(Object objectToExpose, 
    Class remoteType, String serviceName); 
  TransmissionPolicyManager 
    getTransmissionPolicyManager(); 
  void associateClassWithRemoteType( 
    Class applicationClass,  
    Class remoteType); 
  /* Other methods omitted */ 
} 

Figure 2: A subset of the IRafdaRunTime interface. 
This interface provides the expose() method, used to 
expose an object to remote access, the 
getTransmissionPolicy-Manager() method, used to 
control the transmission policy defining parameter 
passing semantics, and the 
associateClassWithRemoteType() method, used to control 
automatic exposure. The latter two methods are examined 
in Sections 6.1 and 7.4 respectively. 
The expose() method takes three parameters to specify 
the object to be exposed, a remote type (that is, the 
interface that the exposed object should provide to 
remote clients) and a logical name for accessing the 
object. A number of issues arise from this simple method. 
Firstly, the objectToExpose may be any ‘Plain Old Java 
Object’ (POJO), so need not implement any special 
interfaces or extend any particular classes, maximizing 
flexibility. Secondly, the objectToExpose need not 
implement the interface specified in the remote type 
parameter although it must be structurally compliant with 
that interface. This again maximizes flexibility and 
permits classes to be exposed to remote access even if 
they were not envisioned to be so at design time. The 
remote type parameter can be a class or an interface; in 
either case, the method signatures are extracted to form 
the Web Service interface for the exposed object. The 
remote type parameter is optional. If omitted, the object 
is exposed with an interface matching its concrete type.  
The remote type is the distributed equivalent of an 
interface in a non-distributed application class and is 
used to control method visibility. It is supplied on a per-
object, not a per-class, basis. Any method can be made 
remotely accessible, irrespective of its local protection 
modifier. By default, RAFDA will preserve local 
protection semantics in the distributed application when 
the RRT is used both client and server-side, but allows 
only public methods to be invoked when using standard 
Web Services technology in order to preserve code 
encapsulation. 
Remote types provide multiple views over exposed 
objects to remote clients. From the perspective of clients, 
exposed objects are instances of their associated remote 
types. Different instances of a single class can be 
exposed with different remote types and a single object 
can be exposed multiple times with different remote 
types. This allows the programmer to expose a single 
object with different logical names and different 
interfaces. Exposure can fail, resulting in a runtime 
exception, if the remote type contains methods that do 
not exist in the class of the object being exposed. 



The serviceName parameter permits the exposed object 
to be addressed using a logical name which must, of 
course, be unique within the local address space.  
An object of any class can be exposed, including 
precompiled classes and those with native members. 
There are two caveats. Firstly, the Web Services model 
provides no facility to allow field access, only method 
call. Thus the fields of an exposed object cannot be 
directly accessed and if the object does not provide get() 
and set() accessor methods then the fields cannot be 
accessed at all. This is a problem for all Java middleware 
systems since field access cannot be intercepted. 
Secondly, the current RRT implementation does not 
permit remote types to be final classes or to contain final 
methods. Exposure will fail if attempted using such a 
remote type. Note that no restrictions are placed on the 
classes of object that can be exposed, only on the remote 
types that may be applied to those objects. The RRT 
provides a class loader that can be used to change 
application classes and methods such that they are non-
final to overcome this limitation. However, the class 
loader cannot transform system classes dynamically, 
meaning that system classes that are final or contain final 
methods cannot be used as remote types.  
To illustrate the use of expose(), we use a small Peer-to-
Peer (P2P) application as an example. A programmer has 
implemented a class called P2PNode which represents a 
node in a P2P routing network. This class is shown in 
Figure 3. This class has not been written with concern for 
distribution and does not implement any special 
interfaces or extend any base classes. 
public class P2PNode { 
  private final Key key; 
  public P2PNode(Key key){…} 
  public void addPeer(P2PNode peer){…} 
  public void route(Key key, Message 
msg){…} 
  public String getLog(){…} 
  public void stop(){…} 
  public void start(){…} 
  public Key getKey(); 
} 

Figure 3: The P2PNode implementation. 
The programmer obtains a reference to the 
IRafdaRunTime interface provided by the local RRT 
using the static method RRT.get(). Figure 4 shows how 
another programmer could expose an instance of this 
class as part of some P2P application. The programmer 
wishes to expose the functionality of the node using three 
different interfaces — a management interface for 
controlling the node remotely, a monitoring interface and 
an interface exposing the P2P functionality. These 
interfaces are named IManage, IMonitor and IP2PNode 
respectively. Each of these interfaces is associated with 
the names Manage, Monitor and P2P respectively. It is 
assumed that these are well known names that are used 
by client programmers to access the services.  
public interface IManage { 
  void stop(); 
  void start(); 

