
Observation-Driven
Configuration of

Complex Software
Systems

Aled Sage

Thesis submitted for the Ph.D. degree
St Andrews

18th July 2003

School of Computer Science, University of St Andrews
St Andrews, Fife, KY16 9SS, Scotland

i

Abstract

The ever-increasing complexity of software systems makes them hard to comprehend, predict and

tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of

software systems and the wide variety of possible operating environments: the increasing choice of

platforms and communication policies leads to ever more complex performance characteristics. In

addition, software systems exhibit different behaviour under different workloads.

Many software systems are designed to be configurable so that policies (e.g. communication,

concurrency and recovery strategies) can be chosen to meet the needs of various stakeholders. For

complex software systems it can be difficult to accurately predict the effects of a change and to know

which configuration is most appropriate.

This thesis demonstrates that it is useful to run automated experiments that measure a selection of

system configurations. Experiments can find configurations that meet the stakeholders’ needs, find

interesting behavioural characteristics, and help produce predictive models of the system’s behaviour.

The design and use of ACT (Automated Configuration Tool) for running such experiments is

described, in combination a number of search strategies for deciding on the configurations to

measure.

Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical

methods have been used extensively in manufacturing, but have not previously been used for

configuring software systems. The novel contribution here is an industrial case study, applying the

combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd

(DCL). The case study investigated the applicability of Taguchi Methods for configuring complex

software systems. Taguchi Methods were found to be useful for modelling and configuring DC-

Directory, making them a valuable addition to the techniques available to system administrators and

developers.

ii

Declarations

I, Aled Sage, hereby certify that this thesis, which is approximately 42,000 words in length, has

been written by me, that it is the record of work carried out by me and that it has not been submitted

in any previous application for a higher degree.

date 18th July 2003 signature of candidate ………………………….

I was admitted as a research student in October 1999 and as a candidate for the degree of PhD in

July 2003; the higher study for which this is a record was carried out in the University of St Andrews

between 1999 and 2003.

date 18th July 2003 signature of candidate ………………………….

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations

appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified

to submit this thesis in application for that degree.

date 18th July 2003 signature of supervisor ………………………….

In submitting this thesis to the University of St Andrews I understand that I am giving permission

for it to be made available for use in accordance with the regulations of the University Library for the

time being in force, subject to any copyright vested in the work not being affected thereby. I also

understand that the title and abstract will be published, and that a copy of the work may be made and

supplied to any bona fide library or research worker.

date 18th July 2003 signature of candidate ………………………….

iii

Acknowledgements

I would like to thank my supervisors, Graham Kirby and Ron Morrison, for their frequent

guidance and advice. Their insightful comments and unending patience were invaluable. Thanks also

to Al Dearle for useful discussions, and for helping me find employment!

Cooperation with Data Connection Ltd (DCL) was vital to this research. Thanks especially to

Richard Stamp, David Court and Edward Hibbert for their suggestions and their help in the industrial

case studies.

Harry Staines rescued me during my initial sorties into the field of statistics, and has contributed

greatly to the ideas and work in this thesis. He introduced me to Taguchi Methods and provided

expert help in applying the techniques and analysing the results.

I’d like to thank Alice for her unending encouragement and for proof reading sections of this

thesis, but I’m sure I’ll have to reciprocate in a year or two… Thanks to my parents for much valuable

support over the years, and to my flatmates and officemates for their distractions and support. Finally

thanks to the St Andrews University Mountaineering Club for providing the frequent escapes from St

Andrews, both physical and spiritual, that maintained my sanity and sometimes my hangover.

iv

Contents

1 Introduction .. 1

1.1 Hypothesis.. 2

1.2 Overview of approach .. 2

1.3 Contribution ... 4

1.4 Thesis structure .. 5

2 Literature review .. 7

2.1 Performance evaluation.. 7

2.2 Quality of target system configurations.. 8

2.3 Target system models ... 12

2.4 Complex systems.. 13

2.5 The need for adaptability.. 14

2.5.1 Compliant systems... 14

2.5.2 Evolution of software systems... 15

2.6 Observing behaviour .. 16

2.6.1 Probes .. 16

2.6.1.1 Desirable qualities... 17

2.6.1.2 Categories of probes ... 17

2.6.2 Gauges ... 21

2.6.3 Probe and gauge run-time infrastructures .. 21

2.6.4 Confidence in observations.. 22

2.7 Adapting target systems ... 23

2.7.1 Dimensions of adaptation .. 23

2.7.2 Complexity and flexibility of adaptation mechanisms .. 24

v

2.7.3 Adaptation mechanisms... 24

2.8 Design Of Experiments (DOE) .. 27

2.8.1 Theory ... 27

2.8.2 Related work.. 29

2.8.3 Controlling the target system... 30

2.9 Systems for performance tuning and evolution .. 31

2.9.1 Version granularity .. 31

2.9.2 Managing adaptation ... 32

2.9.3 Deciding on appropriate configurations .. 34

2.9.4 Performance tuning systems .. 35

2.9.5 DASADA .. 36

2.9.5.1 Software Surveyor .. 37

2.9.5.2 Kinesthetics eXtreme.. 37

2.9.5.3 Rainbow.. 38

2.9.5.4 Containment units ... 39

2.9.6 ArchWare .. 39

2.9.7 Reflective middleware... 40

2.10 Control theory and process modelling.. 41

2.10.1 Control theory and feedback.. 41

2.10.2 Process modelling.. 43

2.10.2.1 FEAST ... 44

2.10.3 Catastrophe theory... 44

2.11 Software testing.. 45

2.12 Summary .. 47

vi

3 ACT 1.0.. 50

3.1 Tool architecture... 50

3.2 Human roles ... 51

3.3 ACT set-up ... 52

3.4 Experiment description... 52

3.5 Target wrapper ... 53

3.6 Target controller ... 55

3.7 Search strategy ... 56

3.8 Coordinator... 57

3.9 Recording and reporting results.. 59

3.9.1 Results database... 59

3.9.2 Output files .. 60

3.10 Running an experiment .. 60

3.11 Conclusions .. 63

4 Exploring target system behaviour... 64

4.1 Meta-strategies ... 64

4.2 Use of feedback.. 65

4.3 Design Of Experiments (DOE) .. 66

4.3.1 First phase experiment... 68

4.3.2 Signal to noise ratio (SNR).. 71

4.3.3 Techniques for analysing results ... 73

4.3.3.1 Main effects .. 74

4.3.3.2 Interaction effects ... 76

4.3.3.3 Modelling.. 77

vii

4.3.4 Validating the model ... 82

4.3.5 Second phase experiment .. 83

4.3.6 Robust design .. 84

4.4 Conclusions .. 85

5 Case studies.. 87

5.1 DC-MailServer ... 87

5.1.1 Experimental infrastructure ... 88

5.1.2 Variability in behaviour... 89

5.1.3 Varying workload.. 91

5.1.4 Exploring effects of configurable aspects.. 92

5.2 DC-Directory.. 93

5.2.1 Experimental infrastructure ... 94

5.2.2 Normalising results.. 95

5.2.3 Importance of replicating observations.. 95

5.2.4 Use of Taguchi Methods.. 98

5.2.4.1 First phase experiment .. 99

5.2.4.2 Second phase experiment.. 101

5.2.4.3 Results of validating the model... 103

5.2.4.4 Consequences of ignoring significant effects ... 104

5.2.4.5 Relationships between factors and the response variable 105

5.3 Conclusions .. 108

6 Discussion .. 110

6.1 Testing the hypothesis .. 110

6.2 Use of Taguchi Methods .. 110

viii

6.3 Complementing on-the-fly adaptation.. 113

6.4 Experimental adaptations on-the-fly .. 114

7 Future work .. 116

7.1 Further experiments.. 116

7.2 Complementing other work.. 117

7.3 ACT 2.0.. 118

7.3.1 Event-based architecture.. 120

7.3.2 Evolution strategies ... 120

7.3.3 Use of advice ... 121

7.3.4 Use of models .. 122

7.3.5 Challenges ... 123

7.4 Further versions of ACT... 124

7.5 Summary .. 124

8 Conclusions .. 126

Appendix A: Glossary .. 128

Appendix B: Issues in observation-driven configuration ... 137

Appendix C: Example of an experiment description .. 141

Appendix D: Example of target wrapper functions ... 145

Appendix E: First phase experiment design ... 146

Appendix F: Second phase experiment design ... 147

References .. 148

Chapter 1: Introduction

1

1 Introduction

Software systems play an increasingly important role in organisations and in everyday life, the UK

software market being worth £8.5 billion in 2001 [18]. Software systems are also growing in

complexity: they are hard to comprehend, predict and tune due non-deterministic behaviour and

emergent properties (i.e. behaviour of the whole system cannot be inferred from its parts) [32].

Complexity arises from the size of software systems, the amount of data and the scale of distributed

systems. The choice of platforms, network configurations and communication policies has also

increased markedly over the years, leading to a wide variety of operating environments with ever

more complex performance characteristics. This is compounded by different versions of a software

system having different characteristics, with behaviour being dependent on the workload (i.e. usage

pattern).

Software systems attempt to meet the potentially conflicting needs of various stakeholders. Some

users demand reliability and low response times, while others may desire consistently high throughput

with minimal resource requirements. The appropriate trade-off between these needs depends on the

particular set of users.

Many software systems are designed to be configurable so that policies (e.g. communication,

concurrency and recovery strategies) can be chosen to give desired behaviour. Such systems expose a

group of configurable aspects, which are implementation details that can be controlled explicitly. The

system’s configuration refers to a group of values that specifies a setting for each configurable aspect.

Comprehending the behaviour of a software system is related to the problem of configuring it. It

can be difficult to accurately predict a configurable aspect’s effect on behaviour, and to know which

configuration is most appropriate for a given condition (i.e. environment and workload). This is

especially true for complex software systems that expose many configurable aspects: the number of

configurations increases exponentially with the number of configurable aspects, referred to as the

curse of dimensionality [27].

Chapter 1: Introduction

2

1.1 Hypothesis

This thesis proposes the following hypothesis: automating the empirical measurement of a

selection of configurations can:

• find a robust configuration (if any) that exhibits desired behaviour under a particular

condition – useful for configuring the software system when it is first deployed or when

adapting its configuration to cope with changes in the conditions of use;

• find characteristics of interest, such as conditions that cause substantial deterioration in

performance – useful for guiding system usage and for focusing development efforts;

• help construct a predictive model of the software system that can estimate behaviour for

untested configurations under given conditions.

The aim of the research described in this thesis is to develop software support, and an associated

methodology, to test the above hypothesis. The approach involves empirically measuring the

behaviour of a selection of configurations under various conditions, without assuming a priori

knowledge of the system’s implementation. This is done before the software system goes into use.

The hypothesis was tested in an industrial case study involving DC-Directory [10], an LDAP and

X.500 product from Data Connection Ltd (DCL). The case study supported the hypothesis,

demonstrating that automated measurement of a selection of configurations can achieve the goals

listed above. Discussions with system developers revealed that measurements also improved

comprehension of the system’s behaviour. The software and methodology described in this thesis

therefore makes a valuable contribution towards solving the problem of configuring software systems.

1.2 Overview of approach

The following chapters describe the design of ACT (Automated Configuration Tool) [93], and its

use to explore the behaviour of software systems. ACT provides an infrastructure to run a sequence of

trials: it tests (i.e. empirically measures the behaviour of) a configuration during each trial. The

software system’s configuration and conditions of use are adapted between trials. ACT is generic in

that it can explore the behaviour of a wide variety of software systems, and can use a variety of search

strategies to decide on the configurations to test.

Chapter 1: Introduction

3

Figure 1.1 illustrates the semi-automated process of running experiments to measure a sequence of

configurations. The software system under test is called the target system. The experimenter (i.e. the

user of ACT) decides on the configurable aspects to vary and the values to test for each, and chooses

an appropriate search strategy. The experimenter provides information about the configurable aspects,

including the locations of functions to set each configurable aspect’s value, and the locations of

functions to run a trial and recover from target system failure. For automation, these functions must

run without human intervention. ACT dynamically loads the functions and uses them to run the trials,

and to configure both the target system and the conditions under which it operates.

Figure 1.1: System overview

A search strategy generates a sequence of target system configurations and conditions to test.

There are two categories of search strategy for ACT. The first is a feedback-based search, which uses

observations of previous configurations to decide on the next configuration to test. The second

category makes use of Design Of Experiments (DOE) [107], where the configurations to test and the

number of times to test each are decided in advance.

Taguchi Methods [101] is a standardised statistical approach for DOE, to select a small subset of

the possible configurations and conditions. It assumes that experts provide a list of (at most dozens of)

configurable aspects and suggest (up to four) values for each. Research into the use of Taguchi

Methods for configuring software systems is in collaboration with Professor Harry Staines of Abertay

University, who is expert in their use for other fields such as biology and manufacturing.

Experiments designed using Taguchi Methods are conducted in two phases. The first phase

involves testing a selection of configurations to produce a predictive model of the target system’s

behaviour. This is used to predict which configuration will perform optimally. The second phase

Chapter 1: Introduction

4

involves testing the predicted optimal configuration and other configurations that have similar settings

for the configurable aspects. Results from the second phase are used to more accurately predict a

configuration that will consistently deliver high performance.

Taguchi Methods were used to explore the behaviour of DC-Directory. In-built observation and

adaptation mechanisms were used to measure its performance and adapt its configuration. DC-

Directory has a broad customer base, leading to a wide variety of usage patterns, operating

environments and performance requirements. It exposes hundreds of configurable aspects, including

caching policies, concurrency policies and queue management policies. Their effects on DC-

Directory’s behaviour depend on the conditions of use, and vary between system versions. DCL

currently undertakes performance analysis and tuning by hand, which relies heavily upon costly

expertise and only permits testing of a few configurations due to time constraints. The following

example illustrates the problem: given only ten configurable aspects and four possible values for each,

it would take almost sixty years to measure every configuration (given the requirement of thirty

minutes per measurement).

1.3 Contribution

Comprehending the behaviour of complex software systems is difficult: some target systems may

never be fully understood. Configuring complex software systems is therefore also difficult since it is

hard to predict which configuration will be most appropriate for a particular condition. Use of ACT

can reveal information about the behaviour of complex software systems. The approach is based on

empirically measuring a selection of target system configurations, without assuming a priori

knowledge of the system’s implementation or architecture.

ACT provides a generic infrastructure to run experiments for target systems, which contributes to

the state of the art in two ways:

• Running experiments assists human administrators to comprehend and configure target

systems.

• ACT can use various search strategies, and investigate the strengths and weaknesses of each

for exploring target system behaviour.

Chapter 1: Introduction

5

An important example is the use of ACT to investigate the suitability of Taguchi Methods for

software configuration. The novelty of this approach is in the application of Taguchi Methods to help

comprehend and configure complex software systems. Taguchi Methods have been used extensively

in manufacturing for almost five decades, but the techniques have not previously been used before for

configuring software systems. This thesis develops the techniques and applies them to an industrial

case study: the combination of Taguchi Methods and ACT, yielding the semi-automated TACT

process, is used to model and configure DC-Directory. Benefits of Taguchi Methods over other search

strategies include:

• Only a small number of configurations need be tested to infer the effects on target system

behaviour of many configurable aspects, and of selected interactions1 between them. This

gives a predictive model of the target system’s behaviour and associated confidence levels in

the results (see section 6.2 for a discussion of the assumptions of Taguchi Methods).

• The standardised approach for the design of experiments is simple and accessible to non-

statisticians.

Some target systems exhibit variability in behaviour. The importance of robustness (i.e.

consistently high performance with low variability) is emphasised in this thesis: sometimes improving

the worst cases is more useful than improving the average case. Taguchi proposes a metric for

estimating the robustness of a configuration, given replicated measurements of its performance. Use

of this metric is novel to the field of software systems.

1.4 Thesis structure

Chapter 2 presents a literature review of the broad range of work related to configuring software

systems. A glossary of the terminology used can be found in Appendix A.

Chapter 3 presents the Automated Configuration Tool in detail. Chapter 4 describes some possible

search strategies, with particular emphasis on Taguchi Methods and on the statistical analysis of

results.

1 An interaction effect differs from interaction between components of a system (e.g. message

passing). See section 4.3.3.2 for a description of interaction effects.

Chapter 1: Introduction

6

Chapter 5 describes two industrial case studies. Results for DC-MailServer, a back-end mail server

from Data Connection Ltd (DCL), illustrate the importance of replicating observations to measure

robustness. The second case study illustrates the use of the TACT process to configure and model

DC-Directory. Chapter 6 uses results from the case studies to evaluate the usefulness of running

experiments, and discusses the benefits and limitations of Taguchi Methods.

Chapter 7 gives details of future work, proposing further experiments and uses of ACT. There is a

discussion of future versions of ACT to support on-the-fly evolution of target systems. Chapter 8

presents conclusions.

Chapter 2: Literature review

7

2 Literature review

Configuring target systems is important for tuning their performance, repairing faults and

modifying or adding functionality. This is true both before the target system goes into use and on-the-

fly (i.e. at run-time, while in use). The configuration process refers to the set of activities involved in

tuning or evolving a target system. Tuning is adapting a target system at a given time, to find a

configuration that behaves in a desired way. Evolution is the strategic adaptation of a target system’s

configuration over time, to progress to new and improved versions of the target system.

There are two main stages to configuring a target system: first deciding which changes are

required and when, and second making the changes. Many projects aim to do this (e.g. [4, 9, 28]),

often sharing with ACT the following common features:

• Observation mechanisms are used to measure the target system’s behaviour and conditions

of use.

• Adaptation mechanisms are used to configure the target system.

• Controllers (search strategies in ACT) are used to decide on an appropriate configuration of

the target system.

This chapter first discusses techniques for performance evaluation, introduces the notion of quality

and describes target system models. It then characterises complex software systems and justifies the

need for adaptation. The three bullet points above are then addressed to describe observation

mechanisms, adaptation mechanisms and systems for coordinating the configuration process. A

glossary of the terminology used can be found in Appendix A.

2.1 Performance evaluation

When configuring a target system, it is necessary to determine how possible configurations will

perform. Techniques for performance evaluation include analytical modelling, simulation analysis

and empirical measurement [64].

