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Abstract 

The ever-increasing complexity of software systems makes them hard to comprehend, predict and 

tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of 

software systems and the wide variety of possible operating environments: the increasing choice of 

platforms and communication policies leads to ever more complex performance characteristics. In 

addition, software systems exhibit different behaviour under different workloads. 

Many software systems are designed to be configurable so that policies (e.g. communication, 

concurrency and recovery strategies) can be chosen to meet the needs of various stakeholders. For 

complex software systems it can be difficult to accurately predict the effects of a change and to know 

which configuration is most appropriate.  

This thesis demonstrates that it is useful to run automated experiments that measure a selection of 

system configurations. Experiments can find configurations that meet the stakeholders’ needs, find 

interesting behavioural characteristics, and help produce predictive models of the system’s behaviour. 

The design and use of ACT (Automated Configuration Tool) for running such experiments is 

described, in combination a number of search strategies for deciding on the configurations to 

measure. 

Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical 

methods have been used extensively in manufacturing, but have not previously been used for 

configuring software systems. The novel contribution here is an industrial case study, applying the 

combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd 

(DCL). The case study investigated the applicability of Taguchi Methods for configuring complex 

software systems. Taguchi Methods were found to be useful for modelling and configuring DC-

Directory, making them a valuable addition to the techniques available to system administrators and 

developers. 
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1 Introduction 

Software systems play an increasingly important role in organisations and in everyday life, the UK 

software market being worth £8.5 billion in 2001 [18]. Software systems are also growing in 

complexity: they are hard to comprehend, predict and tune due non-deterministic behaviour and 

emergent properties (i.e. behaviour of the whole system cannot be inferred from its parts) [32]. 

Complexity arises from the size of software systems, the amount of data and the scale of distributed 

systems. The choice of platforms, network configurations and communication policies has also 

increased markedly over the years, leading to a wide variety of operating environments with ever 

more complex performance characteristics. This is compounded by different versions of a software 

system having different characteristics, with behaviour being dependent on the workload (i.e. usage 

pattern).  

Software systems attempt to meet the potentially conflicting needs of various stakeholders. Some 

users demand reliability and low response times, while others may desire consistently high throughput 

with minimal resource requirements. The appropriate trade-off between these needs depends on the 

particular set of users. 

Many software systems are designed to be configurable so that policies (e.g. communication, 

concurrency and recovery strategies) can be chosen to give desired behaviour. Such systems expose a 

group of configurable aspects, which are implementation details that can be controlled explicitly. The 

system’s configuration refers to a group of values that specifies a setting for each configurable aspect. 

Comprehending the behaviour of a software system is related to the problem of configuring it. It 

can be difficult to accurately predict a configurable aspect’s effect on behaviour, and to know which 

configuration is most appropriate for a given condition (i.e. environment and workload). This is 

especially true for complex software systems that expose many configurable aspects: the number of 

configurations increases exponentially with the number of configurable aspects, referred to as the 

curse of dimensionality [27]. 
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1.1 Hypothesis 

This thesis proposes the following hypothesis: automating the empirical measurement of a 

selection of configurations can: 

• find a robust configuration (if any) that exhibits desired behaviour under a particular 

condition – useful for configuring the software system when it is first deployed or when 

adapting its configuration to cope with changes in the conditions of use; 

• find characteristics of interest, such as conditions that cause substantial deterioration in 

performance – useful for guiding system usage and for focusing development efforts; 

• help construct a predictive model of the software system that can estimate behaviour for 

untested configurations under given conditions. 

The aim of the research described in this thesis is to develop software support, and an associated 

methodology, to test the above hypothesis. The approach involves empirically measuring the 

behaviour of a selection of configurations under various conditions, without assuming a priori 

knowledge of the system’s implementation. This is done before the software system goes into use. 

The hypothesis was tested in an industrial case study involving DC-Directory [10], an LDAP and 

X.500 product from Data Connection Ltd (DCL). The case study supported the hypothesis, 

demonstrating that automated measurement of a selection of configurations can achieve the goals 

listed above. Discussions with system developers revealed that measurements also improved 

comprehension of the system’s behaviour. The software and methodology described in this thesis 

therefore makes a valuable contribution towards solving the problem of configuring software systems. 

1.2 Overview of approach 

The following chapters describe the design of ACT (Automated Configuration Tool) [93], and its 

use to explore the behaviour of software systems. ACT provides an infrastructure to run a sequence of 

trials: it tests (i.e. empirically measures the behaviour of) a configuration during each trial. The 

software system’s configuration and conditions of use are adapted between trials. ACT is generic in 

that it can explore the behaviour of a wide variety of software systems, and can use a variety of search 

strategies to decide on the configurations to test. 
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Figure 1.1 illustrates the semi-automated process of running experiments to measure a sequence of 

configurations. The software system under test is called the target system. The experimenter (i.e. the 

user of ACT) decides on the configurable aspects to vary and the values to test for each, and chooses 

an appropriate search strategy. The experimenter provides information about the configurable aspects, 

including the locations of functions to set each configurable aspect’s value, and the locations of 

functions to run a trial and recover from target system failure. For automation, these functions must 

run without human intervention. ACT dynamically loads the functions and uses them to run the trials, 

and to configure both the target system and the conditions under which it operates. 

 

Figure 1.1: System overview 

A search strategy generates a sequence of target system configurations and conditions to test. 

There are two categories of search strategy for ACT. The first is a feedback-based search, which uses 

observations of previous configurations to decide on the next configuration to test. The second 

category makes use of Design Of Experiments (DOE) [107], where the configurations to test and the 

number of times to test each are decided in advance.  

Taguchi Methods [101] is a standardised statistical approach for DOE, to select a small subset of 

the possible configurations and conditions. It assumes that experts provide a list of (at most dozens of) 

configurable aspects and suggest (up to four) values for each. Research into the use of Taguchi 

Methods for configuring software systems is in collaboration with Professor Harry Staines of Abertay 

University, who is expert in their use for other fields such as biology and manufacturing. 

Experiments designed using Taguchi Methods are conducted in two phases. The first phase 

involves testing a selection of configurations to produce a predictive model of the target system’s 

behaviour. This is used to predict which configuration will perform optimally. The second phase 
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involves testing the predicted optimal configuration and other configurations that have similar settings 

for the configurable aspects. Results from the second phase are used to more accurately predict a 

configuration that will consistently deliver high performance.  

Taguchi Methods were used to explore the behaviour of DC-Directory. In-built observation and 

adaptation mechanisms were used to measure its performance and adapt its configuration. DC-

Directory has a broad customer base, leading to a wide variety of usage patterns, operating 

environments and performance requirements. It exposes hundreds of configurable aspects, including 

caching policies, concurrency policies and queue management policies. Their effects on DC-

Directory’s behaviour depend on the conditions of use, and vary between system versions. DCL 

currently undertakes performance analysis and tuning by hand, which relies heavily upon costly 

expertise and only permits testing of a few configurations due to time constraints. The following 

example illustrates the problem: given only ten configurable aspects and four possible values for each, 

it would take almost sixty years to measure every configuration (given the requirement of thirty 

minutes per measurement). 

1.3 Contribution 

Comprehending the behaviour of complex software systems is difficult: some target systems may 

never be fully understood. Configuring complex software systems is therefore also difficult since it is 

hard to predict which configuration will be most appropriate for a particular condition. Use of ACT 

can reveal information about the behaviour of complex software systems. The approach is based on 

empirically measuring a selection of target system configurations, without assuming a priori 

knowledge of the system’s implementation or architecture. 

ACT provides a generic infrastructure to run experiments for target systems, which contributes to 

the state of the art in two ways: 

• Running experiments assists human administrators to comprehend and configure target 

systems. 

• ACT can use various search strategies, and investigate the strengths and weaknesses of each 

for exploring target system behaviour. 
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An important example is the use of ACT to investigate the suitability of Taguchi Methods for 

software configuration. The novelty of this approach is in the application of Taguchi Methods to help 

comprehend and configure complex software systems. Taguchi Methods have been used extensively 

in manufacturing for almost five decades, but the techniques have not previously been used before for 

configuring software systems. This thesis develops the techniques and applies them to an industrial 

case study: the combination of Taguchi Methods and ACT, yielding the semi-automated TACT 

process, is used to model and configure DC-Directory. Benefits of Taguchi Methods over other search 

strategies include: 

• Only a small number of configurations need be tested to infer the effects on target system 

behaviour of many configurable aspects, and of selected interactions1 between them. This 

gives a predictive model of the target system’s behaviour and associated confidence levels in 

the results (see section 6.2 for a discussion of the assumptions of Taguchi Methods). 

• The standardised approach for the design of experiments is simple and accessible to non-

statisticians. 

Some target systems exhibit variability in behaviour. The importance of robustness (i.e. 

consistently high performance with low variability) is emphasised in this thesis: sometimes improving 

the worst cases is more useful than improving the average case. Taguchi proposes a metric for 

estimating the robustness of a configuration, given replicated measurements of its performance. Use 

of this metric is novel to the field of software systems.  

1.4 Thesis structure 

Chapter 2 presents a literature review of the broad range of work related to configuring software 

systems. A glossary of the terminology used can be found in Appendix A. 

Chapter 3 presents the Automated Configuration Tool in detail. Chapter 4 describes some possible 

search strategies, with particular emphasis on Taguchi Methods and on the statistical analysis of 

results. 

                                                           

1 An interaction effect differs from interaction between components of a system (e.g. message 

passing). See section 4.3.3.2 for a description of interaction effects. 
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Chapter 5 describes two industrial case studies. Results for DC-MailServer, a back-end mail server 

from Data Connection Ltd (DCL), illustrate the importance of replicating observations to measure 

robustness. The second case study illustrates the use of the TACT process to configure and model 

DC-Directory. Chapter 6 uses results from the case studies to evaluate the usefulness of running 

experiments, and discusses the benefits and limitations of Taguchi Methods. 

Chapter 7 gives details of future work, proposing further experiments and uses of ACT. There is a 

discussion of future versions of ACT to support on-the-fly evolution of target systems. Chapter 8 

presents conclusions. 
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2 Literature review 

Configuring target systems is important for tuning their performance, repairing faults and 

modifying or adding functionality. This is true both before the target system goes into use and on-the-

fly (i.e. at run-time, while in use). The configuration process refers to the set of activities involved in 

tuning or evolving a target system. Tuning is adapting a target system at a given time, to find a 

configuration that behaves in a desired way. Evolution is the strategic adaptation of a target system’s 

configuration over time, to progress to new and improved versions of the target system. 

There are two main stages to configuring a target system: first deciding which changes are 

required and when, and second making the changes. Many projects aim to do this (e.g. [4, 9, 28]), 

often sharing with ACT the following common features: 

• Observation mechanisms are used to measure the target system’s behaviour and conditions 

of use. 

• Adaptation mechanisms are used to configure the target system. 

• Controllers (search strategies in ACT) are used to decide on an appropriate configuration of 

the target system. 

This chapter first discusses techniques for performance evaluation, introduces the notion of quality 

and describes target system models. It then characterises complex software systems and justifies the 

need for adaptation. The three bullet points above are then addressed to describe observation 

mechanisms, adaptation mechanisms and systems for coordinating the configuration process. A 

glossary of the terminology used can be found in Appendix A. 

2.1 Performance evaluation 

When configuring a target system, it is necessary to determine how possible configurations will 

perform. Techniques for performance evaluation include analytical modelling, simulation analysis 

and empirical measurement [64]. 

Analytical modelling involves analysis of a target system’s design and algorithms to develop a 

mathematical model of a target system’s behaviour. It can be used early in the development life cycle 

to make predictions before implementation is complete. However, analytical modelling is difficult for 
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complex software systems: complexity necessitates (unrealistic) simplifying assumptions, leading to a 

low level of accuracy compared to other performance evaluation techniques. Additionally, models 

require calibration using empirical measurements of the running target system. 

Simulation analysis involves producing an executable model (i.e. a simulation) of a target system, 

which is run to predict the real target system’s behaviour. Source code analysis and profiling 

information can be used to produce a simulation of a target system’s control flow, resource 

requirements and communication patterns [22, 66]. The advantage of running a simulation over 

running the target system is that the execution time is usually less, and that adapting the simulation is 

easier than adapting the target system’s configuration. Additionally, algorithms can be simulated early 

in the development life cycle before implementation of the target system is complete. However, an 

executable model produced using source code analysis is unlikely to exhibit the emergent properties 

and non-determinism of a complex software system. 

Empirical measurement involves observing the running target system. There is a high level of 

confidence in results from empirical measurement, compared to predictions from a model or 

simulation, because observations are of the running target system. This approach can be used for 

software systems that are too complex to analyse or simulate accurately, assuming there is the 

capability to observe the running system (see section 2.6). This thesis focuses on the use of empirical 

measurement. 

When measuring behaviour before the target system goes into use, it is important that the 

workloads be representative of the customer’s likely usage patterns. Logging a customer’s usage, 

where possible, allows an identical set of inputs to be used during experiments, or a synthetic 

workload to be developed based on characteristics of the logged input. An alternative is to use 

domain-specific benchmarks, such as DirectoryMark [17], that describe common usage patterns. 

2.2 Quality of target system configurations 

A target system configuration and a condition under which it operates is called a combination. 

This specifies a value for each configurable aspect of the target system and aspect of the conditions of 

use that can be configured. In statistics terminology, these aspects are called factors and their values 

are called levels [107]. 
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The combinations form a multi-dimensional input space whose dimensions correspond to the 

factors. A point in the space represents a combination, giving a level for every factor.  

A multi-dimensional input space is not the only way to view the set of possible combinations. 

Constraint programmers, in contrast, would describe the input space as a search tree [21]. A branch in 

the tree corresponds to a choice of level for a factor, and a path from the root to a leaf node gives a 

single level for every factor. Each leaf node therefore represents a combination. The following 

discussion uses the metaphor of a multi-dimensional input space. 

The process of configuring a software system is driven by a configuration goal, which specifies 

the desired behaviour in terms of a potentially conflicting set of fitness metrics. An example 

configuration goal for a database system is to maintain a latency of less than 500ms for 99% of 

requests, while maximising throughput. Each time a combination is tested, the fitness metrics’ values 

are recorded. 

Values for each fitness metric could be qualitative or quantitative; values could have a scale type 

of nominal, ordinal, interval or ratio [51]. These mean respectively that the values refer to categories, 

that the values are ordered, that the values increase in regular step sizes, and that there is a fixed zero 

point so that relations such as “twice the value” are meaningful.  

Identifying the best configurations, in terms of the fitness metrics, is a multi-objective 

optimisation problem. Some researchers search for Pareto optimal solutions, where no fitness metric 

can be improved without causing at least one other fitness metric to deteriorate [36]. An alternative 

approach is to combine the fitness metrics using an aggregating function to produce a single response, 

the higher the better2. This makes comparing configurations simpler. It is possible if there is a well-

defined configuration goal: choice of aggregating function requires knowledge of the relative 

importance of each fitness metric, their expected range of values and the desired values for each. The 

following discussion assumes that a single response is calculated using such an aggregating function. 

                                                           

2 Maximising the response involves finding the global maximum on a response surface, and is 

discussed later in the section. Maximising the response is an arbitrary choice: for some problems, 

such as measuring latency, it may be more appropriate to talk of minimising the response. 
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The quality of a combination is a measure of how well it meets the configuration goal. Taguchi 

defines a high quality combination as one that imparts little loss to society from the time the target 

system is shipped [101]. He suggests measuring quality in terms of robustness: consistently high 

performance with low variability. This view of quality is often used in manufacturing industries, but 

is just one possible definition (e.g. it ignores time to market). According to Taguchi’s definition, 

quality is determined by the costs incurred whenever the target system fails to meet the configuration 

goal. This implies that high-quality configurations deliver consistent performance, but some complex 

software systems produce a different response each time a given combination is run. Replicating trials 

is therefore important for estimating the quality of a combination – the more replications, the greater 

the confidence in the estimate. The set of responses from replicated trials combine to give a single 

value of the response variable for each combination. 

The acceptable level of variability in a target system’s behaviour depends on the consistency 

demanded by the customer. If the desired consistency is not achieved, the target system may be 

classed as non-deterministic. The distribution of responses is also important. 

It is arguably more useful in some situations to improve the worst cases than the average case of a 

software system’s performance: bad worst cases give a negative impression of the system and can 

lead to higher costs due to reduced sales and more calls to the helpdesk [99]. Taguchi’s robustness 

metric (called signal to noise ratio3, described in section 4.3.2) takes into account both how high 

responses are and their consistency. Ranking combinations in terms of robustness can give a different 

order than if the mean of the responses is used. For example, Figure 2.1 shows the results of a 

hypothetical experiment: it shows the observed responses (represented by triangles) for combinations 

A, B and C, and the mean response for each (denoted M). Combination C usually gives a higher 

response than combination A and therefore might be considered preferable. However, one response 

for A was 100, which gives A the highest mean. Combination B has two observed responses that are 

very low – bad worst cases – making this configuration unfavourable. Ranking the combinations 

according to robustness gives C, B, A – the reverse of the ordering produced using the mean. 

                                                           

3 Signal to noise ratio used here is very different to that used in communications, where it is the ratio 

of a desired signal’s amplitude to the noise’s amplitude at a given time on a communication channel. 
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Figure 2.1: Quality of responses 

A response surface can be used to show the relationship between the levels of factors and the 

value of the response variable. The response surface lies over the input space, using the dimensions of 

the input space and an additional “response variable dimension”. For the case of measuring quality 

(i.e. robustness, according to Taguchi’s definition), each point on the surface shows how well a 

combination meets the configuration goal. Figure 2.2 shows a hypothetical response surface for a two-

dimensional input space consisting of factors A and B. The surface has a phase change, where there is 

a sharp change in the shape of the surface. The surface also includes: a global maximum, which 

corresponds to the configuration delivering optimal quality; a local maximum, i.e. a combination 

better than its neighbours but not the best in the space; and a local minimum, i.e. a combination worse 

than its neighbours. 

 

Figure 2.2: Example response surface 

A search of the response surface is required to identify good configurations, interesting behaviour 

and the effects of each factor. Depending on the search strategy employed, this can be a non-trivial 

task due to phase changes, local maxima and interactions among factors. The problem is compounded 

if there are a large number of possible combinations and a limit to the number of combinations that 
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can be tested. Running experiments that assist human administrators in configuring target systems is 

therefore a difficult problem. 

2.3 Target system models 

A model is a representation that exhibits some property of the target system. Models are useful 

when configuring target systems because they make explicit the modeller’s understanding and allow 

the target system to be considered at some level of abstraction. A model may form the basis for 

planning and coordinating adaptation of a target system’s configuration: it may predict the target 

system’s behaviour and provide a context to describe and decide upon adaptations. 

Models can be categorised by: 

• Properties the model represents. For example, quality of service (QoS), resource usage, 

architecture, or a combination of these. 

• The temporal scope of the model. For example, time the requirements were specified, time 

the target system’s execution was last observed, and/or future time when predicting 

behaviour. 

A model may be complete (though not necessarily accurate) or incomplete. A complete model 

represents a target system property over the full input space. An incomplete model provides partial 

information, describing the target system property in only some situations.  

A model may represent the target system in a simplified form. By ignoring some details, 

complexity is reduced but at the cost of reducing the accuracy of information. Conversely, extra 

information may be contained in a model (e.g. descriptions of other implementations, version history, 

etc). 

Techniques such as analytical modelling and empirical measurement can contribute towards 

comprehension of a target system’s behaviour and help in the production of a predictive model. As 

the model is refined, it converges to the most accurate model possible: running the real target system 

(see Figure 2.3).  
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Figure 2.3: Refining a model 

For a model of an evolving target system to be continually useful (i.e. not become out-of-date), it 

should be maintained throughout the lifetime of the target system. Bindings between the executable, 

source code, documentation, requirements and models help in maintaining a target system: changes 

made to the target system are mapped to changes in the model, and vice versa. When there is a 

causality relationship between the model and the subject being modelled, it is called an active model. 

A passive model, in contrast, is independent of the subject [104]. 

2.4 Complex systems 

Of particular interest here are complex software systems lacking previously-known predictive 

behaviour models. These are inherently difficult to configure for the following reasons [32]: 

• Emergent properties are only apparent at run-time, which necessitates observation of the 

running system. 

• Non-deterministic behaviour makes drawing conclusions from observations difficult and 

modelling problematic. 

• Non-linearities and phase changes make behaviour hard to predict. 

• Trends toward larger software systems, more data and more devices make the system harder 

to manage. 

• Choice of platforms, network configurations and communication policies has increased 

markedly over the years, leading to a wide variety of operating environments with ever more 

complex behaviours. 

• Different versions of a software system can have different characteristics, which necessitates 

configuring the system every time it is upgraded. 

• Conditions of use can change, which necessitates repeated adaptation of the target system’s 

configuration. 
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• Many software systems are poorly documented and are maintained in an ad hoc manner, 

which makes comprehending and configuring the system difficult. 

2.5 The need for adaptability 

2.5.1 Compliant systems 

Morrison et al argue that software systems should accommodate, and thus be compliant to, the 

needs of particular applications and customers [83]. This requires that the needs of the application be 

known and that the software system be configured to meet those needs.  

Kiczales et al [69] observe that some policy decisions are “crucial strategy issues whose resolution 

will invariably bias the performance of the resulting implementation.” These policy decisions are 

called mapping dilemmas (in an OS, they relate to how an abstraction is mapped onto the underlying 

hardware). The choice of policy is called a mapping decision, and a mapping conflict occurs when a 

policy decision is inappropriate for a given application.  

The traditional view of designing systems is to use static abstract components or layers, using 

encapsulation to encourage software reuse. Policy decisions that are believed to suit the requirements 

of “typical” applications are hidden from the application, even though the application may have vital 

information about which policies are best suited to its needs. 

An open implementation approach aims to expose policy decisions, to avoid the danger of 

encapsulation outlined above [68]. ACT can run experiments to measure the effects of various 

policies, to infer which policies are best suited to a given application. 

The Compliant Systems Architecture (CSA) project describes an architectural approach to the 

construction of configurable systems: components are designed, top down, with the philosophy of 

fitting the architecture to the needs of the particular application [83]. The key technique in CSA is to 

separate mechanism and policy, allowing the architecture to be tailored to the policy needs of the 

application. A component’s functionality is delivered by a set of mechanisms, and the policy for using 

these mechanisms can be supplied by other components. Additionally, downcalls provide a way to 

exploit knowledge of a component’s internal structure, to extend the interface exposed by a 

component. 
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2.5.2 Evolution of software systems 

Greenwood et al discuss the characteristics of evolution in [60], defining it as a transformation; it 

is an adaptive change with a time dimension. Evolution can be directed or spontaneous – it can be 

externally imposed or internally driven. Evolution can be focused or diffuse – it can be the result of a 

purposeful strategy decision or consist of many small logically separate changes. 

Co-evolution refers to the situation where the evolving target system has a dependency on another 

system [60]. Changes can cause a ripple effect: a change in one system necessitates evolution of 

dependent systems to maintain consistency between them. With quasi-independent evolution, a target 

system can evolve independently, but only to the extent that its neighbours can accommodate such 

change. 

Lehman’s first law states that an E-type software system (i.e. a target system used and embedded 

in a real-world domain) must continually change or become increasingly less useful [74]. Change is 

driven by the need to repair software faults, cope with new operating environments, and add or 

modify functionality. It is estimated that these activities comprise 17%, 18% and 65% of software 

maintenance respectively [97]. 

Change in expectations of a target system’s behaviour drives adaptation. Expectations change due 

to changing demands of the market, an organisation’s desire to stay ahead of the competition and 

changes in the structure of the organisation itself. The last is driven by feedback loops within the 

organisation in which the target system operates. Development and use of a software system changes 

the organisation, and causes a mismatch between the target system and its operational domain. If the 

target system does not evolve to meet the changing goals of the organisation, the target system’s 

functionality increasingly diverges from meeting the organisation’s needs. 

Evolution can be divided into planned and unplanned change. Planned changes are catered for in 

the target system’s design, but unplanned changes are unanticipated. Planned change is generally 

accepted to be easier than unplanned change, but is still difficult unless one can somehow predict or 

find an appropriate configuration. Use of ACT can help to find a suitable configuration by empirically 

measuring a selection of configurations. 

When evolving a target system, it is important to strive to reduce complexity and enhance the 

structure of the target system. Unstructured change can make subsequent evolution harder; it can 
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decrease cohesion and increase coupling both amongst components and amongst non-functional 

aspects of the target system; it can make the target system harder to comprehend. As Brooks says: 

“All repairs tend to destroy the structure, to increase the entropy and disorder of the system. Less and 

less effort is spent on fixing original design flaws; more and more is spent on fixing flaws introduced 

by earlier fixes. As time passes, the system becomes less and less well-ordered” [31].  

The “structure” of a system is its architecture: “the fundamental organisation of a system 

embodied in its components, their relationships to each other, and to the environment, and the 

principles guiding its design and evolution” [1]. Maintaining an explicit first-class representation of 

the architecture at run-time, e.g. using an Architecture Description Language (ADL) [55], can help 

preserve a target system’s structure. Such a description typically formally identifies the components of 

the target system and the inter-component communication, defined by connectors. A connector is a 

link between two or more components, across which they can interact. A connector could itself be a 

component, or it could be a binding between two or more components. 

2.6 Observing behaviour 

The approach presented here for configuring software systems is based on empirical measurement 

of the running target system. This requires observation and interpretation of the target system’s 

behaviour, done by probes and gauges respectively [79]. Probes collect data, possibly at run-time 

(e.g. count of operations performed), by interacting with the target system and its environment. 

Gauges gather and interpret this data in a context meaningful for evaluating behaviour (e.g. in terms 

of the configuration goal’s fitness metrics). Much of the work on probes and gauges described here is 

part of the DASADA programme, discussed in section 2.9.5. 

2.6.1 Probes 

Probes observe the target system to monitor and measure its behaviour and state, and generate 

events to describe this information. Probing is a form of reification: probes provide a mapping from 

an entity (i.e. the target system) to a concrete representation (i.e. the events).  
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2.6.1.1 Desirable qualities 

There are many qualities desirable in probes, including: 

• Correctness and dependability. Observation of the target system should closely mirror the 

behaviour or state of the target system. Probes should consistently observe, and not miss, 

behaviour of interest. 

• Little or no probe effects. Deploying and activating the probe should not cause perturbation 

in the target system’s behaviour; the target system’s behaviour and state should be the same 

both when the probe is and is not present. This implies safety: the probe will not cause the 

target system to malfunction. 

• Separation of concerns. The probe technology should be separate from the target system 

implementation, to promote reusability of probes and ease of extensibility. 

• Probe control and adaptation. It may be desirable to deploy, activate and/or deactivate 

probes at run-time. Facilities to tailor probes for particular tasks (i.e. adapt their 

configuration at run-time) may also be desirable. 

• Security. Control of probes and dissemination of information should be restricted to trusted 

parties. 

2.6.1.2 Categories of probes 

There are many techniques for observing the behaviour of a running target system. Probes can use 

third party software, such as tools to monitor resource usage, profilers to collect execution time 

information, and target system specific tools for extracting diagnostic information. Other probe 

technologies include instrumenting a target system’s code or executable, intercepting calls to shared 

libraries [26], reflection [23], and measuring a server’s behaviour at the client side by monitoring 

responses to requests. 

Below is a description of characteristics that categorise types of probes. This summarises and 

augments the discussions in [57, 90]. 
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Aspect of the target system 

Observation (and adaptation) mechanisms can be categorised according to the aspect of the system 

on which they act. Categorisation promotes reuse of probes by identifying the set of systems that each 

probe can be used to observe. Mechanisms specific to bespoke components of the target system are 

useful for only that target system, while mechanisms that observe or adapt the environment are 

reusable for any system that operates in that environment.  

