
RAFDA: A Policy-Aware Middleware Supporting the
Flexible Separation of Application Logic from

Distribution
Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby & Andrew J. McCarthy

School of Computer Science, University of St Andrews, St Andrews, Fife, Scotland.
{scott, al, stuart, graham, ajm}@cs.st-and.ac.uk

ABSTRACT
Middleware technologies often limit the way in which
object classes may be used in distributed applications due
to the fixed distribution policies that they impose. These
policies permeate applications developed using existing
middleware systems and force an unnatural encoding of
application level semantics. For example, the application
programmer has no direct control over inter-address-
space parameter passing semantics. Semantics are fixed
by the distribution topology of the application, which is
dictated early in the design cycle. This creates
applications that are brittle with respect to changes in
distribution.
This paper explores technology that provides control over
the extent to which inter-address-space communication is
exposed to programmers, in order to aid the creation,
maintenance and evolution of distributed applications.
The described system permits arbitrary objects in an
application to be dynamically exposed for remote access,
allowing applications to be written without concern for
distribution. Programmers can conceal or expose the
distributed nature of applications as required, permitting
object placement and distribution boundaries to be
decided late in the design cycle and even dynamically.
Inter-address-space parameter passing semantics may
also be decided independently of object implementation
and at varying times in the design cycle, again possibly
as late as run-time. Furthermore, transmission policy may
be defined on a per-class, per-method or per-parameter
basis, maximizing plasticity. This flexibility is of utility
in the development of new distributed applications, and
the creation of management and monitoring
infrastructures for existing applications.

Keywords
Middleware, Java, Distributed Systems, POJO.

1. INTRODUCTION
Existing middleware systems suffer from several
limitations which restrict the kinds of application that can
be created using them and hamper their flexibility with
respect to distribution and adaptability. In this paper we
focus on four of these limitations, namely,
1. They force decisions to be made early in the design

process about which classes of object may
participate in inter-address-space communication.

2. They are brittle with respect to changes in the way in
which the applications are distributed.

3. It is difficult to understand and maintain distributed
applications since the use of middleware systems
may force an unnatural encoding of application level
semantics.

4. It is difficult to control the policy used to determine
how objects are transmitted among the available
address-spaces in a distributed application.

Early Design Decisions – Existing middleware systems
all require the programmer to decide at application design
time which classes will support remote access and to
follow similar steps in order to create the remotely
accessible classes. The programmer must decide the
interfaces between distribution boundaries statically then
determine which classes will implement these interfaces
and thus be remotely accessible. These classes, known as
remote classes, are hard-coded at the source level to
support remote accessibility and only instances of these
classes can be accessed from another address-space.
Therefore, the programmer must know how the
application objects will be distributed at run-time before
creating any classes.
Some middleware systems require the manual creation of
ancillary code such as skeletons, proxies and stub
implementation classes, which must extend special
classes, implement special interfaces or handle
distribution related error conditions, based on
programmer-defined interfaces. All require the creation
of server applications that configure the middleware
infrastructure then instantiate and register objects for
remote access.
Brittleness with Respect to Change - A distributed
application created using an existing middleware system
is brittle with respect to change because the distribution
of the application must be known early in the design
process. The possible partitions of a distributed
application are dependent on which classes within the
application support remote access, restricting the classes
of object that can be referenced across address-space
boundaries.
Distorted Application Level Semantics - Existing
middleware systems force remotely accessible classes to
extend special classes, implement special interfaces or
handle network related errors explicitly. It is not possible
to make application classes remotely accessible unless
their super-classes also meet the necessary requirements.

At best, this forces an unnatural or inappropriate
encoding of the application semantics because classes are
forced to be remotely accessible for the benefit of their
sub-classes and, at worst, application classes that extend
library classes cannot be remotely accessible at all.
Inflexible Parameter Passing Semantics - Existing
middleware systems decide the parameter passing
semantics applied during remote method call statically
based on the remote accessibility of the application
classes. The parameter passing semantics is tightly bound
to the distribution of the application so changes to the
distribution of an application have the side effect that
application semantics may be altered. All objects of the
same class must be transmitted in the same way, whether
this is appropriate or not, and the programmer does not
have the freedom to choose different parameter passing
semantics for classes on a per-application or per-call
basis.

2. RELATED WORK
The creation of remotely accessible objects using
industry standard middleware systems such as Java RMI
[1] and Microsoft .NET Remoting [2] requires the
programmer to take the following steps:

• The programmer is forced to decide statically the
interfaces between distribution boundaries.

• The programmer is forced to decide statically which
classes of component will implement these interfaces
and thus be remotely accessible.

• These remotely accessible classes must extend a
special base class that provides the functionality
necessary for remote accessibility. This has two
effects: to force the static identification of accessible
classes, as above, and, in languages without multiple
inheritance, to prevent the creation of accessible
subclasses of existing non-accessible classes.

• Once a remotely accessible class is instantiated, the
instance is associated with a naming service that
allows remote callers to obtain a remote reference to
it.

Only instances of classes that support remote access may
be separated into different address-spaces from their
reference holders, constraining the ways in which
applications can be distributed. To change an
application’s distribution, programmers may be forced to
introduce support for distribution into classes without it.
Conversely, programmers must determine whether the
additional application complexity inherent in
unnecessarily supporting remote access outweighs the
cost of removing it in terms of programmer effort.
Without the ability to expose objects to remote access
dynamically, application distribution is inflexible. Yet, it
is not possible to introduce support for remote access into
every application class using existing systems because of
the semantic restrictions placed on remote classes. For
instance, application classes cannot pass remote

references to instances of pre-defined library classes that
do not support remote access.
Thus, the requirement to follow the above steps leads to
the problems of inflexibility exhibited by industry
standard middleware systems with respect both to static
design-level changes and to dynamic run-time changes in
application partition. Programmers can attempt to
overcome these problems by explicitly creating
distributed objects that can access objects for which static
type information was not available at compilation time.
The tie approach and Dynamic Skeleton Interface (DSI)
provided by CORBA [3] illustrate the manner in which
this can be achieved.
Using the CORBA DSI, specially constructed remotely
accessible objects can extract operation names and any
associated arguments from incoming remote method call
requests, then perform the requisite calls. CORBA does
not serialize objects in a self-describing manner and so
programmers must write code to extract type information
from the requests and deserialize the arguments.
Consequently, it is possible to construct applications in
which methods are invoked with inappropriate arguments
[4]. This leads to unexpected application semantics and
may cause run-time problems in strongly typed
languages.
CORBA DSI and similar ad-hoc approaches to increased
flexibility can be adopted only at the cost of increased
complexity. Programmers lose the abstraction over the
inter-address-space communication afforded when using
proxies and objects created from IDL. Middleware level
functionality must be implemented at the application
level, obviating the primary benefits that middleware
systems offer.
Several research-based systems have been developed in
order to overcome the limitations of industry standard
systems. However, these systems only partially tackle the
limitations of industry standard systems.