} 
public interface IMonitor { 
  String getLog(); 
} 
public interface IP2PNode { 
  public void addPeer(P2PNode peer); 
  public void route(Key key, Message msg); 
  public Key getKey(); 
} 
public class ExposeP2PNode { 
  public static void main(String[] args) { 
    P2PNode p2pNode = new P2PNode( 
      new Key()); 
    IRafdaRunTime rrt = RRT.get(); 
    rrt.expose(p2pNode, IManage.class, 
      "Manage"); 
    rrt.expose(p2pNode, IMonitor.class, 
      "Monitor"); 
    rrt.expose(p2pNode, IP2PNode.class, 
      "P2P"); 
  } 
} 

Figure 4: Exposing an instance of class P2PNode. 

5. CLIENT-SIDE DISTRIBUTED OBJECT 
PROGRAMMING USING THE RRT 
Exposed objects may be accessed either using their 
service names or Globally Unique Identifiers (GUIDs) 
allocated to the associated services at exposure time. 
Both of these may be discovered dynamically by clients. 
Typically, an application will expose a small collection 
of objects with well known names thus avoiding the need 
for dynamic GUID discovery. Exposed objects may be 
addressed using URLs of the following form: 
http://<host>:<port>/<serviceName|GUID> 
e.g. http://host.rafda.org:5001/P2P 

As stated previously, the RRT implements an interface 
called IRafdaRunTimeRemote. A subset of this interface, 
through which client-side programmers access remotely 
accessible objects, is shown in Figure 5. The omitted 
methods are used to perform remote instantiation of 
objects, to migrate objects between address-spaces and to 
control automated object distribution based on 
programmer-defined policies. 
public interface IRafdaRunTimeRemote { 
  Object getRemoteReference( 
    String serviceName); 
  /* Other methods omitted */ 
} 

Figure 5: A subset of the  
IRafdaRunTimeRemote interface. 

The IRafdaRunTimeRemote interface provided by an 
RRT contains a method called getRemoteReference() that 
permits a handle to be obtained to any object exposed by 
that RRT. As will be shown later, the handle returned 
may be a reference to a proxy for a remote object, a local 
copy of the object or a hybrid of the two (a smart proxy). 
The getRemoteReference() method takes an argument 
that identifies the service name with which the requisite 
object was exposed. The name can be either the 
programmer-defined service name or the automatically 
generated object GUID. 



The object returned by getRemoteReference() can be cast 
to the remote type of the exposed object. Figure 6 shows 
the client-side code necessary to use the P2PNode 
exposed in Figure 4. The object returned by 
getRemoteReference() is cast to type IP2PNode which 
was the interface used as its remote type.  
Programmers can obtain a remote reference to the 
IRafdaRunTimeRemote interface provided by a remote 
RRT based on the socket address to which that RRT is 
bound using the static RRT.getRemote() method. 
public class P2PClient { 
  InetSocketAddress isa = new  
  InetSocketAddress("host.rafda.org", 
5001); 
  IRafdaRunTimeRemote remoteRRT =  
  RRT.getRemote(isa); 
 
  public void deliver(Key dest, Message 
msg)  
  throws Exception { 
    IP2PNode node = (IP2PNode)  
    remoteRRT.getRemoteReference("P2P"); 
    node.route(dest, msg); 
  } 
} 

Figure 6: Client side code accessing a remote 
P2PNode. 

5.1 Browsing Exposed Objects 
As described, distributed applications are bootstrapped 
by accessing objects based on their service names. The 
RRT provides a web interface that can be accessed using 
a conventional web browser to obtain human-readable 
information about exposed objects. Each exposed service 
is listed, showing the remote type, the URL, the real class 
of the exposed object and a string representation of the 
service object. 

 
Figure 7. Browsing an RRT. 

The links in the URL column refer to service-specific 
pages that provide: 

• A list of the methods provided by the remote 
type. 

• A list of the methods and fields provided by the 
exposed object’s class. 

• The current state of these fields in the exposed 
object. 

By default, RRT instances show information only about 
the remote types. The information about the underlying 
exposed object is not available unless this functionality is 
explicitly enabled in the RRT configuration. 