Analytical modelling involves analysis of a target system’s design and algorithms to develop a

mathematical model of a target system’s behaviour. It can be used early in the development life cycle

to make predictions before implementation is complete. However, analytical modelling is difficult for

Chapter 2: Literature review

8

complex software systems: complexity necessitates (unrealistic) simplifying assumptions, leading to a

low level of accuracy compared to other performance evaluation techniques. Additionally, models

require calibration using empirical measurements of the running target system.

Simulation analysis involves producing an executable model (i.e. a simulation) of a target system,

which is run to predict the real target system’s behaviour. Source code analysis and profiling

information can be used to produce a simulation of a target system’s control flow, resource

requirements and communication patterns [22, 66]. The advantage of running a simulation over

running the target system is that the execution time is usually less, and that adapting the simulation is

easier than adapting the target system’s configuration. Additionally, algorithms can be simulated early

in the development life cycle before implementation of the target system is complete. However, an

executable model produced using source code analysis is unlikely to exhibit the emergent properties

and non-determinism of a complex software system.

Empirical measurement involves observing the running target system. There is a high level of

confidence in results from empirical measurement, compared to predictions from a model or

simulation, because observations are of the running target system. This approach can be used for

software systems that are too complex to analyse or simulate accurately, assuming there is the

capability to observe the running system (see section 2.6). This thesis focuses on the use of empirical

measurement.

When measuring behaviour before the target system goes into use, it is important that the

workloads be representative of the customer’s likely usage patterns. Logging a customer’s usage,

where possible, allows an identical set of inputs to be used during experiments, or a synthetic

workload to be developed based on characteristics of the logged input. An alternative is to use

domain-specific benchmarks, such as DirectoryMark [17], that describe common usage patterns.

2.2 Quality of target system configurations

A target system configuration and a condition under which it operates is called a combination.

This specifies a value for each configurable aspect of the target system and aspect of the conditions of

use that can be configured. In statistics terminology, these aspects are called factors and their values

are called levels [107].

Chapter 2: Literature review

9

The combinations form a multi-dimensional input space whose dimensions correspond to the

factors. A point in the space represents a combination, giving a level for every factor.

A multi-dimensional input space is not the only way to view the set of possible combinations.

Constraint programmers, in contrast, would describe the input space as a search tree [21]. A branch in

the tree corresponds to a choice of level for a factor, and a path from the root to a leaf node gives a

single level for every factor. Each leaf node therefore represents a combination. The following

discussion uses the metaphor of a multi-dimensional input space.

The process of configuring a software system is driven by a configuration goal, which specifies

the desired behaviour in terms of a potentially conflicting set of fitness metrics. An example

configuration goal for a database system is to maintain a latency of less than 500ms for 99% of

requests, while maximising throughput. Each time a combination is tested, the fitness metrics’ values

are recorded.

Values for each fitness metric could be qualitative or quantitative; values could have a scale type

of nominal, ordinal, interval or ratio [51]. These mean respectively that the values refer to categories,

that the values are ordered, that the values increase in regular step sizes, and that there is a fixed zero

point so that relations such as “twice the value” are meaningful.

Identifying the best configurations, in terms of the fitness metrics, is a multi-objective

optimisation problem. Some researchers search for Pareto optimal solutions, where no fitness metric

can be improved without causing at least one other fitness metric to deteriorate [36]. An alternative

approach is to combine the fitness metrics using an aggregating function to produce a single response,

the higher the better2. This makes comparing configurations simpler. It is possible if there is a well-

defined configuration goal: choice of aggregating function requires knowledge of the relative

importance of each fitness metric, their expected range of values and the desired values for each. The

following discussion assumes that a single response is calculated using such an aggregating function.

2 Maximising the response involves finding the global maximum on a response surface, and is

discussed later in the section. Maximising the response is an arbitrary choice: for some problems,

such as measuring latency, it may be more appropriate to talk of minimising the response.

Chapter 2: Literature review

10

The quality of a combination is a measure of how well it meets the configuration goal. Taguchi

defines a high quality combination as one that imparts little loss to society from the time the target

system is shipped [101]. He suggests measuring quality in terms of robustness: consistently high

performance with low variability. This view of quality is often used in manufacturing industries, but

is just one possible definition (e.g. it ignores time to market). According to Taguchi’s definition,

quality is determined by the costs incurred whenever the target system fails to meet the configuration

goal. This implies that high-quality configurations deliver consistent performance, but some complex

software systems produce a different response each time a given combination is run. Replicating trials

is therefore important for estimating the quality of a combination – the more replications, the greater

the confidence in the estimate. The set of responses from replicated trials combine to give a single

value of the response variable for each combination.

The acceptable level of variability in a target system’s behaviour depends on the consistency

demanded by the customer. If the desired consistency is not achieved, the target system may be

classed as non-deterministic. The distribution of responses is also important.

It is arguably more useful in some situations to improve the worst cases than the average case of a

software system’s performance: bad worst cases give a negative impression of the system and can

lead to higher costs due to reduced sales and more calls to the helpdesk [99]. Taguchi’s robustness

metric (called signal to noise ratio3, described in section 4.3.2) takes into account both how high

responses are and their consistency. Ranking combinations in terms of robustness can give a different

order than if the mean of the responses is used. For example, Figure 2.1 shows the results of a

hypothetical experiment: it shows the observed responses (represented by triangles) for combinations

A, B and C, and the mean response for each (denoted M). Combination C usually gives a higher

response than combination A and therefore might be considered preferable. However, one response

for A was 100, which gives A the highest mean. Combination B has two observed responses that are

very low – bad worst cases – making this configuration unfavourable. Ranking the combinations

according to robustness gives C, B, A – the reverse of the ordering produced using the mean.

3 Signal to noise ratio used here is very different to that used in communications, where it is the ratio

of a desired signal’s amplitude to the noise’s amplitude at a given time on a communication channel.

Chapter 2: Literature review

11

Figure 2.1: Quality of responses

A response surface can be used to show the relationship between the levels of factors and the

value of the response variable. The response surface lies over the input space, using the dimensions of

the input space and an additional “response variable dimension”. For the case of measuring quality

(i.e. robustness, according to Taguchi’s definition), each point on the surface shows how well a

combination meets the configuration goal. Figure 2.2 shows a hypothetical response surface for a two-

dimensional input space consisting of factors A and B. The surface has a phase change, where there is

a sharp change in the shape of the surface. The surface also includes: a global maximum, which

corresponds to the configuration delivering optimal quality; a local maximum, i.e. a combination

better than its neighbours but not the best in the space; and a local minimum, i.e. a combination worse

than its neighbours.

Figure 2.2: Example response surface

A search of the response surface is required to identify good configurations, interesting behaviour

and the effects of each factor. Depending on the search strategy employed, this can be a non-trivial

task due to phase changes, local maxima and interactions among factors. The problem is compounded

if there are a large number of possible combinations and a limit to the number of combinations that

Chapter 2: Literature review

12

can be tested. Running experiments that assist human administrators in configuring target systems is

therefore a difficult problem.

2.3 Target system models

A model is a representation that exhibits some property of the target system. Models are useful

when configuring target systems because they make explicit the modeller’s understanding and allow

the target system to be considered at some level of abstraction. A model may form the basis for

planning and coordinating adaptation of a target system’s configuration: it may predict the target

system’s behaviour and provide a context to describe and decide upon adaptations.

Models can be categorised by:

• Properties the model represents. For example, quality of service (QoS), resource usage,

architecture, or a combination of these.

• The temporal scope of the model. For example, time the requirements were specified, time

the target system’s execution was last observed, and/or future time when predicting

behaviour.

A model may be complete (though not necessarily accurate) or incomplete. A complete model

represents a target system property over the full input space. An incomplete model provides partial

information, describing the target system property in only some situations.

A model may represent the target system in a simplified form. By ignoring some details,

complexity is reduced but at the cost of reducing the accuracy of information. Conversely, extra

information may be contained in a model (e.g. descriptions of other implementations, version history,

etc).

Techniques such as analytical modelling and empirical measurement can contribute towards

comprehension of a target system’s behaviour and help in the production of a predictive model. As

the model is refined, it converges to the most accurate model possible: running the real target system

(see Figure 2.3).

Chapter 2: Literature review

13

Figure 2.3: Refining a model

For a model of an evolving target system to be continually useful (i.e. not become out-of-date), it

should be maintained throughout the lifetime of the target system. Bindings between the executable,

source code, documentation, requirements and models help in maintaining a target system: changes

made to the target system are mapped to changes in the model, and vice versa. When there is a

causality relationship between the model and the subject being modelled, it is called an active model.

A passive model, in contrast, is independent of the subject [104].

2.4 Complex systems

Of particular interest here are complex software systems lacking previously-known predictive

behaviour models. These are inherently difficult to configure for the following reasons [32]:

• Emergent properties are only apparent at run-time, which necessitates observation of the

running system.

• Non-deterministic behaviour makes drawing conclusions from observations difficult and

modelling problematic.

• Non-linearities and phase changes make behaviour hard to predict.

• Trends toward larger software systems, more data and more devices make the system harder

to manage.

• Choice of platforms, network configurations and communication policies has increased

markedly over the years, leading to a wide variety of operating environments with ever more

complex behaviours.

• Different versions of a software system can have different characteristics, which necessitates

configuring the system every time it is upgraded.

• Conditions of use can change, which necessitates repeated adaptation of the target system’s

configuration.

Chapter 2: Literature review

14

• Many software systems are poorly documented and are maintained in an ad hoc manner,

which makes comprehending and configuring the system difficult.

2.5 The need for adaptability

2.5.1 Compliant systems

Morrison et al argue that software systems should accommodate, and thus be compliant to, the

needs of particular applications and customers [83]. This requires that the needs of the application be

known and that the software system be configured to meet those needs.

Kiczales et al [69] observe that some policy decisions are “crucial strategy issues whose resolution

will invariably bias the performance of the resulting implementation.” These policy decisions are

called mapping dilemmas (in an OS, they relate to how an abstraction is mapped onto the underlying

hardware). The choice of policy is called a mapping decision, and a mapping conflict occurs when a

policy decision is inappropriate for a given application.

The traditional view of designing systems is to use static abstract components or layers, using

encapsulation to encourage software reuse. Policy decisions that are believed to suit the requirements

of “typical” applications are hidden from the application, even though the application may have vital

information about which policies are best suited to its needs.

An open implementation approach aims to expose policy decisions, to avoid the danger of

encapsulation outlined above [68]. ACT can run experiments to measure the effects of various

policies, to infer which policies are best suited to a given application.

The Compliant Systems Architecture (CSA) project describes an architectural approach to the

construction of configurable systems: components are designed, top down, with the philosophy of

fitting the architecture to the needs of the particular application [83]. The key technique in CSA is to

separate mechanism and policy, allowing the architecture to be tailored to the policy needs of the

application. A component’s functionality is delivered by a set of mechanisms, and the policy for using

these mechanisms can be supplied by other components. Additionally, downcalls provide a way to

exploit knowledge of a component’s internal structure, to extend the interface exposed by a

component.

Chapter 2: Literature review

15

2.5.2 Evolution of software systems

Greenwood et al discuss the characteristics of evolution in [60], defining it as a transformation; it

is an adaptive change with a time dimension. Evolution can be directed or spontaneous – it can be

externally imposed or internally driven. Evolution can be focused or diffuse – it can be the result of a

purposeful strategy decision or consist of many small logically separate changes.

Co-evolution refers to the situation where the evolving target system has a dependency on another

system [60]. Changes can cause a ripple effect: a change in one system necessitates evolution of

dependent systems to maintain consistency between them. With quasi-independent evolution, a target

system can evolve independently, but only to the extent that its neighbours can accommodate such

change.

Lehman’s first law states that an E-type software system (i.e. a target system used and embedded

in a real-world domain) must continually change or become increasingly less useful [74]. Change is

driven by the need to repair software faults, cope with new operating environments, and add or

modify functionality. It is estimated that these activities comprise 17%, 18% and 65% of software

maintenance respectively [97].

Change in expectations of a target system’s behaviour drives adaptation. Expectations change due

to changing demands of the market, an organisation’s desire to stay ahead of the competition and

changes in the structure of the organisation itself. The last is driven by feedback loops within the

organisation in which the target system operates. Development and use of a software system changes

the organisation, and causes a mismatch between the target system and its operational domain. If the

target system does not evolve to meet the changing goals of the organisation, the target system’s

functionality increasingly diverges from meeting the organisation’s needs.

Evolution can be divided into planned and unplanned change. Planned changes are catered for in

the target system’s design, but unplanned changes are unanticipated. Planned change is generally

accepted to be easier than unplanned change, but is still difficult unless one can somehow predict or

find an appropriate configuration. Use of ACT can help to find a suitable configuration by empirically

measuring a selection of configurations.

When evolving a target system, it is important to strive to reduce complexity and enhance the

structure of the target system. Unstructured change can make subsequent evolution harder; it can

Chapter 2: Literature review

16

decrease cohesion and increase coupling both amongst components and amongst non-functional

aspects of the target system; it can make the target system harder to comprehend. As Brooks says:

“All repairs tend to destroy the structure, to increase the entropy and disorder of the system. Less and

less effort is spent on fixing original design flaws; more and more is spent on fixing flaws introduced

by earlier fixes. As time passes, the system becomes less and less well-ordered” [31].

The “structure” of a system is its architecture: “the fundamental organisation of a system

embodied in its components, their relationships to each other, and to the environment, and the

principles guiding its design and evolution” [1]. Maintaining an explicit first-class representation of

the architecture at run-time, e.g. using an Architecture Description Language (ADL) [55], can help

preserve a target system’s structure. Such a description typically formally identifies the components of

the target system and the inter-component communication, defined by connectors. A connector is a

link between two or more components, across which they can interact. A connector could itself be a

component, or it could be a binding between two or more components.

2.6 Observing behaviour

The approach presented here for configuring software systems is based on empirical measurement

of the running target system. This requires observation and interpretation of the target system’s

behaviour, done by probes and gauges respectively [79]. Probes collect data, possibly at run-time

(e.g. count of operations performed), by interacting with the target system and its environment.

Gauges gather and interpret this data in a context meaningful for evaluating behaviour (e.g. in terms

of the configuration goal’s fitness metrics). Much of the work on probes and gauges described here is

part of the DASADA programme, discussed in section 2.9.5.

2.6.1 Probes

Probes observe the target system to monitor and measure its behaviour and state, and generate

events to describe this information. Probing is a form of reification: probes provide a mapping from

an entity (i.e. the target system) to a concrete representation (i.e. the events).

Chapter 2: Literature review

17

2.6.1.1 Desirable qualities

There are many qualities desirable in probes, including:

• Correctness and dependability. Observation of the target system should closely mirror the

behaviour or state of the target system. Probes should consistently observe, and not miss,

behaviour of interest.

• Little or no probe effects. Deploying and activating the probe should not cause perturbation

in the target system’s behaviour; the target system’s behaviour and state should be the same

both when the probe is and is not present. This implies safety: the probe will not cause the

target system to malfunction.

• Separation of concerns. The probe technology should be separate from the target system

implementation, to promote reusability of probes and ease of extensibility.

• Probe control and adaptation. It may be desirable to deploy, activate and/or deactivate

probes at run-time. Facilities to tailor probes for particular tasks (i.e. adapt their

configuration at run-time) may also be desirable.

• Security. Control of probes and dissemination of information should be restricted to trusted

parties.

2.6.1.2 Categories of probes

There are many techniques for observing the behaviour of a running target system. Probes can use

third party software, such as tools to monitor resource usage, profilers to collect execution time

information, and target system specific tools for extracting diagnostic information. Other probe

technologies include instrumenting a target system’s code or executable, intercepting calls to shared

libraries [26], reflection [23], and measuring a server’s behaviour at the client side by monitoring

responses to requests.

Below is a description of characteristics that categorise types of probes. This summarises and

augments the discussions in [57, 90].

Chapter 2: Literature review

18

Aspect of the target system

Observation (and adaptation) mechanisms can be categorised according to the aspect of the system

on which they act. Categorisation promotes reuse of probes by identifying the set of systems that each

probe can be used to observe. Mechanisms specific to bespoke components of the target system are

useful for only that target system, while mechanisms that observe or adapt the environment are

reusable for any system that operates in that environment.

Wells et al use the terms AppliProbe and EnviroProbe to describe probes that observe the

application and environment respectively [105]. Aspects of the system can be categorised further, as

listed below in order of increasing generality and reusability:

• target system components and architecture (i.e. parts of the target system and the way they

are connected) that are unique to the target system;

• the workload (i.e. facets of how the target system is used);

• shared infrastructure, such as shared libraries or middleware;

• the environment in which the target system operates.

Location in the target system architecture

Probes can be classified according to the location in the target system architecture in which the

probe is inserted. These include the categories below (the first three are described in [57]):

• Component boundary intrusive probes observe the target system from inside a component.

Any changes to the target system required for probing are contained within the component

being observed.

• Connector intrusive probes only require changes to a connector in the target system.

• Architecturally intrusive probes require changes to the target system that are visible at the

architectural level, e.g. adding a new monitoring component or changing the interface of a

component.

• Inbuilt probes are already part of the target system, requiring no target system alterations for

their use.

Chapter 2: Literature review

19

• External probes lie outside of the target system: they observe side effects of the running

target system. A special case is user-centred probes, which observe the behaviour of the

target system from the perspective of the user (e.g. response time).

Mechanism for probe insertion

Probes can be categorised according to the mechanism used for insertion. Some possible

mechanisms include:

• source code modification;

• binary or byte-code modification during or before load-time;

• connector indirection, to intercept communications between components;

• redirection during compile-time or run-time linking, for example to use an alternative

component;

• inbuilt facilities for adaptation in the target system, such as behavioural or structural

reflection [72];

• changes to the execution environment, such as modifying or replacing the virtual machine.

Time of insertion

Probes can be inserted (or removed) before the target system goes into use or on-the-fly. The

former can occur any time prior to the execution of the probed target system (e.g. composition time,

compilation time, or during run-time linking). On-the-fly insertion is performed at run-time, while the

target system is in use.

Knowledge of the internals of a target system

Probes can be categorised as black box probes or white box probes. Black box probes require no

knowledge of the internals of the target system, including its architecture and implementation. White

box probes require a (limited) understanding of the internals of the target system. Gill’s definition of

black box probes includes those that use, but have no understanding of, the target system’s source

code [57]. In this thesis, such probes are classified as white box because availability of source code

implies delving behind the interface exposed by the target system (see section 2.8.3).