Wells et al use the terms AppliProbe and EnviroProbe to describe probes that observe the 

application and environment respectively [105]. Aspects of the system can be categorised further, as 

listed below in order of increasing generality and reusability: 

• target system components and architecture (i.e. parts of the target system and the way they 

are connected) that are unique to the target system; 

• the workload (i.e. facets of how the target system is used); 

• shared infrastructure, such as shared libraries or middleware; 

• the environment in which the target system operates. 

Location in the target system architecture 

Probes can be classified according to the location in the target system architecture in which the 

probe is inserted. These include the categories below (the first three are described in [57]): 

• Component boundary intrusive probes observe the target system from inside a component. 

Any changes to the target system required for probing are contained within the component 

being observed. 

• Connector intrusive probes only require changes to a connector in the target system. 

• Architecturally intrusive probes require changes to the target system that are visible at the 

architectural level, e.g. adding a new monitoring component or changing the interface of a 

component. 

• Inbuilt probes are already part of the target system, requiring no target system alterations for 

their use. 
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• External probes lie outside of the target system: they observe side effects of the running 

target system. A special case is user-centred probes, which observe the behaviour of the 

target system from the perspective of the user (e.g. response time). 

Mechanism for probe insertion 

Probes can be categorised according to the mechanism used for insertion. Some possible 

mechanisms include: 

• source code modification; 

• binary or byte-code modification during or before load-time; 

• connector indirection, to intercept communications between components; 

• redirection during compile-time or run-time linking, for example to use an alternative 

component; 

• inbuilt facilities for adaptation in the target system, such as behavioural or structural 

reflection [72]; 

• changes to the execution environment, such as modifying or replacing the virtual machine. 

Time of insertion 

Probes can be inserted (or removed) before the target system goes into use or on-the-fly. The 

former can occur any time prior to the execution of the probed target system (e.g. composition time, 

compilation time, or during run-time linking). On-the-fly insertion is performed at run-time, while the 

target system is in use. 

Knowledge of the internals of a target system 

Probes can be categorised as black box probes or white box probes. Black box probes require no 

knowledge of the internals of the target system, including its architecture and implementation. White 

box probes require a (limited) understanding of the internals of the target system. Gill’s definition of 

black box probes includes those that use, but have no understanding of, the target system’s source 

code [57]. In this thesis, such probes are classified as white box because availability of source code 

implies delving behind the interface exposed by the target system (see section 2.8.3). 
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Probe dependencies 

Probes have implementation dependencies and conceptual dependencies [57]. Implementation 

dependencies of a probe technology are requirements that can be overcome by developing new tools. 

Conceptual dependencies are absolute requirements of the probe technology. For example, a tool for 

instrumenting Java source code has an implementation dependency of working only with Java, but 

there is a conceptual dependency of requiring write access to the source code prior to (or during) 

compilation. 

Triggering mechanism 

Probes can be categorised by the triggering mechanism (i.e. the type of activity that causes a probe 

to generate an event): 

• Passive probes are reactive, generating events entirely in response to activities in the target 

system. For example, a passive probe could generate an event whenever a particular function 

in an API is invoked. Such probes may be autonomous (i.e. generate an event every time 

they are triggered) or controllable (e.g. capable of being activated and deactivated). Below 

are two possible execution mechanisms for such probes: 

• A probe may be executed as part of the natural flow of control of the target system. 

• A probe may have its own thread of control, and observe the external behaviour of 

the target system’s processes. 

• Active probes are proactive, generating events in response to activities external to the target 

system. Triggers include: 

• a query, which is a pull mechanism that allows an external agent to trigger event 

generation (e.g. a target system administrator requests the current CPU usage 

statistics); 

• a timing mechanism, which uses some schedule to control the probe’s activation 

(e.g. measure network usage every five minutes). 

• Hybrid probes combine characteristics of both passive and active probes: they can passively 

observe activities in the target system, and generate events when a constraint is satisfied or 

an external activity triggers event generation. For example, a hybrid probe may observe the 
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processing of database search operations, and generate an event every minute reporting the 

throughput. 

Awareness of scope 

Finally, types of probes can be categorised according to their awareness of what triggered them. 

That is, the ability to identify who queried the probe, in what component an observed event occurred 

and what caused the event. 

2.6.2 Gauges 

Gauges gather and interpret observations; they can aggregate, compute, analyse and then 

disseminate high-level events that describe the target system and its conditions of use [5, 56]. Gauges 

differ from probes in two ways: 

• Gauges can consume events produced by other probes and gauges, while probes take no such 

input. 

• Gauges interpret observations in the context of a model of the target system (e.g. in terms of 

fitness metrics of the configuration goal), while events generated by probes need not be 

directly meaningful in the context of any high-level model. 

2.6.3 Probe and gauge run-time infrastructures 

The purpose of a probe run-time infrastructure is to standardise the run-time deployment and 

control of (potentially distributed) probes, and the delivery of events relating to probes. Such an 

infrastructure has been developed as part of the DASADA programme by the probe run-time 

infrastructure working group [25, 57]. Communication in the probe run-time infrastructure is through 

events, which are disseminated over a probe reporting bus (e.g. using the Siena publish/subscribe 

event notification service [106]). A set of event types has been defined [57], partitioned into 

infrastructure events (i.e. control instructions for probes) and events that probes can generate. A 

probe adapter is installed a priori on each participating host to receive and send events, and to 

interact with probes on that host. 

As part of the DASADA programme, the gauge infrastructure working group have developed a 

conceptual architecture for the use and management of gauges. It “defines (1) a common framework 
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for describing, developing and integrating gauges, which can be used as a standard that is shared 

between gauge developers and gauge consumers/integrators; and (2) a common set of services that 

support run-time communication between gauges and the consumers of their outputs” [5]. The gauge 

reporting bus provides a publish/subscribe service for dissemination of information: gauges publish 

information (in the form of events), while consumers subscribe to such information. 

2.6.4 Confidence in observations 

The confidence level in an observation is the probability that behaviour is as suggested by the 

observation, versus the probability of a false positive result due to an alternative explanation. For 

example, an observation of a component’s failure may be due to the component having failed or due 

to packet loss on the network between the observer and the component. The appropriate reaction to an 

observation depends on the associated confidence level and on the cost of the action. For example, it 

is often not beneficial to dynamically change network routing tables when a single observation 

suggests that a route is down: the risk of having to restore the routing tables outweighs the benefits 

[78]. 

Corroborative observations from independent sources decrease the probability of a false positive 

result, which is the product of the probability for each individual observation being a false positive. 

Thus confidence greatly increases when there is evidence from multiple sources. 

Bayesian statistics can help to determine the confidence level. Bayes’ rule states that the 

probability of a hypothesis, h, being true, given evidence, e, is: 

 

Consider the hypothesis that a component has failed, given an observation of failure. The 

probability of the component having failed is proportional to the probability of making the 

observation when the component has failed and to the probability of the component failing. The two 

terms on the denominator are: the probability of observing failure when the component has failed, 

multiplied by the probability of failure; and the probability of making the observation when the 

component has not failed, multiplied by the probability of no component failure. If these terms can be 

estimated, the confidence level in an observation can be calculated. 
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2.7 Adapting target systems 

Adaptation mechanisms provide the capability to change a target system’s configuration or its 

conditions of use. 

2.7.1 Dimensions of adaptation 

Many issues need to be addressed when designing adaptation mechanisms, particularly for on-the-

fly adaptation. These issues are categorised under eight dimensions [46]: 

• The interface for triggering adaptations. Adaptations can either be directed or 

spontaneous (i.e. externally imposed or internally driven). Mechanisms for triggering 

directed adaptation can be declarative (e.g. based on specifying the required behaviour) or 

procedural (e.g. exposing hooks to which new code can be bound). By definition, there is no 

interface to trigger spontaneous adaptation. 

• Authorisation of adaptation requests. Who can trigger adaptations, and when? 

• Feasibility of adaptation. Is the suggested adaptation possible in the current situation? 

• Dependency management. Interdependencies among components mean that a change in 

one component can necessitate change in other components. Making changes requires a 

mechanism to determine these dependencies (e.g. based on a formal description of the target 

system’s architecture). Where necessary, a mechanism is required to perform a set of 

adaptations as an atomic transaction that potentially spans multiple sites [102]. 

• State transfer. If an existing component is replaced with a new version, how is state 

information transferred from the old to the new component? 

• Source of new code. If introducing new code into the target system or replacing 

components, where does the new code come from? 

• Binding. What is the mechanism for binding new components into the target system and 

activating them? 

• Security issues. Are new components safe and what execution privileges do they have? 
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2.7.2 Complexity and flexibility of adaptation mechanisms 

Adaptation mechanisms can be categorised according to complexity, illustrated in Figure 2.4. 

Compared to simple adaptation mechanisms, complex adaptation mechanisms generally provide more 

flexibility in terms of changes that can be made. However, they cause greater perturbation to the 

target system and are harder to automate. The vertical arrow in Figure 2.4 represents the progress of 

the target system. The loops show different adaptation mechanisms, the size of the loop indicating the 

complexity. The simplest mechanism, labelled tuning knobs, uses pre-defined configurable aspects 

exposed by the target system. A more complex adaptation mechanism binds new code into the target 

system to change or augment behaviour, for example using structural reflection [72]. A third 

mechanism seeks external help to adapt the target system, for instance requesting additional hardware 

resources or a non-trivial change to the target system’s implementation. 

 

Figure 2.4: Mechanisms for adaptation 

The adaptation mechanisms used are orthogonal to deciding how to adapt the target system’s 

configuration. Each of these mechanisms can be treated in the same way, provided the set of legal 

adaptations is known and there is a uniform method of invocation (e.g. sending events or calling 

wrapper functions). Appendix B includes a list of issues relating to use of adaptation mechanisms. 

2.7.3 Adaptation mechanisms 

There are many mechanisms for adapting a target system, including those discussed below. 

In-built facilities for adaptation 

Many target systems have in-built configurable aspects. For example, use of the strategy pattern 

in object-oriented design allows a program to be structured such that the choice of algorithm can be 
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made at run-time [46, 54]. The set of supported strategies is always predetermined if there is no 

mechanism to bind in new code. 

Resource allocation and process migration 

A target system’s behaviour can be modified by reallocating the available resources. This includes 

process migration, where the execution of a process is moved from one node to another [80]. Below 

are some advantages in supporting on-the-fly resource allocation: 

• Redundant resources can be exploited to balance the load across multiple nodes and to match 

a task to the resource most suited to its execution (e.g. CPU intensive tasks on the fastest 

node). 

• Communication can be improved by co-locating processes that interact intensively and by 

locating a process close to the source of its data. 

• Fault resilience can be improved by replicating processes and data (i.e. redundancy) and by 

migrating processes from nodes that are suspected to have experienced partial failure. 

• Mobile users can utilise resources in the local proximity. 

Late binding and reflection 

The capability to modify a target system’s implementation, or the meaning of that implementation, 

allows the target system’s functionality and behaviour to be changed. Binding new code into the 

target system at run-time (i.e. late binding) allows policy decisions to be made at run-time, and the set 

of supported implementations to be extended dynamically. Several techniques are discussed below. 

Dynamically Linked Libraries (DLLs) are bound to a target system at load-time, rather than at 

compilation time. A target system’s behaviour depends on the functions used in the shared library: 

loading a new DLL can change the target system’s behaviour. This technique is comparable to the 

Java mechanism of using a ClassLoader [85]. Balzer and Goldman’s mediating connectors provide a 

mechanism to intercept calls to shared libraries [26]. Their mediators are wrappers that change the 

behaviour of the wrapped libraries on-the-fly by changing or augmenting calls to the libraries’ APIs. 

These changes are transparent to the target system. 

The behaviour of programs may be changed using a combination of first-class procedures, L-value 

binding and assignment [42]. Languages such as Napier88 [84] and ProcessBase [82] allow one to 
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assign a procedure to a variable and call the procedure using the variable’s name. Subsequent 

assignment to this variable replaces the procedure and thus adapts the behaviour of the procedure 

calls. Using a persistent store as a repository for the running program allows its behaviour to be 

modified by changing the contents of locations containing its procedures. 

Reification and reflection provide the capability for a target system to observe and adapt its own 

behaviour in the course of its evaluation; they provide a means of achieving openness and flexibility. 

Reification involves making explicit a representation of an aspect of the run-time system, and making 

this representation accessible to the program itself. Two categories of reflection are structural 

reflection and behavioural reflection. 

Run-time structural reflection, also called linguistic reflection [71], is the ability of a running 

program to generate new source code, compile it using a dynamically callable compiler, and link it 

into the program’s own execution. Behavioural reflection allows a program to adapt its own meaning 

by manipulating its evaluator. The meta-object protocol [67] provides access to the evaluator by 

defining meta-objects that control aspects of a program’s behaviour, such as method invocation and 

object creation. Changes to the meta-objects cause changes in related aspects of the program’s 

behaviour. 

Dynamic software architectures 

Component-based Software Engineering (CBSE) is concerned with developing components, 

building systems from these components, and evolving the system by replacing and customising 

components [100]. Building systems from components is not new: Parnas introduced the ideas of 

modules and abstract interfaces decades ago [89]. However, there is a drive to formalise the process 

and methodology for building and evolving component-based systems. 

The architecture of some target systems permits the addition, replication, removal and replacement 

of components and connectors. Some Architecture Description Languages, such as π-SPACE [33], 

can describe the mobility of links between processes, and can thus describe possible adaptations to the 

target system’s architecture. An architecture description maintained at run-time can form the basis for 

specifying desired adaptations, which map to operations on the target system itself [86]. 
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2.8 Design Of Experiments (DOE) 

2.8.1 Theory 

“To call in the statistician after the experiment is done may be no more than 

asking him to perform a postmortem examination: he may be able to say what 

the experiment died of.” 

Sir Ronald Fisher, Indian Statistical Congress, Sankhya, ca 1938 

An experiment design is a description of the set of combinations to test and the number of 

replications for each. Some search strategies, such as Taguchi Methods (see section 4.3), use a 

structured statistical approach for the Design Of Experiments (DOE) [107] and analysis of results. 

The aim of DOE is to determine the maximum amount of information about a target system with the 

minimum of effort. The approach studies simultaneously the effects of multiple factors on the 

response variable (i.e. on the target system’s quality), to infer the effect of each factor and of selected 

interactions, and to estimate the confidence in the results. An effect is said to be significant at the 5% 

level if there is 95% confidence that the effect on the response variable is non-zero4.  

A main effect is defined as the effect on a target system’s behaviour caused by a single factor 

being varied. An interaction effect between factors is defined as the degree to which the factors’ 

effects depend on one another’s levels. An interaction effect between two factors is called a two-

factor interaction effect. See sections 4.3.3.1 and 4.3.3.2 for a more detailed discussion of main and 

interaction effects. 

A full factorial design experiment tests all possible combinations, allowing the effects of every 

factor and every interaction to be inferred. Such experiments are often prohibitively expensive, in 

terms of time and cost, due to the large number of combinations. Approaches to reduce the size of the 

experiment include: 

• decreasing the number of factors to vary; 

                                                           

4 The 5% level is commonly used in statistics as an acceptable probability of incorrectly concluding 

that an effect is significant; other levels can equally be chosen. 
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• decreasing the number of levels to test for each factor; 

• using a fractional factorial design, where only some of the possible configurations are tested 

(given a list of factors and a list of levels for each, without ignoring entire factors or levels in 

the list). 

The first approach assumes that not all factors are important in all situations – often a necessary 

assumption when there are hundreds of possible factors. Deducing which are important requires either 

time to determine this experimentally or expert knowledge. The second and third approaches assume 

that the experimenter can infer from results the effects of factors and interactions, allowing 

predictions for untested configurations. 

One technique, described in [64], is to run the experiment in two phases. The first phase involves 

identifying which factors have a significant effect on the response by using a full factorial design with 

just two levels per factor (called a 2k design when there are k factors). The second phase involves 

running an experiment for only the significant factors, to test more levels. However, the number of 

combinations in a 2k design increases exponentially with the number of factors. Some fractional 

factorial designs use fewer combinations and are therefore often preferable. 

The assumption with fractional factorial designs is that the experimenter can interpolate the 

response of untested combinations from the effects of factors and a selection of interactions. Such 

designs obtain less information than full factorial designs as some effects cannot be estimated 

independently: varying multiple factors simultaneously can prevent the experimenter from inferring 

which change affected the target system’s behaviour. This is called aliasing, and the effects whose 

influence cannot be separated are said to be aliased [64].  

Some effects are assumed to be of no interest to the experimenter [107]. The hierarchical ordering 

principle states that the more factors involved in an interaction effect, the less likely it is to be 

significant: interactions involving three or more factors are seldom of interest. Similarly, the effect 

heredity principle states that an interaction effect can only be significant if the effect of at least one of 

the factors involved in the interaction is significant. The experimenter can reduce the number of 
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combinations to test by deliberately aliasing effects that are assumed to be insignificant5. Taguchi 

Methods provide an efficient way of designing experiments, based on these assumptions. 

This thesis focuses on complex software systems with many possible combinations (i.e. many 

factors and levels for each). Fractional factorial designs, in particular when using Taguchi Methods, 

make the testing of such systems tractable (subject to the assumptions listed in section 4.3). 

2.8.2 Related work 

Fractional factorial designs, in the context of software systems, have been described in several 

texts [38, 64]. Taguchi Methods have been used extensively by engineers for almost five decades to 

produce such designs, but their use in comprehending and configuring software systems has been 

limited: Sankar and Thampy suggested their use for performance tuning in [94] but the techniques 

have not been applied.  

Taguchi Methods provide an accessible approach for non-statisticians and have two key benefits 

over previous work: 

• They provide a standardised approach to DOE, which can be automated (e.g. by Minitab TM 

[81]). This makes it simple to select combinations to test, such that the effects of each factor 

and of selected interactions can be inferred from the results. 

• The signal to noise ratio metric provides a mechanism to calculate the robustness of a 

combination, given a set of responses from replicated trials. 

Other projects that involve testing a sequence of combinations include: 

• an automated tool, developed by Vetland and Woodside, for running full factorial 

experiments [103]; 

• Courtois and Woodside’s use of multivariate adaptive regression splines to model a target 

system’s behaviour [39], which requires a much larger set of combinations to produce a 

model of a response surface than does Taguchi Methods (see section 4.3); 

                                                           

5 These assumptions have been shown to hold in other fields, such as manufacturing. Section 6.2 

discusses their applicability to software systems. 
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• Diao et al’s use of control theory, which requires that the choice of combinations give “dense 

and uniform coverage” of the input space [43]; 

• IBM’s AutoTune, which models a target system’s response surface using a neural network – 

the training set is produced by testing a large set of combinations [28]. 

2.8.3 Controlling the target system 

There are several usage options when running experiments, which relate to where the experiments 

are run, when they are run, and the nature of the interaction with the target system. 

Experiments can be run either in a laboratory or at the customer’s site. The former involves 

simulating the expected conditions of use. The latter involves testing the target system in the 

environment in which it will be used. 

The target system can be configured either before it goes into use or on-the-fly. The former is 

either part of the development and testing phase (i.e. in a laboratory setting) or part of the deployment 

phase (i.e. at a customer’s site). Configuring the target system on-the-fly allows it to adapt 

dynamically to changes in the conditions of use. This is particularly popular for multimedia 

applications (e.g. maintaining audio or video streams), and for mobile and grid computing where the 

platform’s characteristics and available resources vary dynamically.  

Interaction with the target system depends on the configurable aspects exposed, the availability 

and control over source code, and the wishes of the experimenter. The infrastructure that controls the 

experiment can treat the target system as a black box, a white box or some shade of grey in between: 

• The only interaction with a black box system is through the interfaces it exposes: no 

knowledge is available of its internal workings. Diagnostic output of the target system can be 

used and policy decisions exposed by the target system can be set. Observation and 

adaptation mechanisms external to the target system can also be used. For example, one 

could observe the resource usage and response time of a target system, under various 

conditions (e.g. various workloads). Possible adaptations include changes to the 

environment, such as re-allocating resources or adjusting NFS settings that control mounting 

of remote file systems [96]. 
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• Interaction with a white box system can involve delving behind the interfaces it exposes: 

there is access to internal information (e.g. source code). This increases the range of possible 

adaptations and measurements that can be taken, through techniques such as source code 

instrumentation. 

• Use of expert advice to guide the design of experiments falls into a grey area between these 

two extremes. 

The case studies in chapter 5 involve running experiments in a laboratory setting before the target 

system goes into use. ACT treats the target system as a grey box: in-built configurable aspects are 

used, and expert advice guides the choice of factors and levels to test. 

2.9 Systems for performance tuning and evolution 

This section first classifies adaptations by confidence in their effects. It then discusses techniques 

for coordinating the configuration process, to decide how and when to adapt the target system’s 

configuration. A recurring theme is that making beneficial adaptations requires either a priori 

knowledge of the target system’s behaviour, or an ability to make experimental adaptations and 

empirically measure their effects (e.g. using ACT). 

2.9.1 Version granularity 

Two categories of adaptation are experimental adaptations and target adaptations. Experimental 

adaptations involve speculative adaptation of the target system’s configuration, where the effects of 

adaptations are not known in advance. Repeatedly making experimental adaptations can find a 

suitable combination even before the behaviour of the target system is understood. A target adaptation 

is an adaptation known to produce a desirable combination; it involves adapting the target system T to 

progress to a new target system T’ believed to meet the configuration goal. Both experimental and 

target adaptations can use the same adaptation mechanisms, the difference is the context and the 

confidence with which adaptations are made. An experimental adaptation can be promoted to a target 

adaptation if it is found to produce a target system configuration with the desired behaviour. 

Experimental and target adaptations are illustrated by the hypothetical example in Figure 2.5. The 

configuration goal for a database system is to minimise the number of processors required, while 

maintaining a throughput greater than 100 requests per second (rps). The bottom part of the diagram 
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shows a series of experimental adaptations, starting with configuration TA and adapting the target 

system by reducing the number of processors to produce configurations TB and TC. It is found that TB, 

which delivers a throughput of 110 rps, meets the configuration goal of the minimal number of 

processors. The set of experimental adaptations used to produce TB is promoted to a target adaptation, 

to progress from target system T to a new target system T’. Sometime later, the database’s workload 

increases causing the throughput to drop to 90 rps (shown in italics in Figure 2.5). This prompts a 

second set of experimental adaptations, finding a new configuration TD that meets the configuration 

goal. These changes are promoted to a target adaptation to progress to a new target system. 

 

Figure 2.5: Experimental and target adaptations 

2.9.2 Managing adaptation 

Techniques for managing the configuration process range from the target system managing itself 

to an external mechanism managing adaptation. 

Self-managing target systems, typified by autonomic systems [63], automatically recognise when 

something is wrong with their execution and initiate appropriate corrective action to resolve the 

situation. They can exploit details of their internal structure, but there are drawbacks. Firstly, it is 

difficult to obtain a global perspective from within a single target system. Secondly, code for 

observation and adaptation may be intertwined with target system code, making it more difficult to 

change the policy for configuring the target system and to evolve its code. 
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Shaw suggests separating the controller6 from the target system being controlled [95]. This can 

overcome the problems described above, but the external controlling mechanism requires: (1) an 

understanding of the configuration goal, (2) control over the target system’s factors, and (3) some way 

to deduce the effects of the possible adaptations. Garlan et al suggest that external adaptation 

mechanisms can be studied and reasoned about independently of the target system [56], but the effects 

of a generic adaptation mechanism are often dependent on the target system in question and on its 

conditions of use. 

The CSA project (see section 2.5.1) exploits the advantages of both these approaches by 

separating policy from mechanism to provide an open implementation [83]. A component’s 

functionality is delivered by a set of mechanisms, and the policy for using these mechanisms can be 

supplied by other components. 

It has been proposed that software architecture should play a central role in planning and 

coordinating the configuration process [86]. The approach involves maintaining at run-time an 

explicit architectural model of the target system, which is described using an ADL. An architectural 

model provides the following benefits: 

• It is a context for reasoning about the target system in terms that target system developers 

and administrators can understand. 

• It provides a global perspective for thinking about interactions among target system 

components, and interaction between the target system and its environment. 

• It can include constraints on the target system architecture and behaviour, against which 

configurations and observed behaviour can be compared. 

• Adaptations to the target system’s configuration (particularly re-assembly of components) 

can be proposed and validated at the architectural level, and mapped to adaptation operations 

on the running target system. 

                                                           

6 The term “controller” comes from the field of control theory. 



Chapter 2: Literature review 

 

34

An architecture-based approach assumes that a (constantly updated) architectural model of the 

target system is available at run-time and that adaptations at the architectural level map to possible 

adaptations in the implementation. 

2.9.3 Deciding on appropriate configurations 

The controller decides how and when to adapt the target system’s configuration. Controllers are 

software (or hardware) systems that use observations of the target system’s behaviour and conditions 

to trigger appropriate adaptations, based on a comparison of observed behaviour and the configuration 

goal. Techniques employed by controllers include: 

• use of a predictive model (or simulation) of the target system’s behaviour to predict the 

behaviour of various configurations, to estimate which configuration will best meet the 

configuration goal [22, 66]; 

• use of a rule-based approach, which responds to observations of the target system and its 

conditions of use by following pre-defined (though dynamically changeable) adaptation 

tactics [30, 49]. 

Listed below are some techniques for producing controllers, relying on a priori knowledge of the 

target system’s behaviour: 

• Experts use detailed knowledge or analytical models of the target system to suggest 

adaptation tactics. 

• Simulations predict the behaviour of various target system configurations, in an attempt to 

identify a configuration that will meet the configuration goal [22]. 

• Markov Decision Processes use a simplified discrete state model of the target system to 

predict behaviour and to decide on beneficial state changes [20]. A cost function predicts the 

quality of a given state in terms of the variables in the model. Changes in the environment 

are predicted using pre-defined probabilities of state transitions. 

• Control theory provides methodologies for designing controllers, based on a model of the 

target system’s behaviour [88]. 
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Making experimental adaptations to a target system, and empirically measuring the various 

configurations, can help in the development of effective controllers. Experiments can aid production 

of a predictive model of the target system’s behaviour and reveal suitable configurations for particular 

conditions of use (i.e. suggest adaptation tactics). 

2.9.4 Performance tuning systems 

Techniques for performance tuning range from ad hoc manual techniques using tools for 

investigating performance bottlenecks to generic automated performance-tuning tools that support on-

the-fly tuning. A selection of generic automated (and semi-automated) performance tuning tools is 

described below. 

The Performance Analysis and Characterisation Environment (PACE), developed at Warwick 

University, uses modelling techniques to produce a simulation of the target system [22, 66]. PACE 

provides a toolset for the semi-automated analysis of source code and profiling information to model 

a target system’s computational parts and their parallel execution. However, it is difficult to produce a 

simulation that exhibits the emergent properties and non-deterministic behaviour of a complex 

software system. In contrast, ACT can be used to empirically measure such behaviour. 

IBM’s AutoTune [28] uses an artificial neural network to predict the target system’s behaviour. 

This has much in common with the ACT approach: the training set consists of observations of target 

system configurations run under a variety of conditions. There are two main differences. Firstly, ACT 

allows feedback from previous observations to be used when deciding on combinations to test. 

Secondly, statistical techniques for design of experiments and analysis of results give an explicit 

mathematical model of the target system’s behaviour, and confidence levels in the model. In contrast, 

a model learnt by a neural network is implicit in the weights and is not easily accessible. 

The aim of “Autonomic Computing” [63] is to produce an adaptive infrastructure that regulates 

itself. It is inspired by the metaphor of the autonomic nervous system, which handles crucial but 

mundane functions automatically, such as increasing heart and breathing rates when required. An 

autonomic computing system would be self-configuring, self-healing, self-optimising and self-

protecting; complexity would be hidden from users by automatically configuring itself according to 

the users’ needs and in accordance with the environment in which it operates. This requires that 

appropriate configurations be known: again, the use of ACT may help. 
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Using the AutoTune agent framework, Diao et al have built an autonomic feedback control system 

(see section 2.10.1 for a discussion of control theory). Agents perform three functions [43, 44]: 

• A modelling agent creates a linear model of the target system’s behaviour. The case study in 

[44] models CPU and memory usage of the Apache Web Server as two factors are varied. 