5.2 Failure 
Distributing an application introduces new failure modes. 
The RRT treats network failure differently from 
application failure. Application exceptions are always 
thrown back to clients as they are not the concern of the 
RRT. Distribution-related exceptions are either handled 
directly by the RRT or propagated back to clients 
according to the RRT configuration. 
Distribution-related exceptions are wrapped in unchecked 
exceptions. In Java, methods do not need to declare 
statically that they throw unchecked exceptions and 
callers are not forced to define handlers. Thus, there are 
three approaches to handling distribution-related errors 
that are open to developers: 
1. Configure the RRT to handle all distribution-related 

exceptions internally. If failure occurs, default values 
(null, zero, etc.) are returned. No application level 
distribution-related exception handlers need to be 
defined in this case. 

2. Configure the RRT to propagate all distribution-
related exceptions to the clients but do not define 
application level exception handlers. If failure 
occurs, the uncaught exception causes the RRT 
instance to terminate immediately. 

3. Configure the RRT to propagate all distribution-
related exceptions to the clients and define 
application level exception handlers statically at any 
points in the application where failure can occur. If a 
distribution-related exception occurs, it is handled in 
a programmer-defined manner. 

Systems such as Java RMI require programmers to 
handle any potential distribution-related errors explicitly 
at any points where remote calls are performed. In 
contrast, by providing a multiplicity of approaches to 
handling failure, the RRT simplifies application 
prototyping as programmers can ignore the possibility of 
distribution-related exceptions during initial 
development. The RRT offers programmers the 
flexibility to introduce error handling code into 
applications only where it is deemed necessary.  

6. CONTROLLING OBJECT 
TRANSMISSION POLICY 
As described in the introduction, using traditional 
middleware, the distribution topology of an application 
determines the object transmission semantics that are 
employed during remote method calls. For example, in 
Java RMI [1], only classes that implement the 
java.rmi.Remote interface and meet certain other criteria 
may be exposed for remote access. Such objects are 
always passed by-reference if they are accessed across an 



address space boundary. All other objects that traverse 
address-space boundaries must be instances of classes 
that implement the java.io.Serializable interface and 
these objects are always passed by-value. Similar 
problems can also be observed in Microsoft .NET 
Remoting [2], CORBA [3] and Web Services [20]. 
Within a single application, it may be required that 
instances of some class are transmitted by-value or by-
reference depending on the circumstances. In most 
existing middleware systems this would require that 
different classes be created. Further, hybridisation is 
sometimes desirable, whereby some object state is cached 
at a client whilst other state is remotely accessed. Using 
the RRT’s transmission policy framework, the 
application programmer can employ the most 
advantageous object transmission policy for the 
circumstances. 
In addition to providing the programmer with the 
flexibility to control the application semantics, the 
dynamic specification of policy independently of class 
implementation allows the roles of library class 
programmer and application programmer to be separated. 
The library class programmer is concerned only with the 
functional requirements. Thus, library classes make fewer 
assumptions about the environment in which they are to 
be exposed. The application programmer has the freedom 
to apply any parameter passing policy to instances of any 
class, increasing the likelihood that any given class will 
be reusable in another context. 

6.1 Defining Transmission Policy 
By default the RRT passes objects by-reference when 
interacting with other RRTs and by-value when 
interacting with standard Web Service clients. However, 
the transmission policy framework described here 
provides a mechanism to allow the programmer to 
specify dynamically how objects should be transmitted 
during inter-RRT remote method calls. This is achieved 
using the local RRT’s transmission policy manager, the 
interface to which is shown in Figure 8. This 
TransmissionPolicyManager interface provides methods 
through which the six different types of supported policy 
rule can be set. Methods to evaluate the currently active 
transmission policy are omitted. Programmers obtain a 
reference to the TransmissionPolicyManager interface 
using the getTransmissionPolicyManager() method 
provided by IRafdaRunTime. 
public interface TransmissionPolicyManager 
{ 
  /* Setting transmission policies */ 
  void setMethodPolicy( 
    Method methodIdentifier, 
    PassingMechanism passingMechanism,  
    int depth, int priority); 
  void setReturnPolicy( 
    Method methodIdentifier, 
    PassingMechanism passingMechanism,  
    int depth, int priority); 
  void setArgumentPolicy( 
    Method methodIdentifier, 
    int argumentNumber,  