2.1.1 Early design decisions
Some research based systems, such as JavaParty [5] and
Do! [6], employ custom compilers to generate
distribution-related code based on source code that has
been annotated by the programmer. Consequently,
programmers are still forced to make early design
decisions. These systems simplify the process of creating
distributed applications through automated code
generation but it is the programmers that must determine
which classes will support remote access.
Tools such as J-Orchestra [7] and Pangaea [8] are
designed to transform a single non-distributed application
into an isomorphic version that distributes itself across
the distributed system at run-time. These systems
perform static code analysis to help programmers choose
suitable distributions. The distributed version of an
application is generated automatically and in this respect
these systems allow separation of application logic from
distribution. However, both transform only local
applications and are unsuitable tools for the creation of

general distributed applications since programmers
cannot include multiple entry points. Programmers define
initial application partitions using the provided tools and
though both systems support changes to application
distribution using migration, it is not possible to migrate
arbitrary application objects. If fundamental changes are
made to application distributions then the applications
must be re-transformed, limiting the effectiveness of
these systems in dynamically changing systems.
ProActive [9] and JavaSymphony [10] allow
programmers to expose objects to remote access
dynamically. However, both adopt the active object [11]
model which associates a thread with each remotely
accessible application object. The conversion of existing
application objects into active objects alters the threading
semantics of the application. Further, active objects may
not have shared access to any non-active objects.
Programmers may need to alter the structure of the
application to ensure that this strict separation of active
object closures is preserved.
The JBoss Enterprise Middleware System [12] provides
AOP Remoting, which uses aspect-oriented programming
techniques to instrument instances of existing classes for
remote access. AOP Remoting allows the exposure of
application objects to remote access as services using
SOAP [13] or Java RMI. AOP Remoting places semantic
restrictions on the classes of object that can be exposed.
All classes must provide default constructors and all
method arguments and return values must be
Serializable. AOP Remoting adopts a service-oriented
model, rather than a complete Distributed Object Model,
in which methods of the underlying objects are provided
to remote clients, providing the objects meet the above
semantic requirements.

2.1.2 Brittleness with respect to change
In addition to forcing decisions early in the design
process, which results in static inflexibility to change,
distributed applications created using existing
middleware systems also exhibit brittleness with respect
to dynamic change. Brittleness and inflexibility to change
occurs in middleware systems that do not allow dynamic
re-partitioning of applications, hindering the adaptability
of those applications to changing execution
environments. For example, objects on heavily loaded
machines cannot migrate to other machines. It also has
implications for long running systems as applications
cannot be re-distributed as machines join and leave the
distributed system. Several of the research based systems
support object mobility, including JavaParty [5], J-
Orchestra [7], ProActive [9], JavaSymphony [14] and
Pangaea [8].

2.1.3 Distorted application level semantics
Application semantics are affected by the restrictions
placed on application classes that support distribution.
Inheritance relationships between classes are affected and
it is difficult to make application classes remotely
accessible if their super-classes do not meet the necessary
requirements. This causes an unnatural or inappropriate

encoding of application semantics because classes are
forced to support remote access for the benefit of their
sub-classes, entangling application logic and distribution.
This is particularly a problem for application classes that
need to extend pre-compiled classes without support for
remote access.
Industry standard middleware systems decide statically
which parameter passing semantics should be applied
when remote methods are called. In Java RMI [15], only
classes that implement the java.rmi.Remote interface and
handle network related errors explicitly in application
logic can be exposed to remote access or passed by-
reference. All other objects that are passed as arguments
or return values to remote methods must be instances of
classes that implement the Serializable interface.
Parameter passing semantics are affected by static design
level decisions and are tightly coupled with application
distribution.
Microsoft .NET remoting [16] adopts semantics that are
similar to Java RMI. Instances of classes that extend the
MarshalByRefObject class are passed by-reference and
all other objects that are passed to remote methods must
be instances of Serializable classes. The .NET remoting
framework incrementally improves on Java RMI by
applying these semantics consistently to objects.
However, parameter passing semantics are still fixed
statically and are dependent on the distribution of the
application.
In CORBA and COM, arguments are marked in IDL with
the passing semantics to be applied. Further, CORBA
component classes are defined statically as either pass-
by-reference or pass-by-value. CORBA and COM allow
only components and data structures that have been
explicitly described to be passed across address-space
boundaries.
The research-based middleware systems strive to
preserve local Java method calling semantics and so fix
parameter passing semantics statically. Consequently,
programmers cannot employ the most advantageous
parameter passing semantics for the circumstances of
each application. Programmers cannot take control over
application semantics, hindering the reuse of library
classes in distributed contexts since the parameter
passing semantics cannot be specified independently of
class implementation.
In general, reusability and application semantics are
restricted for the following reasons:
Some systems allow no programmer control over
parameter passing semantics at all - These systems
lack flexibility as programmers cannot employ the most
suitable parameter passing mechanisms on a per-
application basis. With control over passing semantics,
programmers can manage the trade-offs between
different parameter passing mechanisms to reduce
network traffic, introduce resiliency or permit caching.
When programmers can decide parameter passing
semantics, they cannot do so dynamically - Application
programmers have limited dynamic control over inter-

address-space parameter passing semantics. Within a
single application, it may be required that objects are
transmitted by-value or by-reference depending on the
circumstances; in most existing middleware systems this
would require that different classes be created.
Complexity is introduced into applications due to the
limitations of the middleware system.
The parameter passing semantics and application
distribution are tightly bound - The parameter passing
semantics and application distribution are tightly
coupled. Reuse of large-grained components, composed
of instances of multiple classes, is hindered because
concrete class implementations must be developed in the
context of some planned deployment environment.
Various physical considerations dictate the nature of the
implementation, such as the available computational
resources, network connectivity, latency or bandwidth.
These considerations influence the implementation of
classes, limiting reuse [17]. For example, in a poorly
connected environment, it may be appropriate that pass-
by-value semantics are adopted in order that the called
methods can continue to perform computation over
arguments, even if the network connection to the caller is
lost transiently. Conversely, in a well-connected
environment, it may be appropriate to adopt pass-by-
reference semantics to allow shared access to arguments
and ensure coherency.

3. THE RAFDA SYSTEM
This paper introduces RAFDA [18, 19] a Java
middleware system that provides control over the extent
to which inter-address-space communication is exposed
to programmers, in order to aid the creation, maintenance
and evolution of distributed applications. The described
technology adopts a plain old Java object (POJO)
approach and permits arbitrary application objects to be
exposed for remote access dynamically. Object instances
are exposed as Web Services [20] through which remote
method invocations may be made. RAFDA has four
notable features that differentiate it from other
middleware technologies.
1. The programmer does not need to decide statically

which application classes support remote access.
Any object instance from any application, including
compiled classes and library classes, can be exposed
as a Web Service without the need to access or alter
the application’s source code.