Chapter 2: Literature review

20

Probe dependencies

Probes have implementation dependencies and conceptual dependencies [57]. Implementation

dependencies of a probe technology are requirements that can be overcome by developing new tools.

Conceptual dependencies are absolute requirements of the probe technology. For example, a tool for

instrumenting Java source code has an implementation dependency of working only with Java, but

there is a conceptual dependency of requiring write access to the source code prior to (or during)

compilation.

Triggering mechanism

Probes can be categorised by the triggering mechanism (i.e. the type of activity that causes a probe

to generate an event):

• Passive probes are reactive, generating events entirely in response to activities in the target

system. For example, a passive probe could generate an event whenever a particular function

in an API is invoked. Such probes may be autonomous (i.e. generate an event every time

they are triggered) or controllable (e.g. capable of being activated and deactivated). Below

are two possible execution mechanisms for such probes:

• A probe may be executed as part of the natural flow of control of the target system.

• A probe may have its own thread of control, and observe the external behaviour of

the target system’s processes.

• Active probes are proactive, generating events in response to activities external to the target

system. Triggers include:

• a query, which is a pull mechanism that allows an external agent to trigger event

generation (e.g. a target system administrator requests the current CPU usage

statistics);

• a timing mechanism, which uses some schedule to control the probe’s activation

(e.g. measure network usage every five minutes).

• Hybrid probes combine characteristics of both passive and active probes: they can passively

observe activities in the target system, and generate events when a constraint is satisfied or

an external activity triggers event generation. For example, a hybrid probe may observe the

Chapter 2: Literature review

21

processing of database search operations, and generate an event every minute reporting the

throughput.

Awareness of scope

Finally, types of probes can be categorised according to their awareness of what triggered them.

That is, the ability to identify who queried the probe, in what component an observed event occurred

and what caused the event.

2.6.2 Gauges

Gauges gather and interpret observations; they can aggregate, compute, analyse and then

disseminate high-level events that describe the target system and its conditions of use [5, 56]. Gauges

differ from probes in two ways:

• Gauges can consume events produced by other probes and gauges, while probes take no such

input.

• Gauges interpret observations in the context of a model of the target system (e.g. in terms of

fitness metrics of the configuration goal), while events generated by probes need not be

directly meaningful in the context of any high-level model.

2.6.3 Probe and gauge run-time infrastructures

The purpose of a probe run-time infrastructure is to standardise the run-time deployment and

control of (potentially distributed) probes, and the delivery of events relating to probes. Such an

infrastructure has been developed as part of the DASADA programme by the probe run-time

infrastructure working group [25, 57]. Communication in the probe run-time infrastructure is through

events, which are disseminated over a probe reporting bus (e.g. using the Siena publish/subscribe

event notification service [106]). A set of event types has been defined [57], partitioned into

infrastructure events (i.e. control instructions for probes) and events that probes can generate. A

probe adapter is installed a priori on each participating host to receive and send events, and to

interact with probes on that host.

As part of the DASADA programme, the gauge infrastructure working group have developed a

conceptual architecture for the use and management of gauges. It “defines (1) a common framework

Chapter 2: Literature review

22

for describing, developing and integrating gauges, which can be used as a standard that is shared

between gauge developers and gauge consumers/integrators; and (2) a common set of services that

support run-time communication between gauges and the consumers of their outputs” [5]. The gauge

reporting bus provides a publish/subscribe service for dissemination of information: gauges publish

information (in the form of events), while consumers subscribe to such information.

2.6.4 Confidence in observations

The confidence level in an observation is the probability that behaviour is as suggested by the

observation, versus the probability of a false positive result due to an alternative explanation. For

example, an observation of a component’s failure may be due to the component having failed or due

to packet loss on the network between the observer and the component. The appropriate reaction to an

observation depends on the associated confidence level and on the cost of the action. For example, it

is often not beneficial to dynamically change network routing tables when a single observation

suggests that a route is down: the risk of having to restore the routing tables outweighs the benefits

[78].

Corroborative observations from independent sources decrease the probability of a false positive

result, which is the product of the probability for each individual observation being a false positive.

Thus confidence greatly increases when there is evidence from multiple sources.

Bayesian statistics can help to determine the confidence level. Bayes’ rule states that the

probability of a hypothesis, h, being true, given evidence, e, is:

Consider the hypothesis that a component has failed, given an observation of failure. The

probability of the component having failed is proportional to the probability of making the

observation when the component has failed and to the probability of the component failing. The two

terms on the denominator are: the probability of observing failure when the component has failed,

multiplied by the probability of failure; and the probability of making the observation when the

component has not failed, multiplied by the probability of no component failure. If these terms can be

estimated, the confidence level in an observation can be calculated.

Chapter 2: Literature review

23

2.7 Adapting target systems

Adaptation mechanisms provide the capability to change a target system’s configuration or its

conditions of use.

2.7.1 Dimensions of adaptation

Many issues need to be addressed when designing adaptation mechanisms, particularly for on-the-

fly adaptation. These issues are categorised under eight dimensions [46]:

• The interface for triggering adaptations. Adaptations can either be directed or

spontaneous (i.e. externally imposed or internally driven). Mechanisms for triggering

directed adaptation can be declarative (e.g. based on specifying the required behaviour) or

procedural (e.g. exposing hooks to which new code can be bound). By definition, there is no

interface to trigger spontaneous adaptation.

• Authorisation of adaptation requests. Who can trigger adaptations, and when?

• Feasibility of adaptation. Is the suggested adaptation possible in the current situation?

• Dependency management. Interdependencies among components mean that a change in

one component can necessitate change in other components. Making changes requires a

mechanism to determine these dependencies (e.g. based on a formal description of the target

system’s architecture). Where necessary, a mechanism is required to perform a set of

adaptations as an atomic transaction that potentially spans multiple sites [102].

• State transfer. If an existing component is replaced with a new version, how is state

information transferred from the old to the new component?

• Source of new code. If introducing new code into the target system or replacing

components, where does the new code come from?

• Binding. What is the mechanism for binding new components into the target system and

activating them?

• Security issues. Are new components safe and what execution privileges do they have?

Chapter 2: Literature review

24

2.7.2 Complexity and flexibility of adaptation mechanisms

Adaptation mechanisms can be categorised according to complexity, illustrated in Figure 2.4.

Compared to simple adaptation mechanisms, complex adaptation mechanisms generally provide more

flexibility in terms of changes that can be made. However, they cause greater perturbation to the

target system and are harder to automate. The vertical arrow in Figure 2.4 represents the progress of

the target system. The loops show different adaptation mechanisms, the size of the loop indicating the

complexity. The simplest mechanism, labelled tuning knobs, uses pre-defined configurable aspects

exposed by the target system. A more complex adaptation mechanism binds new code into the target

system to change or augment behaviour, for example using structural reflection [72]. A third

mechanism seeks external help to adapt the target system, for instance requesting additional hardware

resources or a non-trivial change to the target system’s implementation.

Figure 2.4: Mechanisms for adaptation

The adaptation mechanisms used are orthogonal to deciding how to adapt the target system’s

configuration. Each of these mechanisms can be treated in the same way, provided the set of legal

adaptations is known and there is a uniform method of invocation (e.g. sending events or calling

wrapper functions). Appendix B includes a list of issues relating to use of adaptation mechanisms.

2.7.3 Adaptation mechanisms

There are many mechanisms for adapting a target system, including those discussed below.

In-built facilities for adaptation

Many target systems have in-built configurable aspects. For example, use of the strategy pattern

in object-oriented design allows a program to be structured such that the choice of algorithm can be

Chapter 2: Literature review

25

made at run-time [46, 54]. The set of supported strategies is always predetermined if there is no

mechanism to bind in new code.

Resource allocation and process migration

A target system’s behaviour can be modified by reallocating the available resources. This includes

process migration, where the execution of a process is moved from one node to another [80]. Below

are some advantages in supporting on-the-fly resource allocation:

• Redundant resources can be exploited to balance the load across multiple nodes and to match

a task to the resource most suited to its execution (e.g. CPU intensive tasks on the fastest

node).

• Communication can be improved by co-locating processes that interact intensively and by

locating a process close to the source of its data.

• Fault resilience can be improved by replicating processes and data (i.e. redundancy) and by

migrating processes from nodes that are suspected to have experienced partial failure.

• Mobile users can utilise resources in the local proximity.

Late binding and reflection

The capability to modify a target system’s implementation, or the meaning of that implementation,

allows the target system’s functionality and behaviour to be changed. Binding new code into the

target system at run-time (i.e. late binding) allows policy decisions to be made at run-time, and the set

of supported implementations to be extended dynamically. Several techniques are discussed below.

Dynamically Linked Libraries (DLLs) are bound to a target system at load-time, rather than at

compilation time. A target system’s behaviour depends on the functions used in the shared library:

loading a new DLL can change the target system’s behaviour. This technique is comparable to the

Java mechanism of using a ClassLoader [85]. Balzer and Goldman’s mediating connectors provide a

mechanism to intercept calls to shared libraries [26]. Their mediators are wrappers that change the

behaviour of the wrapped libraries on-the-fly by changing or augmenting calls to the libraries’ APIs.

These changes are transparent to the target system.

The behaviour of programs may be changed using a combination of first-class procedures, L-value

binding and assignment [42]. Languages such as Napier88 [84] and ProcessBase [82] allow one to

Chapter 2: Literature review

26

assign a procedure to a variable and call the procedure using the variable’s name. Subsequent

assignment to this variable replaces the procedure and thus adapts the behaviour of the procedure

calls. Using a persistent store as a repository for the running program allows its behaviour to be

modified by changing the contents of locations containing its procedures.

Reification and reflection provide the capability for a target system to observe and adapt its own

behaviour in the course of its evaluation; they provide a means of achieving openness and flexibility.

Reification involves making explicit a representation of an aspect of the run-time system, and making

this representation accessible to the program itself. Two categories of reflection are structural

reflection and behavioural reflection.

Run-time structural reflection, also called linguistic reflection [71], is the ability of a running

program to generate new source code, compile it using a dynamically callable compiler, and link it

into the program’s own execution. Behavioural reflection allows a program to adapt its own meaning

by manipulating its evaluator. The meta-object protocol [67] provides access to the evaluator by

defining meta-objects that control aspects of a program’s behaviour, such as method invocation and

object creation. Changes to the meta-objects cause changes in related aspects of the program’s

behaviour.

Dynamic software architectures

Component-based Software Engineering (CBSE) is concerned with developing components,

building systems from these components, and evolving the system by replacing and customising

components [100]. Building systems from components is not new: Parnas introduced the ideas of

modules and abstract interfaces decades ago [89]. However, there is a drive to formalise the process

and methodology for building and evolving component-based systems.

The architecture of some target systems permits the addition, replication, removal and replacement

of components and connectors. Some Architecture Description Languages, such as π-SPACE [33],

can describe the mobility of links between processes, and can thus describe possible adaptations to the

target system’s architecture. An architecture description maintained at run-time can form the basis for

specifying desired adaptations, which map to operations on the target system itself [86].

Chapter 2: Literature review

27

2.8 Design Of Experiments (DOE)

2.8.1 Theory

“To call in the statistician after the experiment is done may be no more than

asking him to perform a postmortem examination: he may be able to say what

the experiment died of.”

Sir Ronald Fisher, Indian Statistical Congress, Sankhya, ca 1938

An experiment design is a description of the set of combinations to test and the number of

replications for each. Some search strategies, such as Taguchi Methods (see section 4.3), use a

structured statistical approach for the Design Of Experiments (DOE) [107] and analysis of results.

The aim of DOE is to determine the maximum amount of information about a target system with the

minimum of effort. The approach studies simultaneously the effects of multiple factors on the

response variable (i.e. on the target system’s quality), to infer the effect of each factor and of selected

interactions, and to estimate the confidence in the results. An effect is said to be significant at the 5%

level if there is 95% confidence that the effect on the response variable is non-zero4.

A main effect is defined as the effect on a target system’s behaviour caused by a single factor

being varied. An interaction effect between factors is defined as the degree to which the factors’

effects depend on one another’s levels. An interaction effect between two factors is called a two-

factor interaction effect. See sections 4.3.3.1 and 4.3.3.2 for a more detailed discussion of main and

interaction effects.

A full factorial design experiment tests all possible combinations, allowing the effects of every

factor and every interaction to be inferred. Such experiments are often prohibitively expensive, in

terms of time and cost, due to the large number of combinations. Approaches to reduce the size of the

experiment include:

• decreasing the number of factors to vary;

4 The 5% level is commonly used in statistics as an acceptable probability of incorrectly concluding

that an effect is significant; other levels can equally be chosen.

Chapter 2: Literature review

28

• decreasing the number of levels to test for each factor;

• using a fractional factorial design, where only some of the possible configurations are tested

(given a list of factors and a list of levels for each, without ignoring entire factors or levels in

the list).

The first approach assumes that not all factors are important in all situations – often a necessary

assumption when there are hundreds of possible factors. Deducing which are important requires either

time to determine this experimentally or expert knowledge. The second and third approaches assume

that the experimenter can infer from results the effects of factors and interactions, allowing

predictions for untested configurations.

One technique, described in [64], is to run the experiment in two phases. The first phase involves

identifying which factors have a significant effect on the response by using a full factorial design with

just two levels per factor (called a 2k design when there are k factors). The second phase involves

running an experiment for only the significant factors, to test more levels. However, the number of

combinations in a 2k design increases exponentially with the number of factors. Some fractional

factorial designs use fewer combinations and are therefore often preferable.

The assumption with fractional factorial designs is that the experimenter can interpolate the

response of untested combinations from the effects of factors and a selection of interactions. Such

designs obtain less information than full factorial designs as some effects cannot be estimated

independently: varying multiple factors simultaneously can prevent the experimenter from inferring

which change affected the target system’s behaviour. This is called aliasing, and the effects whose

influence cannot be separated are said to be aliased [64].

Some effects are assumed to be of no interest to the experimenter [107]. The hierarchical ordering

principle states that the more factors involved in an interaction effect, the less likely it is to be

significant: interactions involving three or more factors are seldom of interest. Similarly, the effect

heredity principle states that an interaction effect can only be significant if the effect of at least one of

the factors involved in the interaction is significant. The experimenter can reduce the number of

Chapter 2: Literature review

29

combinations to test by deliberately aliasing effects that are assumed to be insignificant5. Taguchi

Methods provide an efficient way of designing experiments, based on these assumptions.

This thesis focuses on complex software systems with many possible combinations (i.e. many

factors and levels for each). Fractional factorial designs, in particular when using Taguchi Methods,

make the testing of such systems tractable (subject to the assumptions listed in section 4.3).

2.8.2 Related work

Fractional factorial designs, in the context of software systems, have been described in several

texts [38, 64]. Taguchi Methods have been used extensively by engineers for almost five decades to

produce such designs, but their use in comprehending and configuring software systems has been

limited: Sankar and Thampy suggested their use for performance tuning in [94] but the techniques

have not been applied.

Taguchi Methods provide an accessible approach for non-statisticians and have two key benefits

over previous work:

• They provide a standardised approach to DOE, which can be automated (e.g. by Minitab TM

[81]). This makes it simple to select combinations to test, such that the effects of each factor

and of selected interactions can be inferred from the results.

• The signal to noise ratio metric provides a mechanism to calculate the robustness of a

combination, given a set of responses from replicated trials.

Other projects that involve testing a sequence of combinations include:

• an automated tool, developed by Vetland and Woodside, for running full factorial

experiments [103];

• Courtois and Woodside’s use of multivariate adaptive regression splines to model a target

system’s behaviour [39], which requires a much larger set of combinations to produce a

model of a response surface than does Taguchi Methods (see section 4.3);

5 These assumptions have been shown to hold in other fields, such as manufacturing. Section 6.2

discusses their applicability to software systems.

Chapter 2: Literature review

30

• Diao et al’s use of control theory, which requires that the choice of combinations give “dense

and uniform coverage” of the input space [43];

• IBM’s AutoTune, which models a target system’s response surface using a neural network –

the training set is produced by testing a large set of combinations [28].

2.8.3 Controlling the target system

There are several usage options when running experiments, which relate to where the experiments

are run, when they are run, and the nature of the interaction with the target system.

Experiments can be run either in a laboratory or at the customer’s site. The former involves

simulating the expected conditions of use. The latter involves testing the target system in the

environment in which it will be used.

The target system can be configured either before it goes into use or on-the-fly. The former is

either part of the development and testing phase (i.e. in a laboratory setting) or part of the deployment

phase (i.e. at a customer’s site). Configuring the target system on-the-fly allows it to adapt

dynamically to changes in the conditions of use. This is particularly popular for multimedia

applications (e.g. maintaining audio or video streams), and for mobile and grid computing where the

platform’s characteristics and available resources vary dynamically.

Interaction with the target system depends on the configurable aspects exposed, the availability

and control over source code, and the wishes of the experimenter. The infrastructure that controls the

experiment can treat the target system as a black box, a white box or some shade of grey in between:

• The only interaction with a black box system is through the interfaces it exposes: no

knowledge is available of its internal workings. Diagnostic output of the target system can be

used and policy decisions exposed by the target system can be set. Observation and

adaptation mechanisms external to the target system can also be used. For example, one

could observe the resource usage and response time of a target system, under various

conditions (e.g. various workloads). Possible adaptations include changes to the

environment, such as re-allocating resources or adjusting NFS settings that control mounting

of remote file systems [96].

Chapter 2: Literature review

31

• Interaction with a white box system can involve delving behind the interfaces it exposes:

there is access to internal information (e.g. source code). This increases the range of possible

adaptations and measurements that can be taken, through techniques such as source code

instrumentation.

• Use of expert advice to guide the design of experiments falls into a grey area between these

two extremes.

The case studies in chapter 5 involve running experiments in a laboratory setting before the target

system goes into use. ACT treats the target system as a grey box: in-built configurable aspects are

used, and expert advice guides the choice of factors and levels to test.

2.9 Systems for performance tuning and evolution

This section first classifies adaptations by confidence in their effects. It then discusses techniques

for coordinating the configuration process, to decide how and when to adapt the target system’s

configuration. A recurring theme is that making beneficial adaptations requires either a priori

knowledge of the target system’s behaviour, or an ability to make experimental adaptations and

empirically measure their effects (e.g. using ACT).