    PassingMechanism passingMechanism,  
    int depth, int priority); 
  void setClassPolicy( 
    Class classIdentifier,  
    PassingMechanism passingMechanism,  
    int priority); 
 
  /* Caching */ 
  void setFieldToCache( 
    Field fieldIdentifier,  
    Method getMethodIdentifier, 
    Method setMethodIdentifier); 
  void setMethodToCache( 
    Method methodIdentifier); 
 
  /* Other methods omitted */ 
} 

Figure 8: The TransmissionPolicyManager interface. 
The six types of rule supported by the transmission 
policy framework are as follows: 

• Method policy rules are associated with methods as a 
whole and are set using the setMethodPolicy() 
method. This method specifies how method 
arguments should be transmitted. For example, a 
method policy rule might specify that during a call to 
a particular method, the arguments should all be 
passed by-reference. The parameters to 
setMethodPolicy() include the identity of the method 
to which the policy applies, the policy to be applied 
(using constant values of the enumeration type 
PassingMechanism, which is not shown here), the 
depth to which the closure of the parameters should 
be traversed in the case of pass-by-value, and a rule 
priority (discussed below). 

• Return policy rules, set using the setReturnPolicy() 
method, are also associated with methods but control 
how the return values from methods should be 
transmitted. For example, a return policy rule might 
specify that the return value from a particular 
method should be passed by-value. The method 
policy rule and return policy rule associated with a 
single method are independent of each other and 
need not specify the same behaviour. The 
setReturnPolicy() method takes the same arguments 
as the setMethodPolicy() method which apply to the 
return value rather than the parameters.  

• Argument policy rules, set using the 
setArgumentPolicy() method, are associated with 
individual method arguments and indicate how 
particular arguments within a method signature 
should be transmitted. They allow the programmer 
fine-grained control over the policy that is applied to 
each of the arguments of a method. The parameters 
to this method are similar to the setMethodPolicy() 
method but an extra parameter is required to specify 
the parameter to which the policy applies. 

• Class policy rules, set using the setClassPolicy() 
method, are associated with classes rather than 
methods and indicate how instances of particular 
classes should be transmitted. For example, a class 
policy rule might specify that all instances of a 



particular class should be passed by-value. Class 
policy rules are applied based on the actual classes of 
the transmitted objects, rather than the classes 
specified in the method signature, which may be 
super-classes of the arguments. Class policy rules do 
not take a depth parameter since the object classes 
they reference may have a class policy associated 
with them. 

• The setFieldToCache() method is used to indicate 
that a particular field in a particular class should be 
cached in remote references to instances of that 
class. The parameters to this method comprise the 
identity of the field to cache and the identities of the 
accessor methods of that field, which are also 
cached. Calls to these accessor methods are not 
propagated across the network but instead access the 
locally stored copy of the field.  

• The setMethodToCache() method is used to indicate 
that a particular method in a particular class should 
be cached in remote references to instances of that 
class. Any calls to cached methods will be performed 
locally with respect to the caller. 

An application programmer may specify or change policy 
rules at run-time, thus allowing for dynamic adaptation of 
the application. To specify policy rules statically, a 
library class programmer can specify the policy rules in 
the class initialization code. The policy manager can also 
be configured to read and write policy rules stored in 
XML files, allowing the programmer to specify policies 
completely independently of the application source, as 
well as library class source. 
Clearly, there is scope for contention between policy 
rules. For example, if an instance of class X is passed as a 
parameter to method m() then a class policy rule may 
indicate that instances of X are passed-by-value while a 
method policy rule simultaneously indicates that 
parameters to method m() are passed-by-reference. As 
shown in Figure 8, each rule has a particular priority. 
When contention occurs, the highest priority rule that 
applies is chosen over all others. An order of precedence 
is also imposed on policy rules based on their types to 
allow the framework to choose between rules of different 
types with the same priority. This approach to rule 
priority and precedence ensures that the temporal order in 
which rules are specified is not relevant, which is 
important given that policy rules may be defined 
dynamically in arbitrary application classes at any time 
during execution. 