2. The system integrates the notions of Web Services
and Distributed Object Models by providing a
remote reference scheme, synergistic with standard
Web Services infrastructure, extending the pass-by-
value semantics provided by Web Services with
pass-by-reference semantics. Specific object
instances rather than classes are exposed as Web
Services, further integrating the Web Service and
Distributed Object Models. This contrasts with
systems such as Apache Axis [21] in which only
classes are exposed as Web Services.

3. Parameter passing mechanisms are flexible and may
be dynamically controlled through policies. An
exposed component can be called using either pass-
by-reference or pass-by-value semantics on a per-
call basis.

4. The system automatically exposes referenced objects
on demand. Thus an object b that is returned by
method m of exposed object a is automatically
exposed before method m returns.

The process of implementing the application logic is thus
separated from the process of distributing the application.
Since any object can be made remotely accessible,
changes to distribution boundaries do not require re-
engineering of the application, making it easier to change
the application’s distribution topology. This separation of
concerns simplifies the software engineering process to
the programmer’s advantage, both when creating a
distributed application and introducing distribution into
an existing application. This simplifies the creation of
tools such as monitoring and management components
that need to access and modify object state from outwith
those objects’ local address space. Using traditional
middleware systems, it is difficult to attach such tools to
existing objects without access to source code and
extensive engineering effort.
This functionality is provided by the RAFDA Run-Time
(RRT), a middleware system for Java development that
tackles the problems inherent in existing middleware
systems. The RRT simplifies the kinds of tasks that are
common to the creation of distributed application such as
dynamically exposing objects for remote access,
obtaining remote references to remotely accessible
objects, and remote method invocation.
The RRT conceals the complexity of distribution where
appropriate, allowing distribution to be introduced into
applications quickly. This reduces the software
engineering effort required to create distributed
applications, leading to quick application prototyping.
However, the RRT also permits programmers to expose
aspects of application distribution as required, allowing
the creation of applications that can exploit their
distributed nature and are flexible with respect to change.
The RRT has advantages over traditional middleware
approaches as it adapts its behaviour to suit the
requirements of a given distributed application, rather
than forcing the programmer to adapt the application to
the requirements of the middleware system.
Applications access the functionality provided by the
RAFDA system by calling methods on infrastructure
objects called RRTs. There is an RRT in each address-
space in the distributed system, analogous to a CORBA
ORB. Each RRT provides two interfaces to application
programmers. The first, called IRafdaRunTime, provides
server-side operations to application objects collocated
with the RRT, allowing programmers to expose objects
or access frameworks that control transmission policy
and distribution policy. The second, called
IRafdaRunTime-Remote, provides client-side
functionality to application objects that are remote with

respect to the RRT, allowing programmers to obtain
remote references to existing objects or to perform object
migration.
Figure 1 shows the RRT instances present in two
address-spaces. The large circles represent objects in the
distributed application. Each RRT instance is represented
by a shaded box with the IRafdaRunTime and
IRafdaRunTimeRemote interfaces shown. Each RRT is
accessible locally via the IRafdaRunTime interface and
remotely via the IRafdaRunTimeRemote interface.
In addition to the functionality examined in this paper,
the RRT provides remote object instantiation, object
migration and a distribution policy framework that is
used to automate object placement. A complete
description of the RRT and its implementation, including
the features described in this paper, can be obtained in
Walker [22]. Although the RRT is written in Java and is
designed to support Java, it does not employ any
language-specific features unique to Java. The techniques
described here are applicable in other languages.

Address Space 1 Address Space 2

RRTIRafdaRunTime

IRafdaRun-

TimeRemote

RRT IRafdaRunTime

IRafdaRun-

TimeRemote

Figure 1: RRT instances exposing different interfaces

to local and remote objects.

4. EXPOSING ARBITRARY OBJECTS
FOR REMOTE ACCESS
The RRT permits arbitrary application objects to be
exposed for remote access. Specific application objects,
rather than application classes, are exposed via Web
Services. In order to make an object remotely accessible
it is first registered with the RRT. Registration of an
application object creates a Web Service running within
the RRT that uses the exposed object as the underlying
service object on which incoming Web Service requests
are performed. In effect, the RRT maps Web Service
requests to method calls on object instances and performs
appropriate encoding of the results. Exposed objects may
be referenced by other local objects; neither the reference
holders nor the exposed objects are aware that
registration has taken place.
Each RRT implements the IRafdaRunTime interface
shown in Figure 2. Only a subset of the functionality
provided by this interface is shown. The omitted methods
are used to control object migration and to automate
object placement using programmer-defined policies.

public interface IRafdaRunTime {
 void expose(Object objectToExpose,
 Class remoteType, String serviceName);
 TransmissionPolicyManager
 getTransmissionPolicyManager();
 void associateClassWithRemoteType(
 Class applicationClass,
 Class remoteType);
 /* Other methods omitted */
}

Figure 2: A subset of the IRafdaRunTime interface.
This interface provides the expose() method, used to
expose an object to remote access, the
getTransmissionPolicy-Manager() method, used to
control the transmission policy defining parameter
passing semantics, and the
associateClassWithRemoteType() method, used to control
automatic exposure. The latter two methods are examined
in Sections 6.1 and 7.4 respectively.
The expose() method takes three parameters to specify
the object to be exposed, a remote type (that is, the
interface that the exposed object should provide to
remote clients) and a logical name for accessing the
object. A number of issues arise from this simple method.
Firstly, the objectToExpose may be any ‘Plain Old Java
Object’ (POJO), so need not implement any special
interfaces or extend any particular classes, maximizing
flexibility. Secondly, the objectToExpose need not
implement the interface specified in the remote type
parameter although it must be structurally compliant with
that interface. This again maximizes flexibility and
permits classes to be exposed to remote access even if
they were not envisioned to be so at design time. The
remote type parameter can be a class or an interface; in
either case, the method signatures are extracted to form
the Web Service interface for the exposed object. The
remote type parameter is optional. If omitted, the object
is exposed with an interface matching its concrete type.
The remote type is the distributed equivalent of an
interface in a non-distributed application class and is
used to control method visibility. It is supplied on a per-
object, not a per-class, basis. Any method can be made
remotely accessible, irrespective of its local protection
modifier. By default, RAFDA will preserve local
protection semantics in the distributed application when
the RRT is used both client and server-side, but allows
only public methods to be invoked when using standard
Web Services technology in order to preserve code
encapsulation.
Remote types provide multiple views over exposed
objects to remote clients. From the perspective of clients,
exposed objects are instances of their associated remote
types. Different instances of a single class can be
exposed with different remote types and a single object
can be exposed multiple times with different remote
types. This allows the programmer to expose a single
object with different logical names and different
interfaces. Exposure can fail, resulting in a runtime
exception, if the remote type contains methods that do
not exist in the class of the object being exposed.

