
March 24, 1995 1 DRAFT

Casper : a Cached Architecture Supporting Persistence

Francis Vaughan, Tracy Lo Basso, Alan Dearle,
Chris Marlin, Chris Barter

{francis,tracy,al,chris,marlin}@cs.adelaide.edu.au

Department of Computer Science
The University of Adelaide
G.P.O. Box 498, Adelaide

South Australia 5001
Australia

Abstract

Persistent object systems greatly simplify programming tasks since they hide the
traditional distinction between short-term and long-term storage from the
applications programmer. As a result, the programmer can operate at a level of
abstraction in which short-term and long-term data are treated uniformly. It is
important that such a persistent system be capable of being used concurrently;
such concurrent usage may arise because of parallel process facilities in the
programming language concerned, or because of multiple users of the same
persistent store. Concurrent access has not been satisfactorily supported in
existing persistent store implementations and a number of significant research
issues remain to be investigated. This paper describes an architecture that
supports concurrent access to a shared persistent object store. The persistent
distributed architecture represented by our system exploits a number of the
facilities provided by the Mach distributed operating system

1. Introduction

Persistent programming is a relatively new paradigm that makes data intensive
application programming significantly easier. The idea behind persistence
[Atkinson, et al. 1983] is a simple one: data in a system should be able to persist
(survive) for as long as that data is required. Orthogonal persistence means that
all data may be persistent and that data may be manipulated in a uniform manner
regardless of the length of time it persists. In other words, the right for data to
survive for a long (or short) time is independent of the type of data. Programs
manipulating data do so in a uniform manner, whether the data is short or long
lived.

March 24, 1995 2 DRAFT

Conventional programming languages require the programmer to explicitly
manage persistent data: to save data, the programmer must traverse the in-
memory data structures and create an isomorphic structure in the file system.
Similarly when that data is later required, the reverse process must be executed:
the data in the file system must be traversed and the in memory structure re-
created. Furthermore, to protect the integrity of the data, great care in
programming is needed; for example, the modification of a data structure in the
file system must avoid corruption even in the event of power failures or system
crashes.

Using a traditional database avoids many of these problems, for example,
updates to persistent data is controlled by carefully designed transaction
mechanisms. However, there is a hidden cost with database systems: the
representation of data in the data base seldom matches the type system used by
the programming language. Therefore the programmer must still manage the
conversion of data from one form into another. This problem is sometimes
called the impedance mismatch problem [Bancilhon and Maier 1989].

Persistent programming eliminates impedance mismatch by providing a high
level language in which data of arbitrary longevity (short or long) may be created,
stored and manipulated. Persistent systems support long lived data objects of
arbitrary complexity – such data objects may not only outlive instantiations of the
program that created them, but also outlive versions of the program, or even the
useful life of the program in all its versions.

This paper describes an architecture designed to support applications written in
persistent programming languages. The architecture maintains an orthogonally
persistent programming environment that is coherent across a number of clients
and is supported by a resilient object store. It is capable of supporting the
majority of persistent, algorithmic, object-oriented and applicative programming
languages currently in use, as well as being sufficiently flexible to be used as an
experimental platform. However, the original motivation for constructing the
architecture was to support the persistent language Napier88 [Morrison, et al.
1989].

The model of persistent store supported by Casper is a conceptually infinite,
shared and resilient data store. The aim of the architecture described in this paper
is to support concurrent access to the persistent store by users on workstations
connected by a local area network. This model of persistence has lead us
naturally to a design which provides a persistent store abstraction similar to
Distributed Shared Memory [Philipson, et al. 1983] with all clients sharing the

March 24, 1995 3 DRAFT

same address space (the persistent store). The needs of persistent programming
make particular demands upon the maintenance of this address space beyond the
conventional needs of coherency in DSM. For example, the ability to maintain a
self consistent and recoverable state in the stable store is an attribute normally
associated with databases but one central to the success of our design.

1.1. Napier88

One difference between Napier88 stores and traditional database systems is that
in addition to the usual passive data the stable store contains meta data such as
procedures and functions [Atkinson and Morrison 1985]. This allows Napier88
stores to be used as repositories for programs. It also allows data to be
encapsulated within the closure of functions and procedures providing a level of
abstraction not available in relational systems. Such functionality permits the
persistent programming environment to subsume the roles of traditional file and
database management systems.

The state of all processes executing within the store are also part of the persistent
environment. Thus should some component fail due to a hardware malfunction
or power failure the user processes executing in the system will continue
execution upon restart.