2.9.1 Version granularity

Two categories of adaptation are experimental adaptations and target adaptations. Experimental

adaptations involve speculative adaptation of the target system’s configuration, where the effects of

adaptations are not known in advance. Repeatedly making experimental adaptations can find a

suitable combination even before the behaviour of the target system is understood. A target adaptation

is an adaptation known to produce a desirable combination; it involves adapting the target system T to

progress to a new target system T’ believed to meet the configuration goal. Both experimental and

target adaptations can use the same adaptation mechanisms, the difference is the context and the

confidence with which adaptations are made. An experimental adaptation can be promoted to a target

adaptation if it is found to produce a target system configuration with the desired behaviour.

Experimental and target adaptations are illustrated by the hypothetical example in Figure 2.5. The

configuration goal for a database system is to minimise the number of processors required, while

maintaining a throughput greater than 100 requests per second (rps). The bottom part of the diagram

Chapter 2: Literature review

32

shows a series of experimental adaptations, starting with configuration TA and adapting the target

system by reducing the number of processors to produce configurations TB and TC. It is found that TB,

which delivers a throughput of 110 rps, meets the configuration goal of the minimal number of

processors. The set of experimental adaptations used to produce TB is promoted to a target adaptation,

to progress from target system T to a new target system T’. Sometime later, the database’s workload

increases causing the throughput to drop to 90 rps (shown in italics in Figure 2.5). This prompts a

second set of experimental adaptations, finding a new configuration TD that meets the configuration

goal. These changes are promoted to a target adaptation to progress to a new target system.

Figure 2.5: Experimental and target adaptations

2.9.2 Managing adaptation

Techniques for managing the configuration process range from the target system managing itself

to an external mechanism managing adaptation.

Self-managing target systems, typified by autonomic systems [63], automatically recognise when

something is wrong with their execution and initiate appropriate corrective action to resolve the

situation. They can exploit details of their internal structure, but there are drawbacks. Firstly, it is

difficult to obtain a global perspective from within a single target system. Secondly, code for

observation and adaptation may be intertwined with target system code, making it more difficult to

change the policy for configuring the target system and to evolve its code.

Chapter 2: Literature review

33

Shaw suggests separating the controller6 from the target system being controlled [95]. This can

overcome the problems described above, but the external controlling mechanism requires: (1) an

understanding of the configuration goal, (2) control over the target system’s factors, and (3) some way

to deduce the effects of the possible adaptations. Garlan et al suggest that external adaptation

mechanisms can be studied and reasoned about independently of the target system [56], but the effects

of a generic adaptation mechanism are often dependent on the target system in question and on its

conditions of use.

The CSA project (see section 2.5.1) exploits the advantages of both these approaches by

separating policy from mechanism to provide an open implementation [83]. A component’s

functionality is delivered by a set of mechanisms, and the policy for using these mechanisms can be

supplied by other components.

It has been proposed that software architecture should play a central role in planning and

coordinating the configuration process [86]. The approach involves maintaining at run-time an

explicit architectural model of the target system, which is described using an ADL. An architectural

model provides the following benefits:

• It is a context for reasoning about the target system in terms that target system developers

and administrators can understand.

• It provides a global perspective for thinking about interactions among target system

components, and interaction between the target system and its environment.

• It can include constraints on the target system architecture and behaviour, against which

configurations and observed behaviour can be compared.

• Adaptations to the target system’s configuration (particularly re-assembly of components)

can be proposed and validated at the architectural level, and mapped to adaptation operations

on the running target system.

6 The term “controller” comes from the field of control theory.

Chapter 2: Literature review

34

An architecture-based approach assumes that a (constantly updated) architectural model of the

target system is available at run-time and that adaptations at the architectural level map to possible

adaptations in the implementation.

2.9.3 Deciding on appropriate configurations

The controller decides how and when to adapt the target system’s configuration. Controllers are

software (or hardware) systems that use observations of the target system’s behaviour and conditions

to trigger appropriate adaptations, based on a comparison of observed behaviour and the configuration

goal. Techniques employed by controllers include:

• use of a predictive model (or simulation) of the target system’s behaviour to predict the

behaviour of various configurations, to estimate which configuration will best meet the

configuration goal [22, 66];

• use of a rule-based approach, which responds to observations of the target system and its

conditions of use by following pre-defined (though dynamically changeable) adaptation

tactics [30, 49].

Listed below are some techniques for producing controllers, relying on a priori knowledge of the

target system’s behaviour:

• Experts use detailed knowledge or analytical models of the target system to suggest

adaptation tactics.

• Simulations predict the behaviour of various target system configurations, in an attempt to

identify a configuration that will meet the configuration goal [22].

• Markov Decision Processes use a simplified discrete state model of the target system to

predict behaviour and to decide on beneficial state changes [20]. A cost function predicts the

quality of a given state in terms of the variables in the model. Changes in the environment

are predicted using pre-defined probabilities of state transitions.

• Control theory provides methodologies for designing controllers, based on a model of the

target system’s behaviour [88].

Chapter 2: Literature review

35

Making experimental adaptations to a target system, and empirically measuring the various

configurations, can help in the development of effective controllers. Experiments can aid production

of a predictive model of the target system’s behaviour and reveal suitable configurations for particular

conditions of use (i.e. suggest adaptation tactics).

2.9.4 Performance tuning systems

Techniques for performance tuning range from ad hoc manual techniques using tools for

investigating performance bottlenecks to generic automated performance-tuning tools that support on-

the-fly tuning. A selection of generic automated (and semi-automated) performance tuning tools is

described below.

The Performance Analysis and Characterisation Environment (PACE), developed at Warwick

University, uses modelling techniques to produce a simulation of the target system [22, 66]. PACE

provides a toolset for the semi-automated analysis of source code and profiling information to model

a target system’s computational parts and their parallel execution. However, it is difficult to produce a

simulation that exhibits the emergent properties and non-deterministic behaviour of a complex

software system. In contrast, ACT can be used to empirically measure such behaviour.

IBM’s AutoTune [28] uses an artificial neural network to predict the target system’s behaviour.

This has much in common with the ACT approach: the training set consists of observations of target

system configurations run under a variety of conditions. There are two main differences. Firstly, ACT

allows feedback from previous observations to be used when deciding on combinations to test.

Secondly, statistical techniques for design of experiments and analysis of results give an explicit

mathematical model of the target system’s behaviour, and confidence levels in the model. In contrast,

a model learnt by a neural network is implicit in the weights and is not easily accessible.

The aim of “Autonomic Computing” [63] is to produce an adaptive infrastructure that regulates

itself. It is inspired by the metaphor of the autonomic nervous system, which handles crucial but

mundane functions automatically, such as increasing heart and breathing rates when required. An

autonomic computing system would be self-configuring, self-healing, self-optimising and self-

protecting; complexity would be hidden from users by automatically configuring itself according to

the users’ needs and in accordance with the environment in which it operates. This requires that

appropriate configurations be known: again, the use of ACT may help.

Chapter 2: Literature review

36

Using the AutoTune agent framework, Diao et al have built an autonomic feedback control system

(see section 2.10.1 for a discussion of control theory). Agents perform three functions [43, 44]:

• A modelling agent creates a linear model of the target system’s behaviour. The case study in

[44] models CPU and memory usage of the Apache Web Server as two factors are varied.

• A controller design agent uses standard techniques from linear control theory to derive a

feedback control algorithm, based on the model of resource usage. The controller uses the

difference between desired and measured resource usage to determine the next levels of the

factors.

• A run-time controller agent adapts the target system, based on the control algorithm.

ACT serves a similar role to the modelling phase. The key difference is that search strategies such

as Taguchi Methods require testing of fewer combinations to produce a model. Also, the aims of ACT

– to improve comprehension and aid the configuration process – are more general than those of Diao

et al, whose feedback control algorithm corresponds to a single adaptation tactic.

2.9.5 DASADA

“Dynamic Assembly for System Adaptability, Dependability and Assurance” (DASADA) is a

DARPA-funded programme [8, 9]. The DASADA approach is based on use of architectural models

for reasoning about complex software systems. Adaptability is achieved through on-the-fly re-

assembly of the target system’s components. The need for change is derived from a comparative

analysis of the target system’s specification and feedback on its implementation [79].

Probes and gauges provide this feedback by monitoring the executing target system and its

environment. Observations are interpreted in the context of an architectural model maintained at run-

time. The model is annotated with QoS requirements – violations of these requirements are used to

trigger automated re-assembly of components or to request human intervention to perform re-

composition. Current work in the DASADA programme assumes that appropriate adaptation tactics

are somehow known. Use of ACT could help to determine the effects of re-assembling components

and the quality of various configurations.

Chapter 2: Literature review

37

2.9.5.1 Software Surveyor

The DASADA project “Gauges to Dynamically Deduce Componentware Configurations” [105]

aims to model the connectivity and behaviour of applications. The Software Surveyor system has been

developed for this purpose. It consists of a suite of tools to construct a dynamic, constantly updated

model of an evolving, under-specified application. The aim is to answer questions about a target

system, such as “how are components connected?”, “how does the current configuration compare to

other configurations?”, “are there unused or unexpected components?” and “how are the components

interacting?” Software Surveyor differs from ACT in that it does not make experimental adaptations

to explore behaviour. Also, the focus is on modelling the target system at the architectural level,

whereas ACT interprets the target system’s behaviour in terms of the configuration goal.

Software Surveyor constructs and maintains a model of the target system by combining static and

run-time information. It combines information from the specification and software development

environment with run-time information about binding decisions, component execution, interactions

and resource usage. ACT could be used to gather additional information by empirically measuring a

selection of combinations.

2.9.5.2 Kinesthetics eXtreme

The DASADA project “Kinesthetics7 eXtreme” (KX) [14, 57] aims to produce an infrastructure

for the run-time monitoring and adaptation of component-based distributed target systems. KX

consists of a probe infrastructure, an event infrastructure and a gauge infrastructure. The project

focuses particularly on the probe infrastructures for observing the target system, and the event

infrastructure for disseminating information.

The probe infrastructure is summarised in section 2.6.3. One implementation is the Active

Interface Probe Run-Time Infrastructure [57]. Probe stubs are inserted into the target system by

modifying the source code at compile-time. At run-time, the target system administrator can associate

7 Kinæsthesis is “the sense of muscular effort that accompanies a voluntary motion of the body. Also,

the sense or faculty by which such sensations are perceived.” [15]

Chapter 2: Literature review

38

callbacks with the before- and after-phases of method calls. Code invoked by the callback may log,

augment, override or deny a method’s activities.

The event infrastructure disseminates events (i.e. messages) from producers to consumers.

Lightweight events are encoded in XML using the Smart Events Schema [6] and routed using Siena

[106], which requires conversion to and from Siena’s attribute-value pairs format. Gaugents are

heavier mobile software agents that transmit the executable for interpreting the event along with the

data.

KX complements ACT in that it provides an infrastructure to collect observations of a target

system and to transmit this information to ACT. The contribution of ACT would be to coordinate

adaptation of the target system, and to use the observations to infer the behaviour of target system

configurations. Indeed, the openness and flexibility of the event infrastructure has informed the design

of a new version of ACT, described in section 7.3.

2.9.5.3 Rainbow

The “Rainbow” project for “Architecture-based Adaptation of Complex Systems” [34] aims to

support automated target system adaptation at run-time. The approach, first proposed in [86] and

discussed in section 2.9.2, involves maintaining at run-time an architectural model of the target

system and its QoS requirements. This is encoded using the Acme ADL [55]. Performance-oriented

run-time gauges are used to interpret low-level observations of the target system in the context of the

architectural model. If measured performance shows an architectural constraint violation (i.e. a QoS

violation), a pre-defined adaptation tactic is triggered to reconfigure the target system.

These techniques have been demonstrated with several target systems, such as controlling the

transfer of files between a sender and a server by adapting the file compression policy in response to

available bandwidth. It has not yet been shown that such techniques scale to complex software

systems. ACT differs from this approach in that it does not require an architectural description of the

target system or the existence of pre-defined adaptation tactics. It is argued that ACT can be used to

discover beneficial adaptation tactics without a priori knowledge of the target system.

Chapter 2: Literature review

39

2.9.5.4 Containment units

The project “Process Guidance and Validation for Dependable On-the Fly System Adaptation”

[87] aims to produce adaptable software systems, built from Containment Units (CUs). These are

hierarchically composed modules that can self-diagnose the need for change, based on their

operational characteristics, and that can make a limited set of changes aimed at meeting these needs.

The CUs are defined in Little-JIL, an executable high-level process language with graphical syntax

for modelling co-ordination between agents. Little-JIL contains both proactive and reactive control

mechanisms, and uses resources for constraining and managing process execution.

This approach has several assumptions and limitations:

• Little-JIL must be used throughout the target system’s lifecycle;

• the set of possible adaptations is limited to resource (re)allocation and module replacement,

the latter consisting of reassembly of designated components within a CU (using a pre-

defined set of available modules and resources);

• all changes occur within existing architectures that cannot themselves change during

execution;

• the adaptation tactics are specified a priori;

• the set of changes required in the future must somehow be known – if an unexpected

contingency arises, off-line human intervention is required to adapt the target system’s

architecture and incorporate additional CUs.

2.9.6 ArchWare

The aim of the ArchWare project is to produce architecture-centric languages, frameworks and

tools for engineering evolvable software systems that are compliant to the needs of particular

applications [4]. Importantly, both the target system and the process for evolving the target system

can change over time.

The main areas of interest are:

• formal architectural style-based languages, e.g. the π-SPACE ADL [33], to describe and

analyse evolvable target systems;

Chapter 2: Literature review

40

• support for evolution.

Architectural styles (e.g. a client-server style) impose constraints upon the target system’s

architecture and behaviour. They provide users with high-level abstractions appropriate to a specific

domain and encourage reuse of designs.

Target systems developed using the ArchWare infrastructure will support on-the-fly adaptation of

components, connectors and their topology. Evolution will be achieved by decomposing the target

system into its constituent components, evolving them and then recomposing to form a new target

system. This will be done while preserving any state or shared data of the running target system [59].

ACT could be used to explore the effects of possible adaptations, to help discover which

configurations would meet the configuration goal under a variety of conditions of use.

2.9.7 Reflective middleware

Reflective middleware offers an open implementation, allowing inspection and adaptation of the

middleware’s components. In general, on-the-fly adaptation is controlled by a rule-based mechanism,

which manages the target system’s performance by monitoring and adapting the target system

according to pre-defined (though dynamically changeable) adaptation tactics [23, 29, 49].

Blair et al have developed the Open ORB reflective middleware architecture [49]. Its design uses a

component-based programming model, where an instance of Open ORB is a particular configuration

of components. Open ORB’s meta-space, which is its support environment, is partitioned into four

orthogonal meta-models:

• The interface meta-model allows inspection of the external representation of a component, in

terms of its (immutable) interfaces.

• The architectural meta-model allows inspection and adaptation of Open ORB’s architecture.

• The interception meta-model allows adaptation of a component’s behaviour, through

insertion of pre- and post-behaviour using behavioural reflection.

• The resource meta-model provides access to inspect and adapt the management of resources.

ACT could run experiments for target systems that use Open ORB: adaptation and observation

mechanisms exposed by the middleware provide facilities to configure and observe the target system.

Chapter 2: Literature review

41

ACT could determine the effects of adaptations under various conditions of use to help suggest

appropriate adaptation tactics.

The Distributed Systems Group at Trinity College have produced K-ORB: a configurable

component model for building adaptable distributed systems, based on a light-weight version of

CORBA [48]. It uses the Iguana reflective programming model [58] to support dynamic

customisation of the middleware. Their AutoORB project aims to optimise the middleware system to

meet the needs of a particular application, based on analysis of how the application has used the

middleware [48]. This aim has much in common with the aim of ACT 2.0: to configure the target

system on the fly, and deduce predictive models and adaptation tactics from observations of the target

system’s execution.

2.10 Control theory and process modelling

The process of configuring a target system involves manipulating its control inputs (i.e. factors) to

affect its outputs (i.e. behaviour). This is clearly a control system, and is related to work in the field of

control theory [45, 53] and process modelling [3].

2.10.1 Control theory and feedback

Control theory is the mathematical analysis of systems used to achieve a desired state under

changing internal and external conditions. Describing ACT as a feedback control mechanism provides

a mapping between the domains of software configuration and control theory, and encourages the use

of well-established control methodologies. ACT can be viewed as a disturbance-compensated closed-

loop control system with command compensation. To explain these terms:

• Disturbance-compensation involves using measurements of uncontrolled inputs (e.g.

network load) in the control algorithm.

• Closed-loop refers to the use of feedback (i.e. comparing the measured output with the

desired values). In contrast, open-loop implies the absence of feedback.

• Command compensation exploits knowledge of the process’ characteristics, such as a lag

before a change has an effect. Disturbance- and command-compensation are examples of

feed-forward loops.

Chapter 2: Literature review

42

The algorithm for deciding when and how to adjust the target system’s factors is called the control

law, and is typically derived from a model of the target system’s behaviour. A feedback controller

aims to maintain the desired target system behaviour, where corrective action is based on the error

(i.e. the difference between desired and observed behaviour) and not on why the error occurred. It is

therefore not necessary to know the exact effects of changing the factors, just whether the adjustment

makes the response increase or decrease. This allows for simplifying assumptions in the target system

model.

There are two main stages to designing and implementing a feedback control system [43, 53]:

• Target system modelling involves producing a predictive model of the target system’s

behaviour. A continuous model is often used to approximate discrete target systems.

Modelling involves:

• designing an experiment that gives dense and uniform coverage of the input space –

called persistent excitation, where the target system is continually adapted to

display its behaviour for the full range of combinations;

• running the experiment to collect the data;

• using system identification techniques to produce a model;

• validating the models by running further experiments.

• The controller is designed using standard control algorithms, such as proportional-integral-

derivative (PID) design.

A common experiment design in control theory is to vary the factors’ levels according to discrete

sine waves (called excitation signals), whose frequencies are “relatively prime” [43]. This tests a wide

range of combinations and allows the individual effect of each factor to be determined. A linear

model is often considered adequate for capturing the relationship between control inputs and system

outputs (i.e. fitness metrics), particularly for a small region of the response surface.