The serviceName parameter permits the exposed object
to be addressed using a logical name which must, of
course, be unique within the local address space.
An object of any class can be exposed, including
precompiled classes and those with native members.
There are two caveats. Firstly, the Web Services model
provides no facility to allow field access, only method
call. Thus the fields of an exposed object cannot be
directly accessed and if the object does not provide get()
and set() accessor methods then the fields cannot be
accessed at all. This is a problem for all Java middleware
systems since field access cannot be intercepted.
Secondly, the current RRT implementation does not
permit remote types to be final classes or to contain final
methods. Exposure will fail if attempted using such a
remote type. Note that no restrictions are placed on the
classes of object that can be exposed, only on the remote
types that may be applied to those objects. The RRT
provides a class loader that can be used to change
application classes and methods such that they are non-
final to overcome this limitation. However, the class
loader cannot transform system classes dynamically,
meaning that system classes that are final or contain final
methods cannot be used as remote types.
To illustrate the use of expose(), we use a small Peer-to-
Peer (P2P) application as an example. A programmer has
implemented a class called P2PNode which represents a
node in a P2P routing network. This class is shown in
Figure 3. This class has not been written with concern for
distribution and does not implement any special
interfaces or extend any base classes.
public class P2PNode {
 private final Key key;
 public P2PNode(Key key){…}
 public void addPeer(P2PNode peer){…}
 public void route(Key key, Message
msg){…}
 public String getLog(){…}
 public void stop(){…}
 public void start(){…}
 public Key getKey();
}

Figure 3: The P2PNode implementation.
The programmer obtains a reference to the
IRafdaRunTime interface provided by the local RRT
using the static method RRT.get(). Figure 4 shows how
another programmer could expose an instance of this
class as part of some P2P application. The programmer
wishes to expose the functionality of the node using three
different interfaces — a management interface for
controlling the node remotely, a monitoring interface and
an interface exposing the P2P functionality. These
interfaces are named IManage, IMonitor and IP2PNode
respectively. Each of these interfaces is associated with
the names Manage, Monitor and P2P respectively. It is
assumed that these are well known names that are used
by client programmers to access the services.
public interface IManage {
 void stop();
 void start();

}
public interface IMonitor {
 String getLog();
}
public interface IP2PNode {
 public void addPeer(P2PNode peer);
 public void route(Key key, Message msg);
 public Key getKey();
}
public class ExposeP2PNode {
 public static void main(String[] args) {
 P2PNode p2pNode = new P2PNode(
 new Key());
 IRafdaRunTime rrt = RRT.get();
 rrt.expose(p2pNode, IManage.class,
 "Manage");
 rrt.expose(p2pNode, IMonitor.class,
 "Monitor");
 rrt.expose(p2pNode, IP2PNode.class,
 "P2P");
 }
}

Figure 4: Exposing an instance of class P2PNode.

5. CLIENT-SIDE DISTRIBUTED OBJECT
PROGRAMMING USING THE RRT
Exposed objects may be accessed either using their
service names or Globally Unique Identifiers (GUIDs)
allocated to the associated services at exposure time.
Both of these may be discovered dynamically by clients.
Typically, an application will expose a small collection
of objects with well known names thus avoiding the need
for dynamic GUID discovery. Exposed objects may be
addressed using URLs of the following form:
http://<host>:<port>/<serviceName|GUID>
e.g. http://host.rafda.org:5001/P2P

As stated previously, the RRT implements an interface
called IRafdaRunTimeRemote. A subset of this interface,
through which client-side programmers access remotely
accessible objects, is shown in Figure 5. The omitted
methods are used to perform remote instantiation of
objects, to migrate objects between address-spaces and to
control automated object distribution based on
programmer-defined policies.
public interface IRafdaRunTimeRemote {
 Object getRemoteReference(
 String serviceName);
 /* Other methods omitted */
}

Figure 5: A subset of the
IRafdaRunTimeRemote interface.

The IRafdaRunTimeRemote interface provided by an
RRT contains a method called getRemoteReference() that
permits a handle to be obtained to any object exposed by
that RRT. As will be shown later, the handle returned
may be a reference to a proxy for a remote object, a local
copy of the object or a hybrid of the two (a smart proxy).
The getRemoteReference() method takes an argument
that identifies the service name with which the requisite
object was exposed. The name can be either the
programmer-defined service name or the automatically
generated object GUID.

The object returned by getRemoteReference() can be cast
to the remote type of the exposed object. Figure 6 shows
the client-side code necessary to use the P2PNode
exposed in Figure 4. The object returned by
getRemoteReference() is cast to type IP2PNode which
was the interface used as its remote type.
Programmers can obtain a remote reference to the
IRafdaRunTimeRemote interface provided by a remote
RRT based on the socket address to which that RRT is
bound using the static RRT.getRemote() method.
public class P2PClient {
 InetSocketAddress isa = new
 InetSocketAddress("host.rafda.org",
5001);
 IRafdaRunTimeRemote remoteRRT =
 RRT.getRemote(isa);

 public void deliver(Key dest, Message
msg)
 throws Exception {
 IP2PNode node = (IP2PNode)
 remoteRRT.getRemoteReference("P2P");
 node.route(dest, msg);
 }
}

Figure 6: Client side code accessing a remote
P2PNode.

5.1 Browsing Exposed Objects
As described, distributed applications are bootstrapped
by accessing objects based on their service names. The
RRT provides a web interface that can be accessed using
a conventional web browser to obtain human-readable
information about exposed objects. Each exposed service
is listed, showing the remote type, the URL, the real class
of the exposed object and a string representation of the
service object.

Figure 7. Browsing an RRT.

The links in the URL column refer to service-specific
pages that provide:

• A list of the methods provided by the remote
type.

• A list of the methods and fields provided by the
exposed object’s class.

• The current state of these fields in the exposed
object.

By default, RRT instances show information only about
the remote types. The information about the underlying
exposed object is not available unless this functionality is
explicitly enabled in the RRT configuration.

5.2 Failure
Distributing an application introduces new failure modes.
The RRT treats network failure differently from
application failure. Application exceptions are always
thrown back to clients as they are not the concern of the
RRT. Distribution-related exceptions are either handled
directly by the RRT or propagated back to clients
according to the RRT configuration.
Distribution-related exceptions are wrapped in unchecked
exceptions. In Java, methods do not need to declare
statically that they throw unchecked exceptions and
callers are not forced to define handlers. Thus, there are
three approaches to handling distribution-related errors
that are open to developers:
1. Configure the RRT to handle all distribution-related

exceptions internally. If failure occurs, default values
(null, zero, etc.) are returned. No application level
distribution-related exception handlers need to be
defined in this case.

2. Configure the RRT to propagate all distribution-
related exceptions to the clients but do not define
application level exception handlers. If failure
occurs, the uncaught exception causes the RRT
instance to terminate immediately.