Another difference between Napier88 systems and database management
systems is that database management systems require a sequence of update
operations by a user process to be contained within an atomic transaction. That
is, either all modifications are completed, or none are made. Traditionally, such
atomicity is achieved by either locking portions of the database, or duplicating
portions, so that while a transaction is in progress, no other user process may
view modified data [Eswaran, et al. 1976] . Casper does not force all data
accesses to be serialised; instead, the grain of atomicity is that of the operations in
the Napier88 language.

The Napier88 language was developed by the PISA project [Atkinson, et al.
1986] as a test-bed for experiments in type systems, programming
environments, concurrency, bulk data objects and persistence. The Napier88
type system is polymorphic and evolved at the same time as Cardelli and
Wegner [Cardelli and Wegner 1985] published their work. Many of the ideas are
related to theirs and some have been borrowed from them. The philosophy is that
types are sets of values from the value space. The possibility of static type
checking is retained wherever possible. However, dynamic projection out of the
types any and environment [Dearle 1989] permits the dynamic binding required

March 24, 1995 4 DRAFT

for true orthogonal persistence. Napier88 is unusual in that, like its predecessor
PS-algol, it is a store-based language with higher order procedures and block
retention [Berry 1971]. The Napier88 system consists of the language and its
persistent store. This persistent store is populated with objects, some of which
are used to support itself. Examples of such tools include an object browser, a
window manager and the Napier88 compiler, which may be called dynamically
to provide ad-hoc polymorphism and reflection.

1.2. Mach

We have implemented Casper using the Mach operating system [Acceta, et al.
1986]; Mach provides a suitable base for the system's implementation through its
support for programmable page fault handling, inter-process communication,
exception handling and multiple threads.

Under Mach, the user is permitted to provide a process called an external pager
which services page faults. If an external pager is associated with a user process,
the Mach kernel will forward page fault exceptions to that external pager, which
will return the required data (in the case of a read fault) or may write the data to
some stable medium (for pages removed from the client's physical memory).
This external pager mechanism implements most of the functionality needed to
support the coherent persistent address space described later.

The inter-process communication (IPC) structure available in Mach permits a
transparent interface to be built, independent of the physical location of the
communicating parties.

Mach supports more than one thread of execution in a single virtual address
space, which is exploited by the architecture described in this paper. We have
found this to be especially useful in building asynchronous communication
protocols, such as our cache coherency protocol.

2. Implementation structure

2.1. Overview

The architecture of our persistent system is depicted in Figure 1. A number of
clients execute against a shared stable store using a coherency protocol that
guarantees data integrity; client code executes in an environment that is robust
and guarantees correct execution regardless of the failure of parts of the system.
Each client has an interface to the Stable Store Server, which gives access to the
stable persistent store; the interface at the client is called the Client Request
Handler. In addition, each client contains a thread executing the users code

March 24, 1995 5 DRAFT

(compiled Napier88 programs) and a page cache which holds copies of pages
required by the user program. Within a client, coherency is maintained by the
Client Request Handler and the external pager.

...

Stable Store
Manager

Stable Store
Garbage Collector

Client nClient 1

Stable Store Server

External Pager

Client
Request
Handler

External Pager

User Program User Program

Page Cache Page Cache

Stable Medium

Server Request Handler

Client
Request
Handler

Figure 1. A distributed persistent architecture.

A stable store is defined by Lampson [Lampson 1981] to be a set of objects
which move from one consistent state to another atomically. In the Casper
system, the stable store is provided by the Stable Store Server. The Stable Store
Server consists of four components: the Server Request Handler, the Stable
Store Manager, the Stable Store Garbage Collector and the stable medium. At
the lowest level of abstraction, the stable store is implemented using a stable
medium such as disk storage. The objects resident on the stable medium are
managed by the Stable Store Garbage Collector, whilst the physical pages are
managed by the Stable Store Manager. Finally, the interface to the outside world
is provided by the Server Request Handler.

In addition to the usual passive data found in traditional database and file
systems, the Stable Store contains active data including the state of all processes
executing within it. This provides the potential for restarting processes found in
the persistent store should some element of the system fail. The protocol
definition includes the maintenance of structures needed to correctly roll back the
execution state of interdependent clients should failure occur in any part of the
system. Those parts of the system that can continue without jeopardising the
store's integrity are unaffected.