• A controller design agent uses standard techniques from linear control theory to derive a 

feedback control algorithm, based on the model of resource usage. The controller uses the 

difference between desired and measured resource usage to determine the next levels of the 

factors. 

• A run-time controller agent adapts the target system, based on the control algorithm. 

ACT serves a similar role to the modelling phase. The key difference is that search strategies such 

as Taguchi Methods require testing of fewer combinations to produce a model. Also, the aims of ACT 

– to improve comprehension and aid the configuration process – are more general than those of Diao 

et al, whose feedback control algorithm corresponds to a single adaptation tactic. 

2.9.5 DASADA 

“Dynamic Assembly for System Adaptability, Dependability and Assurance” (DASADA) is a 

DARPA-funded programme [8, 9]. The DASADA approach is based on use of architectural models 

for reasoning about complex software systems. Adaptability is achieved through on-the-fly re-

assembly of the target system’s components. The need for change is derived from a comparative 

analysis of the target system’s specification and feedback on its implementation [79]. 

Probes and gauges provide this feedback by monitoring the executing target system and its 

environment. Observations are interpreted in the context of an architectural model maintained at run-

time. The model is annotated with QoS requirements – violations of these requirements are used to 

trigger automated re-assembly of components or to request human intervention to perform re-

composition. Current work in the DASADA programme assumes that appropriate adaptation tactics 

are somehow known. Use of ACT could help to determine the effects of re-assembling components 

and the quality of various configurations. 
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2.9.5.1 Software Surveyor 

The DASADA project “Gauges to Dynamically Deduce Componentware Configurations” [105] 

aims to model the connectivity and behaviour of applications. The Software Surveyor system has been 

developed for this purpose. It consists of a suite of tools to construct a dynamic, constantly updated 

model of an evolving, under-specified application. The aim is to answer questions about a target 

system, such as “how are components connected?”, “how does the current configuration compare to 

other configurations?”, “are there unused or unexpected components?” and “how are the components 

interacting?” Software Surveyor differs from ACT in that it does not make experimental adaptations 

to explore behaviour. Also, the focus is on modelling the target system at the architectural level, 

whereas ACT interprets the target system’s behaviour in terms of the configuration goal. 

Software Surveyor constructs and maintains a model of the target system by combining static and 

run-time information. It combines information from the specification and software development 

environment with run-time information about binding decisions, component execution, interactions 

and resource usage. ACT could be used to gather additional information by empirically measuring a 

selection of combinations. 

2.9.5.2 Kinesthetics eXtreme 

The DASADA project “Kinesthetics7 eXtreme” (KX) [14, 57] aims to produce an infrastructure 

for the run-time monitoring and adaptation of component-based distributed target systems. KX 

consists of a probe infrastructure, an event infrastructure and a gauge infrastructure. The project 

focuses particularly on the probe infrastructures for observing the target system, and the event 

infrastructure for disseminating information. 

The probe infrastructure is summarised in section 2.6.3. One implementation is the Active 

Interface Probe Run-Time Infrastructure [57]. Probe stubs are inserted into the target system by 

modifying the source code at compile-time. At run-time, the target system administrator can associate 

                                                           

7 Kinæsthesis is “the sense of muscular effort that accompanies a voluntary motion of the body. Also, 

the sense or faculty by which such sensations are perceived.” [15] 
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callbacks with the before- and after-phases of method calls. Code invoked by the callback may log, 

augment, override or deny a method’s activities. 

The event infrastructure disseminates events (i.e. messages) from producers to consumers. 

Lightweight events are encoded in XML using the Smart Events Schema [6] and routed using Siena 

[106], which requires conversion to and from Siena’s attribute-value pairs format. Gaugents are 

heavier mobile software agents that transmit the executable for interpreting the event along with the 

data. 

KX complements ACT in that it provides an infrastructure to collect observations of a target 

system and to transmit this information to ACT. The contribution of ACT would be to coordinate 

adaptation of the target system, and to use the observations to infer the behaviour of target system 

configurations. Indeed, the openness and flexibility of the event infrastructure has informed the design 

of a new version of ACT, described in section 7.3. 

2.9.5.3 Rainbow 

The “Rainbow” project for “Architecture-based Adaptation of Complex Systems” [34] aims to 

support automated target system adaptation at run-time. The approach, first proposed in [86] and 

discussed in section 2.9.2, involves maintaining at run-time an architectural model of the target 

system and its QoS requirements. This is encoded using the Acme ADL [55]. Performance-oriented 

run-time gauges are used to interpret low-level observations of the target system in the context of the 

architectural model. If measured performance shows an architectural constraint violation (i.e. a QoS 

violation), a pre-defined adaptation tactic is triggered to reconfigure the target system.  

These techniques have been demonstrated with several target systems, such as controlling the 

transfer of files between a sender and a server by adapting the file compression policy in response to 

available bandwidth. It has not yet been shown that such techniques scale to complex software 

systems. ACT differs from this approach in that it does not require an architectural description of the 

target system or the existence of pre-defined adaptation tactics. It is argued that ACT can be used to 

discover beneficial adaptation tactics without a priori knowledge of the target system. 
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2.9.5.4 Containment units 

The project “Process Guidance and Validation for Dependable On-the Fly System Adaptation” 

[87] aims to produce adaptable software systems, built from Containment Units (CUs). These are 

hierarchically composed modules that can self-diagnose the need for change, based on their 

operational characteristics, and that can make a limited set of changes aimed at meeting these needs. 

The CUs are defined in Little-JIL, an executable high-level process language with graphical syntax 

for modelling co-ordination between agents. Little-JIL contains both proactive and reactive control 

mechanisms, and uses resources for constraining and managing process execution.  

This approach has several assumptions and limitations: 

• Little-JIL must be used throughout the target system’s lifecycle; 

• the set of possible adaptations is limited to resource (re)allocation and module replacement, 

the latter consisting of reassembly of designated components within a CU (using a pre-

defined set of available modules and resources); 

• all changes occur within existing architectures that cannot themselves change during 

execution; 

• the adaptation tactics are specified a priori; 

• the set of changes required in the future must somehow be known – if an unexpected 

contingency arises, off-line human intervention is required to adapt the target system’s 

architecture and incorporate additional CUs. 

2.9.6 ArchWare 

The aim of the ArchWare project is to produce architecture-centric languages, frameworks and 

tools for engineering evolvable software systems that are compliant to the needs of particular 

applications [4]. Importantly, both the target system and the process for evolving the target system 

can change over time. 

The main areas of interest are: 

• formal architectural style-based languages, e.g. the π-SPACE ADL [33], to describe and 

analyse evolvable target systems; 
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• support for evolution. 

Architectural styles (e.g. a client-server style) impose constraints upon the target system’s 

architecture and behaviour. They provide users with high-level abstractions appropriate to a specific 

domain and encourage reuse of designs. 

Target systems developed using the ArchWare infrastructure will support on-the-fly adaptation of 

components, connectors and their topology. Evolution will be achieved by decomposing the target 

system into its constituent components, evolving them and then recomposing to form a new target 

system. This will be done while preserving any state or shared data of the running target system [59]. 

ACT could be used to explore the effects of possible adaptations, to help discover which 

configurations would meet the configuration goal under a variety of conditions of use. 

2.9.7 Reflective middleware 

Reflective middleware offers an open implementation, allowing inspection and adaptation of the 

middleware’s components. In general, on-the-fly adaptation is controlled by a rule-based mechanism, 

which manages the target system’s performance by monitoring and adapting the target system 

according to pre-defined (though dynamically changeable) adaptation tactics [23, 29, 49].  

Blair et al have developed the Open ORB reflective middleware architecture [49]. Its design uses a 

component-based programming model, where an instance of Open ORB is a particular configuration 

of components. Open ORB’s meta-space, which is its support environment, is partitioned into four 

orthogonal meta-models: 

• The interface meta-model allows inspection of the external representation of a component, in 

terms of its (immutable) interfaces. 

• The architectural meta-model allows inspection and adaptation of Open ORB’s architecture. 

• The interception meta-model allows adaptation of a component’s behaviour, through 

insertion of pre- and post-behaviour using behavioural reflection. 

• The resource meta-model provides access to inspect and adapt the management of resources. 

ACT could run experiments for target systems that use Open ORB: adaptation and observation 

mechanisms exposed by the middleware provide facilities to configure and observe the target system. 
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ACT could determine the effects of adaptations under various conditions of use to help suggest 

appropriate adaptation tactics. 

The Distributed Systems Group at Trinity College have produced K-ORB: a configurable 

component model for building adaptable distributed systems, based on a light-weight version of 

CORBA [48]. It uses the Iguana reflective programming model [58] to support dynamic 

customisation of the middleware. Their AutoORB project aims to optimise the middleware system to 

meet the needs of a particular application, based on analysis of how the application has used the 

middleware [48]. This aim has much in common with the aim of ACT 2.0: to configure the target 

system on the fly, and deduce predictive models and adaptation tactics from observations of the target 

system’s execution. 

2.10 Control theory and process modelling 

The process of configuring a target system involves manipulating its control inputs (i.e. factors) to 

affect its outputs (i.e. behaviour). This is clearly a control system, and is related to work in the field of 

control theory [45, 53] and process modelling [3]. 

2.10.1 Control theory and feedback 

Control theory is the mathematical analysis of systems used to achieve a desired state under 

changing internal and external conditions. Describing ACT as a feedback control mechanism provides 

a mapping between the domains of software configuration and control theory, and encourages the use 

of well-established control methodologies. ACT can be viewed as a disturbance-compensated closed-

loop control system with command compensation. To explain these terms:  

• Disturbance-compensation involves using measurements of uncontrolled inputs (e.g. 

network load) in the control algorithm. 

• Closed-loop refers to the use of feedback (i.e. comparing the measured output with the 

desired values). In contrast, open-loop implies the absence of feedback. 

• Command compensation exploits knowledge of the process’ characteristics, such as a lag 

before a change has an effect. Disturbance- and command-compensation are examples of 

feed-forward loops. 
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The algorithm for deciding when and how to adjust the target system’s factors is called the control 

law, and is typically derived from a model of the target system’s behaviour. A feedback controller 

aims to maintain the desired target system behaviour, where corrective action is based on the error 

(i.e. the difference between desired and observed behaviour) and not on why the error occurred. It is 

therefore not necessary to know the exact effects of changing the factors, just whether the adjustment 

makes the response increase or decrease. This allows for simplifying assumptions in the target system 

model. 

There are two main stages to designing and implementing a feedback control system [43, 53]: 

• Target system modelling involves producing a predictive model of the target system’s 

behaviour. A continuous model is often used to approximate discrete target systems. 

Modelling involves: 

• designing an experiment that gives dense and uniform coverage of the input space –

called persistent excitation, where the target system is continually adapted to 

display its behaviour for the full range of combinations; 

• running the experiment to collect the data;  

• using system identification techniques to produce a model; 

• validating the models by running further experiments. 

• The controller is designed using standard control algorithms, such as proportional-integral-

derivative (PID) design. 

A common experiment design in control theory is to vary the factors’ levels according to discrete 

sine waves (called excitation signals), whose frequencies are “relatively prime” [43]. This tests a wide 

range of combinations and allows the individual effect of each factor to be determined. A linear 

model is often considered adequate for capturing the relationship between control inputs and system 

outputs (i.e. fitness metrics), particularly for a small region of the response surface. 

PID controllers incorporate three types of control [19]: (1) proportional control, where the 

correction is proportional to the error in the response; (2) integral control, where the correction is 

proportional to the duration for which the error is present; and (3) derivative control, where the 

correction is proportional to the rate of change of the error. The output of the PID controller is the 
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sum of these three terms. Tuning the controller involves changing the weightings of each term. 

Proportional control can make the target system unstable, undulating from one side of the desired 

value to the other. Integral control compensates for this effect, but introduces a lag between the 

detection of the error and corrective action. Derivative control, also called rate or pre-act, inhibits 

rapid changes in the target system outputs to prevent overshoot (i.e. instability from proportional 

control). 

Adaptive control theory is the study of controllers that automatically redesign themselves as the 

target system and conditions of use change. The control law is adjusted, based on a model of the 

target system’s behaviour that is updated on-the-fly [73]. This advanced topic of control theory is 

clearly relevant to configuring target systems that evolve. An aim of future work on ACT 2.0 is to run 

experiments on-the-fly that explore the target system’s behaviour to update, or even generate, a 

predictive model of its behaviour. 

2.10.2 Process modelling 

There are parallels between tools for configuring software systems and process support 

environments (PSEs). A target system is a type of process: it consists of a partially ordered set of 

activities in which agents (i.e. humans and software systems) interact to achieve a common goal. This 

section discusses PSEs that support modelling, enacting and analysing human-intensive processes. Of 

particular interest are PSEs that support process evolution. 

Techniques for process control in an organisation include continuous regulation with respect to a 

model, and ad hoc decision-making in response to situations [40]. The former involves comparing 

observations of the process against a plan or template to identify deviations outwith acceptable 

bounds, and then applying often well-established corrective actions. The “plan” is analogous to a 

model of the target system’s architecture and desired behaviour, while “corrective actions” 

correspond to pre-defined adaptation tactics. In contrast, corrective actions in “ad hoc decision-

making” are often unclear, requiring support to aid assessment of possible responses in terms of cost, 

time and quality. ACT could provide this support for software systems by running experiments to 

measure the quality of a selection of target system configurations under likely conditions of use. This 

aids production of a predictive model of the target system’s behaviour to establish appropriate 

corrective actions. 
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Process modelling includes work on meta-processes [104], which guide the observation and 

evolution of processes. Indeed, ACT can be viewed as a meta-process of the target system: it can 

coordinate adaptation of the target system’s configuration. 

2.10.2.1 FEAST 

“Feedback, Evolution And Software Technology” (FEAST) aims to investigate software evolution 

by studying software processes as multi-loop, multi-level feedback systems. The FEAST hypothesis is 

that software processes in the real world “evolve strong system dynamics and the global stability 

tendency of other feedback systems. The resultant stabilisation effects are likely to constrain efforts at 

process improvement” [75]. Localised change has little effect on global process behaviour because the 

outer feedback loops have a more dominant effect. Significant improvement requires adjustment of 

feedback loops and therefore an understanding of the process model. 

A principle goal of FEAST is the “identification of the drivers of evolution and of the mechanisms 

that control and direct it, to learn to control these mechanisms and to improve direction, planning and 

management of product evolution to serve the best interests of the determining stakeholders” [76]. 

Lehman et al look at attributes of processes to capture patterns and trends of the software 

development process. An example attribute is a count of the number of modules for different releases 

of a software system, but this reveals little of the emergent properties of the complex software system 

or development process. His analysis techniques therefore do not transfer readily from the field of 

process modelling to software configuration. 

2.10.3 Catastrophe theory 

Catastrophe theory studies and classifies phenomena characterised by sudden shifts in behaviour 

arising from small changes in circumstances; a catastrophe is a loss of stability in a dynamic system 

[16]. It is possible that some complex software systems suffer from catastrophes, and that catastrophe 

theory is pertinent to studying phase changes and non-determinism. Figure 2.6 shows a hypothetical 

response surface containing a cusp catastrophe, which involves two factors. The vertical arrows show 

sudden shifts in behaviour, and the two layers of surface show that a combination can exhibit multiple 

behaviours depending on the previous state of the target system.  
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Figure 2.6: A cusp catastrophe 

Catastrophe theory suggests that, when adapting a target system on-the-fly, the effects of 

adaptations can depend on the order in which they are applied. However, ACT runs experiments 

before the target system goes into use, setting it to a known state before every trial. Therefore, the 

order in which combinations are tested should not influence behaviour. 

The factors that form the dimensions of the response surface in Figure 2.6 could be uncontrolled 

factors (i.e. aspects of the target system or conditions of use that are not set explicitly – see section 

4.3.6 for further discussion). Variation in the levels of uncontrolled factors could cause a catastrophe, 

resulting in a sudden and unexplained shift in the target system’s behaviour. This could cause high 

variability in responses from replicated trials. 

It is yet to be proven whether software systems do suffer from such catastrophes. Future research 

topics include investigation of whether catastrophes do occur and incorporation of ideas from 

catastrophe theory into work on configuring software systems. 

2.11 Software testing 

Running experiments to measure a sequence of combinations has much in common with software 

testing. This section focuses on system tests, where the target system is tested as a whole. The aim of 

software testing is to exercise a target system to identify differences between specification and 

behaviour, to find faults or to show their absence with some level of confidence. This involves 

running a sequence of test cases and observing the target system’s behaviour during each. 

A test case specifies a target system configuration to test and the inputs to use (i.e. it specifies a 

combination). The target system either passes or fails a test case – equivalent to a simple fitness 

metric. Software testers generally assume that tests are deterministic (i.e. the same outcome is 
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obtained every time a test case is used). Exhaustive testing is infeasible due to the curse of 

dimensionality, so a technique is required to decide on the set of test cases to use.  

Choosing a set of test cases and testing each is analogous to ACT running an experiment for a 

target system, where a search strategy attempts to find faults. Common practice in software testing is 

to test the target system’s boundary and extreme conditions, which are unusual conditions near the 

edges of the target system’s functionality. Figure 2.7 shows a hypothetical input space consisting of 

factors X and Y, and indicates two boundary conditions (X=50 and X>Y) as dotted lines, which partition 

the space into regions. Software faults can be divided into isolated faults and region faults [91]. The 

former occur for only one specific combination of factor levels. For the latter, all combinations in a 

region of the input space exhibit the fault. Region faults can be sub-divided as follows: 

• single-mode faults, where a failure consistently occurs when a single factor has particular 

levels (e.g. failure whenever X>50, which corresponds to the right-hand side of a boundary 

condition in Figure 2.7); 

• double-mode faults, where a failure consistently occurs when two factors have particular 

pairs of levels (e.g. failure whenever X<Y and X<50); 

• multi-mode faults, where a failure consistently occurs when multiple factors have particular 

combinations of levels. 

 

Figure 2.7: Test cases in a 2D input space 

There should ideally be a test case in every region of the input space, to detect all region faults. To 

decide on test cases, common practice is to test just above, below and on a boundary condition (e.g. 

for X=50, if X must be an integer then set X to 49, 50 and 51). The crosses in Figure 2.7 show possible 
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test cases that leave two regions of the input space untested. When there are many factors (i.e. many 

dimensions) and many boundary conditions, it is difficult to ensure that every region is tested. 

Generation of test cases is related to Design Of Experiments (see section 2.8). Significant main 

effects correspond to single-mode fault, and significant interaction effects correspond to double-mode 

or multi-mode faults. Phadke proposes use of Taguchi Methods for generating test cases, which he 

calls Robust Testing TM [91]. He describes a systematic approach for selecting combinations of 

parameter values (i.e. factor levels), given a predefined set of factors and a small set of “interesting” 

levels for each. Testing these combinations reveals all single-mode faults, all double-mode faults and 

many multi-mode faults. This application of Taguchi Methods differs from its use in configuring 

target systems: “quality” is simply pass or fail, and results are not used to predict the performance of 

untested combinations. 

Phadke’s approach has a balance requirement: for every pair of factors, every pair of values is 

tested the same number of times. Cohen et al observe that the balance requirement is not necessary for 

the generation of test cases. The weaker requirement that every pair is covered at least once [37] is 

sufficient for detecting all single-mode and double-mode faults, and greatly reduces the number of 

test cases required (it grows logarithmically with the number of factors, and quadratically with the 

number of levels per factor). For example, an input space of 100 factors with two levels each requires 

101 test cases using Robust Testing TM, while an unbalanced test set requires only 10 test cases. The 

cost of removing the balance requirement is that the individual factor level, or combination of factors’ 

levels, that causes the failure is not identifiable due to aliasing. The balance requirement is therefore 

important for target system tuning and evolution. 

2.12 Summary 

It has been argued by many researchers that software systems should be configurable to meet the 

needs of all stakeholders under various conditions of use [69, 74, 83]. Identifying when the target 

system should adapt requires observation (or prediction) of its conditions and/or behaviour. 

Oreizy et al propose that software architecture should play a central role in planning and 

coordinating the configuration process [86]. The technique involves maintaining at run-time an 

explicit architectural model of the target system, which is described using an ADL. This provides a 
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context for reasoning about the target system: observations are compared to constraints on the target 

system’s architecture and behaviour, which trigger adaptation of the target system’s configuration.  

Deciding how to adapt the target system’s configuration requires (some) comprehension of its 

behaviour. This can be acquired through expert intuition, analytical modelling, simulation or 

empirical measurement. 

Expert intuition, analytical modelling and simulation are infeasible for some complex software 

systems due to emergent properties and non-deterministic behaviour. Although these techniques are 

sometimes useful, a higher level of confidence is obtained with results from empirical measurement. 

This requires observation mechanisms to measure the performance of the running target system, and 

adaptation mechanisms to configure the target system and conditions of use when measuring a 

selection of combinations during an experiment. 

The experimenter has a number of options when running experiments, which relate to where the 

experiments are run (e.g. laboratory or customer’s site), when they are run, and whether the target 

system is treated as a black or white box. Adaptations made to the target system’s configuration can 

be categorised as experimental adaptations or target adaptations: speculative adaptations where the 

effects are not known in advance, or adaptations known to produce a desirable configuration. 

Several projects have involved experimental adaptations and empirical measurement, prior to the 

target system going into use: 

• Vetland and Woodside produced an automated tool for running full factorial experiments 

[103]; 

• IBM’s AutoTune used an artificial neural network that was trained by testing a set of 

combinations [28]; 

• Diao et al tested combinations to produce a model of the target system, from which they 

generated a controller using techniques from control theory [43]; 

• Courtois and Woodside tested a set of combinations to produce a model of the target system 

using multivariate adaptive regression splines [39]. 

The above projects required that a large number of combinations be tested, which is infeasible for 

some complex software systems. Design Of Experiments, in particular Taguchi Methods, provide 
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techniques for producing fractional factorial designs that involve only a small subset of the possible 

combinations. These have been used by Phadke [91] for software testing, but the techniques have not 

previously been applied to configuring software systems. 

The statistical basis of Taguchi Methods surmounts a further shortfall in previous research: it 

provides a statistically rigorous way to design and analyse experiments, such that the confidence level 

in results can be estimated. It also provides a metric to measure the robustness of a combination, 

given replicated measurements of its performance. 
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3 ACT 1.0 

This chapter describes the architecture and use of ACT 1.0, referred to as ACT throughout the 

chapter. A glossary of the terminology used can be found in Appendix A. 

3.1 Tool architecture 

Figure 3.1 is a UML component diagram showing the main components of ACT and the 

dependencies between them. They are described below, starting from the right side of the diagram. 

 

Figure 3.1: Component diagram showing structure of ACT 

The target system is the software system to be configured. The target wrapper component is 

associated with the target system, and contains functions to control the target system during 

experiments. 

The target controller component dynamically loads the functions in the target wrapper and uses 

them to interact with the target system. The target controller implements the IAPItoTarg interface, 

which includes methods to run a trial and to configure the target system. 

The master meta-strategy component dynamically binds to and uses search strategy components. 

They implement the ISearchStrategy interface, which includes a method to get the next combination 

to test and a method to record the results of a trial as feedback to the search strategy. 

The coordinator is responsible for using the search strategy and target controller components to 

run a series of trials. It binds to the master meta-strategy component and uses it as a proxy, through 

the ISearchStrategy interface, to repeatedly get the next combination to test from a search strategy. 
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It uses the target controller, through the IAPItoTarg interface, to adapt the target system and 

conditions of use accordingly and to run trials. 

The core of ACT consists of the coordinator, target controller and master meta-strategy. The 

experimenter can choose from a library of search strategies included in the ACT distribution. 

The input to ACT, denoted experiment description in Figure 3.1, is a description of: 

• the resources available (used by search strategy components); 

• the factors to vary, including the legal levels for each (used by search strategy components); 

• the location of each function in the target wrapper, giving its name and the path of a 

Dynamically Linked Library (used by the target controller). 

3.2 Human roles 

There are a number of human roles inherent in the use of ACT: 

• The ACT implementer is the author of ACT; the programmer who produces the core of ACT. 

• Search strategy implementers write new search strategy components for ACT. The ACT 

implementer has written some generic search strategies. Third party developers could also 

write search strategies, and target system administrators could write search strategies 

tailored to a specific domain or target system. 

• Target system developers are responsible for the target system’s implementation; they are 

experts in the details of the target system’s operation. 

• Use of the target system is the responsibility of the target system administrator who provides 

suitable functions for configuring, running, observing and evaluating the behaviour of the 

target system. 

• The experimenter is the user of ACT and is thus responsible for configuring and invoking 

ACT for a particular target system. 

• The customer is the person who will use the target system in a real-world situation, for 

whom the configuration process is performed. 
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3.3 ACT set-up 

To set up ACT for use with a target system, and to start an experiment, requires the following 

steps: 

• The target wrapper’s functions are written by the target system administrator. 

• The experiment description is written by the experimenter. 

• The experimenter executes ACT, supplying the following command line arguments: 

• A file containing the experiment description. 

• A file containing a description of the environment in which the experiment is run. 

This is not used by ACT, but is recorded for reproducibility. Any format is suitable, 

provided future experimenters can understand its contents and use the information 

to recreate the test environment. 

• The output directory in which to record the results. 

3.4 Experiment description 

The experiment description is encoded in XML format, and contains the following information 

(see Appendix C for an example): 

• It describes the factors that can be varied, divided into two sets: the configurable aspects of 

the target system, and the usage aspects that comprise aspects of the conditions of use that 

can be configured. For each factor, the experiment description gives: 

• a name, used by ACT for meaningful output; 

• the type of the levels to which the factor can be set, restricted to int, float and string 

for simplicity; 

• the set of legal levels to which the factor can be set (see below); 

• the predicted length of time required by the adaptation function to change the 

factor’s level, which may be used by the search strategy to guide the choice and 

order of combinations to test; 
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• the location of the adaptation function for changing this factor’s level, giving the 

path of the DLL and the name of the function. 

• It lists the names of the fitness metrics measured during each trial, used by ACT for 

meaningful output when the results files are generated. 

• It specifies the locations of the target wrapper’s functions, giving for each the path of the 

DLL and the name of the function. Section 3.5 describes these functions. 

• It lists the resources available. 

• It gives miscellaneous information for ACT’s components, including: 

• an upper limit on the time allowed per trial;  

• the maximum number of consecutive attempts to test a combination before it is 

abandoned; 

• the search strategy component to use. 

A set of legal levels for a factor can be described using either an enumeration or a range. An 

enumeration consists of a list of levels. A range (for int or float levels) specifies a lower bound, an 

upper bound, a legal granularity and an optional sample granularity. The legal granularity specifies 

the acceptable step size for incrementing and decrementing the factor’s level. The sample granularity, 

which should be a multiple of the legal granularity, suggests a step size to use when changing the 

level. It recommends to the search strategy the number of levels at which to test the factor. It also 

provides a mechanism for the experimenter to indicate the sensitivity of the factor (i.e. recommend a 

small sample granularity if it is believed that a small change in level has a large effect, or vice versa). 

3.5 Target wrapper 

Interaction with the target system is through functions in the target wrapper, which consists of a 

collection of dynamically linked libraries (DLLs). It contains the functions described below (see 

Appendix D for an example): 

• There is an adaptation function for each factor to be varied. Each adaptation function takes 

as an argument the new level for the factor, represented as an int, float or string. 
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• The validation function checks that a proposed target system configuration is legal (e.g. that 

it does not violate target system invariants). It takes a description of a proposed target system 

configuration (specifying a level for each factor) and returns true if the configuration is valid 

and false otherwise. 