6.2 Revisiting the Example 
In our peer-to-peer example introduced earlier, a 
Message might be transmitted by-value to an end-point 
using the route method on a P2PNode. However, if some 
of these objects are very large, the client programmer 
may wish to transmit them by-reference. Figure 9 shows 
how the deliver() method from Figure 6 may be modified 
to use the transmission policy manager to send those 
Message objects which exceed some maximum size by-
reference, and smaller Message objects by-value. 

public void deliver(Key dest,  
  Message msg) throws Exception { 
  IP2PNode node = (IP2PNode)  
    remoteRRT.getRemoteReference("P2P"); 
  TransmissionPolicyManager tpm =  
    
localRRT.getTransmissionPolicyManager(); 
  if (message.getSize() > MAX) { 
    tpm.setClassPolicy(Message.class,  
      BY_REF, 0); 
  } else { 
    tpm.setClassPolicy(Message.class,  
      BY_VALUE, 0); 
  } 
  node.route(destination, message); 
} 

Figure 9: The modified deliver() method. 
In the P2P application, instances of the Key class are 
immutable. Figure 10 illustrates the code necessary to 
instruct the transmission policy manager to make proxies 
to instances of class P2PNode cache the field key. This 
code fragment also specifies a class policy rule indicating 
that instances of class Key should be passed by-value. On 
the client-side, the call to getRemoteReference() will 
yield a proxy of the remote P2PNode object which can be 
cast to the remote type IP2PNode. A client holding such 
a proxy can access the key value of the remote P2PNode 
without incurring the cost of a remote call. 
Method getKeyMethod = P2PNode.class. 
  getDeclaredMethod("getKey", null); 
Field keyField = P2PNode.class. 
  getDeclaredField("key"); 
tpm.setFieldToCache(keyField,  
  getKeyMethod, null); 
tpm.setClassPolicy(Key.class, BY_VALUE, 
0); 

Figure 10: Defining a smart proxy for P2PNode 
objects. 

7. IMPLEMENTATION ISSUES 
The exposure of an object requires several steps. Firstly a 
service adaptor of the appropriate class is created. A 
service adaptor is the boundary between the application 
object and the Web Services infrastructure. There is one 
service adaptor class associated with each application 
class and one instance of a service adaptor class is 
created and associated with each exposed object. Thus 
there is a one-to-one correspondence between service 
adaptors and services. A service map maps from names 
and GUIDs to the service adaptors associated with the 
particular services. The RRT provides a generic service 
adaptor implementation that employs reflective 
techniques to invoke methods on exposed objects. 
Alternately, the RRT can automatically generate 
customized service adaptor classes which allow the RRT 
to perform method calls on them without using reflection. 
Service adaptor generation incurs a one time cost and 
obviates the need for reflection during normal execution. 
Generated code is cached in the RRT for the duration of 
the JVM lifetime but the RRT can be configured to cache 
generated code across multiple runs of the distributed 
application. 



7.1 Serialisation 
During the object marshalling phase of a remote method 
call, the RRT will determine which object transmission 
semantics to employ. If pass-by-value semantics have 
been chosen, the RRT will serialize the closures of the 
arguments. A generic serializer that can handle both 
primitive SOAP types, such as ints and strings, and 
complex types is provided. The RRT can be configured 
to automatically generate per-class serializers that are 
tuned to serialize instances of a particular application 
class. 
Support for the transmission of arbitrary types is 
provided through an extension to Web Services 
semantics, which is incompatible with standard Web 
Services. The RRT employs the extended semantics 
when both client and server are RRT-based to allow full 
support for the transmission of sub-types. When the RRT 
is used in conjunction with conventional Web Services 
technology, standard Web Services semantics are 
adopted. The RRT determines whether to employ 
extended semantics on a per-call basis.  

7.2 Implementing Remote References 
The RRT implements remote references using remote 
identifiers, called RAFDA Interoperable Object 
References (RafdaIORs), and proxy objects. A RafdaIOR 
uniquely identifies an exposed service in the distributed 
system and consists of: 

• The socket address of the RRT instance exposing the 
object. When remote method calls are performed on 
the object, this address determines the RRT instance 
to which the remote method call requests are sent. 

• A string representation of a 160-bit Universally 
Unique Identifier (UUID) that identifies the Web 
Service associated with the exposed object.  

• An instance of java.lang.Class capturing the remote 
type associated with the object, which was specified 
at exposure time. This remote type is used client-side 
during proxy generation and indicates which 
methods provided by the object’s class will be 
remotely accessible. 

• An instance of java.lang.Class representing the class 
of the exposed object. This is identified as the real 
class to differentiate it from the object’s remote type. 
This class is used during proxy generation. 

• A list of the fields to be cached in any proxy objects 
associated with the exposed object, which is used 
during proxy generation. 