March 24, 1995 6 DRAFT

2.2. Stability and Coherency

As stated earlier, our system does not force accesses to the database to be
serialisable. Instead, anarchic access to the store is permitted and synchronisation
is provided by language level mechanisms. However, the store itself must be
kept consistent, which presents two problems:

• the contents of the store may never represent an inconsistent state.
Whenever a snapshot of the executing environment is made it must
be done in such a way as to create a new self consistent state, or fail
in the attempt and roll back the environment to the previous self
consistent state.

• no process must view or act upon out-of-date data, or be able to
modify a data item concurrently with another process.

In this system, store stability deals with the first aspect, and the cache coherency
protocol with the latter. Store stability is the subject of Section 3, coherency is
discussed in Section 4.

3. Store Stability

As described in the previous section, all access to the persistent store is controlled
by the Stable Store Server. It has three main functions: managing the supply of
pages upon demand to clients, ensuring that coherent versions of the pages are
supplied, and, maintaining the integrity of the Stable Store. It also allocates
ranges of the persistent address space to processes and garbage collects the main
heap.

Since the persistent store is used as the repository for all objects shared by
clients, it is imperative that the contents of the store remain stable (i.e., have the
ability to survive failures). This requires the use of a reliable mechanism to
maintain consistency within the stable store.

In the Napier88 system, the underlying data repository moves between stable
states through stabilise operations. A stabilisation is usually initiated by user
code via a predefined Napier88 function which is always guaranteed to succeed.
As described in Section 3.1, stabilisation may occur asynchronously with respect
to a client due to the sharing of data with other clients combined with a
stabilisation request made by one of those clients.

In Casper stabilisation involves flushing those pages onto disk which have been
modified since the last stabilisation. A new stable state is achieved when a

March 24, 1995 7 DRAFT

known set of such pages has been secured; any record of their contents in the
previous stable state can then be safely discarded. In this way, there is always a
recent, reliable state to which it is possible to return following failure in some part
of the system. This is discussed in more detail in Section 3.3.

3.1. Associations

In Casper, clients may share modified data. This presents the problem of
maintaining a consistent view of the persistent environment. Consider the case
where two clients, α and β, both share data. If client α stabilises its state

independently of β an inconsistent view of data will be created. This can be seen
by considering the consequences of a system crash immediately after the
stabilisation of α. α and β revert to the state at the time of their last stabilisation,

and these times are different. Therefore the state of α would be consistent but β
would view non shared data at the time of its last stabilisation but shared data at
the later time of the last stabilisation of α.

There are three solutions to this problem:

1. prevent clients from sharing data modified with respect to the stable
store,

2. make all clients stabilise together, and,

3. make interdependent clients stabilise together.

Wu and Fuchs [Wu and Fuchs 1990] describe a hardware implementation in
which clients are prevented from sharing modified data. This is achieved by
forcing clients to perform checkpoint operations as soon as another client
requests the use of any updated data. A major concern of their work has been to
limit roll-back propagation, so that the failure of any client affects only that client.

The approach of making all clients stabilise together has been implemented in
Monads [Henskens, et al. 1991] , a persistent system that allows clients to share
modified pages.

We adopt the solution whereby clients may share modified data and only
interdependent subsets of clients must stabilise together. We term interdependent
clients associates and a set of mutually dependent clients an association. It is
important to note that associations are dynamic in nature, with clients being
added and associations merging over time. These associations are maintained by
the Stable Store Server. The maintenance of associations is described in Section
4.2.

March 24, 1995 8 DRAFT

3.2. Failure

Failures are characterised as the non-recoverable loss of either a client or the
server. Such failures may be caused by power failures, operating system errors
or the crash of the system itself. Such failures must be reliably detected and the
system state recovered in a manner that does not compromise the integrity of the
store.

Communication between elements of Casper uses the IPC mechanisms provided
by Mach. Internally Mach IPC implements a virtual circuit and is able to detect
the loss of any element of the system. Depending upon which element fails,
different action is taken.

If a single client that is not a member of an association fails it is only necessary
for the Stable Store Server to remove its record of data pertaining to that client. If
a client that is associated with other clients fails, the failed client is treated
similarly to the single client case, but in addition all of the other members of the
association are forced to revert to the state represented in the stable store. This is
their state at the time of their last stabilisation. Reversion is performed by
invalidating all of the modified pages within the clients and then recovering the
internal register state of the executing processes from the stable store. Reverted
processes effectively travel back in time and then continue to execute, albeit
without their failed associate.

Failure of the store server currently results in all of the clients terminating and
requires human intervention to restart. Runnable processes are resumed from
their saved state in a manner similar to that described above.