• The run function runs and measures a single trial of the target system. It takes no arguments 

and returns values for the fitness metrics in a result object, which implements the 

IResultObj interface described below. 

• The recovery function restores the target system to a stable state in the event of failure, 

allowing the experiment to continue. It takes a description of the current configuration, to 

which the target system should be restored.  

• The new result object function instantiates and returns a new result object, given a set of 

values for the fitness metrics. This function is required for the continuation of an interrupted 

experiment, where previous trials’ results (stored in the output files) are re-instantiated as 

result objects. 

Result objects implement the IResultObj interface, shown by the C++ code in Figure 3.2. ACT 

can use this interface to process results independently of the target system concerned. In a typical 

implementation, the methods getNumFitnessMetrics and getFitnessMetric return the number of 

fitness metrics and the value for the ith fitness metric respectively. The order of the fitness metrics is 

assumed to be the same as in the experiment description’s list of fitness metrics. The ordering method 

(the less-than operator) implements the aggregating function discussed in section 2.2. It compares 

two result objects to determine which best meets the configuration goal: the greater the better. A 

search strategy can use this to interpret the results of previous trials, to guide the choice of 

combinations to test. 

class IResultObj { 
public: 
 virtual bool operator<( const IResultObj& s ) const = 0; 
 virtual int getNumFitnessMetrics() const = 0; 
 virtual Value *getFitnessMetric( int i ) const = 0; 
 virtual float eval() const = 0; 
 virtual ~IResultObj() {}; 
}; 

Figure 3.2: The IResultObj interface 
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3.6 Target controller 

The target controller acts as an intermediary between the target wrapper and the other 

components of ACT; it dynamically loads the functions in the target wrapper to interact with the 

target system. The target controller implements the IAPItoTarg interface, shown in Figure 3.3. A 

typical implementation is described below: 

• The adaptTarg method sets the ith factor of the target system’s configurable aspects to the 

level v. Factors are numbered (from zero) in the order in which they are listed in the 

experiment description. The adaptTarg method calls the appropriate adaptation function in 

the target wrapper. 

• The adaptCond method sets the ith factor of the usage aspects to the level v by calling the 

appropriate adaptation function in the target wrapper. The target controller thus maintains a 

logical distinction between factors of the target system and factors of the conditions of use – 

the search strategy decides how these factors are used when generating a sequence of 

combinations to test. 

• The validateConfig method checks that a target system configuration, conf, is valid, 

returning true if it is and false otherwise. This maps directly to a call to the validation 

function in the target wrapper. 

• The recover method restores the target system to a stable state in the event of failure by 

calling the recovery function in the target wrapper. The recover method returns a boolean 

value to indicate whether the combination should be re-tested (true) or abandoned (false). It 

returns false if the number of consecutive recovery attempts for the current combination is 

equal to the maximum number of recovery attempts specified in the experiment description; 

otherwise true is returned. 

• The run method calls the run function in the target wrapper, and measures the duration of 

the function call. It implements a timeout mechanism that terminates the run function if the 

time taken exceeds a threshold value, defined in the experiment description. The run method 

also catches any run-time exceptions thrown by the run function and verifies that a result 
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object has been returned (i.e. result is not null). In the event of error, an exception is thrown 

indicating failure. If the run is successful, the result object is returned. 

class IAPItoTarg { 
public: 
 virtual void adaptTarg( const unsigned int i, const Value& v ) = 0; 
 virtual void adaptCond( const unsigned int i, const Value& v ) = 0; 
 virtual bool validateConfig( const FactorLevels& conf ) = 0; 
 virtual bool recover( const FactorLevels& conf ) = 0; 
 virtual IResultObj *run() = 0; 
 virtual ~IAPItoTarg() {} 
}; 

Figure 3.3: The IAPItoTarg interface 

3.7 Search strategy 

A search strategy component generates a sequence of combinations to test, potentially using 

results from previous trials as feedback to guide its choice. How and why these combinations are 

chosen by a search strategy is a policy issue, determined by the search strategy implementer. The 

choice of search strategy is made by the experimenter. 

A typical search strategy manages the resources available for the search (listed in the experiment 

description), such as the total time available for testing. Search strategy components implement the 

ISearchStrategy interface, shown in Figure 3.4. A typical implementation is described below: 

• The getCombination method returns the target system configuration to test and the 

conditions to use during the next trial. The result is an instance of the Combination class, 

which contains a FactorLevels object describing the target system’s configuration and a 

FactorLevels object describing the conditions of use (giving a level for each factor). 

• The recordResult method takes as arguments a description of the combination tested during 

a trial and the result object obtained. This provides a feedback loop, allowing the search 

strategy to use the results of previous trials when deciding on the next combination. 

• The isFinished method returns true if the search is complete and false otherwise. 

Completion means that no further combinations are to be tested (e.g. no more time 

available). When the search is complete, the result of subsequent calls to the 

getCombination method is undefined. 
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class ISearchStrategy { 
public: 
 virtual const Combination *getCombination() = 0; 
 virtual void recordResult( const Combination *c, const IResultObj *results ) = 0; 
 virtual bool isFinished() = 0; 
 virtual ~ISearchStrategy() {}; 
}; 

Figure 3.4: The ISearchStrategy interface 

A meta-strategy component is a special search strategy that dynamically binds to and uses other 

search strategy components; it can configure search strategy components and dynamically switch 

between strategies. To configure a search strategy component requires strategy-specific knowledge. 

The search strategy implementer has freedom to use any scheme desired for communication between 

a meta-strategy and search strategy. For example, a search strategy could implement an interface that 

exposes its configurable aspects, through which a suitable meta-strategy (i.e. one that knows about the 

interface) could configure it. 

The master meta-strategy component provides a consistent mechanism for the controller to query 

search strategy components. It is also responsible for updating the database of result objects (see 

section 3.9.1 for a description of this database). 

The experimenter specifies in the experiment description a choice of search strategy by giving the 

name of a DLL that contains a search strategy component (if absent, ACT uses the default grid 

sampling strategy, described in chapter 4). At start-time, the master meta-strategy dynamically loads 

this DLL and calls a function in it named instantiate, which returns an instance of the search 

strategy component. The instantiate function takes as arguments a handle to the experiment 

description and a handle to the database of result objects obtained to-date (which is initially empty). 

The search strategy component loaded by the master meta-strategy can itself be a meta-strategy 

that chooses and configures other search strategies for use.  

3.8 Coordinator 

The coordinator component manages the experiment: it runs a set of trials that test a sequence of 

combinations. For the duration of the experiment, the coordinator binds to a master meta-strategy 

component (referred to here as the search strategy) and to a target controller component, which it 

accesses through the ISearchStrategy interface and IAPItoTarg interface respectively.  
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The coordinator implements a simple loop, shown in Figure 3.5 to Figure 3.7 in pseudo-code and 

simplified by removing error-handling. 

Figure 3.5 shows the main control loop that repeats until the search strategy reports that the 

experiment is finished. The coordinator queries the search strategy to get the next combination to test 

(line 3), then checks whether the target system configuration is valid by querying the target controller 

(line 4). If the configuration is valid, the coordinator configures the target system and conditions of 

use (line 5, shown in Figure 3.6), and then runs the target system to measure its behaviour (line 6, 

shown in Figure 3.7). Otherwise, an error result object is generated (line 8). The result of the trial is 

then fed back to the search strategy (line 10). 

 /** 
  * Run trials for a variety of combinations. 
 */ 
1 void Coordinator::runExperiment() { 
2   while( not searchStrategy.isFinished() ) { 
3    next combination = searchStrategy.getCombination() 
4    if( targetController.validateConfig(next target system configuration) ) { 
5     changeCombination( next combination ) 
6     result = runTrial() 
7    } else { 
8     result = new error result( "Invalid configuration" ) 
9    } 
10    searchStrategy.recordResult( result ) 
11   } 
12 } 

Figure 3.5: Main control loop 

Figure 3.6 shows how the coordinator configures the target system and conditions of use. Each 

factor whose level is to change (compared to its level under the current combination) is set by calling 

the adaptCond or adaptTarg method of the target controller. This is done in two loops: first for the 

conditions of use (lines 14 to 18), and second for the configurable aspects of the target system (lines 

19 to 23). 

 /** 
 * Set the target system configuration and conditions of use. 
 */ 
13 void Controller::changeCombination( const Combination *info ) { 
14   for( each factor of conditions of use ) { 
15    if( new level != current level ) { 
16     targetController.adaptCond( factor’s index, level ) 
17    } 
18   } 
19   for( each factor of target system ) { 
20    if( new level != current level ) { 
21     targetController.adaptTarg( factor’s index, level ) 
22    } 
23   } 
24 } 

Figure 3.6: Changing the target system’s configuration and conditions of use 
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Figure 3.7 shows how the coordinator uses the target controller to empirically measure a 

combination’s behaviour. The coordinator repeatedly attempts to run the target system by calling the 

run method of the target controller (line 29). In the event of run’s failure (caught at line 31), the 

coordinator calls the target controller’s recover method. This loop repeats until either run is 

successful or recover returns false. The latter indicates that further runs of the target system with that 

combination should not be attempted. The result of the trial (returned on line 36) is either the result 

object returned by run or an error result object. 

 /** 
 * Run a trial for the current combination. 
 */ 
25 IResultObj Controller::runTrial() { 
26   success = false 
27   do { 
28    try { 
29     result = targetController.run() 
30     success = true 
31    } catch( Exception e ) { 
32     tryAgain = targetController.recover(current target system configuration) 
33     result = new error result( "Run failed" ) 
34    } 
35   } while( not success and tryAgain ); 
36   return result 
37 } 

Figure 3.7: Running a trial 

3.9 Recording and reporting results 

Results of the trials are stored in a transient database in main memory, and are written 

incrementally to a collection of XML output files for stable storage. 

3.9.1 Results database 

A results database contains the set of results in main memory. Each record of the database 

corresponds to a trial, storing the combination tested and the result object obtained. Search strategies 

can use the results to guide their subsequent choice of combinations to test. The results database is 

created incrementally as the experiment progresses. It can also be recreated from a set of XML output 

files.  

The exportTabSeparated method of the results database outputs the database’s results to a tab-

separated text file, suitable for data analysis in a spreadsheet or statistics application (e.g. Minitab TM). 

Each record of the database is output on a single line, giving a level for each factor and a value for 

each fitness metric. 
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3.9.2 Output files 

Results are written incrementally to a collection of XML output files for stable storage, located in 

a directory specified as a command line argument to ACT. The files passed as input to ACT are also 

stored to aid reproducibility. The following files are generated: 

• The file experimentDescription.xml contains the experiment description, supplied as input 

to ACT. 

• The file envDescription.txt contains a description of the environment in which the 

experiment was conducted, supplied as input to ACT. 

• The file configs.xml stores the target system configurations tested. A configuration is 

described by giving a level for each factor of the target system. 

• The file conditions.xml stores the conditions used during the trials. A condition of use is 

described by giving a level for each factor of the environment and workload. 

• The file resultObjs.xml stores the result objects from the trials. A result object is described 

by giving a value for each of the fitness metrics. 

• The file links.xml contains for each trial a reference to the target system configuration, a 

condition of use, and a result object. These references are represented using xlinks (i.e. multi-

directional links). 

• The file results.xml contains references to the files described above, giving a single entry 

point from which to parse the results. 

3.10 Running an experiment 

The UML activity diagram in Figure 3.8 shows the activities involved in using ACT to run an 

experiment, starting from the initial invocation of ACT.  
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Figure 3.8: Activity diagram of the configuration process 

During the initialise activity, ACT dynamically loads the functions in the target wrapper. The 

master meta-strategy component binds to a search strategy component, which can itself be a meta-

strategy component. 

During the control search activity, the meta-strategy component (if any) chooses, binds to and 

configures an appropriate search strategy for use. This may be guided by feedback information (i.e. 

results from previous trials) and feed-forward information (e.g. observations of conditions of use and 

resources available). For example, the number of replications may depend on the variability of 

observed behaviour in previous trials and the time available for the experiment. 

During the generate combination activity, the search strategy currently in use identifies a 

configuration and condition to use for the next trial. During the set combination activity, the target 

controller uses the adaptation functions in the target wrapper to adapt the target system’s 

configuration and conditions of use. 

During the run target activity, ACT runs the target system by invoking the target wrapper’s run 

function. This sets the target system to a consistent state and runs it, observing its behaviour and 

returning a result object. Failure is detected by monitoring run-time errors, and by a timeout 

mechanism that puts an upper bound on the length of time allowed per trial.  

The disturbance compensation activity is optional and can be done in parallel with running the 

target system. It involves measurement of uncontrolled factors (e.g. network load) to detect any 

disturbance caused by external sources. 
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If the trial is successful, ACT performs the record activity to feed back the result to the meta-

strategy and search strategy. The result is added to the results database and appended to the XML 

output files. If ACT detects a failure, it performs the recover activity to invoke the target wrapper’s 

recovery function to restore the system to a stable state and optionally to collect diagnostic 

information. If the recover activity results in a failure condition, ACT terminates. Otherwise, there is 

a decision to either try again to test the combination (with an upper bound on the number of 

consecutive attempts) or to continue. For the latter, the record activity involves recording failure. 

The search strategy is then queried to decide whether the experiment is not finished or finished. 

The experiment continues, testing further combinations, until the finished condition is met. 

The last activity, inform experimenter, involves presenting the results to the experimenter. 

Changes made up until this point are experimental adaptations. With guidance from the experimenter, 

the results could be used to estimate which configuration would best meet the configuration goal. 

Adapting the target system to this configuration would be a target adaptation. 

Target system administrators could also use results to guide target system usage, to prevent or 

encourage particular behaviour. Target system developers could use experiment results to guide 

development of future versions. For example, they could add facilities for making on-the-fly 

observations that trigger adaptation to a configuration believed to behave well under current or 

predicted conditions. ACT could then try further experimental adaptations: to validate the new 

configuration, cope with new conditions of use and meet subsequent configuration goals. 

The methodology described for configuring a target system is recursive: it can be applied to 

various levels of a target system, configuration goal, and ACT itself: 

• A “systems of systems” can be configured by configuring individual sub-systems, and by 

changing the architecture of the target system as a whole. 

• A configuration goal can be met by first satisfying a sub-goal, e.g. determine the behaviour 

of a set of configurations, and then using the result of the sub-goal to attain the primary goal. 

• ACT itself can be configured, to improve its use with a given target system, by using another 

instance of ACT. Configuring ACT involves choosing and configuring a search strategy 

component.  
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3.11 Conclusions 

ACT 1.0, written in C++, provides a generic infrastructure for running automated experiments. It 

is generic in that it can explore the behaviour of a wide variety of target systems using a variety of 

search strategies. This is achieved by encapsulating the target-specific code behind a set of functions 

in the target wrapper and by implementing search strategy components as pluggable DLLs. This 

allows ACT to be used with any target system for which appropriate functions can be written and 

allows new search strategies to be developed and easily bound to ACT 1.0. 

The core of ACT 1.0 is kept simple by: 

• delegating to a search strategy component the potentially complicated task of choosing 

combinations to test; 

• assuming that experiments are always run before the target system goes into use; 

• delegating to the target wrapper’s run function the task of running and measuring the target 

system, which encapsulates the probes and gauges used to measure and evaluate 

performance. 

Section 7.3 discusses future work on a new version of ACT, which will support on-the-fly 

adaptation of the target system’s configuration. It will also make explicit the probe and gauge 

components, and will include advice components that will encode expert knowledge of the target 

system’s behaviour. 
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4 Exploring target system behaviour 

Exploring a target system’s behaviour involves testing a selection of configurations under a 

variety of conditions. Deciding on the sequence of combinations to test is the task of a search 

strategy. There are many possible search strategies that aim to: 

• find a configuration that meets the configuration goal under a particular condition; 

• explore the target system’s behaviour to find characteristics of interest; 

• help construct a predictive model of the target system that can estimate behaviour for 

untested configurations under given conditions. 

These aims are realisable for at least some target systems: 

• Some combinations may be found that meet the configuration goal better than the default – 

an indication of success. This is true even for simple search strategies, such as randomly 

choosing combinations to test or using grid sampling, where the input space is divided into a 

grid and each point on the grid is tested in turn (forming a full factorial design). 

• Examples of identifiable trends and interesting features on the response surface include: 

• conditions that produce highly variable (or highly consistent) behaviour, or that 

cause failure; 

• points in the input space at which continuing to increase/decrease a factor’s level 

starts having the opposite effect on behaviour. 

• Experiments designed with statistical rigour, such as when using Taguchi Methods, can 

produce predictive models of a target system’s behaviour. 

4.1 Meta-strategies 

A meta-strategy is a special kind of search strategy that dynamically binds to and uses other search 

strategy components. Search strategies may be thought of as mechanisms for deciding on a sequence 

of combinations to test, while a meta-strategy provides the policy for choosing and configuring search 

strategies for use. Policy decisions can be based on the information desired from the experiment, 

resources available, results obtained to-date and knowledge of the target system’s behaviour. 
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Use of a meta-strategy makes the selection and tailoring of a search strategy explicit, compared to 

use of autonomous search strategies that are self-configuring. The amount of possible “tailoring” 

depends on the particular search strategy. 

4.2 Use of feedback 

Some search strategies use feedback from previous trials to guide the choice of combinations to 

test. Examples include the use of iterative improvement algorithms [92], which start with some 

combination and move around the response surface in search of the optimal. These are standard 

algorithms from the field of artificial intelligence, but their use in applying experimental adaptations 

to configure complex software systems is novel. 

Gradient descent8 is an iterative improvement algorithm that finds a path from an initial 

configuration to a local minimum by following a “downward” slope. Testing the neighbouring 

combinations in each direction allows the gradient of the slopes to be calculated, and the neighbour in 

the steepest direction to be chosen each time. Alternatively, neighbouring combinations may be tested 

in turn until a better combination is found, prompting a move to this point without need to test the 

other neighbours (this still guarantees a “downward” motion). Gradient descent suffers from three 

drawbacks relating to the shape of the response surface: 

• There is a risk of being trapped at a local minimum (as opposed to the global minimum) 

because the algorithm terminates when a combination performs better than all neighbouring 

combinations. 

• The search strategy will conduct a random walk when on a plateau, which is a region of the 

response surface that is essentially flat. It will take a long time to leave the plateaux, or will 

terminate at a minimum on the plateaux. 

• A valley with steeply sloping sides and a gently sloping base can be hard to follow. It is easy 

to descend the sides of the valley but, if there is no series of adjacent combinations that 

follows the valley floor, the search can oscillate from side to side and make little progress. 

                                                           

8 This description assumes that the response variable is to be minimised; the algorithm is called hill 

climbing when the response is to be maximised. 
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Simulated annealing is an iterative improvement algorithm that can avoid the drawbacks listed 

above, and that can be used in combination with gradient descent. The simulated annealing algorithm 

operates as follows: given an initial combination, a second combination is generated within the 

vicinity of the first by randomly adjusting the levels of the factors. If this second combination gives 

improved behaviour, the search moves to this new point in the space. Otherwise, the probability that 

the search will move to the new point is calculated using the “badness” of the move and the 

temperature of the search. Temperature is a measure of the “energy” of the search, and decreases as 

the search progresses: high temperatures lead to larger changes in combination and make “bad” 

moves more likely. This allows escape from local minima early in the search as it can move to a 

worse point while looking for the global minimum. As the temperature nears zero, the choice of 

combination stabilises at a minimum because only good moves are made. 

The starting point for an iterative improvement algorithm’s search could be a random point in the 

input space, a combination suggested by the experimenter (i.e. their informed guess) or the best found 

when using another search strategy. The last is an example of a simple meta-strategy, where the 

search strategy used is switched during the experiment. 

Some search strategies use feed-forward information to guide the choice of combinations to test. 

For example, the cost of adapting the target system’s configuration may influence the order in which 

combinations are tested, e.g. cheap adaptations should be made more often than expensive 

adaptations. 

4.3 Design Of Experiments (DOE) 

Some search strategies use a structured statistical approach for the design of experiments and 

analysis of results. Using notation from the field of DOE, a design matrix depicts the combinations to 

test during an experiment. Each row represents a combination and each column corresponds to a 

factor. The numbers in the matrix specify the coded levels, which can be mapped to factors’ uncoded 

levels. Any set of combinations can be depicted. For example, Figure 4.1 depicts a full factorial 

design for three factors, each with two levels. ACT automatically runs experiments, taking as input a 

design matrix and the values to which the coded levels correspond. 
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  Factor A Factor B Factor C 
1 1 1 1 
2 1 1 2 
3 1 2 1 
4 1 2 2 
5 2 1 1 
6 2 1 2 
7 2 2 1 

Combinations 

8 2 2 2 

Figure 4.1: Design matrix 

Taguchi Methods standardise the statistical techniques of DOE, and provide a method for creating 

fractional factorial designs using orthogonal arrays [101]. Experiments that use these designs can 

identify the effects of a large number of factors, and selected interactions, by testing only a small 

number of combinations9.  

The experiments are conducted in two phases. The first phase involves running a fractional 

factorial experiment to produce a mathematical model of the system’s behaviour for the region of the 

response surface investigated10. The model is used to predict a combination near the optimal in the 

investigated region. The second phase tests combinations in a small region around the predicted 

optimal to produce a more accurate model of the response surface in that region. This model is used to 

more accurately predict the optimal combination. 

According to Taguchi, good performance implies robustness: consistently high performance with 

low variability, even when uncontrolled factors vary. The levels of uncontrolled factors (of the system 

and its conditions of use) are not set explicitly for cost or technical reasons. For example, the disk 

access speed is hard to control as it depends on the ordering of read requests and initial position of the 

read heads. By replicating trials, different values for the uncontrolled factors are likely to be 

encountered. This is important for identifying robust configurations of a target system: robust implies 

that the target system will perform well irrespective of the values of uncontrolled factors. 

The main benefit of Taguchi Methods is a reduction in the number of combinations to test 

compared to full factorial designs. For example, 16 factors with two levels for each gives 216 (i.e. 

                                                           

9 The combination of Taguchi Methods and ACT yields the semi-automated TACT process. 

10 The validity of such models is discussed in section 6.2. 
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65,536) possible combinations. A fractional factorial design, produced using Taguchi Methods, 

requires the testing of only 32 combinations to determine the effect of each factor and of 15 two-

factor interactions. A second benefit is the ability to identify robust target system configurations. 

Taguchi Methods make several assumptions about the target system11: 

• The experimenter knows which factors to vary, appropriate levels to test for each, and which 

interactions are of interest. 

• Interaction effects involving three or more factors are seldom significant. 

• Main effects are more significant than interaction effects: if the effect of a factor is aliased 

with the effect of a two-factor interaction, the observed effect is wholly credited to the factor. 

• If an interaction effect, say between factors A and B, is not investigated, the effect of A is the 

same for all levels of B, and vice versa. 

• A model produced from the fractional factorial experiment will accurately predict a 

combination that is near the optimal in the tested region of the response surface. 

4.3.1 First phase experiment 

Taguchi’s technique for creating fractional factorial designs is called parameter design. It can be 

done either manually or with the assistance of a statistics package such as Minitab TM. The steps are: 

• choose factors to vary and the levels for each, and choose interactions to investigate; 

• choose an appropriate orthogonal array; 

• allocate factors to the columns of the orthogonal array to produce a design matrix. 

The experimenter first chooses the set of factors to vary and the levels to test for each. Factors of 

the target system should be chosen that are believed to have a significant influence on behaviour. The 

experimenter may also choose factors of the workload and environment that vary during normal 

customer usage but that can be controlled explicitly during the experiment12. A selection of 

                                                           

11 The validity of these assumptions for complex software systems is discussed in section 6.2. 

12 These are referred to as noise factors, discussed in section 4.3.6. 
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interaction effects can be investigated, in particular two-factor interactions chosen by the 

experimenter. 

The number of levels per factor should be restricted to at most four: more than four levels make 

experiment designs complicated due to the orthogonal arrays available [94]. Standard practice is to 

choose a low, medium and high level [107]. Expert knowledge can help decide on the range of levels 

(i.e. the region of the response surface to investigate) and on particular levels of interest. 

An orthogonal array (OA) is a special kind of matrix, which stems from Euler’s Latin squares. 

Figure 4.2 shows the L8(27) orthogonal array, meaning it has eight rows and has seven columns that 

each have two coded levels. OAs have the following properties: 

• Every pair of columns includes every combination of coded levels an equal number of times. 

For example, columns C1 and C2 in Figure 4.2 have the pairs: 1,1; 1,1; 1,2; 1,2; 2,1; 2,1; 2,2 

and 2,2. This is important for statistical analysis: the effect of a factor is calculated using the 

target system’s response for different levels of the factor, as the average of its effect when 

the other factors are set to each of their levels. 

• Some columns represent (i.e. are aliased with) the interactions between other columns. For 

example, column C3 is aliased with the interaction between columns C1 and C2: it has a “1” 

when columns C1 and C2 have the same coded level and a “2” when they differ. If factors A 

and B are allocated to columns C1 and C2, then the two-factor interaction between A and B, 

denoted AB, is represented by column C3. If factor C is allocated to column C3, then the 

effect of AB is aliased with the effect of factor C: the effects of AB and C cannot be separated 

during statistical analysis of the results. If no factor is allocated to column C3, then the effect 

of AB is clear [107]: it is not aliased with the effect of any other factor or two-factor 

interaction. 

 C1 C2 C3 C4 C5 C6 C7 
1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

Figure 4.2: The L8(27) orthogonal array 
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The experimenter can choose an appropriate OA from published tabulated sets of OAs [101]. The 

choice depends on the number of factors and number of levels for each, and the interactions of 

interest. The OA must have at least as many columns as there are factors and interactions of interest: 

each factor is allocated to a column, and each interaction of interest should be allocated to an 

appropriate column so that its effect is clear13. 

Linear graphs show the aliasing among columns in an OA, and may be used when deciding on the 

allocation of factors to columns. Each vertex and edge in a linear graph corresponds to a column of 

the OA. Each edge shows that the corresponding column is aliased with the two-factor interaction for 

the columns corresponding to the connected vertices. There are many possible linear graphs for each 

OA. For example, both linear graphs in Figure 4.3 represent the OA in Figure 4.2. The first graph 

shows that column C3 is aliased with the interaction between C1 and C2, that C5 is aliased with the 

interaction between C1 and C4, and that C6 is aliased with the interaction between C2 and C4. 

 

Figure 4.3: Linear graphs 

A linear graph of the OA should be chosen that allows an allocation of factors to columns such 

that all interesting interaction effects are clear. If no linear graph is suitable, a larger OA is required.  

Consider an example experiment with five factors (A, B, C, D and E) that each have two levels, 

and where the interaction effect AB is of interest. This requires an OA with at least six columns (for 

the five factors and the one two-factor interaction) so the L8(27) orthogonal array in Figure 4.2 may be 

suitable. The experimenter should allocate factors A and B to a connected pair of vertices, and allocate 

no factor to the connecting edge. As shown in Figure 4.4, the experimenter could use the first graph of 

Figure 4.3 by allocating factor A to column C1, factor B to column C2 and leaving column C3 unused. 

                                                           

13 Minitab TM automates the process of allocating factors to columns of an OA. To aid understanding 

of Taguchi Methods, it is described how this can be done by hand. 



Chapter 4: Exploring target system behaviour 

 

71

If factor C is allocated to column C4, factor D to column C7, and factor E to C6 (i.e. leaving C5 

unused), then the two-factor interaction AC will also be clear. The design matrix, indicating the 

combinations to test for this experiment, is shown in Figure 4.5. 