PID controllers incorporate three types of control [19]: (1) proportional control, where the

correction is proportional to the error in the response; (2) integral control, where the correction is

proportional to the duration for which the error is present; and (3) derivative control, where the

correction is proportional to the rate of change of the error. The output of the PID controller is the

Chapter 2: Literature review

43

sum of these three terms. Tuning the controller involves changing the weightings of each term.

Proportional control can make the target system unstable, undulating from one side of the desired

value to the other. Integral control compensates for this effect, but introduces a lag between the

detection of the error and corrective action. Derivative control, also called rate or pre-act, inhibits

rapid changes in the target system outputs to prevent overshoot (i.e. instability from proportional

control).

Adaptive control theory is the study of controllers that automatically redesign themselves as the

target system and conditions of use change. The control law is adjusted, based on a model of the

target system’s behaviour that is updated on-the-fly [73]. This advanced topic of control theory is

clearly relevant to configuring target systems that evolve. An aim of future work on ACT 2.0 is to run

experiments on-the-fly that explore the target system’s behaviour to update, or even generate, a

predictive model of its behaviour.

2.10.2 Process modelling

There are parallels between tools for configuring software systems and process support

environments (PSEs). A target system is a type of process: it consists of a partially ordered set of

activities in which agents (i.e. humans and software systems) interact to achieve a common goal. This

section discusses PSEs that support modelling, enacting and analysing human-intensive processes. Of

particular interest are PSEs that support process evolution.

Techniques for process control in an organisation include continuous regulation with respect to a

model, and ad hoc decision-making in response to situations [40]. The former involves comparing

observations of the process against a plan or template to identify deviations outwith acceptable

bounds, and then applying often well-established corrective actions. The “plan” is analogous to a

model of the target system’s architecture and desired behaviour, while “corrective actions”

correspond to pre-defined adaptation tactics. In contrast, corrective actions in “ad hoc decision-

making” are often unclear, requiring support to aid assessment of possible responses in terms of cost,

time and quality. ACT could provide this support for software systems by running experiments to

measure the quality of a selection of target system configurations under likely conditions of use. This

aids production of a predictive model of the target system’s behaviour to establish appropriate

corrective actions.

Chapter 2: Literature review

44

Process modelling includes work on meta-processes [104], which guide the observation and

evolution of processes. Indeed, ACT can be viewed as a meta-process of the target system: it can

coordinate adaptation of the target system’s configuration.

2.10.2.1 FEAST

“Feedback, Evolution And Software Technology” (FEAST) aims to investigate software evolution

by studying software processes as multi-loop, multi-level feedback systems. The FEAST hypothesis is

that software processes in the real world “evolve strong system dynamics and the global stability

tendency of other feedback systems. The resultant stabilisation effects are likely to constrain efforts at

process improvement” [75]. Localised change has little effect on global process behaviour because the

outer feedback loops have a more dominant effect. Significant improvement requires adjustment of

feedback loops and therefore an understanding of the process model.

A principle goal of FEAST is the “identification of the drivers of evolution and of the mechanisms

that control and direct it, to learn to control these mechanisms and to improve direction, planning and

management of product evolution to serve the best interests of the determining stakeholders” [76].

Lehman et al look at attributes of processes to capture patterns and trends of the software

development process. An example attribute is a count of the number of modules for different releases

of a software system, but this reveals little of the emergent properties of the complex software system

or development process. His analysis techniques therefore do not transfer readily from the field of

process modelling to software configuration.

2.10.3 Catastrophe theory

Catastrophe theory studies and classifies phenomena characterised by sudden shifts in behaviour

arising from small changes in circumstances; a catastrophe is a loss of stability in a dynamic system

[16]. It is possible that some complex software systems suffer from catastrophes, and that catastrophe

theory is pertinent to studying phase changes and non-determinism. Figure 2.6 shows a hypothetical

response surface containing a cusp catastrophe, which involves two factors. The vertical arrows show

sudden shifts in behaviour, and the two layers of surface show that a combination can exhibit multiple

behaviours depending on the previous state of the target system.

Chapter 2: Literature review

45

Figure 2.6: A cusp catastrophe

Catastrophe theory suggests that, when adapting a target system on-the-fly, the effects of

adaptations can depend on the order in which they are applied. However, ACT runs experiments

before the target system goes into use, setting it to a known state before every trial. Therefore, the

order in which combinations are tested should not influence behaviour.

The factors that form the dimensions of the response surface in Figure 2.6 could be uncontrolled

factors (i.e. aspects of the target system or conditions of use that are not set explicitly – see section

4.3.6 for further discussion). Variation in the levels of uncontrolled factors could cause a catastrophe,

resulting in a sudden and unexplained shift in the target system’s behaviour. This could cause high

variability in responses from replicated trials.

It is yet to be proven whether software systems do suffer from such catastrophes. Future research

topics include investigation of whether catastrophes do occur and incorporation of ideas from

catastrophe theory into work on configuring software systems.

2.11 Software testing

Running experiments to measure a sequence of combinations has much in common with software

testing. This section focuses on system tests, where the target system is tested as a whole. The aim of

software testing is to exercise a target system to identify differences between specification and

behaviour, to find faults or to show their absence with some level of confidence. This involves

running a sequence of test cases and observing the target system’s behaviour during each.

A test case specifies a target system configuration to test and the inputs to use (i.e. it specifies a

combination). The target system either passes or fails a test case – equivalent to a simple fitness

metric. Software testers generally assume that tests are deterministic (i.e. the same outcome is

Chapter 2: Literature review

46

obtained every time a test case is used). Exhaustive testing is infeasible due to the curse of

dimensionality, so a technique is required to decide on the set of test cases to use.

Choosing a set of test cases and testing each is analogous to ACT running an experiment for a

target system, where a search strategy attempts to find faults. Common practice in software testing is

to test the target system’s boundary and extreme conditions, which are unusual conditions near the

edges of the target system’s functionality. Figure 2.7 shows a hypothetical input space consisting of

factors X and Y, and indicates two boundary conditions (X=50 and X>Y) as dotted lines, which partition

the space into regions. Software faults can be divided into isolated faults and region faults [91]. The

former occur for only one specific combination of factor levels. For the latter, all combinations in a

region of the input space exhibit the fault. Region faults can be sub-divided as follows:

• single-mode faults, where a failure consistently occurs when a single factor has particular

levels (e.g. failure whenever X>50, which corresponds to the right-hand side of a boundary

condition in Figure 2.7);

• double-mode faults, where a failure consistently occurs when two factors have particular

pairs of levels (e.g. failure whenever X<Y and X<50);

• multi-mode faults, where a failure consistently occurs when multiple factors have particular

combinations of levels.

Figure 2.7: Test cases in a 2D input space

There should ideally be a test case in every region of the input space, to detect all region faults. To

decide on test cases, common practice is to test just above, below and on a boundary condition (e.g.

for X=50, if X must be an integer then set X to 49, 50 and 51). The crosses in Figure 2.7 show possible

Chapter 2: Literature review

47

test cases that leave two regions of the input space untested. When there are many factors (i.e. many

dimensions) and many boundary conditions, it is difficult to ensure that every region is tested.

Generation of test cases is related to Design Of Experiments (see section 2.8). Significant main

effects correspond to single-mode fault, and significant interaction effects correspond to double-mode

or multi-mode faults. Phadke proposes use of Taguchi Methods for generating test cases, which he

calls Robust Testing TM [91]. He describes a systematic approach for selecting combinations of

parameter values (i.e. factor levels), given a predefined set of factors and a small set of “interesting”

levels for each. Testing these combinations reveals all single-mode faults, all double-mode faults and

many multi-mode faults. This application of Taguchi Methods differs from its use in configuring

target systems: “quality” is simply pass or fail, and results are not used to predict the performance of

untested combinations.

Phadke’s approach has a balance requirement: for every pair of factors, every pair of values is

tested the same number of times. Cohen et al observe that the balance requirement is not necessary for

the generation of test cases. The weaker requirement that every pair is covered at least once [37] is

sufficient for detecting all single-mode and double-mode faults, and greatly reduces the number of

test cases required (it grows logarithmically with the number of factors, and quadratically with the

number of levels per factor). For example, an input space of 100 factors with two levels each requires

101 test cases using Robust Testing TM, while an unbalanced test set requires only 10 test cases. The

cost of removing the balance requirement is that the individual factor level, or combination of factors’

levels, that causes the failure is not identifiable due to aliasing. The balance requirement is therefore

important for target system tuning and evolution.

2.12 Summary

It has been argued by many researchers that software systems should be configurable to meet the

needs of all stakeholders under various conditions of use [69, 74, 83]. Identifying when the target

system should adapt requires observation (or prediction) of its conditions and/or behaviour.

Oreizy et al propose that software architecture should play a central role in planning and

coordinating the configuration process [86]. The technique involves maintaining at run-time an

explicit architectural model of the target system, which is described using an ADL. This provides a

Chapter 2: Literature review

48

context for reasoning about the target system: observations are compared to constraints on the target

system’s architecture and behaviour, which trigger adaptation of the target system’s configuration.

Deciding how to adapt the target system’s configuration requires (some) comprehension of its

behaviour. This can be acquired through expert intuition, analytical modelling, simulation or

empirical measurement.

Expert intuition, analytical modelling and simulation are infeasible for some complex software

systems due to emergent properties and non-deterministic behaviour. Although these techniques are

sometimes useful, a higher level of confidence is obtained with results from empirical measurement.

This requires observation mechanisms to measure the performance of the running target system, and

adaptation mechanisms to configure the target system and conditions of use when measuring a

selection of combinations during an experiment.

The experimenter has a number of options when running experiments, which relate to where the

experiments are run (e.g. laboratory or customer’s site), when they are run, and whether the target

system is treated as a black or white box. Adaptations made to the target system’s configuration can

be categorised as experimental adaptations or target adaptations: speculative adaptations where the

effects are not known in advance, or adaptations known to produce a desirable configuration.

Several projects have involved experimental adaptations and empirical measurement, prior to the

target system going into use:

• Vetland and Woodside produced an automated tool for running full factorial experiments

[103];

• IBM’s AutoTune used an artificial neural network that was trained by testing a set of

combinations [28];

• Diao et al tested combinations to produce a model of the target system, from which they

generated a controller using techniques from control theory [43];

• Courtois and Woodside tested a set of combinations to produce a model of the target system

using multivariate adaptive regression splines [39].

The above projects required that a large number of combinations be tested, which is infeasible for

some complex software systems. Design Of Experiments, in particular Taguchi Methods, provide

Chapter 2: Literature review

49

techniques for producing fractional factorial designs that involve only a small subset of the possible

combinations. These have been used by Phadke [91] for software testing, but the techniques have not

previously been applied to configuring software systems.

The statistical basis of Taguchi Methods surmounts a further shortfall in previous research: it

provides a statistically rigorous way to design and analyse experiments, such that the confidence level

in results can be estimated. It also provides a metric to measure the robustness of a combination,

given replicated measurements of its performance.

Chapter 3: ACT 1.0

50

3 ACT 1.0

This chapter describes the architecture and use of ACT 1.0, referred to as ACT throughout the

chapter. A glossary of the terminology used can be found in Appendix A.

3.1 Tool architecture

Figure 3.1 is a UML component diagram showing the main components of ACT and the

dependencies between them. They are described below, starting from the right side of the diagram.

Figure 3.1: Component diagram showing structure of ACT

The target system is the software system to be configured. The target wrapper component is

associated with the target system, and contains functions to control the target system during

experiments.

The target controller component dynamically loads the functions in the target wrapper and uses

them to interact with the target system. The target controller implements the IAPItoTarg interface,

which includes methods to run a trial and to configure the target system.

The master meta-strategy component dynamically binds to and uses search strategy components.

They implement the ISearchStrategy interface, which includes a method to get the next combination

to test and a method to record the results of a trial as feedback to the search strategy.

The coordinator is responsible for using the search strategy and target controller components to

run a series of trials. It binds to the master meta-strategy component and uses it as a proxy, through

the ISearchStrategy interface, to repeatedly get the next combination to test from a search strategy.

Chapter 3: ACT 1.0

51

It uses the target controller, through the IAPItoTarg interface, to adapt the target system and

conditions of use accordingly and to run trials.

The core of ACT consists of the coordinator, target controller and master meta-strategy. The

experimenter can choose from a library of search strategies included in the ACT distribution.

The input to ACT, denoted experiment description in Figure 3.1, is a description of:

• the resources available (used by search strategy components);

• the factors to vary, including the legal levels for each (used by search strategy components);

• the location of each function in the target wrapper, giving its name and the path of a

Dynamically Linked Library (used by the target controller).

3.2 Human roles

There are a number of human roles inherent in the use of ACT:

• The ACT implementer is the author of ACT; the programmer who produces the core of ACT.

• Search strategy implementers write new search strategy components for ACT. The ACT

implementer has written some generic search strategies. Third party developers could also

write search strategies, and target system administrators could write search strategies

tailored to a specific domain or target system.

• Target system developers are responsible for the target system’s implementation; they are

experts in the details of the target system’s operation.

• Use of the target system is the responsibility of the target system administrator who provides

suitable functions for configuring, running, observing and evaluating the behaviour of the

target system.

• The experimenter is the user of ACT and is thus responsible for configuring and invoking

ACT for a particular target system.

• The customer is the person who will use the target system in a real-world situation, for

whom the configuration process is performed.

Chapter 3: ACT 1.0

52

3.3 ACT set-up

To set up ACT for use with a target system, and to start an experiment, requires the following

steps:

• The target wrapper’s functions are written by the target system administrator.

• The experiment description is written by the experimenter.

• The experimenter executes ACT, supplying the following command line arguments:

• A file containing the experiment description.

• A file containing a description of the environment in which the experiment is run.

This is not used by ACT, but is recorded for reproducibility. Any format is suitable,

provided future experimenters can understand its contents and use the information

to recreate the test environment.

• The output directory in which to record the results.

3.4 Experiment description

The experiment description is encoded in XML format, and contains the following information

(see Appendix C for an example):

• It describes the factors that can be varied, divided into two sets: the configurable aspects of

the target system, and the usage aspects that comprise aspects of the conditions of use that

can be configured. For each factor, the experiment description gives:

• a name, used by ACT for meaningful output;

• the type of the levels to which the factor can be set, restricted to int, float and string

for simplicity;

• the set of legal levels to which the factor can be set (see below);

• the predicted length of time required by the adaptation function to change the

factor’s level, which may be used by the search strategy to guide the choice and

order of combinations to test;

Chapter 3: ACT 1.0

53

• the location of the adaptation function for changing this factor’s level, giving the

path of the DLL and the name of the function.

• It lists the names of the fitness metrics measured during each trial, used by ACT for

meaningful output when the results files are generated.

• It specifies the locations of the target wrapper’s functions, giving for each the path of the

DLL and the name of the function. Section 3.5 describes these functions.

• It lists the resources available.

• It gives miscellaneous information for ACT’s components, including:

• an upper limit on the time allowed per trial;

• the maximum number of consecutive attempts to test a combination before it is

abandoned;

• the search strategy component to use.

A set of legal levels for a factor can be described using either an enumeration or a range. An

enumeration consists of a list of levels. A range (for int or float levels) specifies a lower bound, an

upper bound, a legal granularity and an optional sample granularity. The legal granularity specifies

the acceptable step size for incrementing and decrementing the factor’s level. The sample granularity,

which should be a multiple of the legal granularity, suggests a step size to use when changing the

level. It recommends to the search strategy the number of levels at which to test the factor. It also

provides a mechanism for the experimenter to indicate the sensitivity of the factor (i.e. recommend a

small sample granularity if it is believed that a small change in level has a large effect, or vice versa).

3.5 Target wrapper

Interaction with the target system is through functions in the target wrapper, which consists of a

collection of dynamically linked libraries (DLLs). It contains the functions described below (see

Appendix D for an example):

• There is an adaptation function for each factor to be varied. Each adaptation function takes

as an argument the new level for the factor, represented as an int, float or string.

Chapter 3: ACT 1.0

54

• The validation function checks that a proposed target system configuration is legal (e.g. that

it does not violate target system invariants). It takes a description of a proposed target system

configuration (specifying a level for each factor) and returns true if the configuration is valid

and false otherwise.

• The run function runs and measures a single trial of the target system. It takes no arguments

and returns values for the fitness metrics in a result object, which implements the

IResultObj interface described below.

• The recovery function restores the target system to a stable state in the event of failure,

allowing the experiment to continue. It takes a description of the current configuration, to

which the target system should be restored.

• The new result object function instantiates and returns a new result object, given a set of

values for the fitness metrics. This function is required for the continuation of an interrupted

experiment, where previous trials’ results (stored in the output files) are re-instantiated as

result objects.

Result objects implement the IResultObj interface, shown by the C++ code in Figure 3.2. ACT

can use this interface to process results independently of the target system concerned. In a typical

implementation, the methods getNumFitnessMetrics and getFitnessMetric return the number of

fitness metrics and the value for the ith fitness metric respectively. The order of the fitness metrics is

assumed to be the same as in the experiment description’s list of fitness metrics. The ordering method

(the less-than operator) implements the aggregating function discussed in section 2.2. It compares

two result objects to determine which best meets the configuration goal: the greater the better. A

search strategy can use this to interpret the results of previous trials, to guide the choice of

combinations to test.

class IResultObj {
public:
 virtual bool operator<(const IResultObj& s) const = 0;
 virtual int getNumFitnessMetrics() const = 0;
 virtual Value *getFitnessMetric(int i) const = 0;
 virtual float eval() const = 0;
 virtual ~IResultObj() {};
};

Figure 3.2: The IResultObj interface

Chapter 3: ACT 1.0

55

3.6 Target controller

The target controller acts as an intermediary between the target wrapper and the other

components of ACT; it dynamically loads the functions in the target wrapper to interact with the

target system. The target controller implements the IAPItoTarg interface, shown in Figure 3.3. A

typical implementation is described below:

• The adaptTarg method sets the ith factor of the target system’s configurable aspects to the

level v. Factors are numbered (from zero) in the order in which they are listed in the

experiment description. The adaptTarg method calls the appropriate adaptation function in

the target wrapper.