3.3. Shadow Paging Scheme

Stabilisation requires that a set of objects move from one state to another
atomically. In Casper this is achieved using a shadow paging technique [Lorie
1977] combined with an atomic commit operation.

Shadow paging means that a dirty page may never overwrite a clean version of a
page in the stable store. Instead, dirty pages are written to another location, with
these copies of the pages being known as shadow copies. Thus, when a page is
modified for the first time, a shadow location for it is allocated in the stable store.
At most one shadow copy of each page exists and once a shadow copy of a page
exists, that page is used for future operations. Stabilisation changes the status of
shadow pages so that they are now considered the clean version and further
modification of the page results in the allocation of a new shadow page. The old
clean page is free to be reused. Maintaining a shadow copy permits the system

March 24, 1995 9 DRAFT

to roll back should a failure occur, since the original pages are never overwritten
until after the successful completion of a stabilisation operation.

To implement such a system, a mapping must be maintained that maps the
address of a persistent page to its location in stable memory (i.e., disk). This
mapping table is called the Logical to Physical map (L-P map). As shown in
Figure 2, each entry in the L-P map contains three fields: the physical page
location of the stable version of the page, the location of the shadow copy of the
page (if one exists) and a single bit selecting which entry holds the address of the
stable page. Since the L-P map must be robust, it is natural to place it within the
persistent store which it manages. Consequently, there may be two versions of
the data structure – a stable version and a shadow version.

Stable Page

Shadow Page

Selection
Bit

L-P map

Page
Identifier

.

.

0

1

1

.

.

.

Stable and Shadow
Page Address Fields

Figure 2. The L-P map.

Stabilisation requires that a new consistent stable state be created from a set of
pages consisting of some newly created shadow pages and some existing stable
pages. Furthermore, it must be performed in such a way that it is always
possible to recover the state before stabilisation, even if a failure occurs during
stabilisation.

The stabilisation sequence is as follows: the modified pages are first written from
the clients to their shadow locations on disk. In the normal course of events,
modified pages may also have been delivered to the stable store by the coherency
mechanism if there was insufficient space for them within a client’s physical
memory. These pages are also written to their shadow locations and are regarded
as having been written back as part of this stabilisation. Once all of an
associations pages have been secured in the stable store, the selection bit on each
of these pages is flipped to indicate that the shadow version is to be used as the
current version once the stabilisation is complete. Next, the L-P map entries

March 24, 1995 10 DRAFT

containing modified selection bits are written back to their appropriate shadow
locations. Once this is complete the new stable state is secured in stable memory
but will not be used until a final atomic operation has completed. This final
operation must be indivisible – that is it either completes successfully or not at
all.

The final atomic operation is implemented by swapping the roles of two header
pages as described by Challis [Challis 1978]. From the header page, the current
and shadow versions of all the stable store data structures can be found. Each
header page fits within a single physical disk block and therefore can only be
written to disk as a single hardware operation. Each header page is time-
stamped; thus, it is always possible to determine which header is the most up-to-
date. The time stamp is written at the beginning and end of each header. If the
two time-stamps disagree, the system can conclude that the header block is
corrupt and elect to use the other header. The alternate will still describe a
consistent view of the persistent store, but it will be one that represents the state
of the system at the conclusion of the last successful stabilisation. Thus, the
system will survive failure even during the final commitment of the stable
structures.

It is possible for several independent stabilisation operations to be in progress at
any time. Consequently, pages from more than one stabilisation may be written
to the stable store concurrently. However, care must be taken to ensure that the
stable store moves from one stable state to another in an atomic fashion. In
practice, the final stages of stabilisation must be serialised. In particular, the L-P
map can only make one flip at a time.

4. Cache Coherency

4.1. Communication architectures

Previous designs for coherency of shared persistent data have focussed on tightly
coupled hardware. Such designs make use of the low cost of broadcast
messages and snooping on bus traffic to implement coherency. Our design is
aimed at distribution over a local area network where both broadcast and
snooping are costly.

The protocol can be characterised as a central directory, multiple readers, single
writer protocol. The design assumes that communication is reliable and that
ordering of messages is preserved over point to point links. This assumption is
safe when implemented using the Mach IPC abstraction.