 

Figure 4.4: Linear graph showing allocation of factors 

 Factor A Factor B Factor C Factor D Factor E 
1 1 1 1 1 1 
2 1 1 2 2 2 
3 1 2 1 2 2 
4 1 2 2 1 1 
5 2 1 1 2 1 
6 2 1 2 1 2 
7 2 2 1 1 2 
8 2 2 2 2 1 

Figure 4.5: Design matrix 

It is important to run the trials with combinations in a random order. When replicating trials, every 

combination should be tested once, then every combination should be tested again in a different order, 

and so on. Randomising the order prevents testing consecutively all combinations with a factor at a 

particular level. This reduces the impact on the experiment’s results caused by variation in 

uncontrolled factors that affect a subset of the trials. For example, it counters the problem of 

performance degradation over time due to a failing network card that drops an increasing number of 

packets. If factor A was set to a low level for the first half of the trials and a high level for the second 

half, the effect of the failing network card could be credited to changing factor A’s level. 

4.3.2 Signal to noise ratio (SNR) 

Comparing target system configurations for a given condition is simple if there is a single metric 

that summarises the quality of each combination, given a set of responses from replicated trials. Here, 

quality is measured in terms of robustness using the signal to noise ratio (SNR) metric [101]. This has 

the following properties: 

• Consistently high responses give a high overall score. 
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• An exceptionally high response, which is much higher than the other replicated responses, 

will only increase the overall score slightly. In contrast, such a response will greatly affect 

the mean. 

• Low responses, which indicate that the configuration goal was not met in those trials, are 

heavily punished to give a low overall score. 

SNR is based on a loss function that approximates the loss (i.e. cost) resulting from the target 

system failing to meet the configuration goal. Figure 4.6 shows a suggested loss function14 for the 

case of maximising the response variable, where y is an observed response [101]. This loss function is 

used in the SNR formula, shown in Figure 4.7, which is based on the average of the loss for a set of 

responses. In more detail: n denotes the number of responses and yi denotes the ith response. By 

summing 1/yi
2, even just one low value of yi will give a much larger total, heavily punishing poor 

responses. In contrast, a large value of yi only increases the total a small amount. The result is negated 

so that optimising robustness is a problem of maximising SNR. 

 

Figure 4.6: Loss due to a low value 

 

Figure 4.7: Signal to noise ratio15 

                                                           

14 This is the loss function suggested by Taguchi. Other loss functions could be used instead. 

15 The purpose of taking the logarithm is to make the SNR approximately normally distributed. It uses 

base 10, and multiplies by 10, because that is common practice in the field of engineering – it makes 

no difference to the rank ordering of combinations.  
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4.3.3 Techniques for analysing results 

“He uses statistics as a drunken man uses lamp-posts – for support rather than 

for illumination.” 

Andrew Lang 

Running an experiment generates a set of data, where each data point is the observed value of the 

response variable for a combination. When SNR is used to combine replicated observations of a 

combination’s response, each data point is an SNR value. Subsequent trials that produce additional 

observations of a combination’s response can be combined to give a second SNR value for that 

combination (i.e. a second data point), and so on. Statistical analysis can use the data set to produce a 

predictive model of the target system. 

Figure 4.8, taken from [98], shows the input space for a hypothetical experiment, and is used in 

the following descriptions of main effects and interaction effects. There are three factors (A, B and C) 

represented by the x, y and z-axes respectively. Each factor has two levels (0 and 1), shown in bold. 

The observed value of the response variable for each of the 8 (i.e. 23) combinations is marked beside 

the corresponding point16, forming the corners of a cube. 

 

Figure 4.8: Example input space and results 

                                                           

16 The measured responses could be plotted on a response surface in a fourth dimension, but this is 

hard to depict graphically. 
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4.3.3.1 Main effects 

The main effect of a factor is the effect on the response variable’s value caused by adjusting the 

level of that factor in isolation. If the factor’s level has an effect on the response variable’s value, the 

main effect is significant. Multiple linear regression, described in section 4.3.3.3, provides a technique 

for calculating the magnitude of the effect. 

The main effect can be investigated by comparing observations of the response variable at 

different factor levels. Consider levels 0 and 1 of factor A in Figure 4.8: observations of the response 

variable’s value for each are {45,52,54,60} and {68,72,80,83} respectively, and the means are 52.75 

and 75.75. This suggests that increasing factor A’s level gives an improvement in the value of the 

response variable.  

Main effects plots can be used to depict main effects. Figure 4.9 shows the main effects for Figure 

4.8. Each box represents the main effect of a factor. Intuitively, the steeper the line the bigger the 

main effect. For example, the line in the left box suggests that the main effect of factor A is big. In 

contrast, the line in the middle box suggests that the main effect of factor B is small. 

 

Figure 4.9: Main effects plot 

A population consists of the set of all possible values of the response variable, for combinations 

with a given factor at a particular level. The main effect of a factor is significant if two populations, 

for two different levels of the factor, have different means17. Each observation of the response 

variable’s value is a sample from one of these populations. The combinations tested may be a subset 

                                                           

17 The difference in the population’s means could be due to an interaction effect. Multiple linear 

regression provides a technique to separate main effects and interaction effects in analysis of results. 
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of the possible combinations at that level of the factor. For example, Figure 4.10 shows that there are 

many legal levels for factors B and C, each point on the grid being a possible combination. In 

addition, measuring a combination a second time may give a different value of the response variable. 

Therefore, the mean of a set of samples may not be the same as the mean of the population from 

which they were drawn. When comparing the means of two populations, it is insufficient to simply 

compare the means of the samples. 

 

Figure 4.10: Input space showing legal combinations for factor A at levels 0 and 1 

Determining whether a main effect is significant requires testing whether the means of the 

populations are the same (the null hypothesis) or different (the alternative hypothesis). This is 

commonly done at the 5% level (i.e. 95% confidence in the effect being significant when rejecting the 

null hypothesis). 

ANOVA (analysis of variance) can be used to test if two groups of samples come from 

populations with different means. If the variation between the two groups of samples is sufficiently 

greater than the variation within each group, it suggests that the populations have different means. 

ANOVA requires the populations to be normally distributed with equal standard deviation. If the 

assumptions are violated, or if the group sizes are too small, the conclusions of the test may be 

incorrect18. 

                                                           

18 Tests to validate that the assumptions hold include the Anderson-Darling test [24] to check for 

normal distribution, and Levene’s test [13] to check whether the standard deviations are equal. 
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Consider levels 0 and 1 of factor A, which give two groups of samples:{45,52,54,60} and 

{68,72,80,83}. ANOVA gives a p-value of 0.003, so the null hypothesis is rejected at the 5% level 

(because 0.003 < 0.05) to conclude that factor A’s effect on the response variable is significant. 

4.3.3.2 Interaction effects 

An interaction effect between factors, say A and B (denoted AB), is the effect that factor A’s level 

has on factor B’s main effect, and vice versa. If factor B’s effect on the response variable depends on 

the level of factor A, the interaction effect AB is significant. Multiple linear regression, described in 

section 4.3.3.3.1, provides a technique for calculating the magnitude of the effect. 

Interaction plots can be used to depict two-factor interaction effects. Figure 4.11 shows the 

interaction plots for Figure 4.8. Each box represents a two-factor interaction, and contains a set of 

lines that show the effect of varying one factor when the second factor is fixed at a given level. 

Intuitively, the less parallel the lines the bigger the interaction effect. For example, the top-middle box 

shows the effect of varying factor B when factor A is fixed at levels 0 and 1. These lines are not 

parallel, which suggests that the effect of AB is big. Logically, the effect of BA (middle-left box) is 

also big. In contrast, the effect of factor A depends little on the level of factor C, which suggests that 

the effect of AC is small. 

 

Figure 4.11: Interaction effects plot 



Chapter 4: Exploring target system behaviour 

 

77

Interaction effects can be described in terms of the shape of the response surface. An interaction 

effect is a relationship between cross-sections of the response surface19, obtained by fixing a given 

factor at various levels. A big interaction effect causes the slope of the cross-sections to differ. This is 

illustrated by the response surface in Figure 4.12 for a hypothetical experiment: the surface’s slope is 

different when A=0 from when A=1. 

 

Figure 4.12: Example interaction effect 

Consider the interaction effect between factors A and B in Figure 4.8. It can be investigated by 

comparing the response surface at the left four points (A=0) and the right four points (A=1). When 

A=0, changing B from 0 to 1 decreases the response variable’s value by either 8 or 9 (depending on 

the level of C). When A=1, changing B from 0 to 1 increases the response variable’s value by 11 or 

12, significantly different from when A=0. This suggests that there is a significant two-factor 

interaction between A and B. 

4.3.3.3 Modelling 

Data from experiments can be used to develop and/or calibrate a model of the target system’s 

behaviour. The purpose of a model is to predict the behaviour of untested combinations. Modelling 

involves determining a curve (i.e. a function) that fits the data. Its goodness of fit can be measured by 

                                                           

19 In an n-dimensional input space, cross-sections are n-dimensional surfaces where the n dimensions 

consist of n-1 factors plus the response variable. 



Chapter 4: Exploring target system behaviour 

 

78

the closeness of fit to the data set, and the accuracy for predicting the response of untested 

combinations.  

Simple models assume that relationships between factors and the response variable are simple 

(e.g. linear or quadratic). Use of a complex model (e.g. a high-degree polynomial) can give a closer fit 

to the data set but can result in over-fitting, which decreases the accuracy of predictions. It is therefore 

not always desirable to have a perfect fit to the data set. Consider the hypothetical example in Figure 

4.13. The dotted line is a polynomial of order seven, which gives a close fit to the data set. It predicts 

that the minimum value of the response variable is -4.2 (at A=1.3), but there is no evidence to support 

this prediction. Use of a simple model can avoid over-fitting. It is arguably sensible20 to use a simple 

model when such a model gives an approximate fit to the data set or when the data set is small (e.g. 

when testing only two or three levels per factor). 

 

Figure 4.13: Example of over-fitting 

There are a number of techniques for producing a model of a software system, given observations 

of the response variable for a selection of combinations. Multiple linear regression is useful when 

relationships between factors and the response variable are simple, or are assumed to be simple such 

as when the data set is small. The case study in section 5.2.4 uses multiple linear regression. Other 

                                                           

20 This follows the principle of Occam’s razor, which states that, if two theories explain something 

equally well, the simpler of the two is better. 
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modelling techniques include splines and artificial neural networks, which are useful for modelling 

discontinuous and non-linear response surfaces when the data set is large. 

4.3.3.3.1 Multiple linear regression 

Multiple linear regression [47, 64] is a statistical technique for fitting a linear model to a data set. 

Figure 4.14 shows the general form of the model, where: y is the value of the response variable, x1, x2, 

…, xn are variables representing the levels of the factors, and β0, β1, …, βn are the coefficients. Each 

term gives an estimate of the effect of a factor or interaction, the coefficient indicating the magnitude 

of that effect. Interactions are modelled by terms such as β12x1x2. 

 

Figure 4.14: Multiple linear regression model 

The errors in the model’s predictions are called the residuals (i.e. the differences between 

predicted and observed values of the response variable). Multiple measurements of the response 

variable’s value for a combination can give different residuals, as illustrated in Figure 4.14 for a 

hypothetical system. The line shows the model, while the crosses show measurements. The residual 

for a measurement is the distance from the corresponding cross to the line. Observations for a 

particular combination are drawn from the population of all possible values of the response variable 

for that combination. It is assumed that the residuals of each population are normally distributed about 

zero and that all populations have the same standard deviation. This implies that the model is as 

accurate for predicting large values as for small values in terms of absolute error. 
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Figure 4.15: Example residuals 



Chapter 4: Exploring target system behaviour 

 

80

Effects of interactions that are not clear, due to aliasing, cannot be inferred during analysis. 

Multiple linear regression should be used to estimate only those effects explicitly investigated, and to 

estimate the confidence in the significance of these effects.  

Terms for which there is no statistical evidence that their effects are significant should be removed 

from the model. This helps to prevent over-fitting. Backward elimination [47] can be used: each non-

significant term is removed in turn, starting with interaction effects. A new regression model is fitted 

after removing each term, and this cycle repeats until the model only contains terms with significant 

effects. 

An estimate of the significance of an effect can be a false positive or a false negative. The 

consequence of a false positive is that the magnitude of a non-significant effect is over-estimated and 

is left in the regression model. The probability of a “significant” effect being a false positive is 5% 

when working at the 5% level. The consequence of a false negative is that the magnitude of a 

significant effect is underestimated and is removed from the regression model. The probability of a 

false negative can be reduced by increasing the size of the data set or by making false positives more 

likely. 

Linear regression models are used to predict which combination maximises the response variable. 

The assumptions of multiple linear regression include the following (their validity is discussed in 

section 6.2): 

• The response surface is linear. Transformations can be applied if necessary to model some 

non-linearities (e.g. a quadratic term β11x1
2 is the square of the first factor’s level). However, 

multiple linear regression will not work well if the response surface is either discontinuous or 

is a polynomial of a high degree. 

• If an interaction effect, say AB, is not modelled, the effect of factor A is the same for all 

levels of factor B. 

4.3.3.3.2 Parametric representation 

Parametric representations, such as splines, are useful for modelling non-linear and discontinuous 

response surfaces. They are well suited to producing models that give a close fit to a large dataset. A 

parametric representation of an n-dimensional surface uses a piecewise polynomial surface (i.e. a 
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surface made up of multiple segments). Each segment is defined using n polynomial functions in a 

parameter t. The most common functions used are polynomials of order three, which are of the form: 

x(t) = axt3 + bxt2 + cxt + dx 

y(t) = ayt3 + byt2 + cyt + dy 

z(t) = azt3 + bzt2 + czt + dz 0 ≤ t ≤ 1 

… 

where x, y, z, etc are dimensions of the space containing the surface. The value of t is never 

plotted: each value of t gives a point in each segment of the surface. Informally, one can think of t as a 

measure of time: for the case of a 2D curve, it is a measure of time as n pens move to draw the n 

segments of the line. 

The choice of coefficients (i.e. values for a, b, c and d) for each segment is defined by constraints 

on control points (i.e. data points that the surface passes through or near to), endpoints (i.e. edges of a 

segment, which are special cases of control points) and the smoothness of joins between segments. 

Each cubic surface has four coefficients per dimension, allowing four constraints to be met for each 

dimension. 

Splines provide a technique for choosing values for the coefficients. Natural cubic splines produce 

a model that interpolates (i.e. passes through) all data points and for which the joins between 

segments are smooth to the second derivative. That is, adjacent segments meet, have the same 

gradient at the point where they meet, and the gradient of each segment is changing at the same rate 

when they meet. Many types of splines are discussed in [52]. 

4.3.3.3.3 Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines is a non-parametric technique, which does not assume 

that the data complies with an a priori functional form. The result is a connected set of local linear 

regressions [39]. As with other splines, it requires a much larger dataset to produce a model of a 

response surface than multiple linear regression and suffers from a lack of theory for calculating 

confidence intervals. This makes its use unsuitable for modelling some complex software systems. 
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4.3.3.3.4 Artificial neural networks 

Artificial neural networks can “learn” a model, which is then implicit in the network structure and 

weights between nodes [28]. It is therefore hard to examine the model of a response surface – e.g. 

determine the effects of factors, and detect phase changes and local maxima – to gain insight into the 

target system’s behaviour. 

4.3.4 Validating the model 

A model may be used either to predict the rank ordering of a set of combinations, or to predict the 

value of the response variable for particular combinations. Rank ordering is arguably more important 

than the exact value of the response variable because configuring a target system involves choosing 

between combinations. Indeed, rank ordering is less sensitive to variation in the conditions of use, as 

some changes (e.g. increased network load) may affect the value of the response variable for all 

combinations equally. 

It is important to investigate the accuracy of predictions for combinations not used to produce the 

model21: 

• Validate rank ordering. The predicted rank ordering of combinations should be compared 

to that obtained when they are empirically measured. This can be done using the rank 

correlation coefficient, τ (tau), which takes a value between -1 and 1. These indicate perfect 

disagreement (i.e. reverse ranking) and perfect agreement respectively [65]. Given n 

combinations, there are 
2

)1( −nn
 pairs of combinations that can be compared: τ is 

proportional to the fraction of the pairs of combinations that are in the same order for both 

rankings. 

• Validate predictions of the response variable. Empirical measurements of combinations 

should be compared to the model’s predictions.  

                                                           

21 In neural network terminology, combinations used to produce the model form the training set, and 

combinations used to validate the model form the validation set. 



Chapter 4: Exploring target system behaviour 

 

83

4.3.5 Second phase experiment 

The experiment in the second phase of Taguchi Methods produces a finer grained model of the 

response surface around the predicted optimal combination; the aim is to more accurately predict the 

optimal combination [107]. An experiment is run to investigate the predicted highest peak on the 

response surface by testing the predicted optimal combination and combinations that are adjacent in 

the input space. The size of the region to test is influenced by the shape of the response surface, as 

predicted by the model from the first phase: the sharper the predicted peak, the smaller the region. 

The second phase experiment produces a model, which estimates all the main effects (using linear and 

quadratic terms) and a selection of two-factor interactions. The combination with the maximum 

response according to this model is taken to be the combination that best meets the configuration goal. 

One possible experiment design is the central composite design [107], which tests the three sets of 

points shown in Figure 4.16: 

• Corner points (squares in Figure 4.16) form a factorial design (with two levels for each of 

the n factors) centred at the predicted optimal combination. The design can be a fractional or 

full factorial design, and is used to estimate the main effects and interaction effects. 

• Star points (crosses in Figure 4.16) are combinations along each axis in the space, increasing 

and decreasing each factor’s level while keeping the other factors fixed. This gives 2n 

combinations and is used to estimate curvature effects (i.e. non-linearities), which often 

occur near a peak on the response surface. 

• The centre point (circle in Figure 4.16) is the predicted optimal combination. The value of 

the response variable is measured multiple times (e.g. giving multiple values of the SNR) to 

give information about variance. 
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Figure 4.16: 3D input space showing a central composite design 

The models from the first and second phases may be different. Consider the simple hypothetical 

example in Figure 4.17, which shows a response surface, measurements, and predictive models. The 

second phase experiment investigates the predicted peak at A=12 (giving three crosses at 7, 12 and 

17). Its model is different from the first model (i.e. response increases linearly with factor A), and 

more accurately predicts the optimal combination. 

Given a linear model such as that in Figure 4.17, the experimenter should investigate whether the 

linear relationship holds for higher levels of A, and if/when the response peaks. This is done by testing 

higher levels of factor A.  

 

Figure 4.17: Example second phase experiment 

4.3.6 Robust design 

It is sometimes desirable to identify target system configurations that perform well under a variety 

of conditions, instead of a specific configuration for a particular condition of use. This is because 

conditions can vary dynamically and: 

• it may be too expensive to reconfigure the target system on-the-fly;  
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• conditions may be too expensive to measure; 

• conditions may change too quickly to configure the target system for the current conditions. 

The aim of Taguchi’s robust design [107] is to identify target system configurations that are 

insensitive to variation in noise factors. These are factors whose levels are not set explicitly when the 

target system is in use (for cost or technical reasons), but that can be controlled during the experiment. 

For example, the load on a network cannot be chosen when a target system is in use, but various 

levels of network load can be simulated during an experiment. Similarly, a database system cannot 

control the number of read and write requests issued by clients when in use, but various workloads 

can be used during an experiment. 

Robust design involves exploiting the interaction effects between noise factors and control factors 

(i.e. configurable aspects of the target system) to find target system configurations that are insensitive 

to variation in the noise factors. Control-by-noise interaction plots, such as the hypothetical example 

in Figure 4.18, show the effect an interaction has on the response variable. Height of the line indicates 

goodness of response, and flatness of the line indicates insensitivity to the noise factor. There is a 

trade-off between these two characteristics: choice of level depends on the expected variation in the 

noise factor’s level and the importance of insensitivity to this variation. In Figure 4.18, factor A is a 

noise factor and factor B is a control factor. Factor B’s level should be chosen such that the response 

is consistently high for all levels of factor A. Because the solid line is flatter than the dotted line and is 

higher for two of the three levels of factor A, level 1 may be an appropriate choice for factor B. 

 

Figure 4.18: Control-by-noise interaction plot 

4.4 Conclusions 

There is a wide variety of potential search strategies for exploring a target system’s behaviour. 

Choice of search strategy depends on: 
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• the aim of the experiment (e.g. to find a good configuration for a given condition, to discover 

specific characteristics of the target system, or to produce a predictive model of the target 

system’s behaviour); 

• the set of available adaptation mechanisms and the time required to configure the target 

system; 

• resources available (e.g. time available); 

• information available a priori about the target system’s behaviour. 

One promising search strategy involves the use of Taguchi Methods, which allows for statistical 

analysis of results. A predictive model can be produced, e.g. using multiple linear regression, that 

estimates the effects of factors and selected interactions. A second phase experiment can then produce 

a more accurate model of the response surface around the predicted optimal combination. The next 

chapter uses an industrial case study to investigate the applicability of Taguchi Methods for 

configuring a complex software system. 
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5 Case studies 

This chapter describes two industrial case studies, which used the Data Connection Ltd (DCL) 

products DC-MailServer and DC-Directory.  

Both products are configurable to support a broad customer base with a wide variety of potential 

usage patterns, hardware platforms, operating systems and network topologies. DCL currently 

undertakes performance analysis and tuning by hand, which relies heavily upon costly expertise and 

only permits testing of a few configurations for a given installation due to time constraints. In the 

following experiments, for both DC-MailServer and DC-Directory, it took over thirty minutes to 

configure and run the target system. Measurements were taken during a “hot run”, letting the 

performance stabilise to reflect customers’ continuous usage, and then measuring performance over a 

reasonable time. 

The experimental base at St Andrews was a 64 node Beowulf cluster running RedHat 7.1 and 

connected through a 100Mb/s Ethernet switch. Each node consisted of a Pentium II 450MHz 

processor with 384MB of RAM and a 6.4GB hard disk. 

The first case study (using DC-MailServer) illustrates some of the problems inherent in measuring 

complex software systems. The second (using DC-Directory) demonstrates how Taguchi Methods can 

be used to model and configure software systems. 

5.1 DC-MailServer 

The aim of the first case study was to explore the behaviour of DC-MailServer and to investigate 

the effects of a selection of configurable aspects on throughput of e-mail messages. 

DC-MailServer [11] is a back-end mail server product from Data Connection Ltd (DCL). It is 

designed to be scalable, allowing deployment of multiple instances of each component in a server 

farm (e.g. in a Beowulf cluster). 

DC-MailServer exposes hundreds of configurable aspects, including caching policies, concurrency 

policies and communication policies. A description of its configuration is stored in an instance of DC-

Directory [10], an LDAP and X.500 directory server. A scripting language (TXDS) is used to query 

and change the directory data, changes affecting DC-MailServer’s configuration when it next restarts. 

Additional scripts start, stop and check the status of DC-MailServer. 
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5.1.1 Experimental infrastructure 

The synthetic workload used to drive DC-MailServer was generated by the Microsoft Exchange 

Stress and Performance tool, ESP [7]. This simulated simultaneous access of many users sending and 

retrieving mail, using SMTP and POP3 protocols respectively. The workload could be configured by 

setting the number of users, the size of e-mail messages sent, the order of commands and the delay 

between them. 

For these experiments, DC-MailServer was configured to output a count of sent and retrieved e-

mail messages, writing the results to DC-Directory at five minute intervals. DCL supplied scripts to 

get the measurements from DC-Directory and calculate the throughput. 

 

Figure 5.1: Deployment diagram of experimental infrastructure for DC-MailServer 

The UML deployment diagram in Figure 5.1 shows the machines and components involved in 

running the experiments: 

• A simple deployment of DC-MailServer was used, distributed over three nodes. Each node 

ran an instance of a particular component type. 

• A node was used as a central file server to store the e-mails. 

• A node ran the master DC-Directory component, which was responsible for managing a 

description of DC-MailServer’s configuration. This information was replicated across each 

node of the DC-MailServer deployment. For simplicity, interactions among DC-Directory 

components are omitted from the diagram.  
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• ESP ran on an NT machine, connected directly to the Beowulf switch. It interacted with DC-

MailServer by connecting to a pre-determined node on a known port. 

• ACT ran on a separate node. It used remote shell invocations to call appropriate scripts on 

each of the other nodes. 

For each trial, ACT: 

• restored DC-MailServer to a consistent state by re-initialising the repository of e-mails and 

clearing the queues of messages awaiting processing; 

• started DC-MailServer on each node in the deployment and started ESP to drive the system, 

waited 200 seconds for DC-MailServer to warm-up, and then measured throughput over a 

five minute period22; 

• stopped DC-MailServer and ESP. 

In the event of failure, ACT checked the state of DC-MailServer, and used the point of failure and 

number of consecutive failures to guide the choice of recovery response. Diagnostics were collected 

and the target system’s processes terminated, ready for restart. ACT also checked the state of the 

environment to ensure that file systems were usable (i.e. mounted correctly). 

To run the experiments required no alterations to the target system itself. The target wrapper 

consisted of 260 lines of C++ code and a further 500 lines of shell scripts. This was less than 1% of 

the target system’s size. 

5.1.2 Variability in behaviour 

The aim of this experiment was to investigate variability in DC-MailServer’s behaviour. The 

default configuration was tested using a workload of thirty users retrieving mail and one user sending 

mail. Throughput was measured in terms of the number of e-mail messages retrieved and sent, 

referred to as fetch and rcpt (short for recipient in the SMTP protocol) respectively. Measurements 

were replicated 214 times to investigate variability in throughput experienced when using this single 

combination. 

                                                           

22 These times were chosen based on advice from the software manufacturer. 
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Figure 5.2: Histograms of measured throughput23 

The histograms in Figure 5.2 show the number of occurrences for various ranges of throughput 

values. There is statistical evidence at the 5% level that the populations from which the fetch and rcpt 

results were drawn are not normally distributed (an Anderson-Darling test24 gave p-values of 0.005 

and 0.000 respectively, which are both less than 0.05).  

Given a set of measurements, different metrics capture different characteristics of their distribution 

– which metric is appropriate depends on the distribution of the data and on the characteristics of 

interest. In general, mean and standard deviation are only appropriate if the data is normally 

distributed [35] and are therefore inappropriate for describing DC-MailServer’s throughput. In 

contrast, SNR can be used to measure DC-MailServer’s quality in terms of both how high throughput 

is and its consistency. 

The variability in throughput (i.e. the spread of values observed) raised two issues: 

• Given observations (from a small number of trials) that suggest configuration A has a higher 

throughput than configuration B, the confidence level is low that configuration A will 

perform better in future trials. 

                                                           

23 All measurements of throughput for DC-MailServer were normalised with respect to the median of 

the fetch throughput, calculated using the results in Figure 5.2. This did not affect the shape of the 

graphs or the conclusions. 

24 The Anderson-Darling test [24] is a standard technique for testing if a set of samples come from a 

population with a normal distribution. 
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• Configurations observed to meet the configuration goal during an experiment may fail to do 

so when used by a customer. 

5.1.3 Varying workload 

The aim of this experiment was to investigate the effect on DC-MailServer’s behaviour of varying 

the workload. It investigated the effect on throughput of the number of users that simultaneously 

retrieved mail using the POP3 protocol. The number of users sending mail was fixed at one. Figure 

5.3 shows the observations of fetch and rcpt throughput. Figure 5.4 shows the SNR for these 

responses. 