3. Configure the RRT to propagate all distribution-
related exceptions to the clients and define
application level exception handlers statically at any
points in the application where failure can occur. If a
distribution-related exception occurs, it is handled in
a programmer-defined manner.

Systems such as Java RMI require programmers to
handle any potential distribution-related errors explicitly
at any points where remote calls are performed. In
contrast, by providing a multiplicity of approaches to
handling failure, the RRT simplifies application
prototyping as programmers can ignore the possibility of
distribution-related exceptions during initial
development. The RRT offers programmers the
flexibility to introduce error handling code into
applications only where it is deemed necessary.

6. CONTROLLING OBJECT
TRANSMISSION POLICY
As described in the introduction, using traditional
middleware, the distribution topology of an application
determines the object transmission semantics that are
employed during remote method calls. For example, in
Java RMI [1], only classes that implement the
java.rmi.Remote interface and meet certain other criteria
may be exposed for remote access. Such objects are
always passed by-reference if they are accessed across an

address space boundary. All other objects that traverse
address-space boundaries must be instances of classes
that implement the java.io.Serializable interface and
these objects are always passed by-value. Similar
problems can also be observed in Microsoft .NET
Remoting [2], CORBA [3] and Web Services [20].
Within a single application, it may be required that
instances of some class are transmitted by-value or by-
reference depending on the circumstances. In most
existing middleware systems this would require that
different classes be created. Further, hybridisation is
sometimes desirable, whereby some object state is cached
at a client whilst other state is remotely accessed. Using
the RRT’s transmission policy framework, the
application programmer can employ the most
advantageous object transmission policy for the
circumstances.
In addition to providing the programmer with the
flexibility to control the application semantics, the
dynamic specification of policy independently of class
implementation allows the roles of library class
programmer and application programmer to be separated.
The library class programmer is concerned only with the
functional requirements. Thus, library classes make fewer
assumptions about the environment in which they are to
be exposed. The application programmer has the freedom
to apply any parameter passing policy to instances of any
class, increasing the likelihood that any given class will
be reusable in another context.

6.1 Defining Transmission Policy
By default the RRT passes objects by-reference when
interacting with other RRTs and by-value when
interacting with standard Web Service clients. However,
the transmission policy framework described here
provides a mechanism to allow the programmer to
specify dynamically how objects should be transmitted
during inter-RRT remote method calls. This is achieved
using the local RRT’s transmission policy manager, the
interface to which is shown in Figure 8. This
TransmissionPolicyManager interface provides methods
through which the six different types of supported policy
rule can be set. Methods to evaluate the currently active
transmission policy are omitted. Programmers obtain a
reference to the TransmissionPolicyManager interface
using the getTransmissionPolicyManager() method
provided by IRafdaRunTime.
public interface TransmissionPolicyManager
{
 /* Setting transmission policies */
 void setMethodPolicy(
 Method methodIdentifier,
 PassingMechanism passingMechanism,
 int depth, int priority);
 void setReturnPolicy(
 Method methodIdentifier,
 PassingMechanism passingMechanism,
 int depth, int priority);
 void setArgumentPolicy(
 Method methodIdentifier,
 int argumentNumber,

 PassingMechanism passingMechanism,
 int depth, int priority);
 void setClassPolicy(
 Class classIdentifier,
 PassingMechanism passingMechanism,
 int priority);

 /* Caching */
 void setFieldToCache(
 Field fieldIdentifier,
 Method getMethodIdentifier,
 Method setMethodIdentifier);
 void setMethodToCache(
 Method methodIdentifier);

 /* Other methods omitted */
}

Figure 8: The TransmissionPolicyManager interface.
The six types of rule supported by the transmission
policy framework are as follows:

• Method policy rules are associated with methods as a
whole and are set using the setMethodPolicy()
method. This method specifies how method
arguments should be transmitted. For example, a
method policy rule might specify that during a call to
a particular method, the arguments should all be
passed by-reference. The parameters to
setMethodPolicy() include the identity of the method
to which the policy applies, the policy to be applied
(using constant values of the enumeration type
PassingMechanism, which is not shown here), the
depth to which the closure of the parameters should
be traversed in the case of pass-by-value, and a rule
priority (discussed below).

• Return policy rules, set using the setReturnPolicy()
method, are also associated with methods but control
how the return values from methods should be
transmitted. For example, a return policy rule might
specify that the return value from a particular
method should be passed by-value. The method
policy rule and return policy rule associated with a
single method are independent of each other and
need not specify the same behaviour. The
setReturnPolicy() method takes the same arguments
as the setMethodPolicy() method which apply to the
return value rather than the parameters.

• Argument policy rules, set using the
setArgumentPolicy() method, are associated with
individual method arguments and indicate how
particular arguments within a method signature
should be transmitted. They allow the programmer
fine-grained control over the policy that is applied to
each of the arguments of a method. The parameters
to this method are similar to the setMethodPolicy()
method but an extra parameter is required to specify
the parameter to which the policy applies.

• Class policy rules, set using the setClassPolicy()
method, are associated with classes rather than
methods and indicate how instances of particular
classes should be transmitted. For example, a class
policy rule might specify that all instances of a

particular class should be passed by-value. Class
policy rules are applied based on the actual classes of
the transmitted objects, rather than the classes
specified in the method signature, which may be
super-classes of the arguments. Class policy rules do
not take a depth parameter since the object classes
they reference may have a class policy associated
with them.

• The setFieldToCache() method is used to indicate
that a particular field in a particular class should be
cached in remote references to instances of that
class. The parameters to this method comprise the
identity of the field to cache and the identities of the
accessor methods of that field, which are also
cached. Calls to these accessor methods are not
propagated across the network but instead access the
locally stored copy of the field.

• The setMethodToCache() method is used to indicate
that a particular method in a particular class should
be cached in remote references to instances of that
class. Any calls to cached methods will be performed
locally with respect to the caller.

An application programmer may specify or change policy
rules at run-time, thus allowing for dynamic adaptation of
the application. To specify policy rules statically, a
library class programmer can specify the policy rules in
the class initialization code. The policy manager can also
be configured to read and write policy rules stored in
XML files, allowing the programmer to specify policies
completely independently of the application source, as
well as library class source.
Clearly, there is scope for contention between policy
rules. For example, if an instance of class X is passed as a
parameter to method m() then a class policy rule may
indicate that instances of X are passed-by-value while a
method policy rule simultaneously indicates that
parameters to method m() are passed-by-reference. As
shown in Figure 8, each rule has a particular priority.
When contention occurs, the highest priority rule that
applies is chosen over all others. An order of precedence
is also imposed on policy rules based on their types to
allow the framework to choose between rules of different
types with the same priority. This approach to rule
priority and precedence ensures that the temporal order in
which rules are specified is not relevant, which is
important given that policy rules may be defined
dynamically in arbitrary application classes at any time
during execution.