March 24, 1995 11 DRAFT

The general aim of the protocol is to allow multiple clients to read the most up-
to-date copy of a page, or a single client to write to the page without
compromising the coherency of the pages. All read and write requests are made
directly to the Stable Store Server. If a page has been modified since the last
stabilisation and a current copy is not available in the store, read requests for the
page are forwarded to a client with an up-to-date copy of that page. The server
only services requests itself when it holds a valid copy of the page. Thus, up-to-
date page copies may be distributed among the clients and the Stable Store. The
aim is to maximise the freedom with which a client process is able to run, and
prevent the server from becoming a bottle-neck for page retrieval and supply.

The Stable Store Server maintains all the information concerning the distribution
and modification of pages. A data structure known as the V-list contains the
identity of all clients holding a valid copy of a page. Similarly, the dependency
list, or D-list, records which clients hold or have held a modified copy of a page
since they last stabilised. If a client wishes to modify a page, it must already
have read access to that page. If the page is not shared, a client may freely
modify the page, although it must inform the Stable Store Server of the
modification if the page was previously unmodified; the client does not require
an acknowledgment before proceeding with modification of unshared pages.

March 24, 1995 12 DRAFT

x: V-list { A, B, C }
 D-list Ø

client A

client B

client C

Stable Store Server Stable Store Server

Stable Store Server Stable Store Server

client D

client A

client B

client C

client D

client A

client B

client C

client D

client A

client B

client C

client D

x

x

x

x x

x: V-list { A, B, C }
 D-list Ø

Stable Store Server Stable Store Server

client A

client B

client C

client D

client A

client B

client C

client D

x x'

x: V-list { A, C }
 D-list { A, C }

x: V-list { A }
 D-list { A }

x: V-list { A }
 D-list Ø

x

x

x: V-list { A, B, C }
 D-list Ø

(a) (b)

(c) (d)

(e) (f)

ReadRead ModifyModify

Invalidate
Acknowledge

Invalidate
Acknowledge

Write
Acknowledge

Write
Acknowledge

ReadRead

ReadRead

Invalidate
Acknowledge

Invalidate
AcknowledgeInvalidateInvalidate

InvalidateInvalidate

ReadRead

Figure 3. The modification protocol for a shared page.

These concepts can be illustrated as shown in Figure 3, which depicts the events
involved in the modification of a page. As a result of each of the clients A, B and
C attempting to read the page x, they have all been added to the V-list for that
page; this is shown in Figure 3(a). Client A is attempting to modify the page and
must forward to the Stable Store Server a modification request (Modify signal),
as shown in Figure 3(b). The Stable Store Server next instructs all other clients
with an up-to-date copy of the page to invalidate their copy; the identities of the
clients to be notified are found from the V-list for the page, as shown in Figure
3(c). These clients must reply with an acknowledgment to the Stable Store
Server on completion of the invalidation (Invalidate Acknowledge signal shown
in Figure 3(d)). Upon receipt of an acknowledgment from a client that client is
removed from the V-List for the affected page, recording that that client no
longer holds a valid copy of the page. Once all acknowledgments are received the

March 24, 1995 13 DRAFT

client modifying the page is inserted into the pages D-list, recording that clients
dependence upon the page. The Stable Store Server now sends a Write
Acknowledge signal to the originally requesting client, as depicted in Figure 3(e),
granting write permission. Any other client accessing the page results in that
client receiving the up-to-date, modified page copy and being inserted into the V-
and D-lists for that page.

The state to which a page belongs in both the server and the clients indicates
which of the various properties are applicable to the page at that particular time.
The states include: modified, shared, read requested (but not yet resident), valid
copy held, modification requested (but not yet granted) and invalidation expected.

4.2. Maintenance of associations.

Associations are dynamic in nature and are constructed between stabilise cycles
by the server. Associations may merge over time due to the sharing of data
between previously independent associations.

March 24, 1995 14 DRAFT

Associations
 { A }
 { B }
 { C }
 { D }

client A

client B

client C

Stable Store Server

client D

client A

client B

client C

client D

client A

client B

client C

client D

client A

client B

client C

client D

z

y'

x'

y'

x' y' x' y'

x'

z z

z

x' z x' z

(a) (b)

(c) (d)

client A

client B

client C

client D

x' y' y'

zx' z

(e)

Page Lists
x
y

read page xread page x
read page zread page z

read page yread page y

Associations
 { A }
 { B }
 { C }
 { D }

Stable Store Server
Page Lists

x
y

Associations
 { A,B }
 { C }
 { D }

Stable Store Server
Page Lists

x,y
Associations
 { A,B }
 { C }
 { D }

Stable Store Server
Page Lists

x,y

Associations
 { A,B,D }
 { C }

Stable Store Server
Page Lists

x,y

Figure 4. Expanding associations.