The graphs show that, for low numbers of clients, fetch throughput increased and rcpt throughput 

decreased with the number of users retrieving mail. Both throughput measures then levelled off for 

higher numbers of clients. These results suggest that threads servicing POP3 and SMTP requests 

compete (e.g. for CPU time and disk usage). The level sections of the graphs suggest that DC-

MailServer could sustain at least 485 users retrieving mail without deterioration in throughput 

(compared to say 225 users retrieving mail). 
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Figure 5.3: Effect on throughput of the number of users retrieving mail 
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Figure 5.4: Effect on throughput (SNR) of the number of users retrieving mail25 

Observing the effect of varying the workload illustrates an alternative use of ACT. Previous 

discussion focused on finding a configuration of the target system that met a configuration goal, but 

ACT could also tune the workload to suit the target system. For example, an upper bound could be 

found for the acceptable number of users simultaneously retrieving mail. When this number was 

reached, a throttle back mechanism could be activated to reduce the number of additional clients 

connecting to DC-MailServer (e.g. by introducing a delay in responding to connect requests). The 

policy for choosing an upper bound would depend on the trade-off between fetch and rcpt throughput, 

and on the importance of response time compared to throughput. 

5.1.4 Exploring effects of configurable aspects 

Attempts to measure a wide range of DC-MailServer configurations proved problematic for two 

reasons: the large number of possible combinations meant that only a small part of the input space 

could be tested, while variability in performance led to a low confidence in results. Attempts to 

                                                           

25 The SNR metric provides a good view of each combination’s robustness: it is easier to compare 

combinations and see trends in Figure 5.4 than in Figure 5.3. However, it hides some information so 

is not always an appropriate representation for presenting results. 
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replicate interesting behaviour observed during experiments (i.e. combinations with very high or low 

throughput, compared to neighbouring combinations) failed. 

Experiments exploring the input space of DC-MailServer revealed that: 

• ACT can be used to run experiments that measure the performance of target system 

configurations. Inability to replicate observations was not the fault of ACT: it was due to 

variability in the target system’s behaviour. This was verified by replicating trials 

independently of ACT and by monitoring the state of the experimental infrastructure. 

• The set of factors under experimental control and the set of target system attributes observed 

were insufficient for replicable performance measurement. Uncontrolled factors in the 

environment and in the target system had a significant effect on throughput. This assumes 

that the target system did not deliberately behave non-deterministically; it assumes that, if all 

factors were controlled, the behaviour would be the same every time. 

• Variability in performance is a serious issue. The acceptable variability depends on the 

degree of consistency demanded by the customer. 

Approaches for coping with variability in performance include: 

• increasing the number of replicated measurements to determine the distribution of results for 

each combination tested; 

• identifying, and attempting to compensate for, the causes of variability by reducing the 

number of uncontrolled/unobserved factors – additional probes could further monitor the 

behaviour and state of both the target system and its conditions of use; 

• designing experiments using Taguchi Methods (see section 4.3) to search for target system 

configurations that are robust (i.e. that give consistently high performance and are insensitive 

to the effects of uncontrolled factors). 

5.2 DC-Directory 

Given the results for DC-MailServer, the next case study investigated a simpler target system. DC-

Directory [10] is an LDAP and X.500 directory server from Data Connection Ltd (DCL). It exposes 

hundreds of configurable aspects in a textual file. DCL supply scripts to make changes to the file, 
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which affect DC-Directory’s configuration when it next restarts. Additional scripts start, stop and 

check the status of DC-Directory. 

5.2.1 Experimental infrastructure 

The synthetic workload used to drive DC-Directory in the experiments was generated by 

DirectoryMark [12], an LDAP server benchmarking tool. It simulated multiple clients sending 

sequences of LDAP requests, and reported the time taken for these requests to be processed. The 

workload could be configured by setting the size of the directory information base, the number of 

clients, the type of requests and the number of requests per client. A directory of 100,000 entries was 

used, with 10 clients each sending 10,000 addressing (i.e. lookup) requests. 

The configuration goal was to maximise DC-Directory’s throughput (in terms of requests serviced 

per second), which was measured by DirectoryMark. 

The UML deployment diagram in Figure 5.5 shows the machines and components involved in 

running the experiments. For simplicity, DC-Directory was run on a single node. DirectoryMark ran 

on an NT machine, connected directly to the Beowulf switch. ACT ran on a separate node, and used 

remote shell invocations to call appropriate scripts that controlled DC-Directory and DirectoryMark. 

 

Figure 5.5: Deployment diagram showing experimental infrastructure for DC-Directory 

For each trial, ACT ran DC-Directory and obtained a measure of its throughput. In the event of 

failure, the recovery function was invoked to report where the failure occurred and to collect 

diagnostic information. 

To automatically run, configure and measure DC-Directory required no alterations to the target 

system itself. The target wrapper consisted of 345 lines of C++ code and a further 400 lines of shell 

scripts. This was less than 1% of the target system’s size. 
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5.2.2 Normalising results 

All measurements of throughput (i.e. all responses) for DC-Directory were normalised with 

respect to the median response of the default configuration. This did not affect the shape of the graphs 

or the conclusions. 

Calculations of SNR used the normalised responses. This had the effect of decreasing all SNR 

values by a constant. Figure 5.6 explains this algebraically, where α is the normalising term. 

 

Figure 5.6: Normalised SNR 

Consider a combination that consistently gives the same response as the default’s median 

response. It will have a normalised SNR of 0 because all normalised values of the response will be 1, 

and log10(1) is 0. However, responses for the default configuration gave a normalised SNR of -0.004. 

This is because there was variability in the responses, and SNR punishes low values more than it 

rewards high values. For example, the hypothetical responses {1,1,1,1} give an SNR of 0, while the 

hypothetical responses {0.97,0.99,1.01,1.03} give an SNR of -0.007. 

5.2.3 Importance of replicating observations 

Based on advice from Data Connection Ltd (DCL), an experiment was conducted to investigate 

the effects of varying DC-Directory’s TNE. This factor indicates the typical number of entries in the 

database. DC-Directory uses TNE’s level to decide on the amount of memory required: the higher the 

TNE, the larger the cache of database records stored in main memory.  

At the beginning of each trial, DC-Directory was warmed using DirectoryMark to simulate ten 

clients sending addressing requests for ten minutes. Trials were replicated four times for each level of 

TNE, and throughput measured during each trial. 
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Figure 5.7 shows the results of the experiment. The graph can be partitioned into three regions, 

indicated by the dotted lines: TNE ≤ 60,000, 70,000 ≤ TNE ≤ 160,000, and TNE ≥ 170,000. In the 

first and third regions, throughput was consistent. In the middle region, throughput was generally 

more variable26. This illustrates the importance of replicating trials.  

 

Figure 5.7: Observations of DC-Directory's throughput for a selection of cache sizes 

Additional metrics gathered during each trial included CPU and memory usage. A correlation was 

observed between the variability in DC-Directory’s throughput and swap space usage (i.e. amount of 

memory stored on disk rather than in RAM)27. Figure 5.8 shows the amount of swap space used, 

measured 60 seconds into each trial. Again, the graph can be partitioned into three regions: swap 

space usage was consistent when TNE was low or high, but varied in the middle region of the graph. 

However, the correlation is not perfect: swap space usage varied when TNE was 60,000, yet 

throughput was consistent (the range of observed responses was less than 3% of the median). 

                                                           

26 Throughput was consistent when TNE was 80,000 – no explanation of this behaviour is available. 

27 It is assumed that all usage of swap space was due to DC-Directory. 
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Figure 5.8: DC-Directory's swap space usage for a selection of cache sizes 

An experiment was conducted to investigate the effects of TNE on throughput after a longer warm-

up period. The warm-up consisted of ten clients sending addressing requests for ten minutes plus a 

subsequent 10,000 lookup operations per client. Figure 5.9 shows the results, using 0.9 as the origin 

of the graph. 

 

Figure 5.9: Observations of DC-Directory's throughput after a longer warm-up period 
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This graph can be partitioned into three regions: TNE levels of 60,000 or less gave consistently 

high throughput, as did TNE levels of 120,000 or greater. Levels in the middle region generally gave 

larger variability in throughput. 

The effect of TNE on throughput depended on the length of the warm-up, as can be seen from the 

graph of SNR in Figure 5.10. This indicates that DC-Directory’s behaviour changes over its run-time. 

The appropriate warm-up to use during an experiment depends on the expected usage pattern of the 

customer. 
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Figure 5.10: DC-Directory's quality after various warm-ups 

5.2.4 Use of Taguchi Methods 

The following experiment demonstrates the use of Taguchi Methods for investigating the 

behaviour of DC-Directory. For simplicity just four factors were varied, but Taguchi Methods allow 

the design of experiments that explore the effects of dozens of factors.  

The aim was to determine the effects of the following factors on DC-Directory’s throughput: 

• TNE, which indicates the expected typical number of entries in the database; 

• MaxLDAP, which is a constraint on the maximum number of simultaneous LDAP users that 

can connect to DC-Directory; 
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• LDAPnum, which corresponds to the number of threads servicing the queue of LDAP requests; 

• DispNum, which corresponds to the number of threads that search the database. 

5.2.4.1 First phase experiment 

The first phase experiment investigated the main effect of each factor, plus a sample of the 

interaction effects. These were TNE.MaxLDAP (i.e. the interaction effect between TNE and MaxLDAP), 

MaxLDAP.LDAPnum and MaxLDAP.DispNum. Figure 5.11 shows the levels tested for each factor, the 

default levels used in a fresh installation of DC-Directory, and the constraints on legal configurations 

defined by the software manufacturer.  

Number of threads Factor 
Level 1 Level 2 Level 3 Default Constraints 

TNE 10,000 30,000 50,000 10,000 Integer; TNE > 0 

MaxLDAP 100 1001 2000 1001 Integer; MaxLDAP > 0 

LDAPnum 1 2 4 2 Integer; LDAPnum > 0 

DispNum 2 5 8 5 Integer; DispNum > 1 

Figure 5.11: Factors 

Minitab TM was used to help design the experiment. It revealed that the most suitable orthogonal 

array was L27(313), shown in Appendix E, with 27 combinations. This is a third of the size of a full 

factorial design, which would have required 81 (i.e. 34) combinations. 

DC-Directory was warmed using DirectoryMark, which simulated ten clients that each sent 

addressing requests for ten minutes plus a subsequent 10,000 lookup operations per client. Trials were 

replicated four times28 to measure the robustness of each combination. The experiment took 100 

hours. 

Appendix E contains a table of the experiment results showing, for each combination, the four 

measurements of throughput and the SNR (i.e. quality). Figure 5.12 shows the main effect of each 

factor on quality (see section 4.3.3.1 for a description of main effects plots). For example, it shows 

that increasing MaxLDAP had a detrimental effect on quality. 

                                                           

28 Professor Harry Staines of Abertay University recommended a minimum of four replications. 
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Figure 5.12: Main effects plot 

Figure 5.13 depicts the interaction effects that could be inferred from the experiment results (see 

section 4.3.3.2 for a description of interaction plots). It suggests that the effect of TNE.MaxLDAP was 

small, while the effects of MaxLDAP.LDAPnum and MaxLDAP.DispNum were big. 

 

Figure 5.13: Interaction plot 

Minitab TM was used to produce a multiple linear regression model of the target system’s quality, 

shown in Figure 5.14. Linear and quadratic terms were used for each main effect because three levels 

were tested for each factor. For some terms, there was no statistical evidence at the 5% level that their 

effects were significant (as reported by Minitab TM). Using backward elimination to remove non-

significant terms (see section 4.3.3.3.1) gave the regression model in Figure 5.15. 
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Figure 5.14: First phase model, before backward elimination29 

 

Figure 5.15: First phase model of DC-Directory's quality30 

According to this model, the combination (within the region of the input space tested) of highest 

quality would be that shown in Figure 5.16. The predicted optimal level of 5.43 for DispNum has been 

truncated to 5, since it must be an integer. 

Factor Level 
TNE 32,930 
MaxLDAP 100 
LDAPnum 1 
DispNum 5 

Figure 5.16: Predicted optimal combination 

5.2.4.2 Second phase experiment 

A central composite design (see section 4.3.4) was used to test combinations in a region of the 

response surface around the predicted optimal combination. The aim was to produce a model that 

could more accurately predict whether there was a peak, and where it lay. The corner points, centred 

at the predicted optimal combination, were at TNE ±5000, MaxLDAP ±45 and DispNum ±1. These levels 

were chosen based on the predicted sharpness of the peak. The level of LDAPnum was fixed at 1 

because levels below 1 are invalid, and the design must be symmetric about the centre. This decision 

can be justified using the model in Figure 5.15, which predicts that quality decreases as LDAPnum 

                                                           

29 The levels of TNE were divided by 10,000, and MaxLDAP by 1000 to keep the coefficients 

manageable. 

30 Standard diagnostic tests showed that the assumptions of multiple linear regression were not 

violated. 

SNR = -0.0345 + 0.513xTNE - 0.733xMaxLDAP - 0.523xLDAPnum + 0.343xDispNum 
  - 0.0782xTNE

2 + 0.076xMaxLDAP
2 - 0.103xLDAPnum

2 - 0.0323xDispNum
2 

  + 0.0020xTNExMaxLDAP  - 0.138xMaxLDAPxLDAPnum + 0.0758xMaxLDAPxDispNum 

SNR = -0.892 + 0.515xTNE - 0.573xMaxLDAP + 0.343xDispNum - 0.0782xTNE
2 

  - 0.0323xDispNum
2 - 0.135xMaxLDAPxLDAPnum + 0.0758xMaxLDAPxDispNum 
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increases so its optimal level is its smallest legal level (i.e. 1). Appendix F contains the experiment 

design and results. 

Multiple linear regression was used to model the response surface, giving the model in Figure 

5.17. Backward elimination was used to remove non-significant terms, giving the model in Figure 

5.18. 

 

Figure 5.17: Second phase model, before backward elimination 

 

Figure 5.18: Second phase model of DC-Directory's quality 

Figure 5.18 predicted that, for the region of the response surface tested, quality would increase 

linearly with TNE. To identify the optimal combination therefore required investigation of higher 

levels of TNE. A further experiment was conducted to produce a model for higher levels of TNE. 

Because there were no significant interaction effects in Figure 5.18, the main effect of TNE was 

investigated in isolation of factors MaxLDAP, LDAPnum and DispNum. These were fixed at 100, 1 and 5 

respectively, which allowed results from the above experiment to be used in producing the model (i.e. 

results for the centre point and two of the star points). This gave the model in Figure 5.19, which 

predicted that quality would peak when TNE is 58,720. The predicted optimal combination is that 

shown in Figure 5.20. 

 

Figure 5.19: Model of TNE’s effect on DC-Directory's quality 

Factor Level 
TNE 58,720 
MaxLDAP 89 
LDAPnum 1 
DispNum 5 

Figure 5.20: Predicted optimal combination from follow-up experiment 

SNR = 0.465 - 0.083xTNE + 0.203xMaxLDAP - 0.0207xDispNum 
  + 0.0259xTNE

2 - 0.0810xMaxLDAP
2 + 0.00119xDispNum

2 
  - 0.0389xTNExMaxLDAP  - 0.0025xTNExDispNum + 0.0139xMaxLDAPxDispNum 

SNR = 0.0266 + 0.0752xTNE - 0.00641xTNE
2 

SNR = 0.0266+ 0.0363xTNE + 0.152xMaxLDAP - 0.0851xMaxLDAP
2 
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5.2.4.3 Results of validating the model 

The aim of this experiment was to test the accuracy of predictions made by the first phase model 

in Figure 5.15, in terms of the rank ordering of combinations. It used a validation set consisting of 16 

previously untested combinations31. Their predicted rank ordering was compared to the observed rank 

ordering using the rank correlation coefficient (see section 4.3.6). It yielded a correlation coefficient 

of 0.62, which means that the predicted ranking gave the same order as the observed ranking for 81% 

of the pairs of combinations.  

Accurate prediction of which combination is optimal is more important than the rank ordering of 

other combinations. It is important that the predicted optimal does indeed perform well. Of the 16 

combinations in the validation set, the observed best was ranked 6th by the first phase model in Figure 

5.15 – a poor prediction. However, the combination ranked 1st by the model was observed to be 2nd 

best. Finding a near-optimal combination (e.g. 2nd best) may be sufficient for meeting the 

configuration goal. 

The predicted maximum investigated during the second phase experiment was not as high as the 

first phase model in Figure 5.15 predicted. Indeed, the predicted optimal from the second phase 

experiment was not as good as the combination in Figure 5.21, which was tested during the first phase 

experiment. This suggests that assumptions made in designing the first phase experiment and 

analysing the results were violated. This is discussed in the following two sections. 

Factor Level 
TNE 50,000 
MaxLDAP 100 
LDAPnum 1 
DispNum 8 

Figure 5.21: Combination with highest observed quality 

                                                           

31 The validation set consisted of a full factorial design with two levels per factor. Results revealed 

that significant two-factor interaction effects at the 5% level were MaxLDAP.LDAPnum, 

MaxLDAP.DispNum and LDAPnum.DispNum. There was no statistical evidence that TNE.MaxLDAP, 

TNE.LDAPnum or TNE.DispNum were significant. 
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5.2.4.4 Consequences of ignoring significant effects 

Validation of the first phase model in Figure 5.15 revealed that the model’s predictions were 

sometimes inaccurate. The aim of this follow-up experiment was to test the hypothesis that 

inaccuracies in predictions were (at least partly) due to ignoring a significant two-factor interaction 

effect. 

The interaction effects investigated in the first phase experiment described in section 5.2.4.1 were 

TNE.MaxLDAP, MaxLDAP.LDAPnum and MaxLDAP.DispNum. However, results from the validation 

experiment in section 5.2.4.3 revealed that, for this region of the response surface, the significant 

interaction effects were MaxLDAP.LDAPnum, MaxLDAP.DispNum and LDAPnum.DispNum. The predictive 

model should therefore have included these effects and the main effects of TNE, MaxLDAP, LDAPnum and 

DispNum. 

This follow-up experiment investigated these effects. It was designed using Taguchi Methods and 

was similar to the first phase experiment described in section 5.2.4.1. The levels tested were as shown 

in Figure 5.11. As before, DC-Directory was warmed by ten clients that each sent addressing requests 

for ten minutes plus a subsequent 10,000 lookup operations per client. Trials were replicated four 

times. 

The resultant models, before and after backward elimination, are shown in Figure 5.22 and Figure 

5.23 respectively. The combination predicted to be of optimal quality according to this model is 

shown in Figure 5.24. 

 

Figure 5.22: Model from follow-up experiment, before backward elimination 

 

Figure 5.23: Model of DC-Directory from follow-up experiment 

SNR = 0.436 + 0.181xTNE - 0.726xMaxLDAP - 0.689xLDAPnum + 0.217xDispNum 
  - 0.0156xTNE

2 + 0.076xMaxLDAP
2 + 0.0956xLDAPnum

2 - 0.0308xDispNum
2 

  - 0.151xMaxLDAPxLDAPnum + 0.0829xMaxLDAPxDispNum + 0.0431xLDAPnumxDispNum 

SNR = 0.018 + 0.0869xTNE - 0.565xMaxLDAP - 0.197xLDAPnum + 0.217xDispNum 
  - 0.0308xDispNum

2 - 0.151xMaxLDAPxLDAPnum + 0.0829xMaxLDAPxDispNum 
  + 0.0431xLDAPnumxDispNum 
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Factor Level 
TNE 50,000 
MaxLDAP 100 
LDAPnum 4 
DispNum 6 

Figure 5.24: Predicted optimal combination 

Using the validation set from 5.2.4.3, the rank correlation coefficient for this model’s predictions 

was 0.68 (i.e. 84% of the pairs of combinations have the same predicted and observed ranking). This 

improved on the previous first phase model in Figure 5.15, which had a rank correlation coefficient of 

0.62. This suggests that inclusion of all significant two-factor interaction effects is a necessary 

condition for accurate interpolation. However, it is not a sufficient condition: for a simple model to 

accurately describe the response surface, the relationship between factors and the response variable 

must be simple. 

5.2.4.5 Relationships between factors and the response variable 

In the first phase experiments of sections 5.2.4.1 and 5.2.4.4, it was assumed that a linear or 

quadratic model could accurately describe the main effect of a factor. The follow-up experiments 

described here tested the validity of this assumption. 

In each of the following experiments a single factor was varied, while the other three factors were 

fixed at their middle levels (as listed in Figure 5.11); testing more than three levels per factor gave a 

more detailed view of the factors’ effects. As before, DC-Directory was warmed by ten clients that 

each sent addressing requests for ten minutes, plus a subsequent 10,000 lookup operations per client. 

Trials were replicated four times. 

The graphs in Figure 5.25 to Figure 5.28 show the main effects of TNE, MaxLDAP, LDAPnum and 

DispNum respectively. Graphs on the left show the replicated measurements of throughput, while 

graphs on the right show the SNR calculated using these values. 

Lines in the SNR graphs show the SNR predicted by the first phase model in Figure 5.23 – data 

points in the graphs below were not used to produce the model. The solid lines show predictions for 

combinations in the tested region of the response surface, while the dotted lines show extrapolation 

from the model. A straight line indicates that, when producing the model, there was no statistical 

evidence at the 5% level that the quadratic term in the main effect was significant.  
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Figure 5.25: Main effect of TNE 
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Figure 5.26: Main effect of MaxLDAP 
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Figure 5.27: Main effect of LDAPnum 
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Figure 5.28: Main effect of DispNum 

There were differences between the model’s predictions and the observed SNR shown in the 

graphs above. This was due to simplifying assumptions made when producing the model: it was 

assumed that the main effects were linear or quadratic. It was also assumed that some interaction 

effects were zero (e.g. those involving three or more factors) and could therefore be ignored. Some of 

these interaction effects were aliased with main effects: if one or more of these interaction effects 

were non-zero, it would have affected the estimate of the main effect. 

The graphs show that the main effect cannot always be accurately modelled by a quadratic 

polynomial. For example, the main effect of DispNum (when the other factors are set to their middle 

levels) would have been more accurately modelled by a piecewise curve: the effect of increasing 

DispNum’s level from 2 to 3 was different from the effect of increasing DispNum’s level in the range 3 

to 12.  

The main purpose of models from first phase experiments is to predict a combination that is near 

the optimal in the tested region of the response surface. This does not require that the model 

accurately interpolates the response variable’s values for other combinations. The maxima for the 

solid lines in Figure 5.25 to Figure 5.28 are close to the highest observed SNR (e.g. the solid line in 

Figure 5.27 correctly predicts that the highest SNR will be when LDAPnum has level 1, despite the line 

being a poor fit to the data). This suggests that the model in Figure 5.23 is sufficient for estimating the 

optimal levels of TNE, MaxLDAP, LDAPnum and DispNum, based on their main effects. 

Investigation of lower levels of MaxLDAP (i.e. less than 50) revealed a phase change, shown in 

Figure 5.29. There was a five fold improvement in throughput when MaxLDAP had the level 10, 
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compared to throughput when MaxLDAP had a level between 14 and 3000. This result shows the 

importance of choosing the correct range of levels to test when designing an experiment. It also 

demonstrates that extrapolating from a model can be inaccurate: the model in Figure 5.23 does not 

predict a phase change. Predictions should only be made for combinations within the region tested. 
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Figure 5.29: Main effect of MaxLDAP, showing phase change 

5.3 Conclusions 

This chapter presented experiments with the target systems DC-MailServer and DC-Directory. 

Experiments with DC-MailServer demonstrated the difficulties posed by variability in the behaviour 

of complex software systems, highlighting the importance of replicating trials. Experiments with DC-

Directory included using Taguchi Methods to identify high-quality combinations. Figure 5.30 

summarises these results, which are discussed below. 

Factor levels Observed throughput (normalised) 
Combination TNE MaxLDAP LDAPnum DispNum SNR Min Median Max 
Default 10,000 1,001 2 5 0.004 0.9990 1.0000 1.0030 
1st prediction 32,930 100 1 5 0.461 1.0526 1.0542 1.0569 
2nd prediction 58,720 89 1 5 0.503 1.0570 1.0599 1.0617 
Best so far 50,000 100 1 8 0.536 1.0623 1.0633 1.0656 
3rd prediction 50,000 100 4 6 0.541 1.0628 1.0648 1.0648 

Figure 5.30: Summary of results from using Taguchi Methods with DC-Directory 

In Figure 5.30, “default” refers to the default configuration used when DC-Directory is installed. 

The “1st prediction” and “2nd prediction” are the predicted optimal combinations according to the 

models from the first phase and second phase experiments respectively (see sections 5.2.4.1 and 

5.2.4.2). “Best so far” refers to the best combination found during these experiments. The “3rd 
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prediction” is the predicted optimal combination according to the model from the follow-up 

experiment in which all significant two-factor interactions were investigated (see section 5.2.4.4).  

The best combination found gives a clear improvement in SNR over the default combination. It 

gives a 6% improvement in the minimum, median and maximum throughput. This is an indication of 

success: most software manufacturers, including Data Connection Ltd, would be happy to achieve a 

6% improvement in performance without investing experts’ time [99]. 

The predicted optimal combinations from the first and second phases are both better than the 

default. However, the best combination found during these experiments was one of those initially 

tested. It gives a median throughput 0.3% higher than that of the predicted optimal combination. This 

combination could have been chosen by simply ranking the configurations tested, without need of a 

predictive model. However, the predicted optimal combination from the model in section 5.2.4.4, 

labelled “3rd prediction”, is of higher quality than those found previously. This high-quality 

combination would have been difficult to identify without a predictive model, which validates use of 

predictive models when searching the response surface. The difference between the 1st and 3rd 

predictions highlights the importance of designing experiments well (e.g. including all significant 

interaction effects). 

The follow-up experiments in section 5.2.4.5 show that simple models, like those from first phase 

experiments, cannot always accurately model the main effects of factors. However, results for DC-

Directory suggest that they are sufficient for predicting a combination near the optimal in the tested 

region of the response surface. This validates the use of models from first phase experiments in 

determining the centre for second phase experiments. This in turn supports the hypothesis that 

Taguchi Methods are useful for identifying high-quality configurations. 
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6 Discussion 

6.1 Testing the hypothesis 

This section discusses the usefulness of automatically measuring a sequence of configurations, as 

proposed in the hypothesis (see section 1.1). The goals discussed below are used as a basis for testing 

the hypothesis: 

• Find a robust configuration. The experiments described in section 5.2.4 identified a high 

quality configuration of DC-Directory (in terms of robust throughput). This configuration 

consistently delivered 6% higher throughput than the default, under the conditions described 

in the case study. 

• Find characteristics of interest. One of the experiments, described in section 5.2.4.5, 

discovered a phase change. Other observations were also of interest to developers, such as 

the effects of TNE on the variability in DC-Directory’s behaviour (see section 5.2.2). 

• Help to construct a predictive model of the target system. The model in Figure 5.23 was 

derived from experiment results. It was used to predict an “optimal” combination for DC-

Directory, which was of higher quality than the other combinations tested. 

6.2 Use of Taguchi Methods 

Below is a discussion of the assumptions made in using Taguchi Methods, and their validity when 

designing experiments for DC-Directory: 

• The experimenter knows which factors to vary. The software manufacturer recommended 

with confidence a subset of the factors on which to concentrate, based on experience of 

tuning DC-Directory by hand. 

• The experimenter knows which levels to test. This is non-trivial as some factors have 

thousands of legal levels (e.g. TNE for DC-Directory): deciding on levels to test is sometimes 

informed guess work. The software manufacturer recommended ranges of levels for DC-

Directory’s factors, but further experiments are required to investigate behaviour of 

combinations outside this range, to validate the original choice of levels. 
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• The experimenter knows which interactions to investigate. This is sometimes intuitive: 

the software manufacturer has suggested several significant interactions. However, the 

accuracy of a predictive model is influenced by whether all significant interaction effects are 

investigated. Experiments that investigate a large number of interaction effects are expensive 

so it is important to identify insignificant interactions that can be ignored. This requires a 

priori information about the target system’s behaviour, which may be supplied in some cases 

by the software manufacturer. 

• The more factors involved in an interaction effect, the less likely it is to be important. 

This does not always hold for complex software systems: 

• A bottleneck can be a significant interaction effect involving multiple factors; it can 

correspond to a set of factors whose levels limit the target system’s performance. 