• The adaptCond method sets the ith factor of the usage aspects to the level v by calling the

appropriate adaptation function in the target wrapper. The target controller thus maintains a

logical distinction between factors of the target system and factors of the conditions of use –

the search strategy decides how these factors are used when generating a sequence of

combinations to test.

• The validateConfig method checks that a target system configuration, conf, is valid,

returning true if it is and false otherwise. This maps directly to a call to the validation

function in the target wrapper.

• The recover method restores the target system to a stable state in the event of failure by

calling the recovery function in the target wrapper. The recover method returns a boolean

value to indicate whether the combination should be re-tested (true) or abandoned (false). It

returns false if the number of consecutive recovery attempts for the current combination is

equal to the maximum number of recovery attempts specified in the experiment description;

otherwise true is returned.

• The run method calls the run function in the target wrapper, and measures the duration of

the function call. It implements a timeout mechanism that terminates the run function if the

time taken exceeds a threshold value, defined in the experiment description. The run method

also catches any run-time exceptions thrown by the run function and verifies that a result

Chapter 3: ACT 1.0

56

object has been returned (i.e. result is not null). In the event of error, an exception is thrown

indicating failure. If the run is successful, the result object is returned.

class IAPItoTarg {
public:
 virtual void adaptTarg(const unsigned int i, const Value& v) = 0;
 virtual void adaptCond(const unsigned int i, const Value& v) = 0;
 virtual bool validateConfig(const FactorLevels& conf) = 0;
 virtual bool recover(const FactorLevels& conf) = 0;
 virtual IResultObj *run() = 0;
 virtual ~IAPItoTarg() {}
};

Figure 3.3: The IAPItoTarg interface

3.7 Search strategy

A search strategy component generates a sequence of combinations to test, potentially using

results from previous trials as feedback to guide its choice. How and why these combinations are

chosen by a search strategy is a policy issue, determined by the search strategy implementer. The

choice of search strategy is made by the experimenter.

A typical search strategy manages the resources available for the search (listed in the experiment

description), such as the total time available for testing. Search strategy components implement the

ISearchStrategy interface, shown in Figure 3.4. A typical implementation is described below:

• The getCombination method returns the target system configuration to test and the

conditions to use during the next trial. The result is an instance of the Combination class,

which contains a FactorLevels object describing the target system’s configuration and a

FactorLevels object describing the conditions of use (giving a level for each factor).

• The recordResult method takes as arguments a description of the combination tested during

a trial and the result object obtained. This provides a feedback loop, allowing the search

strategy to use the results of previous trials when deciding on the next combination.

• The isFinished method returns true if the search is complete and false otherwise.

Completion means that no further combinations are to be tested (e.g. no more time

available). When the search is complete, the result of subsequent calls to the

getCombination method is undefined.

Chapter 3: ACT 1.0

57

class ISearchStrategy {
public:
 virtual const Combination *getCombination() = 0;
 virtual void recordResult(const Combination *c, const IResultObj *results) = 0;
 virtual bool isFinished() = 0;
 virtual ~ISearchStrategy() {};
};

Figure 3.4: The ISearchStrategy interface

A meta-strategy component is a special search strategy that dynamically binds to and uses other

search strategy components; it can configure search strategy components and dynamically switch

between strategies. To configure a search strategy component requires strategy-specific knowledge.

The search strategy implementer has freedom to use any scheme desired for communication between

a meta-strategy and search strategy. For example, a search strategy could implement an interface that

exposes its configurable aspects, through which a suitable meta-strategy (i.e. one that knows about the

interface) could configure it.

The master meta-strategy component provides a consistent mechanism for the controller to query

search strategy components. It is also responsible for updating the database of result objects (see

section 3.9.1 for a description of this database).

The experimenter specifies in the experiment description a choice of search strategy by giving the

name of a DLL that contains a search strategy component (if absent, ACT uses the default grid

sampling strategy, described in chapter 4). At start-time, the master meta-strategy dynamically loads

this DLL and calls a function in it named instantiate, which returns an instance of the search

strategy component. The instantiate function takes as arguments a handle to the experiment

description and a handle to the database of result objects obtained to-date (which is initially empty).

The search strategy component loaded by the master meta-strategy can itself be a meta-strategy

that chooses and configures other search strategies for use.

3.8 Coordinator

The coordinator component manages the experiment: it runs a set of trials that test a sequence of

combinations. For the duration of the experiment, the coordinator binds to a master meta-strategy

component (referred to here as the search strategy) and to a target controller component, which it

accesses through the ISearchStrategy interface and IAPItoTarg interface respectively.

Chapter 3: ACT 1.0

58

The coordinator implements a simple loop, shown in Figure 3.5 to Figure 3.7 in pseudo-code and

simplified by removing error-handling.

Figure 3.5 shows the main control loop that repeats until the search strategy reports that the

experiment is finished. The coordinator queries the search strategy to get the next combination to test

(line 3), then checks whether the target system configuration is valid by querying the target controller

(line 4). If the configuration is valid, the coordinator configures the target system and conditions of

use (line 5, shown in Figure 3.6), and then runs the target system to measure its behaviour (line 6,

shown in Figure 3.7). Otherwise, an error result object is generated (line 8). The result of the trial is

then fed back to the search strategy (line 10).

 /**
 * Run trials for a variety of combinations.
 */
1 void Coordinator::runExperiment() {
2 while(not searchStrategy.isFinished()) {
3 next combination = searchStrategy.getCombination()
4 if(targetController.validateConfig(next target system configuration)) {
5 changeCombination(next combination)
6 result = runTrial()
7 } else {
8 result = new error result("Invalid configuration")
9 }
10 searchStrategy.recordResult(result)
11 }
12 }

Figure 3.5: Main control loop

Figure 3.6 shows how the coordinator configures the target system and conditions of use. Each

factor whose level is to change (compared to its level under the current combination) is set by calling

the adaptCond or adaptTarg method of the target controller. This is done in two loops: first for the

conditions of use (lines 14 to 18), and second for the configurable aspects of the target system (lines

19 to 23).

 /**
 * Set the target system configuration and conditions of use.
 */
13 void Controller::changeCombination(const Combination *info) {
14 for(each factor of conditions of use) {
15 if(new level != current level) {
16 targetController.adaptCond(factor’s index, level)
17 }
18 }
19 for(each factor of target system) {
20 if(new level != current level) {
21 targetController.adaptTarg(factor’s index, level)
22 }
23 }
24 }

Figure 3.6: Changing the target system’s configuration and conditions of use

Chapter 3: ACT 1.0

59

Figure 3.7 shows how the coordinator uses the target controller to empirically measure a

combination’s behaviour. The coordinator repeatedly attempts to run the target system by calling the

run method of the target controller (line 29). In the event of run’s failure (caught at line 31), the

coordinator calls the target controller’s recover method. This loop repeats until either run is

successful or recover returns false. The latter indicates that further runs of the target system with that

combination should not be attempted. The result of the trial (returned on line 36) is either the result

object returned by run or an error result object.

 /**
 * Run a trial for the current combination.
 */
25 IResultObj Controller::runTrial() {
26 success = false
27 do {
28 try {
29 result = targetController.run()
30 success = true
31 } catch(Exception e) {
32 tryAgain = targetController.recover(current target system configuration)
33 result = new error result("Run failed")
34 }
35 } while(not success and tryAgain);
36 return result
37 }

Figure 3.7: Running a trial

3.9 Recording and reporting results

Results of the trials are stored in a transient database in main memory, and are written

incrementally to a collection of XML output files for stable storage.

3.9.1 Results database

A results database contains the set of results in main memory. Each record of the database

corresponds to a trial, storing the combination tested and the result object obtained. Search strategies

can use the results to guide their subsequent choice of combinations to test. The results database is

created incrementally as the experiment progresses. It can also be recreated from a set of XML output

files.

The exportTabSeparated method of the results database outputs the database’s results to a tab-

separated text file, suitable for data analysis in a spreadsheet or statistics application (e.g. Minitab TM).

Each record of the database is output on a single line, giving a level for each factor and a value for

each fitness metric.

Chapter 3: ACT 1.0

60

3.9.2 Output files

Results are written incrementally to a collection of XML output files for stable storage, located in

a directory specified as a command line argument to ACT. The files passed as input to ACT are also

stored to aid reproducibility. The following files are generated:

• The file experimentDescription.xml contains the experiment description, supplied as input

to ACT.

• The file envDescription.txt contains a description of the environment in which the

experiment was conducted, supplied as input to ACT.

• The file configs.xml stores the target system configurations tested. A configuration is

described by giving a level for each factor of the target system.

• The file conditions.xml stores the conditions used during the trials. A condition of use is

described by giving a level for each factor of the environment and workload.

• The file resultObjs.xml stores the result objects from the trials. A result object is described

by giving a value for each of the fitness metrics.

• The file links.xml contains for each trial a reference to the target system configuration, a

condition of use, and a result object. These references are represented using xlinks (i.e. multi-

directional links).

• The file results.xml contains references to the files described above, giving a single entry

point from which to parse the results.

3.10 Running an experiment

The UML activity diagram in Figure 3.8 shows the activities involved in using ACT to run an

experiment, starting from the initial invocation of ACT.

Chapter 3: ACT 1.0

61

Figure 3.8: Activity diagram of the configuration process

During the initialise activity, ACT dynamically loads the functions in the target wrapper. The

master meta-strategy component binds to a search strategy component, which can itself be a meta-

strategy component.

During the control search activity, the meta-strategy component (if any) chooses, binds to and

configures an appropriate search strategy for use. This may be guided by feedback information (i.e.

results from previous trials) and feed-forward information (e.g. observations of conditions of use and

resources available). For example, the number of replications may depend on the variability of

observed behaviour in previous trials and the time available for the experiment.

During the generate combination activity, the search strategy currently in use identifies a

configuration and condition to use for the next trial. During the set combination activity, the target

controller uses the adaptation functions in the target wrapper to adapt the target system’s

configuration and conditions of use.

During the run target activity, ACT runs the target system by invoking the target wrapper’s run

function. This sets the target system to a consistent state and runs it, observing its behaviour and

returning a result object. Failure is detected by monitoring run-time errors, and by a timeout

mechanism that puts an upper bound on the length of time allowed per trial.

The disturbance compensation activity is optional and can be done in parallel with running the

target system. It involves measurement of uncontrolled factors (e.g. network load) to detect any

disturbance caused by external sources.

Chapter 3: ACT 1.0

62

If the trial is successful, ACT performs the record activity to feed back the result to the meta-

strategy and search strategy. The result is added to the results database and appended to the XML

output files. If ACT detects a failure, it performs the recover activity to invoke the target wrapper’s

recovery function to restore the system to a stable state and optionally to collect diagnostic

information. If the recover activity results in a failure condition, ACT terminates. Otherwise, there is

a decision to either try again to test the combination (with an upper bound on the number of

consecutive attempts) or to continue. For the latter, the record activity involves recording failure.

The search strategy is then queried to decide whether the experiment is not finished or finished.

The experiment continues, testing further combinations, until the finished condition is met.

The last activity, inform experimenter, involves presenting the results to the experimenter.

Changes made up until this point are experimental adaptations. With guidance from the experimenter,

the results could be used to estimate which configuration would best meet the configuration goal.

Adapting the target system to this configuration would be a target adaptation.

Target system administrators could also use results to guide target system usage, to prevent or

encourage particular behaviour. Target system developers could use experiment results to guide

development of future versions. For example, they could add facilities for making on-the-fly

observations that trigger adaptation to a configuration believed to behave well under current or

predicted conditions. ACT could then try further experimental adaptations: to validate the new

configuration, cope with new conditions of use and meet subsequent configuration goals.

The methodology described for configuring a target system is recursive: it can be applied to

various levels of a target system, configuration goal, and ACT itself:

• A “systems of systems” can be configured by configuring individual sub-systems, and by

changing the architecture of the target system as a whole.

• A configuration goal can be met by first satisfying a sub-goal, e.g. determine the behaviour

of a set of configurations, and then using the result of the sub-goal to attain the primary goal.

• ACT itself can be configured, to improve its use with a given target system, by using another

instance of ACT. Configuring ACT involves choosing and configuring a search strategy

component.

Chapter 3: ACT 1.0

63

3.11 Conclusions

ACT 1.0, written in C++, provides a generic infrastructure for running automated experiments. It

is generic in that it can explore the behaviour of a wide variety of target systems using a variety of

search strategies. This is achieved by encapsulating the target-specific code behind a set of functions

in the target wrapper and by implementing search strategy components as pluggable DLLs. This

allows ACT to be used with any target system for which appropriate functions can be written and

allows new search strategies to be developed and easily bound to ACT 1.0.

The core of ACT 1.0 is kept simple by:

• delegating to a search strategy component the potentially complicated task of choosing

combinations to test;

• assuming that experiments are always run before the target system goes into use;

• delegating to the target wrapper’s run function the task of running and measuring the target

system, which encapsulates the probes and gauges used to measure and evaluate

performance.

Section 7.3 discusses future work on a new version of ACT, which will support on-the-fly

adaptation of the target system’s configuration. It will also make explicit the probe and gauge

components, and will include advice components that will encode expert knowledge of the target

system’s behaviour.

Chapter 4: Exploring target system behaviour

64

4 Exploring target system behaviour

Exploring a target system’s behaviour involves testing a selection of configurations under a

variety of conditions. Deciding on the sequence of combinations to test is the task of a search

strategy. There are many possible search strategies that aim to:

• find a configuration that meets the configuration goal under a particular condition;

• explore the target system’s behaviour to find characteristics of interest;

• help construct a predictive model of the target system that can estimate behaviour for

untested configurations under given conditions.

These aims are realisable for at least some target systems:

• Some combinations may be found that meet the configuration goal better than the default –

an indication of success. This is true even for simple search strategies, such as randomly

choosing combinations to test or using grid sampling, where the input space is divided into a

grid and each point on the grid is tested in turn (forming a full factorial design).

• Examples of identifiable trends and interesting features on the response surface include:

• conditions that produce highly variable (or highly consistent) behaviour, or that

cause failure;

• points in the input space at which continuing to increase/decrease a factor’s level

starts having the opposite effect on behaviour.

• Experiments designed with statistical rigour, such as when using Taguchi Methods, can

produce predictive models of a target system’s behaviour.

4.1 Meta-strategies

A meta-strategy is a special kind of search strategy that dynamically binds to and uses other search

strategy components. Search strategies may be thought of as mechanisms for deciding on a sequence

of combinations to test, while a meta-strategy provides the policy for choosing and configuring search

strategies for use. Policy decisions can be based on the information desired from the experiment,

resources available, results obtained to-date and knowledge of the target system’s behaviour.

Chapter 4: Exploring target system behaviour

65

Use of a meta-strategy makes the selection and tailoring of a search strategy explicit, compared to

use of autonomous search strategies that are self-configuring. The amount of possible “tailoring”

depends on the particular search strategy.

4.2 Use of feedback

Some search strategies use feedback from previous trials to guide the choice of combinations to

test. Examples include the use of iterative improvement algorithms [92], which start with some

combination and move around the response surface in search of the optimal. These are standard

algorithms from the field of artificial intelligence, but their use in applying experimental adaptations

to configure complex software systems is novel.

Gradient descent8 is an iterative improvement algorithm that finds a path from an initial

configuration to a local minimum by following a “downward” slope. Testing the neighbouring

combinations in each direction allows the gradient of the slopes to be calculated, and the neighbour in

the steepest direction to be chosen each time. Alternatively, neighbouring combinations may be tested

in turn until a better combination is found, prompting a move to this point without need to test the

other neighbours (this still guarantees a “downward” motion). Gradient descent suffers from three

drawbacks relating to the shape of the response surface:

• There is a risk of being trapped at a local minimum (as opposed to the global minimum)

because the algorithm terminates when a combination performs better than all neighbouring

combinations.

• The search strategy will conduct a random walk when on a plateau, which is a region of the

response surface that is essentially flat. It will take a long time to leave the plateaux, or will

terminate at a minimum on the plateaux.

• A valley with steeply sloping sides and a gently sloping base can be hard to follow. It is easy

to descend the sides of the valley but, if there is no series of adjacent combinations that

follows the valley floor, the search can oscillate from side to side and make little progress.

8 This description assumes that the response variable is to be minimised; the algorithm is called hill

climbing when the response is to be maximised.

Chapter 4: Exploring target system behaviour

66

Simulated annealing is an iterative improvement algorithm that can avoid the drawbacks listed

above, and that can be used in combination with gradient descent. The simulated annealing algorithm

operates as follows: given an initial combination, a second combination is generated within the

vicinity of the first by randomly adjusting the levels of the factors. If this second combination gives

improved behaviour, the search moves to this new point in the space. Otherwise, the probability that

the search will move to the new point is calculated using the “badness” of the move and the

temperature of the search. Temperature is a measure of the “energy” of the search, and decreases as

the search progresses: high temperatures lead to larger changes in combination and make “bad”

moves more likely. This allows escape from local minima early in the search as it can move to a

worse point while looking for the global minimum. As the temperature nears zero, the choice of

combination stabilises at a minimum because only good moves are made.

The starting point for an iterative improvement algorithm’s search could be a random point in the

input space, a combination suggested by the experimenter (i.e. their informed guess) or the best found

when using another search strategy. The last is an example of a simple meta-strategy, where the

search strategy used is switched during the experiment.

Some search strategies use feed-forward information to guide the choice of combinations to test.

For example, the cost of adapting the target system’s configuration may influence the order in which

combinations are tested, e.g. cheap adaptations should be made more often than expensive

adaptations.

4.3 Design Of Experiments (DOE)

Some search strategies use a structured statistical approach for the design of experiments and

analysis of results. Using notation from the field of DOE, a design matrix depicts the combinations to

test during an experiment. Each row represents a combination and each column corresponds to a

factor. The numbers in the matrix specify the coded levels, which can be mapped to factors’ uncoded

levels. Any set of combinations can be depicted. For example, Figure 4.1 depicts a full factorial

design for three factors, each with two levels. ACT automatically runs experiments, taking as input a

design matrix and the values to which the coded levels correspond.

Chapter 4: Exploring target system behaviour

67

 Factor A Factor B Factor C
1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1

Combinations

8 2 2 2

Figure 4.1: Design matrix

Taguchi Methods standardise the statistical techniques of DOE, and provide a method for creating

fractional factorial designs using orthogonal arrays [101]. Experiments that use these designs can

identify the effects of a large number of factors, and selected interactions, by testing only a small

number of combinations9.