• A list of the methods to be cached in any proxy 
objects associated with the exposed object, which is 
also used during proxy generation. 

• The current values of any cached fields. 
To pass objects by-reference, the RRT serializes the 
associated RafdaIORs by-value. On deserialization, the 
client-side RRT uses the RafdaIORs to create and 
initialize appropriate proxy objects. Proxies, like service 

adaptors and serializers, are automatically generated as 
required by the RRT. From the client’s perspective, the 
proxy class is the same type as the remote type specified 
in the RafdaIOR. For every method in the remote type, 
the proxy implements an associated method with the 
same signature, which calls into the RRT to make a 
remote call to the exposed object on behalf of the client. 
Application objects cannot make use of RafdaIORs 
directly; they can only use references to other application 
objects or correctly typed proxy objects that have been 
initialized with the RafdaIORs. Therefore, when 
RafdaIORs are received by RRTs during remote method 
calls, the RRTs convert them into references that the 
application can use.  
Initially, the RRT determines whether the referenced 
object exists in the local address space and if it does then 
a direct reference to the object is passed to the 
application. If not, the RRT determines whether a proxy 
to the referenced object has already been instantiated in 
the local address-space and, if the proxy exists then a 
reference to it is passed into the application. If a proxy 
does not already exist, then an instance of the associated 
proxy class is instantiated, automatically generating the 
class if necessary. This approach avoids the unnecessary 
use of remote references that loop-back into the same 
address spaces or the instantiation of more proxies than 
necessary. 

7.3 Smart Proxies 
All RRT proxy objects are smart proxies, meaning that 
they are capable of caching some of the exposed objects’ 
fields or code. RafdaIORs contain smart proxy 
information indicating which fields and methods should 
be cached in the proxy and from this, an appropriate 
proxy class can be generated. The proxy class inherits the 
cached fields and methods from the remote type and the 
cached fields’ get() and set() methods are modified to 
access the fields locally rather than invoke the equivalent 
methods on the exposed object. Non-cached methods are 
overridden with proxy versions while cached methods are 
not overridden, leaving the original functionality in place. 
A new proxy class is generated for each combination of 
cached fields and methods in use within the distributed 
application. 
Immediately before a RafdaIOR is serialized, the RRT 
records the current values of the cached fields in it and 
they are serialized as part of the RafdaIOR. On 
deserialization, the cached fields in the proxy object are 
initialized automatically. 
The RRT does not provide any form of automatic 
coherency control and so the programmer has 
responsibility for ensuring that application semantics 
remain as expected. Caching is particularly useful when 
object fields are known to be immutable. 

7.4 Automatic Exposure 
The RRT can export references to objects that have not 
been exposed to remote access, for example, as return 
values or in the closure of returned objects. The RRT 



performs automatic exposure of any such referenced 
objects on demand. By default, the RRT exposes objects 
using their own classes as remote types, with 
automatically generated service names. However, the 
concept of remote types stems from the fact that it is not 
always desirable to expose all methods of a given object 
to remote access. Programmers can therefore associate 
particular remote types with particular application classes 
using the associateClassWithRemoteType() method 
provided by the IRafdaRunTime interface. 

7.5 Remote Method Call Cost 
The cost of remote method calls in the RRT prototype 
was compared with the equivalent calls using other 
middleware systems. A test application was created then 
distributed using multiple different middleware 
technologies. 
Tests were run on a two machine network. The first 
machine, designated the “server”, was used to execute 
the server-side applications that exposed objects to 
remote access. It contained a 2.7GHz Pentium 4 with 
512MB RAM. The second machine, designated the 
“client”, was used to execute the client-side applications 
that performed the remote calls. It contained a 1.2GHz 
Pentium 3 with 256MB RAM. The machines were 
connected using an isolated 100Mb/s Ethernet. Since the 
.NET framework executes only under the Windows 
operating system, all tests on both machines were run 
under Windows XP Service Pack 2, fully patched, with 
only default services running. 
The first test evaluates the cost of a remote method call to 
a method that takes no arguments, performs no 
computation and returns no results. This test determines 
the lower bound of call cost, since there are no arguments 
or return values to pass, meaning no marshalling is 
performed. The clock resolution provided by the test 
machines is 10ms, which is considerably greater than the 
average method call time. Therefore the test application 
performs 100 batches of 4000 method calls using each 
middleware system, resulting in a total run-time of 
between two and twenty minutes wall clock time. The 
system clock is used to measure the time taken to 
perform each of the 100 batches of method calls. Apache 
Axis received special treatment as it runs around an order 
of magnitude slower than all other systems. Each batch 
performs only 400 method calls, rather than 4000, in 
order to achieve reasonable total test execution time.  
The second test was run under the same conditions as the 
first test but introduces arguments that require 
serialization. The method called by this test application 
takes ten arguments, all of which are passed by-value. 
The arguments are all instances of the same complex 
type, which contains a 10 character string, a 25 character 
string and an integer. In all tests the arguments are 
initialized identically. Table 1 shows the average time in 
milliseconds for a remote method call in each test. 