Changing these factors’ levels removes the bottleneck, but varying other factors not 

involved in the bottleneck will not improve performance until the bottleneck is removed. 

• The field of hazard analysis [77] has revealed that a hazard may be due to an interaction 

effect involving multiple factors. A “hazard” is a (potentially large) set of conditions 

that, when all are satisfied, will lead inevitably to an accident (e.g. deterioration in 

performance). The “conditions” could be particular levels for a set of factors. 

• Models from first phase experiments can predict a combination that is near the optimal 

in the tested region of the response surface. The optimal levels predicted by the model of 

DC-Directory in Figure 5.23 are close to the optimal levels observed in section 5.2.4.5, 

which describes an investigation of the main effects. This is true for DC-Directory despite 

some of its main effects being impossible to model accurately using linear and quadratic 

terms.  

Taguchi Methods can provide insight into a target system’s behaviour. Results for DC-Directory 

were used to produce predictive models, revealed a high-quality configuration and formed the basis 

for designing follow-up experiments (see section 5.2.4). 

It requires expert knowledge to successfully design experiments using Taguchi Methods. The 

region of the response surface that should be tested depends on the configuration goal and the likely 

conditions of use. It is therefore important to choose well the factors to vary and the range of levels 
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for each. To produce models that accurately predict high-quality combinations requires that the 

experimenter investigate (at least) all significant two-factor interaction effects. 

The target system’s response surface must be simple for models to accurately interpolate the 

response of untested combinations: use of a simple model assumes that relationships between factors 

and the response variable are linear or quadratic. This assumption may not hold for a given target 

system, so predictions of the effects of adapting factors should be used as guides and be treated with 

caution. 

Simple models of the response surface will not predict phase changes. The assumption that the 

response surface is simple therefore makes it hard to detect phase changes. However, use of Taguchi 

Methods can give clues: 

• Presence of significant outliers with respect to the linear regression model (i.e. observations 

that do not fit the model) suggests that the simple model is insufficient for describing the 

response surface. This may indicate the presence of a phase change. 

• It could be argued that combinations near some phase changes give high variability in 

performance. Phase changes correspond to sudden shifts in the way the target system 

behaves (e.g. a small increase in workload can cause a dramatic increase in the rate of 

growth of an input queue). The point in the input space at which the phase change occurs 

may not be fixed (e.g. the critical workload level may depend on the level of uncontrolled 

factors). Therefore, performance of combinations near a phase change may be more variable 

than those away from phase changes. 

The experiments in section 5.2.2 demonstrate the necessity of replicating measurements. For some 

levels of TNE, throughput varied by over 40%. 

Other experiments, for a previous version of DC-Directory, revealed significant interaction effects 

due to bottlenecks. Four factors were varied, relating to the number of threads that service particular 

queues of requests, including LDAP requests (LDAPnum) and search requests (DispNum). DC-

Directory’s throughput was the same for all combinations tested: none of the factors varied had a 

significant effect on throughput, under the conditions described in the case study and with all other 

factors set to their default levels. This illustrates two important points: effects of factors can depend 

on bottlenecks caused by other factors’ levels, and DC-Directory’s behaviour varies between versions. 
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6.3 Complementing on-the-fly adaptation 

Running experiments before the target system goes into use has a number of limitations compared 

to configuring the target system on-the-fly: 

• It is only feasible if the target system can be taken off-line, or for changes that can be 

planned and tested before the target system first goes into use. 

• Some configurations are only available on-the-fly, such as those involving new versions of a 

component.  

• Replicating faithfully a customer’s environment can be difficult, particularly for distributed 

heterogeneous systems operating over wide area networks. Conditions may also change after 

the system goes into use, which can make observations from past experiments inapplicable. 

• Producing a workload that is representative of the customer’s likely usage patterns can be 

difficult. Logging a customer’s usage, where possible, allows an identical set of inputs to be 

used during experiments, or a synthetic workload to be developed based on characteristics of 

the logged input. An alternative is to use domain-specific benchmarks that describe common 

usage patterns. 

Despite these limitations, exploring the behaviour of a target system before it goes into use can be 

beneficial and can complement on-the-fly adaptation. Advantages of exploring behaviour before the 

target system goes into use, over exploring behaviour on-the-fly, include the following: 

• Each trial can be run in a consistent manner, setting explicitly the state of the target system 

and its conditions of use. This is important for estimating robustness and for accurate 

comparison of target system configurations.  

• Statistical techniques, such as Taguchi Methods, can be used for the design of experiments as 

there is explicit control over the conditions for each trial. 

• Testing of specific conditions allows experimenters to: 

• validate adaptation tactics for on-the-fly adaptation; 

• find appropriate configurations for particular conditions; 

• suggest new adaptation tactics. 
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• Detrimental effects on performance (either temporary or permanent) are not a problem as 

there are no real users and the target system is restored to a known state before each trial: the 

target system can be restarted or even reinstalled as required. 

• There are no ill effects from testing configurations that are invalid or that exhibit incorrect 

behaviour, assuming that errors are detected and reported during the trials. This assumes that 

the target system is isolated from the outside world when running experiments so errors 

cannot affect external systems. 

• There is generally more time available than when configuring the target system on-the-fly, so 

the experimenter can test a wider range of configurations. 

6.4 Experimental adaptations on-the-fly 

Lehman states that “an E-type program that is used [i.e. a target system embedded in a real-world 

domain] must be continually adapted else it becomes progressively less satisfactory” [74]. If the target 

system cannot be taken off-line, this necessitates on-the-fly adaptation. A new version of ACT has 

been designed to support on-the-fly evolution of software systems (see section 7.3). 

If an appropriate adaptation is not known and the target system cannot be taken off-line, it is 

necessary to make experimental adaptations while the target system is in use. However, it is hard to 

measure the effect of an adaptation on-the-fly because uncontrolled factors can affect the target 

system’s behaviour: it is not possible to run experiments in a controlled and isolated environment. For 

example, the workload may change, components may fail and the execution platform may perform 

unsolicited actions such as garbage collection. 

The SNR metric can be used to measure the robustness of a target system’s behaviour on-the-fly. 

Repeated observations of behaviour give an indication of the target system’s consistency and its 

insensitivity to variation in uncontrolled factors. However, repeating observations necessitates a delay 

in responding to deterioration in performance. 

On-the-fly adaptation is potentially risky due to the disruption it can cause to users (e.g. 

deterioration in performance, loss of data or system failure). Techniques for allowing adaptations to 

be reversed include: use of a check-pointing mechanism to roll back to a known state [62], and 

adapting a duplicate component instead of the original. However, some adaptations are irreversible at 
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run-time (e.g. involving I/O, causing space leaks, changing data that is not backed up, or affecting the 

encapsulated state of an external component) so any disruption they cause is permanent.  

The set of available adaptations is influenced by: 

• the set of adaptation mechanisms that can be used on-the-fly; 

• the target system administrator’s policy on the acceptable level of risk; 

• any available predictions of adaptation costs (i.e. disruption caused while adapting), chance 

of success (i.e. chance of improvement versus chance of a detrimental effect) or implications 

of a detrimental effect. 

“Careful” experimental adaptations made on-the-fly may reveal good configurations. Iterative 

improvement algorithms (see section 4.2) may prove appropriate for making a series of small 

adaptations to the target system’s configuration, using observations of the behaviour to decide 

whether to accept or reverse each adaptation.  
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7 Future work 

7.1 Further experiments 

Current work focuses on the use of Taguchi Methods to explore DC-Directory’s behaviour. 

Further experiments are discussed below, which would be run if this research were to be continued.  

Taguchi Methods could be used to design experiments involving dozens of factors. Additional 

factors of DC-Directory could include: 

• aspects of the workload (e.g. number of clients, ratio of addressing to modify requests, etc); 

• concurrency policies (e.g. number of threads and thread priorities); 

• distribution policies for deploying DC-Directory across multiple nodes of the Beowulf 

cluster. 

The set of fitness metrics could be increased to improve understanding of the target system’s 

behaviour. Current experiments collect measurements of throughput, latency32 and resource usage. 

However, only throughput is used in the configuration goal. Future work is required to expand the set 

of fitness metrics and produce appropriate aggregating functions, based on the advice of target system 

experts (i.e. administrators and developers). 

Additional experiments are required to further investigate the suitability of multiple linear 

regression for modelling DC-Directory, and to explore the use of other curve fitting techniques (e.g. 

splines) for modelling non-linear or discontinuous response surfaces. Data mining techniques could 

also be used to extract information from experiment results [50]. Feedback from experts could be used 

to validate models and to suggest improvements such as other factors to include and other levels to 

test. It would be interesting to further investigate the usefulness to developers and administrators of 

predictive models, and to investigate how closely models mirror current understanding of the target 

system. 

                                                           

32 DirectoryMark measures the latency for each addressing request. Measurements obtained during a 

single trial could be combined using SNR to reward consistently low latency. 
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Once the techniques have been successfully applied to DC-Directory, Taguchi Methods could be 

used to design experiments for DC-MailServer. The case study described in section 5.1, which did not 

use Taguchi Methods, revealed that coping with variability in behaviour is a big problem. Taguchi 

Methods could be used to cope with this variability: 

• Trials could be replicated for each combination. SNR could be used to measure consistency 

and thus estimate each combination’s insensitivity to variation in uncontrolled factors. 

• The TACT process (i.e. the combination of Taguchi Methods and ACT) could be used to 

search for combinations that give high values of SNR. 

• Taguchi’s robust design could be used to identify target system configurations that are 

insensitive to variation in noise factors (see section 4.3.6). This would involve explicitly 

varying the target system’s conditions of use, to identify and exploit the interaction effects 

between control factors and noise factors. 

The behaviour of other software systems could be explored to investigate further the applicability 

of Taguchi Methods and other search strategies. However, ACT’s use is not restricted to just software 

systems: ACT could coordinate experiments for any process that can be run, measured and configured 

without human intervention.  

7.2 Complementing other work 

Use of ACT could be beneficial for other research programmes that assume appropriate target 

system configurations are known a priori. Current plans are to integrate ACT into ArchWare [4]. 

Other programmes that could make use of ACT include DASADA [9] and Autonomic Computing 

[63] (see section 2.8.3 for a description of these programmes).  

Another possible avenue of further work is in the integration of ACT with Generative 

Programming: “a software engineering paradigm based on modelling software system families such 

that, given a particular requirements specification, a highly customised and optimised intermediate or 

end-product can be automatically manufactured on demand from elementary, reusable 

implementation components by means of configuration knowledge” [41]. The user’s requirements 

(i.e. configuration goal) drive the assembly of the software system. A framework for a family of 

software systems has variation points into which components are plugged to produce a complete 
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system. Each variation point corresponds to a factor, and each valid component is a possible level. 

ACT could run an experiment to help find a suitable combination: to help identify and configure 

appropriate components for each variation point. 

7.3 ACT 2.0 

A new version of ACT, ACT 2.0, has been designed with four main aims: 

• Extend the use of ACT 1.0 to support long-lived evolution processes. ACT 2.0 will help 

make target adaptations to produce new and improved versions of the target system. In ACT 

1.0, this is left to the experimenter and target system developers. 

• Provide support for on-the-fly adaptation of target systems. ACT 2.0 will assist target 

system developers to continually adapt target systems throughout their lifetimes. 

• Provide a more flexible infrastructure. Use of an event-based architecture will impose a 

looser coupling between ACT 2.0 components. This will make it easier to incorporate third 

party components, such as gauges developed under the DASADA programme. 

• Make explicit the policies, mechanisms and information in the ACT 2.0 infrastructure. 

All information will be explicitly available when deciding on policies for using exposed 

mechanisms. This will make it easier to guide and tailor the evolution process. This contrasts 

with ACT 1.0, where probes and gauges used by a run function were all private to that 

function. 

Observation of a target system will help drive its evolution. ACT 2.0 will support long-lived 

evolution processes that involve multiple experiments, changing configuration goals, and target 

adaptations. Experiments will identify beneficial adaptations, evaluate new versions of the target 

system and help focus the testing and maintenance efforts of target system developers. This work will 

contribute to the ArchWare project by helping to recommend architectural changes. The ArchWare 

ADL will be used to describe adaptations and the ArchWare environment will support adaptation of 

the target system [4]. 

ACT 2.0 will use observation and adaptation mechanisms available at run-time to evolve the target 

system on-the-fly. An evolution strategy will decide on appropriate adaptations, making use of the 

following mechanisms: 



Chapter 7: Future work 

 

119

• Gauge components. Gauges will interpret observations of the target system and will 

generate events to describe the target system at a higher level. 

• Advice components. These will encode expert knowledge of the target system’s behaviour, 

which includes adaptation tactics, predictions of patterns of behaviour, and the effects on 

fitness metrics of factors and interactions. 

• Model components. A model component will contain a model of the target system (e.g. a 

description of the architecture using an ADL). It will use the model as a basis for interpreting 

observations, reasoning about possible adaptations and recommending appropriate 

configurations. 

• Search strategy components. Experiments will be run both before the target system goes 

into use and on-the-fly to search for beneficial adaptations. The latter could be useful as a 

“last resort”, when degradation necessitates change but an appropriate adaptation tactic is not 

known (see the discussion in section 6.4). 

The event-based architecture of ACT 2.0 will provide a more flexible infrastructure, imposing 

looser coupling between components. This will aid reuse of observation, adaptation and interpretation 

mechanisms. 

Fundamental to ACT 2.0’s design is the explicit representation of policies, mechanisms and 

information. Following the principles of Compliant Systems Architecture [83], the aim is to make 

explicit the mechanisms exposed by ACT 2.0, to define precisely the extent to which it is open. 

Decisions about how to use the mechanisms exposed by a component could be made by other 

components, promoting a separation of concerns between policy and mechanism. For example, an 

evolution strategy will decide how to use a target system’s adaptation and observation mechanisms. 

Entities that represent information explicitly will include: 

• events, which will make communicated information explicit and available to all eligible 

ACT 2.0 components; 

• advice components, which will support the capture, evolution, use and reuse of expert 

knowledge – in ACT 1.0, advice is implicit in the choice of factors, levels and search 

strategy. 
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7.3.1 Event-based architecture 

ACT 2.0 components will communicate over an event bus, with events encoded in XML to 

promote openness. The Siena content-based routing system [106] will be used for dissemination of 

events, which is similar to the approach described in [61]. The format of messages will conform to the 

Smart Events Schema [6] to promote interoperability with probes and gauges developed in the 

DASADA programme. 

A target wrapper component will be present on each of the target system’s nodes, to receive and 

send events. Incoming events will either be infrastructure events for the probes, or events that request 

adaptation or control of the target system. Each target wrapper will have an event handler to interpret 

incoming events. These events will be mapped to low-level operations on the probes or on the target 

system. Target wrappers will also generate events that represent the probes’ observations and the 

state of ACT 2.0 components. 

7.3.2 Evolution strategies 

An evolution strategy component will coordinate the observation and adaptation of a target 

system. It will be target-independent (i.e. no inbuilt knowledge of the target system). It will use 

gauge, advice and model components as helpers to provide semantic information about the target 

system. These helpers, along with search strategy components (see chapter 4), will assist decision-

making. They will be queried and/or will proactively generate events to interpret observations, 

recommend when and what to measure, and suggest when and what to adapt. 

Evolution strategies will use a component factory to instantiate helper components appropriate to a 

target system and configuration goal. Target system administrators will recommend specific helper 

components, which will themselves instantiate other components. 

For simplicity of initial implementation, evolution strategies will maximise the output of a single 

gauge that indicates how well the target system meets a particular configuration goal. The ability to 

maximise a gauge’s output would be powerful: the gauge’s implementation, and thus the 

configuration goal, could be arbitrarily complex. Adapting the gauge or changing which gauge is used 

would change the configuration goal.  
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A meta-strategy will control the choice, instantiation and configuration of an evolution strategy. If 

there is more than one evolution strategy, the meta-strategy will orchestrate their concurrent usage to 

ensure that conflicting instructions are resolved. For example, one evolution strategy could request 

frequent adaptations when attempting to improve the target system’s performance, while a second 

evolution strategy with higher priority could request infrequent adaptations to preserve the target 

system’s correctness. 

7.3.3 Use of advice 

Advice components will contain specific pieces of information about the target system. They will 

provide recommendations of how and when to observe and adapt the target system. An advice 

component could include state information about recent observations of the target system, or could be 

stateless. To use an advice component, it will not be necessary to have knowledge of the target 

system’s architecture or an understanding of why advised actions are appropriate. 

Making advice components explicit will aid automated generation of advice by providing an 

infrastructure in which information is represented and managed. ACT 2.0 will automatically generate 

advice components to encode information gleaned from past observations of the target system.  

Figure 7.1 shows an example of advice for DC-MailServer33, in the form of two event-condition-

action rules. The AdviceMS component will consume events concerning either throughput or the length 

of the IMS queue, which contains unprocessed e-mail messages. If throughput drops below a 

threshold of 100 messages per second, it will generate an event to recommend the activation and 

querying of a probe (ProbeimsQ) to measure the length of the IMS queue. If the IMS queue length 

exceeds a threshold of 200, it will generate an event to recommend that a new message store 

component be created. 

                                                           

33 This example advice component is simplistic, ignoring other explanations for a large IMS queue. 

There would need to be additional advice components to check for other causes, to decide when to 

decrement the number of message store instances, etc. 
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AdviceMS Rule 1 Rule 2 
Event Observed throughput Observed IMS queue length 
Condition Throughput < 100mps & ProbeimsQ not active IMS queue length > 200 
Action Activate and query ProbeimsQ to measure  

IMS queue length 
Create new message store component 

Figure 7.1: Example rules for an advice component 

7.3.4 Use of models 

A model is a representation that exhibits some property of the target system (see section 2.3). 

Models are important for successful on-the-fly evolution of a complex software system: they can form 

the basis for deciding on adaptations by providing a context for reasoning about observations and 

possible adaptations. Advice and gauges are special kinds of models: advice is a piece of information 

about the target system (i.e. an incomplete model), and a gauge interprets observations in the context 

of some property of the target system. 

Models can include constraints, which can be used to guide observation and adaptation of the 

target system. Two types of constraint are structural and behavioural. An example of a structural 

constraint is that DC-Directory must have at least two dispatcher search threads. An example of a 

behavioural constraint for DC-Directory is that latency for addressing requests must be less than 

100ms. Absence of constraint violations can be used to validate whether a target system configuration 

is legal and whether it would meet the configuration goal. 

Model components will contain and use models to recommend how and when to observe and 

adapt the target system. Model components will: 

• register to receive appropriate events, particularly those events pertinent to the target system 

properties being modelled; 

• generate events that describe a property of the target system, and/or that recommend what to 

observe and adapt; 

• instantiate and/or communicate with other ACT 2.0 components. 

A set of model components will together form a (potentially distributed) model of the target 

system, where each model component contributes some details to the overall model. Each model 

component will represent aspects (i.e. sets of related properties) of the target system, where the 

representation is tailored to suit the aspects being modelled. Collaboration between model 
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components is a challenging area requiring further work. A weaver, similar to those used in aspect-

oriented programming [70], could perhaps combine the models to form the basis of a cohesive 

evolution strategy. 

7.3.5 Challenges 

There are a number of challenges involved in the design and implementation of ACT 2.0. 

Appendix B contains a list of general issues relating to the feasibility of observation-driven evolution 

and the policy decisions involved. Some design issues for ACT 2.0 are raised below: 

• What will be the format of the experiment description (i.e. the input to ACT 2.0)? It should 

include target-independent information for the evolution strategies and search strategies, and 

target-specific information about how to interact with the target system. The extensibility of 

XML is well suited to representing target-specific information. 

• How will events be mapped to operations on the probes and target system? A balance is 

required between keeping event handling code reusable and keeping the implementation of 

operations simple. 

• How will multiple adaptations be coordinated, particularly when adapting interdependent 

distributed components [102]? Should adaptations be transactional with the ACID properties 

of atomicity, consistency, isolation and durability [62]? An open research issue is if/when 

these properties are required, and how they can be provided. 

• What will be the interfaces for using gauge, advice, model and search strategy components? 

How will a database of past observations be maintained and accessed? 

• What discovery mechanism will be used for identifying available ACT 2.0 components? It is 

envisaged that the component factory will maintain a list of available components, and that 

some components will hard-code details of other components deemed appropriate. 

• How will ACT 2.0 components be configured? A meta-object for each component will 

control the configurable aspects of the component’s behaviour, and respond to queries about 

the services the component provides. 
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7.4 Further versions of ACT 

If work on ACT were to be continued, a long-term goal would be to develop future versions of 

ACT that drive and coordinate all agents involved in the evolution process. Fundamental to this would 

be the development of evolution strategies for various activities such as performance tuning, porting 

to new environments, and adding functionality. Observation, decision-making and adaptation would 

be performed either automatically or by external agents, such as target system developers 

implementing a new version of a component to meet a given specification. ACT would provide a 

framework for these tasks, to produce new versions of a target system and evaluate their behaviour in 

terms of the configuration goal. Realising this vision would require at least integration of systems for: 

• process management to coordinate agents involved in the evolution process, throughout the 

organisation; 

• requirements engineering to specify explicitly and formally the configuration goals; 

• resource management to allocate resources required by the running system and additional 

resources required during adaptation; 

• architectural modelling to maintain and evolve the high-level architecture of the target 

system; 

• configuration management to manage changes made to the target system, in particular new 

versions of components and new architectural configurations; 

• deployment to install, upgrade and activate components; 

• testing to ensure the correctness of the target system during evolution by using techniques 

such as regression testing and code coverage. 

7.5 Summary 

The work described in this thesis has shown the feasibility of running automated experiments to 

assist target system administrators in comprehending and configuring software systems. In particular, 

use of Taguchi Methods for identifying robust configurations is a promising direction of research. 

The applicability of Taguchi Methods for complex software systems requires further investigation. 

It is yet to be demonstrated whether the techniques scale for large numbers of factors, and whether the 
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assumption of a simple model limits applicability in practice. ACT 1.0 could be used to investigate 

these issues by running more experiments for DC-Directory and DC-MailServer. This would require 

the continued cooperation of Data Connection Ltd (DCL) to validate results and evaluate their 

usefulness in an industrial context. 

ACT 2.0, which is at the design stage, is intended to support long-lived evolution processes that 

involve multiple experiments, changing configuration goals and target adaptations. ACT 2.0 will 

coordinate observation and adaptation of the target system both before the target system goes into use 

and on-the-fly. 
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8 Conclusions 

This thesis proposed the following hypothesis: automating the empirical measurement of a 

sequence of target system configurations can find robust configurations of the target system, can find 

characteristics of interest and can help construct a predictive model. This led to the novel use of 

Taguchi Methods for configuring software systems and the development of ACT (Automated 

Configuration Tool). The hypothesis was tested and validated in an industrial case study for DC-

Directory. 

ACT can be used to explore the behaviour of a wide variety of target systems using a variety of 

search strategies. It has been used in two industrial case studies with products from Data Connection 

Limited (DCL): DC-MailServer and DC-Directory. Experiments to-date have explored the effects on 

target system performance of caching policies, concurrency policies, number of processors and 

workloads. Quality was measured by comparing observations of the target system’s behaviour against 

the configuration goal specified by the experimenter. 

The combination of Taguchi Methods and ACT yielded the TACT process. This was used to 

design and run experiments in two phases, which produced models of the target system to identify 

robust configurations (i.e. configurations that would deliver consistently high performance). The first 

phase involved designing fractional factorial experiments to explore a region of the response surface 

specified by the experimenter. Multiple linear regression was used to produce a model, which 

predicted a combination near the optimal in the investigated region. The second phase tested 

combinations in a small region around the predicted optimal to produce a more accurate model of the 

response surface in that region. This second model was used to more accurately predict the optimal 

combination.  

Use of the TACT process with DC-Directory revealed that the assumptions of Taguchi Methods 

were valid for DC-Directory. The combination predicted as optimal in the first phase experiment 

performed well, and was confirmed to be near a high-quality combination.  

A configuration of DC-Directory was found that consistently delivered 6% higher throughput than 

the default configuration, under the conditions described in the case study. This is an indication of the 

technique’s success: most software manufacturers, including DCL, would be happy to achieve a 6% 

improvement in performance without investing experts’ time [99]. 
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A secondary use of the predictive model for DC-Directory was to rank untested combinations in 

terms of quality, using estimates of the main effects and a selection of interaction effects. However, 

the model of DC-Directory did not always accurately interpolate the response variable’s value for 

untested combinations. Instead, the model provided rules of thumb to predict the effects of varying 

the factors’ levels. 

It requires expert knowledge of the target system to successfully use Taguchi Methods: to choose 

which region of the response surface to investigate, to select levels for each factor, and to identify 

significant interaction effects to investigate. Target system developers and administrators can 

sometimes provide this information.  

The experiments with DC-Directory have shown that the combination of Taguchi Methods and 

ACT, forming the TACT process, can be used to identify high-quality configurations. TACT is 

therefore a valuable addition to the techniques available for configuring software systems. It has been 

suggested that use of Taguchi Methods has saved other industries, such as car manufacturing, 

hundreds of millions of dollars by helping to produce robust products [2]. It is hoped that software 

engineers will adopt these methods and will obtain similar rewards, finding target system 

configurations that deliver consistently high performance. 

In the future, the TACT process could be a common technique in software engineering. It could 

help to produce robust systems that are not affected by variation in uncontrolled factors. Target 

system developers could also use the TACT process to improve understanding of the target system’s 

behaviour: to guide adaptations when progressing to new and improved versions of the target system.  

The TACT process could become an integral part of software deployment. At the time of a target 

system’s installation, the customer would indicate the expected workload. The target system would be 

tuned automatically to select a configuration appropriate for the customer’s conditions. A tool like 

ACT 2.0 could also be deployed with the target system. It could monitor the target system on-the-fly, 

identify when and how the target system should adapt, and configure the target system as required. 

The work presented here has demonstrated the usefulness of the TACT process. It has taken the 

first steps towards the vision of the future outlined above, where Taguchi Methods and ACT are used 

in a wide range of situations to improve the quality of software systems. 
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Appendix A: Glossary 

Below is a glossary of terms that relate to the design and use of ACT for exploring the behaviour 

of software systems, and statistical terminology relating to Design Of Experiments. 

ACT implementer: The author of the Automated Configuration Tool (ACT); the 

programmer who produces the core of ACT, which provides an 

infrastructure for repeatedly running trials. 

Adaptation: A deliberate change to the target system’s configuration or its 

conditions of use.  

Adaptation, experimental: Speculative adaptation of the target system’s configuration, where 

the effect of the adaptation is not known in advance. 

Adaptation function: A function in the target wrapper that adapts the target system’s 

configuration or its conditions of use. Each adaptation function 

sets the level for a particular factor, using an adaptation 

mechanism. 

Adaptation, target: An adaptation known to produce a desirable configuration. It 

involves adapting the target system T to progress to a new target 

system T’ that is deemed desirable. 

Adaptation tactic: A rule for choosing an appropriate configuration of the target 

system, based on observations of the target system and its 

conditions of use. 

Adaptation mechanism: An entity offering the capability to adapt the target system’s 

configuration or its conditions of use. It is a mechanism for setting 

the level of a configurable aspect or usage aspect. 

Aliasing: Where the experimenter cannot infer which of several main 

effects and/or interaction effects affected the response. The 

effects whose influence cannot be separated are said to be aliased. 

Architecture: “The fundamental organisation of a system embodied in its 

components, their relationships to each other, and to the 
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environment, and the principles guiding its design and evolution” 

[1].  

Architecture description language: A formal notation for describing the architecture of a software 

system. Typically identifies the components of the software 

system and the inter-component communication, defined by 

connectors. Abbreviated to ADL. 

Automated Configuration Tool: An infrastructure to explore a target system’s behaviour, without 

human intervention; it repeatedly configures and observes a target 

system under various conditions, using a search strategy to 

decide on the combinations to test. Abbreviated to ACT. 