The experiments are conducted in two phases. The first phase involves running a fractional

factorial experiment to produce a mathematical model of the system’s behaviour for the region of the

response surface investigated10. The model is used to predict a combination near the optimal in the

investigated region. The second phase tests combinations in a small region around the predicted

optimal to produce a more accurate model of the response surface in that region. This model is used to

more accurately predict the optimal combination.

According to Taguchi, good performance implies robustness: consistently high performance with

low variability, even when uncontrolled factors vary. The levels of uncontrolled factors (of the system

and its conditions of use) are not set explicitly for cost or technical reasons. For example, the disk

access speed is hard to control as it depends on the ordering of read requests and initial position of the

read heads. By replicating trials, different values for the uncontrolled factors are likely to be

encountered. This is important for identifying robust configurations of a target system: robust implies

that the target system will perform well irrespective of the values of uncontrolled factors.

The main benefit of Taguchi Methods is a reduction in the number of combinations to test

compared to full factorial designs. For example, 16 factors with two levels for each gives 216 (i.e.

9 The combination of Taguchi Methods and ACT yields the semi-automated TACT process.

10 The validity of such models is discussed in section 6.2.

Chapter 4: Exploring target system behaviour

68

65,536) possible combinations. A fractional factorial design, produced using Taguchi Methods,

requires the testing of only 32 combinations to determine the effect of each factor and of 15 two-

factor interactions. A second benefit is the ability to identify robust target system configurations.

Taguchi Methods make several assumptions about the target system11:

• The experimenter knows which factors to vary, appropriate levels to test for each, and which

interactions are of interest.

• Interaction effects involving three or more factors are seldom significant.

• Main effects are more significant than interaction effects: if the effect of a factor is aliased

with the effect of a two-factor interaction, the observed effect is wholly credited to the factor.

• If an interaction effect, say between factors A and B, is not investigated, the effect of A is the

same for all levels of B, and vice versa.

• A model produced from the fractional factorial experiment will accurately predict a

combination that is near the optimal in the tested region of the response surface.

4.3.1 First phase experiment

Taguchi’s technique for creating fractional factorial designs is called parameter design. It can be

done either manually or with the assistance of a statistics package such as Minitab TM. The steps are:

• choose factors to vary and the levels for each, and choose interactions to investigate;

• choose an appropriate orthogonal array;

• allocate factors to the columns of the orthogonal array to produce a design matrix.

The experimenter first chooses the set of factors to vary and the levels to test for each. Factors of

the target system should be chosen that are believed to have a significant influence on behaviour. The

experimenter may also choose factors of the workload and environment that vary during normal

customer usage but that can be controlled explicitly during the experiment12. A selection of

11 The validity of these assumptions for complex software systems is discussed in section 6.2.

12 These are referred to as noise factors, discussed in section 4.3.6.

Chapter 4: Exploring target system behaviour

69

interaction effects can be investigated, in particular two-factor interactions chosen by the

experimenter.

The number of levels per factor should be restricted to at most four: more than four levels make

experiment designs complicated due to the orthogonal arrays available [94]. Standard practice is to

choose a low, medium and high level [107]. Expert knowledge can help decide on the range of levels

(i.e. the region of the response surface to investigate) and on particular levels of interest.

An orthogonal array (OA) is a special kind of matrix, which stems from Euler’s Latin squares.

Figure 4.2 shows the L8(27) orthogonal array, meaning it has eight rows and has seven columns that

each have two coded levels. OAs have the following properties:

• Every pair of columns includes every combination of coded levels an equal number of times.

For example, columns C1 and C2 in Figure 4.2 have the pairs: 1,1; 1,1; 1,2; 1,2; 2,1; 2,1; 2,2

and 2,2. This is important for statistical analysis: the effect of a factor is calculated using the

target system’s response for different levels of the factor, as the average of its effect when

the other factors are set to each of their levels.

• Some columns represent (i.e. are aliased with) the interactions between other columns. For

example, column C3 is aliased with the interaction between columns C1 and C2: it has a “1”

when columns C1 and C2 have the same coded level and a “2” when they differ. If factors A

and B are allocated to columns C1 and C2, then the two-factor interaction between A and B,

denoted AB, is represented by column C3. If factor C is allocated to column C3, then the

effect of AB is aliased with the effect of factor C: the effects of AB and C cannot be separated

during statistical analysis of the results. If no factor is allocated to column C3, then the effect

of AB is clear [107]: it is not aliased with the effect of any other factor or two-factor

interaction.

 C1 C2 C3 C4 C5 C6 C7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Figure 4.2: The L8(27) orthogonal array

Chapter 4: Exploring target system behaviour

70

The experimenter can choose an appropriate OA from published tabulated sets of OAs [101]. The

choice depends on the number of factors and number of levels for each, and the interactions of

interest. The OA must have at least as many columns as there are factors and interactions of interest:

each factor is allocated to a column, and each interaction of interest should be allocated to an

appropriate column so that its effect is clear13.

Linear graphs show the aliasing among columns in an OA, and may be used when deciding on the

allocation of factors to columns. Each vertex and edge in a linear graph corresponds to a column of

the OA. Each edge shows that the corresponding column is aliased with the two-factor interaction for

the columns corresponding to the connected vertices. There are many possible linear graphs for each

OA. For example, both linear graphs in Figure 4.3 represent the OA in Figure 4.2. The first graph

shows that column C3 is aliased with the interaction between C1 and C2, that C5 is aliased with the

interaction between C1 and C4, and that C6 is aliased with the interaction between C2 and C4.

Figure 4.3: Linear graphs

A linear graph of the OA should be chosen that allows an allocation of factors to columns such

that all interesting interaction effects are clear. If no linear graph is suitable, a larger OA is required.

Consider an example experiment with five factors (A, B, C, D and E) that each have two levels,

and where the interaction effect AB is of interest. This requires an OA with at least six columns (for

the five factors and the one two-factor interaction) so the L8(27) orthogonal array in Figure 4.2 may be

suitable. The experimenter should allocate factors A and B to a connected pair of vertices, and allocate

no factor to the connecting edge. As shown in Figure 4.4, the experimenter could use the first graph of

Figure 4.3 by allocating factor A to column C1, factor B to column C2 and leaving column C3 unused.

13 Minitab TM automates the process of allocating factors to columns of an OA. To aid understanding

of Taguchi Methods, it is described how this can be done by hand.

Chapter 4: Exploring target system behaviour

71

If factor C is allocated to column C4, factor D to column C7, and factor E to C6 (i.e. leaving C5

unused), then the two-factor interaction AC will also be clear. The design matrix, indicating the

combinations to test for this experiment, is shown in Figure 4.5.

Figure 4.4: Linear graph showing allocation of factors

 Factor A Factor B Factor C Factor D Factor E
1 1 1 1 1 1
2 1 1 2 2 2
3 1 2 1 2 2
4 1 2 2 1 1
5 2 1 1 2 1
6 2 1 2 1 2
7 2 2 1 1 2
8 2 2 2 2 1

Figure 4.5: Design matrix

It is important to run the trials with combinations in a random order. When replicating trials, every

combination should be tested once, then every combination should be tested again in a different order,

and so on. Randomising the order prevents testing consecutively all combinations with a factor at a

particular level. This reduces the impact on the experiment’s results caused by variation in

uncontrolled factors that affect a subset of the trials. For example, it counters the problem of

performance degradation over time due to a failing network card that drops an increasing number of

packets. If factor A was set to a low level for the first half of the trials and a high level for the second

half, the effect of the failing network card could be credited to changing factor A’s level.

4.3.2 Signal to noise ratio (SNR)

Comparing target system configurations for a given condition is simple if there is a single metric

that summarises the quality of each combination, given a set of responses from replicated trials. Here,

quality is measured in terms of robustness using the signal to noise ratio (SNR) metric [101]. This has

the following properties:

• Consistently high responses give a high overall score.

Chapter 4: Exploring target system behaviour

72

• An exceptionally high response, which is much higher than the other replicated responses,

will only increase the overall score slightly. In contrast, such a response will greatly affect

the mean.

• Low responses, which indicate that the configuration goal was not met in those trials, are

heavily punished to give a low overall score.

SNR is based on a loss function that approximates the loss (i.e. cost) resulting from the target

system failing to meet the configuration goal. Figure 4.6 shows a suggested loss function14 for the

case of maximising the response variable, where y is an observed response [101]. This loss function is

used in the SNR formula, shown in Figure 4.7, which is based on the average of the loss for a set of

responses. In more detail: n denotes the number of responses and yi denotes the ith response. By

summing 1/yi
2, even just one low value of yi will give a much larger total, heavily punishing poor

responses. In contrast, a large value of yi only increases the total a small amount. The result is negated

so that optimising robustness is a problem of maximising SNR.

Figure 4.6: Loss due to a low value

Figure 4.7: Signal to noise ratio15

14 This is the loss function suggested by Taguchi. Other loss functions could be used instead.

15 The purpose of taking the logarithm is to make the SNR approximately normally distributed. It uses

base 10, and multiplies by 10, because that is common practice in the field of engineering – it makes

no difference to the rank ordering of combinations.

Chapter 4: Exploring target system behaviour

73

4.3.3 Techniques for analysing results

“He uses statistics as a drunken man uses lamp-posts – for support rather than

for illumination.”

Andrew Lang

Running an experiment generates a set of data, where each data point is the observed value of the

response variable for a combination. When SNR is used to combine replicated observations of a

combination’s response, each data point is an SNR value. Subsequent trials that produce additional

observations of a combination’s response can be combined to give a second SNR value for that

combination (i.e. a second data point), and so on. Statistical analysis can use the data set to produce a

predictive model of the target system.

Figure 4.8, taken from [98], shows the input space for a hypothetical experiment, and is used in

the following descriptions of main effects and interaction effects. There are three factors (A, B and C)

represented by the x, y and z-axes respectively. Each factor has two levels (0 and 1), shown in bold.

The observed value of the response variable for each of the 8 (i.e. 23) combinations is marked beside

the corresponding point16, forming the corners of a cube.

Figure 4.8: Example input space and results

16 The measured responses could be plotted on a response surface in a fourth dimension, but this is

hard to depict graphically.

Chapter 4: Exploring target system behaviour

74

4.3.3.1 Main effects

The main effect of a factor is the effect on the response variable’s value caused by adjusting the

level of that factor in isolation. If the factor’s level has an effect on the response variable’s value, the

main effect is significant. Multiple linear regression, described in section 4.3.3.3, provides a technique

for calculating the magnitude of the effect.

The main effect can be investigated by comparing observations of the response variable at

different factor levels. Consider levels 0 and 1 of factor A in Figure 4.8: observations of the response

variable’s value for each are {45,52,54,60} and {68,72,80,83} respectively, and the means are 52.75

and 75.75. This suggests that increasing factor A’s level gives an improvement in the value of the

response variable.

Main effects plots can be used to depict main effects. Figure 4.9 shows the main effects for Figure

4.8. Each box represents the main effect of a factor. Intuitively, the steeper the line the bigger the

main effect. For example, the line in the left box suggests that the main effect of factor A is big. In

contrast, the line in the middle box suggests that the main effect of factor B is small.

Figure 4.9: Main effects plot

A population consists of the set of all possible values of the response variable, for combinations

with a given factor at a particular level. The main effect of a factor is significant if two populations,

for two different levels of the factor, have different means17. Each observation of the response

variable’s value is a sample from one of these populations. The combinations tested may be a subset

17 The difference in the population’s means could be due to an interaction effect. Multiple linear

regression provides a technique to separate main effects and interaction effects in analysis of results.

Chapter 4: Exploring target system behaviour

75

of the possible combinations at that level of the factor. For example, Figure 4.10 shows that there are

many legal levels for factors B and C, each point on the grid being a possible combination. In

addition, measuring a combination a second time may give a different value of the response variable.

Therefore, the mean of a set of samples may not be the same as the mean of the population from

which they were drawn. When comparing the means of two populations, it is insufficient to simply

compare the means of the samples.

Figure 4.10: Input space showing legal combinations for factor A at levels 0 and 1

Determining whether a main effect is significant requires testing whether the means of the

populations are the same (the null hypothesis) or different (the alternative hypothesis). This is

commonly done at the 5% level (i.e. 95% confidence in the effect being significant when rejecting the

null hypothesis).

ANOVA (analysis of variance) can be used to test if two groups of samples come from

populations with different means. If the variation between the two groups of samples is sufficiently

greater than the variation within each group, it suggests that the populations have different means.

ANOVA requires the populations to be normally distributed with equal standard deviation. If the

assumptions are violated, or if the group sizes are too small, the conclusions of the test may be

incorrect18.

18 Tests to validate that the assumptions hold include the Anderson-Darling test [24] to check for

normal distribution, and Levene’s test [13] to check whether the standard deviations are equal.

Chapter 4: Exploring target system behaviour

76

Consider levels 0 and 1 of factor A, which give two groups of samples:{45,52,54,60} and

{68,72,80,83}. ANOVA gives a p-value of 0.003, so the null hypothesis is rejected at the 5% level

(because 0.003 < 0.05) to conclude that factor A’s effect on the response variable is significant.

4.3.3.2 Interaction effects

An interaction effect between factors, say A and B (denoted AB), is the effect that factor A’s level

has on factor B’s main effect, and vice versa. If factor B’s effect on the response variable depends on

the level of factor A, the interaction effect AB is significant. Multiple linear regression, described in

section 4.3.3.3.1, provides a technique for calculating the magnitude of the effect.

Interaction plots can be used to depict two-factor interaction effects. Figure 4.11 shows the

interaction plots for Figure 4.8. Each box represents a two-factor interaction, and contains a set of

lines that show the effect of varying one factor when the second factor is fixed at a given level.

Intuitively, the less parallel the lines the bigger the interaction effect. For example, the top-middle box

shows the effect of varying factor B when factor A is fixed at levels 0 and 1. These lines are not

parallel, which suggests that the effect of AB is big. Logically, the effect of BA (middle-left box) is

also big. In contrast, the effect of factor A depends little on the level of factor C, which suggests that

the effect of AC is small.

Figure 4.11: Interaction effects plot

Chapter 4: Exploring target system behaviour

77

Interaction effects can be described in terms of the shape of the response surface. An interaction

effect is a relationship between cross-sections of the response surface19, obtained by fixing a given

factor at various levels. A big interaction effect causes the slope of the cross-sections to differ. This is

illustrated by the response surface in Figure 4.12 for a hypothetical experiment: the surface’s slope is

different when A=0 from when A=1.

Figure 4.12: Example interaction effect

Consider the interaction effect between factors A and B in Figure 4.8. It can be investigated by

comparing the response surface at the left four points (A=0) and the right four points (A=1). When

A=0, changing B from 0 to 1 decreases the response variable’s value by either 8 or 9 (depending on

the level of C). When A=1, changing B from 0 to 1 increases the response variable’s value by 11 or

12, significantly different from when A=0. This suggests that there is a significant two-factor

interaction between A and B.

4.3.3.3 Modelling

Data from experiments can be used to develop and/or calibrate a model of the target system’s

behaviour. The purpose of a model is to predict the behaviour of untested combinations. Modelling

involves determining a curve (i.e. a function) that fits the data. Its goodness of fit can be measured by

19 In an n-dimensional input space, cross-sections are n-dimensional surfaces where the n dimensions

consist of n-1 factors plus the response variable.

Chapter 4: Exploring target system behaviour

78

the closeness of fit to the data set, and the accuracy for predicting the response of untested

combinations.

Simple models assume that relationships between factors and the response variable are simple

(e.g. linear or quadratic). Use of a complex model (e.g. a high-degree polynomial) can give a closer fit

to the data set but can result in over-fitting, which decreases the accuracy of predictions. It is therefore

not always desirable to have a perfect fit to the data set. Consider the hypothetical example in Figure

4.13. The dotted line is a polynomial of order seven, which gives a close fit to the data set. It predicts

that the minimum value of the response variable is -4.2 (at A=1.3), but there is no evidence to support

this prediction. Use of a simple model can avoid over-fitting. It is arguably sensible20 to use a simple

model when such a model gives an approximate fit to the data set or when the data set is small (e.g.

when testing only two or three levels per factor).

Figure 4.13: Example of over-fitting

There are a number of techniques for producing a model of a software system, given observations

of the response variable for a selection of combinations. Multiple linear regression is useful when

relationships between factors and the response variable are simple, or are assumed to be simple such

as when the data set is small. The case study in section 5.2.4 uses multiple linear regression. Other

20 This follows the principle of Occam’s razor, which states that, if two theories explain something

equally well, the simpler of the two is better.

Chapter 4: Exploring target system behaviour

79

modelling techniques include splines and artificial neural networks, which are useful for modelling

discontinuous and non-linear response surfaces when the data set is large.

4.3.3.3.1 Multiple linear regression

Multiple linear regression [47, 64] is a statistical technique for fitting a linear model to a data set.

Figure 4.14 shows the general form of the model, where: y is the value of the response variable, x1, x2,

…, xn are variables representing the levels of the factors, and β0, β1, …, βn are the coefficients. Each

term gives an estimate of the effect of a factor or interaction, the coefficient indicating the magnitude

of that effect. Interactions are modelled by terms such as β12x1x2.

Figure 4.14: Multiple linear regression model

The errors in the model’s predictions are called the residuals (i.e. the differences between

predicted and observed values of the response variable). Multiple measurements of the response

variable’s value for a combination can give different residuals, as illustrated in Figure 4.14 for a

hypothetical system. The line shows the model, while the crosses show measurements. The residual

for a measurement is the distance from the corresponding cross to the line. Observations for a

particular combination are drawn from the population of all possible values of the response variable

for that combination. It is assumed that the residuals of each population are normally distributed about

zero and that all populations have the same standard deviation. This implies that the model is as

accurate for predicting large values as for small values in terms of absolute error.

Level of Factor A

R
es

po
ns

e
va

ria
bl

e

Figure 4.15: Example residuals

Chapter 4: Exploring target system behaviour

80

Effects of interactions that are not clear, due to aliasing, cannot be inferred during analysis.

Multiple linear regression should be used to estimate only those effects explicitly investigated, and to

estimate the confidence in the significance of these effects.