6.2 Revisiting the Example
In our peer-to-peer example introduced earlier, a
Message might be transmitted by-value to an end-point
using the route method on a P2PNode. However, if some
of these objects are very large, the client programmer
may wish to transmit them by-reference. Figure 9 shows
how the deliver() method from Figure 6 may be modified
to use the transmission policy manager to send those
Message objects which exceed some maximum size by-
reference, and smaller Message objects by-value.

public void deliver(Key dest,
 Message msg) throws Exception {
 IP2PNode node = (IP2PNode)
 remoteRRT.getRemoteReference("P2P");
 TransmissionPolicyManager tpm =

localRRT.getTransmissionPolicyManager();
 if (message.getSize() > MAX) {
 tpm.setClassPolicy(Message.class,
 BY_REF, 0);
 } else {
 tpm.setClassPolicy(Message.class,
 BY_VALUE, 0);
 }
 node.route(destination, message);
}

Figure 9: The modified deliver() method.
In the P2P application, instances of the Key class are
immutable. Figure 10 illustrates the code necessary to
instruct the transmission policy manager to make proxies
to instances of class P2PNode cache the field key. This
code fragment also specifies a class policy rule indicating
that instances of class Key should be passed by-value. On
the client-side, the call to getRemoteReference() will
yield a proxy of the remote P2PNode object which can be
cast to the remote type IP2PNode. A client holding such
a proxy can access the key value of the remote P2PNode
without incurring the cost of a remote call.
Method getKeyMethod = P2PNode.class.
 getDeclaredMethod("getKey", null);
Field keyField = P2PNode.class.
 getDeclaredField("key");
tpm.setFieldToCache(keyField,
 getKeyMethod, null);
tpm.setClassPolicy(Key.class, BY_VALUE,
0);

Figure 10: Defining a smart proxy for P2PNode
objects.

7. IMPLEMENTATION ISSUES
The exposure of an object requires several steps. Firstly a
service adaptor of the appropriate class is created. A
service adaptor is the boundary between the application
object and the Web Services infrastructure. There is one
service adaptor class associated with each application
class and one instance of a service adaptor class is
created and associated with each exposed object. Thus
there is a one-to-one correspondence between service
adaptors and services. A service map maps from names
and GUIDs to the service adaptors associated with the
particular services. The RRT provides a generic service
adaptor implementation that employs reflective
techniques to invoke methods on exposed objects.
Alternately, the RRT can automatically generate
customized service adaptor classes which allow the RRT
to perform method calls on them without using reflection.
Service adaptor generation incurs a one time cost and
obviates the need for reflection during normal execution.
Generated code is cached in the RRT for the duration of
the JVM lifetime but the RRT can be configured to cache
generated code across multiple runs of the distributed
application.

7.1 Serialisation
During the object marshalling phase of a remote method
call, the RRT will determine which object transmission
semantics to employ. If pass-by-value semantics have
been chosen, the RRT will serialize the closures of the
arguments. A generic serializer that can handle both
primitive SOAP types, such as ints and strings, and
complex types is provided. The RRT can be configured
to automatically generate per-class serializers that are
tuned to serialize instances of a particular application
class.
Support for the transmission of arbitrary types is
provided through an extension to Web Services
semantics, which is incompatible with standard Web
Services. The RRT employs the extended semantics
when both client and server are RRT-based to allow full
support for the transmission of sub-types. When the RRT
is used in conjunction with conventional Web Services
technology, standard Web Services semantics are
adopted. The RRT determines whether to employ
extended semantics on a per-call basis.

7.2 Implementing Remote References
The RRT implements remote references using remote
identifiers, called RAFDA Interoperable Object
References (RafdaIORs), and proxy objects. A RafdaIOR
uniquely identifies an exposed service in the distributed
system and consists of:

• The socket address of the RRT instance exposing the
object. When remote method calls are performed on
the object, this address determines the RRT instance
to which the remote method call requests are sent.

• A string representation of a 160-bit Universally
Unique Identifier (UUID) that identifies the Web
Service associated with the exposed object.

• An instance of java.lang.Class capturing the remote
type associated with the object, which was specified
at exposure time. This remote type is used client-side
during proxy generation and indicates which
methods provided by the object’s class will be
remotely accessible.

• An instance of java.lang.Class representing the class
of the exposed object. This is identified as the real
class to differentiate it from the object’s remote type.
This class is used during proxy generation.

• A list of the fields to be cached in any proxy objects
associated with the exposed object, which is used
during proxy generation.

• A list of the methods to be cached in any proxy
objects associated with the exposed object, which is
also used during proxy generation.

• The current values of any cached fields.
To pass objects by-reference, the RRT serializes the
associated RafdaIORs by-value. On deserialization, the
client-side RRT uses the RafdaIORs to create and
initialize appropriate proxy objects. Proxies, like service

adaptors and serializers, are automatically generated as
required by the RRT. From the client’s perspective, the
proxy class is the same type as the remote type specified
in the RafdaIOR. For every method in the remote type,
the proxy implements an associated method with the
same signature, which calls into the RRT to make a
remote call to the exposed object on behalf of the client.
Application objects cannot make use of RafdaIORs
directly; they can only use references to other application
objects or correctly typed proxy objects that have been
initialized with the RafdaIORs. Therefore, when
RafdaIORs are received by RRTs during remote method
calls, the RRTs convert them into references that the
application can use.
Initially, the RRT determines whether the referenced
object exists in the local address space and if it does then
a direct reference to the object is passed to the
application. If not, the RRT determines whether a proxy
to the referenced object has already been instantiated in
the local address-space and, if the proxy exists then a
reference to it is passed into the application. If a proxy
does not already exist, then an instance of the associated
proxy class is instantiated, automatically generating the
class if necessary. This approach avoids the unnecessary
use of remote references that loop-back into the same
address spaces or the instantiation of more proxies than
necessary.

7.3 Smart Proxies
All RRT proxy objects are smart proxies, meaning that
they are capable of caching some of the exposed objects’
fields or code. RafdaIORs contain smart proxy
information indicating which fields and methods should
be cached in the proxy and from this, an appropriate
proxy class can be generated. The proxy class inherits the
cached fields and methods from the remote type and the
cached fields’ get() and set() methods are modified to
access the fields locally rather than invoke the equivalent
methods on the exposed object. Non-cached methods are
overridden with proxy versions while cached methods are
not overridden, leaving the original functionality in place.
A new proxy class is generated for each combination of
cached fields and methods in use within the distributed
application.
Immediately before a RafdaIOR is serialized, the RRT
records the current values of the cached fields in it and
they are serialized as part of the RafdaIOR. On
deserialization, the cached fields in the proxy object are
initialized automatically.
The RRT does not provide any form of automatic
coherency control and so the programmer has
responsibility for ensuring that application semantics
remain as expected. Caching is particularly useful when
object fields are known to be immutable.