Black box system: A target system for which there is no knowledge of, or access to, 

its internal workings. Interaction with the target system is solely 

through the interfaces it exposes. Contrast with white box 

systems. 

Combination: A target system configuration and a condition under which it is 

run; specifies the level for each factor. 

Complex software system: A software system with emergent properties and/or non-

deterministic behaviour. Complex software systems generally 

have many possible configurations, and it takes a long time to 

empirically measure each. 

Component: A computational unit that forms part of the target system. 

Condition: The workload that drives a target system, and the environment in 

which it runs. 

Connector: A link between two or more components, across which they can 

interact. 

Configurable aspect: An implementation detail, exposed by the target system, that can 

be set explicitly during an experiment. Referred to as a factor 

when varied during an experiment. 
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Configuration: Specifies a level for each factor of the target system, to describe a 

deployment of the target system. 

Configuration goal: Specifies behaviour desired of the target system in terms of a 

potentially conflicting set of fitness metrics. Observations of 

these metrics are combined using an aggregating function to 

produce a single response for each trial. 

Configuration process: The set of activities involved in adapting a target system’s 

configuration to meet a configuration goal. It encompasses both 

tuning and evolving the target system, and can be done either 

before the system goes into use, or on-the-fly. 

Customer: The organisation (or individual) who will use the target system in 

a real-world situation, for whom the configuration process is 

performed. 

Design Of Experiments: A methodology for planning experiments, in which main effects 

and interaction effects can be inferred from the experiment 

results. Abbreviated to DOE. 

Distribution: The probabilities of an observation of the response having various 

values. 

Effect, interaction: An interaction effect between factors, say A and B (denoted AB), 

refers to the degree to which A’s effect on the response variable 

depends on the level of B, and vice versa. This can cause the 

optimal level for a factor to vary, depending on the others’ levels. 

An interaction effect between two factors is called a two-factor 

interaction effect. 

Effect, main: The effect on the response variable caused by adjusting the level 

of a single factor in isolation. 



 

 

131

Emergent properties: Behaviour of the whole system cannot be inferred from its parts. 

The system’s behaviour is not the sum of its parts, but the product 

of interactions among its parts and the environment [104]. 

Evolution: The strategic adaptation of a target system’s configuration over 

time, to progress to new and improved versions of the target 

system; it is the continuous process of identifying what to adapt 

and when, and configuring the target system accordingly. 

Experiment: The testing of a sequence of combinations, to empirically 

measure the behaviour of target system configurations under given 

conditions of use. 

Experiment design: The set of combinations to test and the number of replications 

for each combination. 

Experimenter: The user of ACT, responsible for configuring and invoking ACT 

for a particular target system. 

Expert: An expert in the details of the target system’s operation. See 

target system administrator or target system developer.  

Factor: A configurable aspect of the target system, or a usage aspect.  

Factor, uncontrolled: A factor that is not set explicitly during an experiment, for cost 

or technical reasons. 

Fitness metric: A measure of the “goodness” of a target system’s behaviour, in 

terms of a single characteristic (e.g. throughput). 

Fractional factorial design: An experiment design in which, given a list of factors and a list 

of levels for each factor, only a subset of the possible 

combinations is tested. 

Full factorial design: An experiment design in which, given a list of factors and a list 

of levels for each factor, every possible combination is tested. 
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Gauge: An entity that gathers and interprets observations (made by probes 

or other gauges) in a context meaningful for evaluating behaviour 

(e.g. in terms of a fitness metric). 

Input space: A multi-dimensional space whose dimensions correspond to the 

factors. Every combination corresponds to a point in the space, 

giving a level for each factor. 

Level: A value of interest to the experimenter, to which a factor can be 

set. In this thesis, “level” means an uncoded level that corresponds 

to a factor’s value. In contrast, a coded level is an index into an 

enumeration of values.  

Linear graph: A graph whose edges and vertices correspond to the columns of an 

orthogonal array. Used to facilitate the assignment of factors, 

and their interactions, to specific columns of an orthogonal array. 

Loss function: A measure of the cost incurred when the response deviates from 

the optimal. The response may be minimised, maximised or there 

may be a nominal value (e.g. “12” is best). 

Meta-strategy: A component of ACT; a special search strategy that dynamically 

binds to and uses other search strategy components. A meta-

strategy can configure a search strategy and even dynamically 

switch between strategies. 

Model: A representation that exhibits some property (or properties) of a 

target system. 

Non-determinism: Where the amount of variability in a target system’s behaviour 

does not meet the replicability demanded by the customer. 

Observation: A measurement. Values of measurements can have a scale type of 

nominal, ordinal, interval or ratio. These mean respectively that 

the values refer to categories, that the values are ordered, that the 
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values increase in regular step sizes, or that there is a fixed zero 

point so that relations such as “twice the value” are meaningful. 

Observation mechanism: An entity offering the capability to observe an aspect of the target 

system or its conditions of use. 

On-the-fly: Refers to a running target system that is in use. 

Orthogonal array: A matrix representing the set of combinations to be tested in an 

experiment. Each row represents a combination and each column 

represents a factor and/or an interaction between factors. The 

matrix has the special property that every pair of columns includes 

every combination of coded levels an equal number of times.  

Parameter design: Taguchi’s technique for creating a fractional factorial design for 

an experiment. 

Population: The set of all possible values of the response variable for 

combinations with a particular characteristic (e.g. a given factor 

at a particular level). 

Probe: An entity that makes observations, possibly at run-time, by 

interacting with the target system and its environment. 

Probe effect: Change in the target system’s behaviour caused by the act of 

observing the target system. 

Quality: A measure of how well a combination meets the configuration 

goal. Taguchi defines a high quality combination as one that 

imparts little loss to society from the time the target system is 

shipped. A loss function estimates the loss to society based on a 

single response: replicated measurements of the response can be 

used to estimate quality (e.g. using signal to noise ratio). 

Recovery function: A function in the target wrapper that restores the target system to 

a stable state in the event of failure, allowing the experiment to 

continue. 
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Repetitions: Repeated measurements obtained during a single trial, without 

restoring the target system to a consistent state between 

measurements. Repetition gives a more accurate measure of a 

single sample, whereas replication gives measurements of 

multiple samples. 

Replicability: The consistency of responses from replicated trials. The 

distribution of responses is an important part of replicability: the 

distribution desired depends on the demands of the customer. 

Replications: Measurements of a single combination obtained from multiple 

trials, restoring the target system to a consistent state between 

measurements. Replication gives measurements of multiple 

samples, whereas repetition gives multiple measurements of a 

single sample. 

Response: A measure of a target system’s behaviour. Each trial gives a 

single response. 

Response variable: A measure of the behaviour of interest to the experimenter. This 

could be the combination’s quality or the value for a particular 

fitness metric. The set of responses from replicated trials 

combine to give a single value of the response variable for each 

combination (e.g. its mean response or signal to noise ratio). 

Response surface: A surface that lies over the input space, using the dimensions of 

the input space and an additional “response variable dimension.” 

Each point on the surface shows the value of the response 

variable for a combination. 

Results database: A component of ACT; a repository of the results obtained during 

an experiment. 

Robust: Consistently good responses with low variability, even when 

there is variation in the uncontrolled factors. 
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Run function: A function in the target wrapper that runs and empirically 

measures a single trial of the target system. 

Sample: A measurement of the response variable’s value, drawn from a 

population. 

Search strategy: A component of ACT that provides a policy for making 

experimental adaptations to the target system’s configuration, 

and to the conditions of use; generates a sequence of 

combinations to test. 

Search strategy implementer: A programmer who produces search strategy components for 

ACT. 

Signal to noise ratio: A metric for summarising the robustness of a combination, given 

a set of responses from replicated trials. Abbreviated to SNR. 

Significant: An effect is said to be statistically significant if it is accepted at a 

given level of confidence (e.g. 95% confidence) that change in the 

response variable’s value is due to that effect rather than an 

alternative explanation (e.g. random variation). 

TACT process: The combination of Taguchi Methods and ACT. 

Taguchi Methods: A standardised set of statistical techniques for the Design Of 

Experiments. 

Target controller: A component of ACT; dynamically loads the functions in the 

target wrapper and uses them to interact with the target system. 

Target system: The (software) system to be configured. 

Target system administrator: The person responsible for use of the target system; writes 

functions for adapting, running, observing and evaluating the 

behaviour of the target system. 

Target system developer: The person responsible for the target system implementation. 
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Target wrapper: A component of ACT, associated with a target system; consists of 

a set of dynamically linked libraries (DLLs) containing 

adaptation functions, a run function and a recovery function. 

Test: Empirical measurement of the behaviour of a target system 

configuration under a given condition of use. Each test involves 

running a trial. 

Trials: Runs of the target system, where the behaviour of a combination 

is empirically measured during each trial, and the target system 

and its conditions of use are configured between trials. Each trial 

tests a combination. 

Tuning: Configuring a target system at a given time, to find a configuration 

that behaves in a desired way. 

Usage aspect: An aspect of the conditions of use that can be set explicitly during 

an experiment. Referred to as a factor when varied during an 

experiment. 

Variability: The variation in response from replicated trials. It is the inverse 

of replicability. 

White box system: A target system for which there is access to its internals (e.g. 

source code). Interaction with the target system can delve behind 

the interfaces that it exposes. Contrast with black box systems. 

Workload: Facets of how the target system is used. 
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Appendix B: Issues in observation-driven configuration 

The questions below concern the feasibility and policy issues involved in applying the techniques 

described in this thesis. These questions should be answered when producing and using an automated 

tool for the observation-driven evolution of a target system. The terms used are defined either in the 

glossary in Appendix A or in the description of ACT 2.0 in section 7.3. The column on the right 

indicates whether the question is pertinent to running experiments before the system goes into use (B), 

to on-the-fly evolution (F) or to both (B/F). 

• Is the target system suitable for automated observation, adaptation and control? B/F 

• What aspects of the target system can be observed? B/F 

• What in-built facilities are available for observation? B/F 

• What techniques are appropriate for inserting additional probes? B/F 

• How reliable are observations? Are probe effects significant? B/F 

• What aspects of the target system can be adapted without human intervention? B/F 

• What in-built facilities are available for adaptation? B/F 

• What additional techniques are appropriate for adaptation? B/F 

• Can adaptations be made on-the-fly? F 

• What perturbation will users of the target system experience during 

an adaptation? 

F 

• How is the consistency of the target system’s configuration and state 

ensured? Can the tool reverse a change or recover from failure? 

F 

• Can the target system be controlled to start, drive, stop and restore it to a 

consistent state for each trial? 

B 

• Do the conditions of use realistically reflect the customer’s likely workload 

and environment? 

B 

• Is there a clear configuration goal? B/F 
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• What are the fitness metrics and what is the desired value (i.e. minimise, 

maximise or nominal value) for each? 

B/F 

• What is the relative importance of each fitness metric? What is the 

aggregating function? 

B/F 

• What is the aim? E.g. find a good configuration under a given condition, 

discover specific characteristics of the target system, produce a predictive 

model of the target system’s behaviour, or continually adapt the target system 

to constantly meet the configuration goal. 

B/F 

• What are the constraints on the target system’s operation? F 

• Is the target system in use? F 

• What level of disruption to users is acceptable, in terms of 

deterioration in performance, down-time and risk of data loss? 

F 

• What input does the experimenter give to the tool? B/F 

• Can additional input be given to the tool on-the-fly? F 

• What information does the experimenter provide about interacting with the 

target system? 

B/F 

• How is each configurable aspect described, including its legal levels, 

how to use the adaptation mechanism that configures it, and the 

estimated cost of adapting it to a specific level (in terms of resource 

requirements and expected perturbation)? 

B/F 

• How is each probe described, including what it measures, estimates 

of probe effects it causes and how it can be configured?  

B/F 

• How is the estimated cost of using a probe described (i.e. the cost of 

deployment, installation, activation, deactivation, uninstallation and 

removal)? 

F 

• How does the tool start, drive, stop and restore the target system? B 
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• How are gauge, advice, model and search strategy components described? B/F 

• How are the locations of components discovered? B/F 

• What is the interface for the tool to use these components? B/F 

• What resources are available? What resources are required by the tool and by the target 

system (for normal usage, for testing, and during adaptation)? 

B/F 

• How are resources described? B/F 

• Can the description of available resources be changed on-the-fly? F 

• What is the evolution strategy for deciding how and when to adapt the target system’s 

configuration? 

B/F 

• How are observations interpreted to recognise when the configuration goal is 

met and to evaluate the benefits of an adaptation? 

B/F 

• What search strategies are available and how is one chosen? B/F 

• What target-specific information (i.e. gauges, advice and models) is available 

to guide configuration of the target system? 

B/F 

• How does the tool evaluate information to determine if and when it is 

of use? 

B/F 

• How is target-specific information used? B/F 

• How does the tool infer new knowledge from experiment results? B/F 

• How does the tool minimise the risk of self-introduced degradation (i.e. 

ensure that adaptations are appropriate and that adaptations are made in a 

timely manner)? 

F 

• How do the resources required and perturbation caused by adaptations affect 

the evolution strategy? 

F 

• How does the reversibility of adaptations affect the evolution strategy? F 

• Is there a meta-strategy for adapting the evolution strategy while it is in use? B/F 
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• Is a database maintained of past observations, and of adaptations made to the target 

system’s configuration? 

B/F 

• Where is the database stored and how is it queried / updated? B/F 

• How is the database searched to find interesting behavioural characteristics 

and to predict the behaviour of combinations? 

B/F 
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Appendix C: Example of an experiment description 

Figure C.1 to Figure C.6 show sections of an experiment description file for the example target 

system of a mail server, described in section 5.1. 

The factors section in Figure C.1 and Figure C.2 describes the configurable aspects of the target 

system and the usage aspects of its conditions of use, denoted targFactors and conditionsFactors 

respectively. 

There are two configurable aspects, each denoted by the tag targFactor. The first sets the cache 

size to a given integer, the legal levels being 50, 100, 500 and 1000. The expected time to adapt the 

cache size is twenty seconds, given by the timeToAdapt tag. The function to perform the adaptation, 

given by the adaptationFunc tag, is located in the DLL named libAppMailServer.so and is called 

setCacheSize. The second configurable aspect sets the threshold at which the cache is considered full. 

This may be set to an integer between the values 70 and 100 where the acceptable granularity 

(legalGranular) for incrementing and decrementing the parameter is 5. Thus the legal levels of 

FullThreshold are 70, 75, 80, 85, 90, 95 and 100. The suggested granularity (sampleGranular) for 

changing FullThreshold, however, is 10; the experimenter is suggesting that only the values 70, 80, 

90 and 100 should be used during trials. To adapt the FullThreshold is expected to take twenty 

seconds and the adaptation function can be found in the DLL named libAppMailServer.so, called 

setFullThreshold. 

<?xml version="1.0"?> 
<!DOCTYPE ACT SYSTEM "experimentDescription.dtd"> 
<ACT> 
 <factors> 
  <targFactors> 
   <targFactor> 
    <name>CacheSize</name> 
    <levels> 
     <enumeration TYPE="int"> 
      <level>50</level> 
      <level>100</level> 
      <level>500</level> 
      <level>1000</level> 
     </enumeration> 
    </levels> 
    <timeToAdapt UNITS="secs">20</timeToAdapt> 
    <adaptationFunc> 
     <funcLocation> 
      <dll>libAppMailServer.so</dll> 
      <func>setCacheSize</func> 
     </funcLocation> 
    </adaptationFunc> 
   </targFactor> 
   <targFactor> 
    <name>FullThreshold</name> 
    <levels> 
     <range TYPE="int"> 
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      <start>70</start> 
      <end>100</end> 
      <legalGranular>5</legalGranular> 
      <sampleGranular>10</sampleGranular> 
     </range> 
    </levels> 
    <timeToAdapt UNITS="secs">20</timeToAdapt> 
    <adaptationFunc> 
     <funcLocation> 
      <dll>libAppMailServer.so</dll> 
      <func>setFullThreshold</func> 
     </funcLocation> 
    </adaptationFunc> 
   </targFactor> 
  </targFactors> 

Figure C.1: Example experiment description – factors 

There is one usage aspect, shown in Figure C.2, denoted by the tag conditionsFactors. This 

aspect, named POP3_user_instances, adapts the workload by setting the number of concurrent POP3 

client connections. It may be set to any integer level in the range 5 to 600. The experimenter suggests 

that this be changed in steps of 5 and expects the change to take negligible time (i.e. 0 seconds). The 

function to perform the adaptation can be found in the DLL named libAppMailServer.so and is called 

setPopThreads. 

  <conditionsFactors> 
   <conditionsFactor> 
    <name>POP3_user_instances</name> 
    <levels> 
     <range TYPE="int"> 
      <start>5</start> 
      <end>600</end> 
      <legalGranular>1</legalGranular> 
      <sampleGranular>5</sampleGranular> 
     </range> 
    </levels> 
    <timeToAdapt UNITS="secs">0</timeToAdapt> 
    <adaptationFunc> 
     <funcLocation> 
      <dll>libAppMailServer.so</dll> 
      <func>setPopThreads</func> 
     </funcLocation> 
    </adaptationFunc> 
   </conditionsFactor> 
  </conditionsFactors> 
 </factors> 

Figure C.2: Example experiment description – usage aspects 

The fitnessMetrics section, shown in Figure C.3, gives the names of the fitness metrics that are 

generated during each trial. These are called Rcpt, Fetch, Apps, ASize, FSize, Fail, FInt and WIs. 

 <fitnessMetrics> 
  <fitnessMetric>Rcpt</fitnessMetric> 
  <fitnessMetric>Fetch</fitnessMetric> 
  <fitnessMetric>Apps</fitnessMetric> 
  <fitnessMetric>ASize</fitnessMetric> 
  <fitnessMetric>FSize</fitnessMetric> 
  <fitnessMetric>Fail</fitnessMetric> 
  <fitnessMetric>FInt</fitnessMetric> 
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  <fitnessMetric>WIs</fitnessMetric> 
 </fitnessMetrics> 

Figure C.3: Example experiment description – fitness metric names 

The functions section, shown in Figure C.4, gives the location of each of the functions in the 

target wrapper, which are used to control the target system. For example, the runFunc tag denotes the 

run function, which is located in the libAppMailServer.so library and is called run. 

 <functions> 
  <runFunc> 
   <funcLocation> 
    <dll>libAppMailServer.so</dll> 
    <func>run</func> 
   </funcLocation> 
  </runFunc> 
  <recoveryFunc> 
   <funcLocation> 
    <dll>libAppMailServer.so</dll> 
    <func>recover</func> 
   </funcLocation> 
  </recoveryFunc> 
  <validationFunc> 
   <funcLocation> 
    <dll>libAppMailServer.so</dll> 
    <func>validate</func> 
   </funcLocation> 
  </validationFunc> 
  <newResultObjFunc> 
   <funcLocation> 
    <dll>libAppMailServer.so</dll> 
    <func>newResultObj</func> 
   </funcLocation> 
  </newResultObjFunc> 
 </functions> 

Figure C.4: Example experiment description – functions 

The resources section, shown in Figure C.5, describes the resources that are available to ACT for 

the experiment. It states that there is a time limit of 100 hours imposed for running all the trials. The 

machines available to carry out these trials are listed as machine 30 and machines 32 to 34. 

 <resources> 
  <timeAvailable UNITS="hrs">100</timeAvailable> 
  <machines> 
   <numberedList>30,32-34</numberedList> 
  </machines> 
 </resources> 

Figure C.5: Example experiment description – resources 

The miscellaneous section, shown in Figure C.6, gives an upper bound on the length of time for 

each trial: a trial times out if it takes longer than 45 minutes. It also specifies that the maximum 

number of recovery attempts to be made when testing any combination is one. If the trial fails after 

one recovery attempt, a failure is recorded and testing continues for the next combination. 
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As there is no recommendation of a particular search strategy to use, ACT uses the default search 

strategy (i.e. grid sampling, which runs a full factorial experiment). 

 <miscellaneous> 
  <timeout UNITS="mins">45</timeout> 
  <maxRecovers>1</maxRecovers> 
 </miscellaneous> 
</ACT> 

Figure C.6: Example experiment description – miscellaneous 
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Appendix D: Example of target wrapper functions 

Figure D.1 shows the signatures of the target wrapper’s functions for a back-end mail server. 

ACT discovers the names and locations of these functions from the experiment description. For the 

adaptation functions, the experiment description also specifies the type of the levels to which each 

factor can be set (restricted to one of int, float or string). 

/** 
 * Adaptation functions for target system’s factors. 
 */ 
void setCacheSize( int level ); /* set the target system cache size */ 
void setFullThreshold( int level ); /* set the full threshold for the cache */ 
void setFetchTimeLimit( float level ); /* set acceptable time limit for fetch */ 
void setQueuePolicy( const string& level ); /* set queuing policy for input queue */ 
 
/** 
 * Adaptation functions for conditions of use. 
 */ 
void setPopThreads( int level ); /* set number of POP3 user instances */ 
void setNetworkLoss( float level ); /* set simulated packet loss level */ 
void setScenario( const string& level ); /* set workload */ 
 
/** 
 * Other functions. 
 */ 
bool validate( const Config & c ); /* validate the target system config */ 
void recover( const Config & c ); /* restore target to consistent state */ 
IResultObj * run();  /* run target and measure performance */ 
IResultObj *newResultObj( const vector<Value *> & levs ); /* construct result obj */ 

Figure D.1: Example functions in the target wrapper 
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Appendix E: First phase experiment design 

Factor  levels (coded) Factor  levels (uncoded) Throughput (normalised) 
TNE MaxLDAP LDAPnum DispNum TNE MaxLDAP LDAPnum DispNum Rep 1 Rep 2 Rep 3 Rep 4 Mean SNR 

1 1 1 1 10,000 100 2 2 1.04179 1.04286 1.03887 1.04011 1.04091 0.3482 
1 1 2 2 10,000 1,001 2 2 1.03664 1.04058 1.03610 1.03802 1.03783 0.32251 
1 1 3 3 10,000 2,000 2 2 1.04010 1.04090 1.03611 1.04088 1.03950 0.33642 
1 2 1 1 10,000 100 1 5 1.01618 1.01351 1.00902 1.01522 1.01348 0.11621 
1 2 2 2 10,000 1,001 1 5 0.87137 0.87319 0.87380 0.87376 0.87303 -1.17944 
1 2 3 3 10,000 2,000 1 5 0.99704 1.00065 1.00056 1.00127 0.99988 -0.00108 
1 3 1 1 10,000 100 4 8 0.98439 0.98155 0.98125 0.98179 0.98224 -0.15563 
1 3 2 2 10,000 1,001 4 8 0.82424 0.82573 0.82606 0.82351 0.82489 -1.67214 
1 3 3 3 10,000 2,000 4 8 0.93522 0.94136 0.93701 0.93796 0.93789 -0.55705 
2 1 1 2 30,000 100 1 2 1.04869 1.04978 1.05120 1.05066 1.05009 0.42448 
2 1 2 3 30,000 1,001 1 2 1.05589 1.05607 1.05547 1.05524 1.05567 0.47054 
2 1 3 1 30,000 2,000 1 2 1.05621 1.05371 1.05361 1.05452 1.05451 0.461 
2 2 1 2 30,000 100 4 5 1.02139 1.02600 1.02556 1.02599 1.02474 0.2122 
2 2 2 3 30,000 1,001 4 5 1.02035 1.01656 1.01214 1.01762 1.01667 0.14346 
2 2 3 1 30,000 2,000 4 5 1.01656 1.01357 1.01418 1.01461 1.01473 0.12699 
2 3 1 2 30,000 100 2 8 0.99739 0.99871 0.99468 0.99634 0.99678 -0.02804 
2 3 2 3 30,000 1,001 2 8 0.98185 0.98176 0.98165 0.98112 0.98159 -0.16137 
2 3 3 1 30,000 2,000 2 8 0.94995 0.94706 0.95160 0.94836 0.94924 -0.4525 
3 1 1 3 50,000 100 4 2 1.06305 1.06361 1.06563 1.06227 1.06364 0.5359 
3 1 2 1 50,000 1,001 4 2 1.06139 1.06127 1.05931 1.06508 1.06176 0.52049 
3 1 3 2 50,000 2,000 4 2 1.05289 1.05763 1.06576 1.01239 1.04717 0.39515 
3 2 1 3 50,000 100 2 5 1.03708 1.03372 1.03558 1.03254 1.03473 0.29651 
3 2 2 1 50,000 1,001 2 5 1.02495 1.02683 1.01093 1.02186 1.02114 0.18125 
3 2 3 2 50,000 2,000 2 5 0.90870 0.91028 0.90458 0.90881 0.90809 -0.83747 
3 3 1 3 50,000 100 1 8 0.99866 1.00509 1.00254 1.00110 1.00185 0.01594 
3 3 2 1 50,000 1,001 1 8 0.99073 0.99282 0.99061 0.98954 0.99093 -0.0792 
3 3 3 2 50,000 2,000 1 8 0.81118 0.81172 0.81286 0.80691 0.81067 -1.82325 
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Appendix F: Second phase experiment design 

 Factor levels (normalised) Factor levels (uncoded) Throughput results 
 TNE MaxLDAP DispNum TNE MaxLDAP DispNum Rep 1 Rep 2 Rep 3 Rep 4 Mean SNR 

0 0 0 32,930 100 5 1.05695 1.05256 1.05524 1.05311 1.05446 0.46061 
0 0 0 32,930 100 5 1.05485 1.05372 1.05452 1.05349 1.05414 0.45800 
0 0 0 32,930 100 5 1.05566 1.05424 1.05576 1.05377 1.05486 0.46387 
0 0 0 32,930 100 5 1.05681 1.05236 1.05167 1.05186 1.05318 0.44996 
0 0 0 32,930 100 5 1.05689 1.05043 1.05209 1.05568 1.05377 0.45486 

Centre 
point 

0 0 0 32,930 100 5 1.05541 1.05572 1.05274 1.05130 1.05379 0.45506 
-1.682 0 0 24,520 100 5 1.05126 1.05088 1.04638 1.05032 1.04971 0.42134 
1.682 0 0 41,340 100 5 1.05871 1.06006 1.05310 1.06057 1.05811 0.49051 

0 -1.682 0 32,930 24 5 1.05263 1.04366 1.05009 1.05295 1.04983 0.42224 
0 1.682 0 32,930 176 5 1.05060 1.01334 1.05227 1.05818 1.04360 0.36682 
0 0 -1.682 32,930 100 3 1.05782 1.05400 1.05609 1.05252 1.05511 0.46589 

Star 
points 

0 0 1.682 32,930 100 7 1.05255 1.04737 1.05396 1.05339 1.05182 0.43873 
-1 -1 -1 27,930 55 4 1.04988 1.05230 1.05233 1.05312 1.05191 0.43953 
1 -1 -1 37,930 55 4 1.05887 1.05642 1.05505 1.05749 1.05696 0.48113 
-1 1 -1 27,930 145 4 1.05717 1.05131 1.04751 1.04899 1.05124 0.43392 
1 1 -1 37,930 145 4 1.04215 1.05588 1.05928 1.05687 1.05355 0.45253 
-1 -1 1 27,930 55 6 1.04830 1.05021 1.05177 1.05052 1.05020 0.42542 
1 -1 1 37,930 55 6 1.05852 1.05211 1.05801 1.05625 1.05622 0.47503 
-1 1 1 27,930 145 6 1.05465 1.05288 1.05365 1.05581 1.05425 0.45884 

Corner 
points 

1 1 1 37,930 145 6 1.05493 1.05221 1.05589 1.05815 1.05529 0.46742 
 

The “normalised” factor levels describe a central composite design (see section 4.3.4), where level 0 refers to the centre point. Uncoded levels depend  

on the step size (e.g. the step size for TNE is 5000 for each unit of normalised factor). 
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