Figure 4 illustrates a combination of requests which lead to the expansion of an
association. Firstly, Figure 4(a) depicts a collection of clients which do not share
any pages; thus each association consists of precisely one client. Figure 4(a) also
shows that client A modifies x and client B modifies y. Figure 4(b) depicts
clients B and C each requesting pages held by client A; since client B is
requesting page x, which has been modified by client A, the Stable Store Server
merges the associations containing clients A and B. The association containing
client C is not merged with this association, as the page requested (page z) is not
modified. Thus, the failure or stabilisation of client A or C will not affect the
other. The result of this operation is shown in Figure 4(c). A further request
from client D for another modified page (page y) is shown in Figure 4(d); since

March 24, 1995 15 DRAFT

this page has been modified by client B, it causes the association containing client
D to merge with that containing A and B. The result of this interaction is shown
in Figure 4(e).

5. Clients

As shown in Figure 1, a client is divided into three main threads: the user
program, the Client Request Handler and the external pager. Ideally, user
programs should not be aware of the existence of the other parts of the client,
perceiving only a single, flat, virtual address space. In reality, a few concessions
must be made. The whole address range cannot be made available since a small
area is required within which to place both the run time system and the coherency
mechanisms. This area is reasonably small (a few megabytes) compared to the
entire address space and is demand-paged by the default pager since it is not
persistent.

The external pager handles any page faults or protection faults caused by the user
program's attempts to access non-resident or protected pages. The Client
Request Handler and the external pager jointly implement the client's part of the
cache coherency protocol and are discussed in Section 5.1.

The Client Request Handler, described in Section 5.2, handles all incoming
messages to the client from the Stable Store Server and from other clients. The
cache coherency protocol requires that messages between particular pairs of
communicants are delivered in the order in which they are generated. To
maintain temporal ordering, all communications must be passed through the
Client Request Handler.

As described earlier the system implements Napier88 operations atomically.
Therefore the system must provide support for those operations which are not
intrinsically atomic, such as multiple word reads or writes. This is discussed in
Section 5.3.

5.1. External Pager

The abstraction of the persistent address space within a client is managed by the
external pager. The coherency protocol requires the ability to be able to detect and
service page faults and to selectively protect pages and handle attempts to violate
those page protections within the persistent address space. The external pager
provides this functionality.

The external pager is divided into two parts: a thread which fields requests from
the kernel for maintenance of the persistent address space, and a routine library

March 24, 1995 16 DRAFT

which is used by the Client Request Handler to perform maintenance requests on
the address space. The Client Request Handler maintains coherency; this may be
as simple as changing local state information or may involve dialogue between
the Client Request Handler and the Stable Store Server.

All protection exceptions and page faults caused by the user program's attempts
to access pages are handled by the external pager. For example, when the
coherency protocol requires notification of an attempt to modify a page, the page
is protected against modification. Any subsequent attempt by the user program to
modify the page will result in a page protection violation, which will be delivered
to the external pager. The external pager will translate this into a Client
Modification request and forward it to the Client Request Handler. In response
to coherency management requests, the Client Request Handler will call the
appropriate routine in the external pager interface, which replies to the kernel;
this, in turn, reschedules the user program. The user program will retry and
successfully execute the instruction which originally caused the exception or page
fault.

The external pager also handles the return of modified pages to the Stable Store
(to relieve pressure on local physical memory). If a removed page has been
modified, an up-to-date copy must be returned to the Stable Store. If a removed
page has not been modified, the Stable Store Server is notified that this client no
longer holds a valid page copy.

In releases of Mach derived from Mach 2.5, the Mach kernel only informs the
external pager of the removal of a locally modified page. In order to receive
information on the removal of all pages (modified and unmodified), the external
pager must ensure that all pages are modified (non-destructively) when they are
brought into the client.

5.2. Client Request Handler

The Client Request Handler is the client's interface to the outside world. Some
requests generated within a client are also passed to the Client Request Handler's
port. The cache coherency protocol requires that messages between particular
pairs of communicants are delivered in the order in which they are generated. To
maintain temporal ordering, all external communications relating to a resident
page must be passed through the Client Request Handler. The Client Request
Handler is also responsible for maintaining the appropriate state information
caused by external events via the coherency protocol.

March 24, 1995 17 DRAFT

The responsibility for start-up and creation of the other threads in the client rests
with the Client Request Handler. It must also handle client termination and
restart.