7.4 Automatic Exposure
The RRT can export references to objects that have not
been exposed to remote access, for example, as return
values or in the closure of returned objects. The RRT

performs automatic exposure of any such referenced
objects on demand. By default, the RRT exposes objects
using their own classes as remote types, with
automatically generated service names. However, the
concept of remote types stems from the fact that it is not
always desirable to expose all methods of a given object
to remote access. Programmers can therefore associate
particular remote types with particular application classes
using the associateClassWithRemoteType() method
provided by the IRafdaRunTime interface.

7.5 Remote Method Call Cost
The cost of remote method calls in the RRT prototype
was compared with the equivalent calls using other
middleware systems. A test application was created then
distributed using multiple different middleware
technologies.
Tests were run on a two machine network. The first
machine, designated the “server”, was used to execute
the server-side applications that exposed objects to
remote access. It contained a 2.7GHz Pentium 4 with
512MB RAM. The second machine, designated the
“client”, was used to execute the client-side applications
that performed the remote calls. It contained a 1.2GHz
Pentium 3 with 256MB RAM. The machines were
connected using an isolated 100Mb/s Ethernet. Since the
.NET framework executes only under the Windows
operating system, all tests on both machines were run
under Windows XP Service Pack 2, fully patched, with
only default services running.
The first test evaluates the cost of a remote method call to
a method that takes no arguments, performs no
computation and returns no results. This test determines
the lower bound of call cost, since there are no arguments
or return values to pass, meaning no marshalling is
performed. The clock resolution provided by the test
machines is 10ms, which is considerably greater than the
average method call time. Therefore the test application
performs 100 batches of 4000 method calls using each
middleware system, resulting in a total run-time of
between two and twenty minutes wall clock time. The
system clock is used to measure the time taken to
perform each of the 100 batches of method calls. Apache
Axis received special treatment as it runs around an order
of magnitude slower than all other systems. Each batch
performs only 400 method calls, rather than 4000, in
order to achieve reasonable total test execution time.
The second test was run under the same conditions as the
first test but introduces arguments that require
serialization. The method called by this test application
takes ten arguments, all of which are passed by-value.
The arguments are all instances of the same complex
type, which contains a 10 character string, a 25 character
string and an integer. In all tests the arguments are
initialized identically. Table 1 shows the average time in
milliseconds for a remote method call in each test.

Table 1: Time in milliseconds for a remote method
call.

Middleware
Without

Serialization
With

Serialization
Java RMI
(J2SE 1.5)

0.26 0.43

Microsoft .NET
(C# using

TCP channel)
0.44 0.86

CORBA
(J2SE 1.5 ORB)

0.87 1.41

RRT 2.10 2.63

Microsoft .NET
(C# using

SOAP channel)
2.94 5.07

Apache Axis
(1.2 final)

12.60 20.88

A clear difference can be seen between the middleware
systems that use XML-based SOAP as their transport
protocol (the RRT, Apache Axis and the .NET
framework employing SOAP channels) and those that
use binary protocols (Java RMI, CORBA and the .NET
framework employing TCP channels). The RRT
outperforms both its SOAP-based counterparts; the
application employing the RRT ran in around 75% of the
time taken by the equivalent .NET application and
around 15% of the time taken by the application
employing Apache Axis. When serializing a large
number of arguments, the RRT is again the quickest of
the SOAP-based systems. During this test, the RRT used
cached per-class serializers in order to optimize the
serialization process, giving it a large advantage over the
other systems, which do not generate such serializers.
The applications using Java RMI, CORBA and TCP-
based .NET all executed two to five times as quickly as
the RRT. It should be noted that there are many
implementations of the CORBA specification and that
the one tested is that supplied with the J2SDK 5.0. It is
reasonable to suggest that commercial ORBs may be
better tuned for performance than this implementation
and that the call time could be reduced more in line with
the other systems that employ binary protocols. While the
middleware systems that employ binary protocols
outperform the RRT, the binary approach has
disadvantages in that it does not provide the meta-data
and opportunities for validation that XML does. SOAP
can be considered the safer approach as the data is self-
describing and less prone to problems with type safety
[4].
SOAP-based systems offer a high degree of
interoperability and a transport protocol with multiple
advantages over binary approaches, as discussed above.
Of the SOAP systems tested, the RRT prototype
performed best, indicating that the advantages provided
by the RRT’s approach to application creation need not
come at the cost of degraded performance.

7.6 Implementation of the Transmission
Policy Framework
The policy framework is implemented using six
associative stores, one for each rule type. Each
associative store records argument policy rules and maps
from keys to prioritized lists of policy rules. The keys are
deterministically generated from the identity of the class
and method being called and the argument numbers
(where appropriate). To determine if an argument policy
exists, the policy manager looks up the associative stores
in order and if a mapping from the specified key exists,
then the dominant argument policy rule is used. This
approach is both simple and efficient.
The policy framework must be queried and the policy
rules evaluated each time objects are marshalled,
affecting remote method call cost. This cost is heavily
dependent on the particular policy rules that are
associated with the object to be marshalled. The
transmission policy framework is an integral part of the
RRT and so cannot be switched off under normal
circumstances. To determine the cost of transmission
policy evaluation, a special build of the RRT that
employed only pass-by-reference semantics was created.
A test application that performed multiple calls to a
remote method was created. This method took one
argument and returned one return value, both by-
reference. The test application was run using the
specially built RRT with the transmission policy
framework removed and again using the full RRT. In the
former case, the special RRT was hard-coded to pass
objects by-reference, and in the latter case, the
transmission policy consisted of a method policy rule and
a return policy rule stating that pass-by-reference
semantics should be employed. The parameter passing
semantics were therefore the same for each run of the
application.
The cost of a remote call when the policy evaluation
phase was performed was around 2% to 3% greater than
the cost of a remote call without the evaluation phase.
The introduction of additional arguments has no effect on
the proportionate cost of the policy evaluation phase as
there is a one-to-one correspondence between the number
of objects marshalled and the number of transmission
policy evaluations performed. The cost of dynamically
evaluating policy is subsumed by the cost of marshalling
and serialising the objects for remote method call. It is
believed that the benefits gained outweigh the expense.

8. CONCLUSIONS
The RAFDA Run-Time (RRT) is a middleware designed
to improve the software engineering process for
implementers of new distributed systems and
monitoring/management infrastructures aimed at existing
applications. The work described in this paper has
identified a number of key limitations exhibited by
standard middleware systems and had shown how the
mechanisms provided by the RRT addresses each of
these limitations.