Table 1: Time in milliseconds for a remote method 
call. 

Middleware 
Without 

Serialization 
With 

Serialization 
Java RMI 
(J2SE 1.5) 

0.26 0.43 

Microsoft .NET 
(C# using 

TCP channel) 
0.44 0.86 

CORBA 
(J2SE 1.5 ORB) 

0.87 1.41 

RRT 2.10 2.63 

Microsoft .NET 
(C# using  

SOAP channel) 
2.94 5.07 

Apache Axis  
(1.2 final) 

12.60 20.88 

 
A clear difference can be seen between the middleware 
systems that use XML-based SOAP as their transport 
protocol (the RRT, Apache Axis and the .NET 
framework employing SOAP channels) and those that 
use binary protocols (Java RMI, CORBA and the .NET 
framework employing TCP channels). The RRT 
outperforms both its SOAP-based counterparts; the 
application employing the RRT ran in around 75% of the 
time taken by the equivalent .NET application and 
around 15% of the time taken by the application 
employing Apache Axis. When serializing a large 
number of arguments, the RRT is again the quickest of 
the SOAP-based systems. During this test, the RRT used 
cached per-class serializers in order to optimize the 
serialization process, giving it a large advantage over the 
other systems, which do not generate such serializers. 
The applications using Java RMI, CORBA and TCP-
based .NET all executed two to five times as quickly as 
the RRT. It should be noted that there are many 
implementations of the CORBA specification and that 
the one tested is that supplied with the J2SDK 5.0. It is 
reasonable to suggest that commercial ORBs may be 
better tuned for performance than this implementation 
and that the call time could be reduced more in line with 
the other systems that employ binary protocols. While the 
middleware systems that employ binary protocols 
outperform the RRT, the binary approach has 
disadvantages in that it does not provide the meta-data 
and opportunities for validation that XML does. SOAP 
can be considered the safer approach as the data is self-
describing and less prone to problems with type safety 
[4].  
SOAP-based systems offer a high degree of 
interoperability and a transport protocol with multiple 
advantages over binary approaches, as discussed above. 
Of the SOAP systems tested, the RRT prototype 
performed best, indicating that the advantages provided 
by the RRT’s approach to application creation need not 
come at the cost of degraded performance. 



7.6 Implementation of the Transmission 
Policy Framework  
The policy framework is implemented using six 
associative stores, one for each rule type. Each 
associative store records argument policy rules and maps 
from keys to prioritized lists of policy rules. The keys are 
deterministically generated from the identity of the class 
and method being called and the argument numbers 
(where appropriate). To determine if an argument policy 
exists, the policy manager looks up the associative stores 
in order and if a mapping from the specified key exists, 
then the dominant argument policy rule is used. This 
approach is both simple and efficient. 
The policy framework must be queried and the policy 
rules evaluated each time objects are marshalled, 
affecting remote method call cost. This cost is heavily 
dependent on the particular policy rules that are 
associated with the object to be marshalled. The 
transmission policy framework is an integral part of the 
RRT and so cannot be switched off under normal 
circumstances. To determine the cost of transmission 
policy evaluation, a special build of the RRT that 
employed only pass-by-reference semantics was created. 
A test application that performed multiple calls to a 
remote method was created. This method took one 
argument and returned one return value, both by-
reference. The test application was run using the 
specially built RRT with the transmission policy 
framework removed and again using the full RRT. In the 
former case, the special RRT was hard-coded to pass 
objects by-reference, and in the latter case, the 
transmission policy consisted of a method policy rule and 
a return policy rule stating that pass-by-reference 
semantics should be employed. The parameter passing 
semantics were therefore the same for each run of the 
application. 
The cost of a remote call when the policy evaluation 
phase was performed was around 2% to 3% greater than 
the cost of a remote call without the evaluation phase. 
The introduction of additional arguments has no effect on 
the proportionate cost of the policy evaluation phase as 
there is a one-to-one correspondence between the number 
of objects marshalled and the number of transmission 
policy evaluations performed. The cost of dynamically 
evaluating policy is subsumed by the cost of marshalling 
and serialising the objects for remote method call. It is 
believed that the benefits gained outweigh the expense. 