5.3. Atomic access

The Napier system requires that accesses to objects are atomic. This is necessary
so that an object is never left in a partially modified, and hence inconsistent, state.
If one process writes a value π into a location and another writes ε, either π or ε
will always be read never a mixture of the two. This is true regardless of the type
of π and ε. Most accesses are made to aligned 32-bit words, which is atomic at
the machine level. However, there are some occasions when the atomicity
provided at this level is insufficient. Such cases include accessing multiple word
objects, such as real numbers (which are 64-bit quantities), bit-maps and
discriminated unions. This requires a mechanism capable of providing user
programs with atomic access to multiple data locations at arbitrary addresses.

In an unshared system it is possible to provide a lock on each object to which
atomic access is needed. However this is undesirable when data is shared, since
shared read only pages become modified when locks are set; voiding the gains
made by though sharing. The Casper solution is to modify the cache coherency
protocol so that it can be employed to deny access to pages that contain objects
that are being accessed atomically.

This may be achieved using a structure which we call a latch. The semantics of a
latch is analogous to a door latch: it may be set before the door is closed, but once
the door is closed, the door will not open again until the latch is released.

Atomic access to multiple locations at arbitrary addresses may be implemented
via latching each affected page. Two latches are provided per page – a read latch
and a write latch. A latch, when set, prevents the release of the page to any other
client for the purpose indicated by the kind of latch. If a page is required for an
atomic read operation, the write latch is set and so a write operation by another
client occurring part way through the read operation is prevented. If an atomic
write is desired, the read latch is set to prevent the page from becoming shared
part way through the write.

When the need arises to access more than one page, pages are latched serially and
in ascending address order to prevent circular dependencies with competing
clients, and hence avoid deadlock. Once all of the necessary pages are resident
and have the appropriate latches set, the atomic access is performed and the
latches released.

March 24, 1995 18 DRAFT

The design of the latching mechanism has aimed for efficiency, particularly for
common cases, such as when only one page is needed and the page is already
resident. Although shared by concurrently executing threads (the user program
and the Client Request Handler) latches do not require protection from concurrent
access since they are:

• only ever set by the user program,

• released by the user program or by the Client Request Handler
(when the user program is guaranteed to be blocked), and,

• only read by the Client Request Handler.

Thus a request to latch a page only takes a few machine instructions and has
minimal effect on execution speed.

5.4. Local Heap Management

Each client maintains a local heap for local object creation; this is a previously
unused set of contiguous pages drawn from the persistent address space. Local
heaps are small enough to always remain resident within the client’s page cache
during normal execution. Our experience with earlier implementations has
shown that significant improvements in performance may be obtained if the local
heap area is rarely paged; furthermore, greater locality of reference using this
model. This can result in improved performance from better page fault behaviour
and improved processor cache utilisation.

If transient objects are confined to a localised area, they may be garbage collected
locally at low cost. Local heaps may be safely garbage collected provided that no
external references (from other processes or the Stable Store Server) point into
them. Fortunately, the creation and export of such pointers is easily detected,
making this technique tractable. The Casper system utilises an algorithm [Koch,
et al. 1990] based on generation-based garbage collection [Ungar 1984] to
maintain the local heap.

6. Conclusion and future plans

The architecture described in this paper supports concurrent access to the
persistent store by users on workstations connected by a local area network. This
architecture consists of an arbitrary number of clients sharing a coherent
persistent store managed by a central server. Despite the fact that this architecture
is designed to support an object-based language, the coherency of the stable store
is maintained at the page level. Many other persistent object architectures have

March 24, 1995 19 DRAFT

chosen to employ software object address translation when objects are moved
from long term to short term memory. The motivation for this work was to
experiment with the utilisation of hardware address translation mechanisms via
the Mach external pager mechanism.

This approach has led to some complications, such as those discussed in Section
5. However, we believe that the benefits outweigh the disadvantages. One of
these benefits is that our scheme exploits object clustering on pages within the
persistent address space to reduce the frequency of requests to the Stable Store
Server by providing a degree of prefetching.

Overall, the Mach operating system has proven to be an excellent platform for
the conduct of this research. In particular, the use of external pagers to support
programmable page fault handling is central to the implementation of cache
coherency in Casper. Furthermore, the single inter-process communication
(IPC) structure available in Mach permits a transparent interface between
components of the architecture, independent of the physical location of the
communicating parties. However, our work with Mach has highlighted some
deficiencies in the current version of the operating system.