Middleware systems typically require the programmer to
decide at application design time which classes will
support remote access and to follow a number of steps in
order to create the remotely accessible classes. The
programmer must decide the interfaces between
distribution boundaries statically then determine which
classes will implement these interfaces and thus be
remotely accessible. This hard-coding of the distribution
boundaries requires that the application programmer
know if instances of a class will be remotely accessed
before implementing that class.
Using the RRT, programmers can adopt a new
methodology when developing and deploying distributed
Java applications [23]. Application logic can be designed
and implemented completely independently of
distribution concerns, easing the development task and
giving considerable flexibility to alter distribution
decisions late in the development cycle.
The RRT permits instances of arbitrary classes within an
application to be exposed for remote access. This is
achieved through the dynamic exposure of a standard
Web Service for the exposed object and the
implementation of a mapping from remote calls on the
Web Service to method calls on the exposed object. The
RRT introduces pass-by-reference semantics to standard
Web Services allowing methods on exposed objects to be
called remotely.
In contrast to conventional middleware systems, in order
to expose an instance of a class using the RRT, it is not
necessary that the class implement any special interfaces
or extend any special classes. Objects can be exposed to
remote access using any interface with which they are
structurally compliant. Thus the application programmer
can implement the classes providing core application
functionality without regard for the remote accessibility
of the instances of those classes. Decisions about the
remote accessibility of a particular object can be delayed
until much later in the design cycle, even until run-time.
Monitoring and management infrastructure that views
and controls application state from another address space
can be created without modification, or even access, to
the application’s original source code.
Another limitation of existing middleware systems is that
the parameter passing semantics is tightly bound to the
distribution of the application and thus changes to the
distribution of an application may potentially alter the
application semantics. The RRT addresses this limitation
by providing a framework for the static and dynamic
specification of object transmission policy. Using this
framework the application programmer can employ the
most advantageous object transmission policy for the
particular circumstances. This increases flexibility and
allows the programmer to control the application
semantics. By specifying object transmission policy
independently of class implementation, the roles of
library class programmer and application programmer are
separated. Library implementers need make fewer
assumptions about the ways in which their classes will be
used while application programmers can use class

instances in the most appropriate way, as dictated by the
particular situation. Before making a method call the
application programmer can configure the transmission
policy for the individual method parameters.
The transmission policy framework also supports the
specification of smart proxies which increase the
flexibility of exposed object without imposing
implementation constraints on the programmer. This
mechanism allows arbitrary field values of an object to
be cached in the same address space as a remote
reference (proxy) to that object. Thus a call to an
accessor method on the proxy yields the cached field
value without the execution of a network call.
The RRT employs dynamic code generation and
compilation techniques to create the ancillary code
necessary to allow dynamic object exposure. It is capable
of marshalling instances of any class either by-reference
or by-value and complete control over this is given to the
programmer in order to separate parameter passing
semantics completely from application distribution.
The RRT provides significant advantages to
programmers of distributed applications, when compared
to industry standard middleware systems, simplifying the
software engineering process, decreasing the opportunity
for errors in distribution code and increasing code reuse
through better flexibility.
The RRT has been used in the construction of a P2P
routing network in which the application code can be run
in both a fully distributed environment and in a
centralised simulation environment without modification.
The RAFDA system can be downloaded from
http://rafda.cs.st-and.ac.uk/.

9. REFERENCES
[1] Microsystems, Sun, Java™ Remote Method

Invocation Specification. 1996-1999.
[2] Corporation, Microsoft, .Net Framework. 2004.
[3] OMG, Common Object Request Broker

Architecture: Core Specification. Vol. 3.0.3.
2004.

[4] Lievens, D, An Investigation into the
Mechanisms Provided by CORBA to Preserve
Strong Typing. 2001, University of Glasgow.

[5] Philippsen, M. and Zenger, M., JavaParty -
Transparent Remote Objects in Java.
Concurrency: Practice and Experience, 1997.
9(11): p. 1225-1242.

[6] Launay, P. and Pazat, J-L., A Framework for
Parallel Programming in Java. 1997, IRISA.

[7] Tilevich, E. and Smaragdakis, Y. J-Orchestra:
Automatic Java Application Partitioning. in
European Conference on Object-Oriented
Programming (ECOOP). 2002. Malaga.

[8] Spiegel, A., Automatic Distribution of Object-
Oriented Programs, in FU Berlin, FB
Mathematik und Informatik. 2002.

[9] Caromel, D. , Klauser, W. and Vayssiere, J.,
Towards Seamless Computing and

Metacomputing in Java. Concurrency Practice
and Experience, 1998. 10(11-13): p. 1043-1061.

[10] Fahringer, T. and Jugravu, A., JavaSymphony: A
new programming paradigm to control and to
synchronize locality, parallelism, and load
balancing for parallel and distributed
computing. Concurrency and Computation:
Practice and Experience, 2002. 17(7-8): p. 1005
-1025.

[11] Lavender, R. G. and Schmidt, D., Active Object
- An Object Behavioral Pattern for Concurrent
Programming, in Pattern Languages of
Program
Design 2, J. Vlissides, J. Coplien, and N. Kerth,
Editors. 1996, Addison-Wesley.

[12] JBoss Inc., JBoss Enterprise Middleware System
(JEMS). 2005.

[13] W3C, SOAP Version 1.2 Part 0: Primer. 2003.
[14] Fahringer, T. JavaSymphony: A System for

Development of Locality-Oriented Distributed
and Parallel Java Applications. in IEEE
International Conference on Cluster Computing,
CLUSTER 2000. 2000. Chemnitz, Germany.

[15] Sun Microsystems, Java™ Remote Method
Invocation Specification. 1996-2005.

[16] Obermeyer, P. and Hawkins, J., Microsoft .NET
Remoting: A Technical Overview. 2001,
Microsoft Corporation.

[17] Spiegel, A. Objects by value: Evaluating the
trade-off. in PDCN '98. 1998. Brisbane,
Australia: ACTA Press.

[18] Dearle, A, Kirby, G N C, Rebón Portillo, A J
and Walker, S, Reflective Architecture for
Distributed Applications (RAFDA). 2003.
http://rafda.cs.st-and.ac.uk/

[19] Rebón Portillo, Á J, Walker, S, Kirby, G N C
and Dearle, A. A Reflective Approach to
Providing Flexibility in Application
Distribution. in 2nd International Workshop on
Reflective and Adaptive Middleware,
ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003). 2003. Rio de
Janeiro, Brazil: Pontifícia Universidade Católica
do Rio de Janeiro.

[20] W3C, Web Services Architecture. 2004.
[21] Apache Software Foundation, Apache Axis.

2004. http://ws.apache.org/axis/
[22] Walker, S, A Flexible, Policy-Aware

Middleware System. PhD Thesis Submission,
School of Computer Science. University of St
Andrews. 2005.

 [23] Kirby, G N C., Walker, S. M., Norcross, S. and
Dearle, A. A Methodology for Developing and
Deploying Distributed Applications. in 3rd
International Working Conference on
Component Deployment (CD 2005). 2005.
Grenoble, France.