8. CONCLUSIONS 
The RAFDA Run-Time (RRT) is a middleware designed 
to improve the software engineering process for 
implementers of new distributed systems and 
monitoring/management infrastructures aimed at existing 
applications. The work described in this paper has 
identified a number of key limitations exhibited by 
standard middleware systems and had shown how the 
mechanisms provided by the RRT addresses each of 
these limitations.  

Middleware systems typically require the programmer to 
decide at application design time which classes will 
support remote access and to follow a number of steps in 
order to create the remotely accessible classes. The 
programmer must decide the interfaces between 
distribution boundaries statically then determine which 
classes will implement these interfaces and thus be 
remotely accessible. This hard-coding of the distribution 
boundaries requires that the application programmer 
know if instances of a class will be remotely accessed 
before implementing that class. 
Using the RRT, programmers can adopt a new 
methodology when developing and deploying distributed 
Java applications [23]. Application logic can be designed 
and implemented completely independently of 
distribution concerns, easing the development task and 
giving considerable flexibility to alter distribution 
decisions late in the development cycle. 
The RRT permits instances of arbitrary classes within an 
application to be exposed for remote access. This is 
achieved through the dynamic exposure of a standard 
Web Service for the exposed object and the 
implementation of a mapping from remote calls on the 
Web Service to method calls on the exposed object. The 
RRT introduces pass-by-reference semantics to standard 
Web Services allowing methods on exposed objects to be 
called remotely.  
In contrast to conventional middleware systems, in order 
to expose an instance of a class using the RRT, it is not 
necessary that the class implement any special interfaces 
or extend any special classes. Objects can be exposed to 
remote access using any interface with which they are 
structurally compliant. Thus the application programmer 
can implement the classes providing core application 
functionality without regard for the remote accessibility 
of the instances of those classes. Decisions about the 
remote accessibility of a particular object can be delayed 
until much later in the design cycle, even until run-time. 
Monitoring and management infrastructure that views 
and controls application state from another address space 
can be created without modification, or even access, to 
the application’s original source code. 
Another limitation of existing middleware systems is that 
the parameter passing semantics is tightly bound to the 
distribution of the application and thus changes to the 
distribution of an application may potentially alter the 
application semantics. The RRT addresses this limitation 
by providing a framework for the static and dynamic 
specification of object transmission policy. Using this 
framework the application programmer can employ the 
most advantageous object transmission policy for the 
particular circumstances. This increases flexibility and 
allows the programmer to control the application 
semantics. By specifying object transmission policy 
independently of class implementation, the roles of 
library class programmer and application programmer are 
separated. Library implementers need make fewer 
assumptions about the ways in which their classes will be 
used while application programmers can use class 



instances in the most appropriate way, as dictated by the 
particular situation. Before making a method call the 
application programmer can configure the transmission 
policy for the individual method parameters. 
The transmission policy framework also supports the 
specification of smart proxies which increase the 
flexibility of exposed object without imposing 
implementation constraints on the programmer. This 
mechanism allows arbitrary field values of an object to 
be cached in the same address space as a remote 
reference (proxy) to that object. Thus a call to an 
accessor method on the proxy yields the cached field 
value without the execution of a network call. 
The RRT employs dynamic code generation and 
compilation techniques to create the ancillary code 
necessary to allow dynamic object exposure. It is capable 
of marshalling instances of any class either by-reference 
or by-value and complete control over this is given to the 
programmer in order to separate parameter passing 
semantics completely from application distribution. 
The RRT provides significant advantages to 
programmers of distributed applications, when compared 
to industry standard middleware systems, simplifying the 
software engineering process, decreasing the opportunity 
for errors in distribution code and increasing code reuse 
through better flexibility. 
The RRT has been used in the construction of a P2P 
routing network in which the application code can be run 
in both a fully distributed environment and in a 
centralised simulation environment without modification. 
The RAFDA system can be downloaded from 
http://rafda.cs.st-and.ac.uk/. 
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