A significant inconvenience is the kernel’s removal of pages according to its own
LRU algorithm. It would be more useful if the kernel requested the external
pager to remove one or more pages, rather than sending its own choice of pages
to the external pager for removal. This is due to the fact that the pages selected
may contain pointers into the client’s local heap area, in which case removal is a
costly operation in our system. The external pager can determine more
appropriate candidates for efficient page removal through the available state
information.

The architecture described in this paper is an experimental framework for further
investigations. These experiments will focus on three areas: garbage collection
algorithms, the utilisation of pointer swizzling to implement very large address
spaces and clustering algorithms. At the time of writing, Casper is running
under Mach 2.5 on a Sun 3/60.

Acknowledgments

This work was partly supported by Australian Research Council grant number
4900-6830-1000. The work described in this paper has been carried out by a
research group at the University of Adelaide; apart from the authors, other
members of this group to make significant contributions towards the design and

March 24, 1995 20 DRAFT

implementation of the system include Alex Farkas, Ruth Fazakerley and Bett
Koch. We also acknowledge the continuing cooperation which we have received
from the Persistence Project at the University of St Andrews.

References

Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A. &
Young, M., “Mach: A New Kernel Foundation for Unix Development”,
Proceedings, Summer Usenix Conference, pp. 93-112, 1986.

Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. & Morrison,
R., “An Approach to Persistent Programming”, The Computer Journal,
26(4) pp. 360 - 365, 1983.

Atkinson, M. P. & Morrison, R., “Procedures as Persistent Data Objects”,
Transactions on Programming Languages and Systems, 7(4) pp. 539-559,
1985.

Atkinson, M. P., Morrison, R. & Pratten, G. D., “Designing a Persistent
Information Space Architecture”, 10th. I.F.I.P. World Congre ss (North-
Holland, Amsterdam), pp. 115–120, 1986.

Bancilhon, F. & Maier, D., “Multilanguage Object-oriented systems: New
answers to old database problems”, in Future Generation Computers II,
Fuchi, K. and Kotti, L. Eds. (North Holland, 1989).

Berry, D., “Block Structure: Retention or Deletion?”, Third Annual ACM
Symposium on the Theory of Computing pp. 86-100, 1971.

Cardelli, L. & Wegner, P., “On Understanding Types, Data Abstraction and
Polymorphism”, Brown University, 1985.

Challis, M. F., “Database Consistency and Integrity in a Multi-User
Environment”, in Databases: Improving Useability and Responsiveness ,
(Academic Press, 1978).

Dearle, A., “Environments: A Flexible Binding Mechanism to Support System
Evolution”, Proc. 22nd Hawaii International Conference on System
Sciences pp. 46-55, 1989.

Eswaran, K. P., Gray, J. N., Lorie, R. A. & Traiger, I. L., “The Notions of
Consistency and Predicate Locks in Database Systems”, Communications
ACM, 19(11) pp. 624–633, 1976.

March 24, 1995 21 DRAFT

Henskens, F. A., Rosenberg, J. & Keedy, J. L., “A Capability-based Distributed
Shared Memory”, Proceedings of the 14th Australian Computer Science
Conference pp. 29.1-29.12, 1991.

Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin, C., Fazakerley, R. &
Barter, C., “Cache Coherence and Storage Management in a Persistent
Object System”, Proceedings, The Fourth International Workshop on
Persistent Object Systems (Morgan Kaufmann), pp. 99-109, 1990.

Lampson, B., “Atomic Transactions”, in Lecture Notes in Computer Science Vol
105: Distributed Systems – Architecture and Implementation , B., L., M., P.
and H.J., S. Eds. (Springer-Verlag, Berlin, 1981).

Lorie, R. A., “Physical Integrity in a Large Segmented Database”, Association
for Computing Machinery Transactions on Database Systems, 2(1) pp. 91-
104, 1977.

Morrison, R., Brown, A. L., Connor, R. C. H. & Dearle, A., “The Napier88
Reference Manual”, University of St Andrews, 1989.

Philipson, L., Nilsson, B. & Breidegard, B., “A Communication Structure for a
Multiprocessor Computer with Distributed Global Memory”, 10th
International Symposium on Computer Architecture pp. 334-340, 1983.

Ungar, D., “Generation Scavenging: A Non-disruptive High Performance
Storage Reclamation Algorithm”, ACM Sigsoft/Sigplan notices, 19(5) pp.
157-167, 1984.

Wu, K.-L. & Fuchs, W. K., “Recoverable Distributed Shared Virtual Memory”,
IEEE Transactions on Computers, 39(4) pp. 460 - 469, 1990.