Terms for which there is no statistical evidence that their effects are significant should be removed

from the model. This helps to prevent over-fitting. Backward elimination [47] can be used: each non-

significant term is removed in turn, starting with interaction effects. A new regression model is fitted

after removing each term, and this cycle repeats until the model only contains terms with significant

effects.

An estimate of the significance of an effect can be a false positive or a false negative. The

consequence of a false positive is that the magnitude of a non-significant effect is over-estimated and

is left in the regression model. The probability of a “significant” effect being a false positive is 5%

when working at the 5% level. The consequence of a false negative is that the magnitude of a

significant effect is underestimated and is removed from the regression model. The probability of a

false negative can be reduced by increasing the size of the data set or by making false positives more

likely.

Linear regression models are used to predict which combination maximises the response variable.

The assumptions of multiple linear regression include the following (their validity is discussed in

section 6.2):

• The response surface is linear. Transformations can be applied if necessary to model some

non-linearities (e.g. a quadratic term β11x1
2 is the square of the first factor’s level). However,

multiple linear regression will not work well if the response surface is either discontinuous or

is a polynomial of a high degree.

• If an interaction effect, say AB, is not modelled, the effect of factor A is the same for all

levels of factor B.

4.3.3.3.2 Parametric representation

Parametric representations, such as splines, are useful for modelling non-linear and discontinuous

response surfaces. They are well suited to producing models that give a close fit to a large dataset. A

parametric representation of an n-dimensional surface uses a piecewise polynomial surface (i.e. a

Chapter 4: Exploring target system behaviour

81

surface made up of multiple segments). Each segment is defined using n polynomial functions in a

parameter t. The most common functions used are polynomials of order three, which are of the form:

x(t) = axt3 + bxt2 + cxt + dx

y(t) = ayt3 + byt2 + cyt + dy

z(t) = azt3 + bzt2 + czt + dz 0 ≤ t ≤ 1

…

where x, y, z, etc are dimensions of the space containing the surface. The value of t is never

plotted: each value of t gives a point in each segment of the surface. Informally, one can think of t as a

measure of time: for the case of a 2D curve, it is a measure of time as n pens move to draw the n

segments of the line.

The choice of coefficients (i.e. values for a, b, c and d) for each segment is defined by constraints

on control points (i.e. data points that the surface passes through or near to), endpoints (i.e. edges of a

segment, which are special cases of control points) and the smoothness of joins between segments.

Each cubic surface has four coefficients per dimension, allowing four constraints to be met for each

dimension.

Splines provide a technique for choosing values for the coefficients. Natural cubic splines produce

a model that interpolates (i.e. passes through) all data points and for which the joins between

segments are smooth to the second derivative. That is, adjacent segments meet, have the same

gradient at the point where they meet, and the gradient of each segment is changing at the same rate

when they meet. Many types of splines are discussed in [52].

4.3.3.3.3 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines is a non-parametric technique, which does not assume

that the data complies with an a priori functional form. The result is a connected set of local linear

regressions [39]. As with other splines, it requires a much larger dataset to produce a model of a

response surface than multiple linear regression and suffers from a lack of theory for calculating

confidence intervals. This makes its use unsuitable for modelling some complex software systems.

Chapter 4: Exploring target system behaviour

82

4.3.3.3.4 Artificial neural networks

Artificial neural networks can “learn” a model, which is then implicit in the network structure and

weights between nodes [28]. It is therefore hard to examine the model of a response surface – e.g.

determine the effects of factors, and detect phase changes and local maxima – to gain insight into the

target system’s behaviour.

4.3.4 Validating the model

A model may be used either to predict the rank ordering of a set of combinations, or to predict the

value of the response variable for particular combinations. Rank ordering is arguably more important

than the exact value of the response variable because configuring a target system involves choosing

between combinations. Indeed, rank ordering is less sensitive to variation in the conditions of use, as

some changes (e.g. increased network load) may affect the value of the response variable for all

combinations equally.

It is important to investigate the accuracy of predictions for combinations not used to produce the

model21:

• Validate rank ordering. The predicted rank ordering of combinations should be compared

to that obtained when they are empirically measured. This can be done using the rank

correlation coefficient, τ (tau), which takes a value between -1 and 1. These indicate perfect

disagreement (i.e. reverse ranking) and perfect agreement respectively [65]. Given n

combinations, there are
2

)1(−nn
 pairs of combinations that can be compared: τ is

proportional to the fraction of the pairs of combinations that are in the same order for both

rankings.

• Validate predictions of the response variable. Empirical measurements of combinations

should be compared to the model’s predictions.

21 In neural network terminology, combinations used to produce the model form the training set, and

combinations used to validate the model form the validation set.

Chapter 4: Exploring target system behaviour

83

4.3.5 Second phase experiment

The experiment in the second phase of Taguchi Methods produces a finer grained model of the

response surface around the predicted optimal combination; the aim is to more accurately predict the

optimal combination [107]. An experiment is run to investigate the predicted highest peak on the

response surface by testing the predicted optimal combination and combinations that are adjacent in

the input space. The size of the region to test is influenced by the shape of the response surface, as

predicted by the model from the first phase: the sharper the predicted peak, the smaller the region.

The second phase experiment produces a model, which estimates all the main effects (using linear and

quadratic terms) and a selection of two-factor interactions. The combination with the maximum

response according to this model is taken to be the combination that best meets the configuration goal.

One possible experiment design is the central composite design [107], which tests the three sets of

points shown in Figure 4.16:

• Corner points (squares in Figure 4.16) form a factorial design (with two levels for each of

the n factors) centred at the predicted optimal combination. The design can be a fractional or

full factorial design, and is used to estimate the main effects and interaction effects.

• Star points (crosses in Figure 4.16) are combinations along each axis in the space, increasing

and decreasing each factor’s level while keeping the other factors fixed. This gives 2n

combinations and is used to estimate curvature effects (i.e. non-linearities), which often

occur near a peak on the response surface.

• The centre point (circle in Figure 4.16) is the predicted optimal combination. The value of

the response variable is measured multiple times (e.g. giving multiple values of the SNR) to

give information about variance.

Chapter 4: Exploring target system behaviour

84

Figure 4.16: 3D input space showing a central composite design

The models from the first and second phases may be different. Consider the simple hypothetical

example in Figure 4.17, which shows a response surface, measurements, and predictive models. The

second phase experiment investigates the predicted peak at A=12 (giving three crosses at 7, 12 and

17). Its model is different from the first model (i.e. response increases linearly with factor A), and

more accurately predicts the optimal combination.

Given a linear model such as that in Figure 4.17, the experimenter should investigate whether the

linear relationship holds for higher levels of A, and if/when the response peaks. This is done by testing

higher levels of factor A.

Figure 4.17: Example second phase experiment

4.3.6 Robust design

It is sometimes desirable to identify target system configurations that perform well under a variety

of conditions, instead of a specific configuration for a particular condition of use. This is because

conditions can vary dynamically and:

• it may be too expensive to reconfigure the target system on-the-fly;

Chapter 4: Exploring target system behaviour

85

• conditions may be too expensive to measure;

• conditions may change too quickly to configure the target system for the current conditions.

The aim of Taguchi’s robust design [107] is to identify target system configurations that are

insensitive to variation in noise factors. These are factors whose levels are not set explicitly when the

target system is in use (for cost or technical reasons), but that can be controlled during the experiment.

For example, the load on a network cannot be chosen when a target system is in use, but various

levels of network load can be simulated during an experiment. Similarly, a database system cannot

control the number of read and write requests issued by clients when in use, but various workloads

can be used during an experiment.

Robust design involves exploiting the interaction effects between noise factors and control factors

(i.e. configurable aspects of the target system) to find target system configurations that are insensitive

to variation in the noise factors. Control-by-noise interaction plots, such as the hypothetical example

in Figure 4.18, show the effect an interaction has on the response variable. Height of the line indicates

goodness of response, and flatness of the line indicates insensitivity to the noise factor. There is a

trade-off between these two characteristics: choice of level depends on the expected variation in the

noise factor’s level and the importance of insensitivity to this variation. In Figure 4.18, factor A is a

noise factor and factor B is a control factor. Factor B’s level should be chosen such that the response

is consistently high for all levels of factor A. Because the solid line is flatter than the dotted line and is

higher for two of the three levels of factor A, level 1 may be an appropriate choice for factor B.

Figure 4.18: Control-by-noise interaction plot

4.4 Conclusions

There is a wide variety of potential search strategies for exploring a target system’s behaviour.

Choice of search strategy depends on:

Chapter 4: Exploring target system behaviour

86

• the aim of the experiment (e.g. to find a good configuration for a given condition, to discover

specific characteristics of the target system, or to produce a predictive model of the target

system’s behaviour);

• the set of available adaptation mechanisms and the time required to configure the target

system;

• resources available (e.g. time available);

• information available a priori about the target system’s behaviour.

One promising search strategy involves the use of Taguchi Methods, which allows for statistical

analysis of results. A predictive model can be produced, e.g. using multiple linear regression, that

estimates the effects of factors and selected interactions. A second phase experiment can then produce

a more accurate model of the response surface around the predicted optimal combination. The next

chapter uses an industrial case study to investigate the applicability of Taguchi Methods for

configuring a complex software system.

Chapter 5: Case studies

87

5 Case studies

This chapter describes two industrial case studies, which used the Data Connection Ltd (DCL)

products DC-MailServer and DC-Directory.

Both products are configurable to support a broad customer base with a wide variety of potential

usage patterns, hardware platforms, operating systems and network topologies. DCL currently

undertakes performance analysis and tuning by hand, which relies heavily upon costly expertise and

only permits testing of a few configurations for a given installation due to time constraints. In the

following experiments, for both DC-MailServer and DC-Directory, it took over thirty minutes to

configure and run the target system. Measurements were taken during a “hot run”, letting the

performance stabilise to reflect customers’ continuous usage, and then measuring performance over a

reasonable time.

The experimental base at St Andrews was a 64 node Beowulf cluster running RedHat 7.1 and

connected through a 100Mb/s Ethernet switch. Each node consisted of a Pentium II 450MHz

processor with 384MB of RAM and a 6.4GB hard disk.

The first case study (using DC-MailServer) illustrates some of the problems inherent in measuring

complex software systems. The second (using DC-Directory) demonstrates how Taguchi Methods can

be used to model and configure software systems.

5.1 DC-MailServer

The aim of the first case study was to explore the behaviour of DC-MailServer and to investigate

the effects of a selection of configurable aspects on throughput of e-mail messages.

DC-MailServer [11] is a back-end mail server product from Data Connection Ltd (DCL). It is

designed to be scalable, allowing deployment of multiple instances of each component in a server

farm (e.g. in a Beowulf cluster).

DC-MailServer exposes hundreds of configurable aspects, including caching policies, concurrency

policies and communication policies. A description of its configuration is stored in an instance of DC-

Directory [10], an LDAP and X.500 directory server. A scripting language (TXDS) is used to query

and change the directory data, changes affecting DC-MailServer’s configuration when it next restarts.

Additional scripts start, stop and check the status of DC-MailServer.

Chapter 5: Case studies

88

5.1.1 Experimental infrastructure

The synthetic workload used to drive DC-MailServer was generated by the Microsoft Exchange

Stress and Performance tool, ESP [7]. This simulated simultaneous access of many users sending and

retrieving mail, using SMTP and POP3 protocols respectively. The workload could be configured by

setting the number of users, the size of e-mail messages sent, the order of commands and the delay

between them.

For these experiments, DC-MailServer was configured to output a count of sent and retrieved e-

mail messages, writing the results to DC-Directory at five minute intervals. DCL supplied scripts to

get the measurements from DC-Directory and calculate the throughput.

Figure 5.1: Deployment diagram of experimental infrastructure for DC-MailServer

The UML deployment diagram in Figure 5.1 shows the machines and components involved in

running the experiments:

• A simple deployment of DC-MailServer was used, distributed over three nodes. Each node

ran an instance of a particular component type.

• A node was used as a central file server to store the e-mails.

• A node ran the master DC-Directory component, which was responsible for managing a

description of DC-MailServer’s configuration. This information was replicated across each

node of the DC-MailServer deployment. For simplicity, interactions among DC-Directory

components are omitted from the diagram.

Chapter 5: Case studies

89

• ESP ran on an NT machine, connected directly to the Beowulf switch. It interacted with DC-

MailServer by connecting to a pre-determined node on a known port.

• ACT ran on a separate node. It used remote shell invocations to call appropriate scripts on

each of the other nodes.

For each trial, ACT:

• restored DC-MailServer to a consistent state by re-initialising the repository of e-mails and

clearing the queues of messages awaiting processing;

• started DC-MailServer on each node in the deployment and started ESP to drive the system,

waited 200 seconds for DC-MailServer to warm-up, and then measured throughput over a

five minute period22;

• stopped DC-MailServer and ESP.

In the event of failure, ACT checked the state of DC-MailServer, and used the point of failure and

number of consecutive failures to guide the choice of recovery response. Diagnostics were collected

and the target system’s processes terminated, ready for restart. ACT also checked the state of the

environment to ensure that file systems were usable (i.e. mounted correctly).

To run the experiments required no alterations to the target system itself. The target wrapper

consisted of 260 lines of C++ code and a further 500 lines of shell scripts. This was less than 1% of

the target system’s size.

5.1.2 Variability in behaviour

The aim of this experiment was to investigate variability in DC-MailServer’s behaviour. The

default configuration was tested using a workload of thirty users retrieving mail and one user sending

mail. Throughput was measured in terms of the number of e-mail messages retrieved and sent,

referred to as fetch and rcpt (short for recipient in the SMTP protocol) respectively. Measurements

were replicated 214 times to investigate variability in throughput experienced when using this single

combination.

22 These times were chosen based on advice from the software manufacturer.

Chapter 5: Case studies

90

0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Fetch throughput

N
um

be
r o

f o
cc

ur
re

nc
es

0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Rcpt throughput

N
um

be
r o

f o
cc

ur
re

nc
es

Figure 5.2: Histograms of measured throughput23

The histograms in Figure 5.2 show the number of occurrences for various ranges of throughput

values. There is statistical evidence at the 5% level that the populations from which the fetch and rcpt

results were drawn are not normally distributed (an Anderson-Darling test24 gave p-values of 0.005

and 0.000 respectively, which are both less than 0.05).

Given a set of measurements, different metrics capture different characteristics of their distribution

– which metric is appropriate depends on the distribution of the data and on the characteristics of

interest. In general, mean and standard deviation are only appropriate if the data is normally

distributed [35] and are therefore inappropriate for describing DC-MailServer’s throughput. In

contrast, SNR can be used to measure DC-MailServer’s quality in terms of both how high throughput

is and its consistency.

The variability in throughput (i.e. the spread of values observed) raised two issues:

• Given observations (from a small number of trials) that suggest configuration A has a higher

throughput than configuration B, the confidence level is low that configuration A will

perform better in future trials.

23 All measurements of throughput for DC-MailServer were normalised with respect to the median of

the fetch throughput, calculated using the results in Figure 5.2. This did not affect the shape of the

graphs or the conclusions.

24 The Anderson-Darling test [24] is a standard technique for testing if a set of samples come from a

population with a normal distribution.

Chapter 5: Case studies

91

• Configurations observed to meet the configuration goal during an experiment may fail to do

so when used by a customer.

5.1.3 Varying workload

The aim of this experiment was to investigate the effect on DC-MailServer’s behaviour of varying

the workload. It investigated the effect on throughput of the number of users that simultaneously

retrieved mail using the POP3 protocol. The number of users sending mail was fixed at one. Figure

5.3 shows the observations of fetch and rcpt throughput. Figure 5.4 shows the SNR for these

responses.

The graphs show that, for low numbers of clients, fetch throughput increased and rcpt throughput

decreased with the number of users retrieving mail. Both throughput measures then levelled off for

higher numbers of clients. These results suggest that threads servicing POP3 and SMTP requests

compete (e.g. for CPU time and disk usage). The level sections of the graphs suggest that DC-

MailServer could sustain at least 485 users retrieving mail without deterioration in throughput

(compared to say 225 users retrieving mail).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500
Number of users re triev ing mail

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

fetch
rcpt

Figure 5.3: Effect on throughput of the number of users retrieving mail

Chapter 5: Case studies

92

-12

-8

-4

0

4

8

12

0 100 200 300 400 500
Number of users re triev ing mail

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

fetch
rcpt

Figure 5.4: Effect on throughput (SNR) of the number of users retrieving mail25

Observing the effect of varying the workload illustrates an alternative use of ACT. Previous

discussion focused on finding a configuration of the target system that met a configuration goal, but

ACT could also tune the workload to suit the target system. For example, an upper bound could be

found for the acceptable number of users simultaneously retrieving mail. When this number was

reached, a throttle back mechanism could be activated to reduce the number of additional clients

connecting to DC-MailServer (e.g. by introducing a delay in responding to connect requests). The

policy for choosing an upper bound would depend on the trade-off between fetch and rcpt throughput,

and on the importance of response time compared to throughput.

5.1.4 Exploring effects of configurable aspects

Attempts to measure a wide range of DC-MailServer configurations proved problematic for two

reasons: the large number of possible combinations meant that only a small part of the input space

could be tested, while variability in performance led to a low confidence in results. Attempts to

25 The SNR metric provides a good view of each combination’s robustness: it is easier to compare

combinations and see trends in Figure 5.4 than in Figure 5.3. However, it hides some information so

is not always an appropriate representation for presenting results.

Chapter 5: Case studies

93

replicate interesting behaviour observed during experiments (i.e. combinations with very high or low

throughput, compared to neighbouring combinations) failed.

Experiments exploring the input space of DC-MailServer revealed that:

• ACT can be used to run experiments that measure the performance of target system

configurations. Inability to replicate observations was not the fault of ACT: it was due to

variability in the target system’s behaviour. This was verified by replicating trials

independently of ACT and by monitoring the state of the experimental infrastructure.

• The set of factors under experimental control and the set of target system attributes observed

were insufficient for replicable performance measurement. Uncontrolled factors in the

environment and in the target system had a significant effect on throughput. This assumes

that the target system did not deliberately behave non-deterministically; it assumes that, if all

factors were controlled, the behaviour would be the same every time.

• Variability in performance is a serious issue. The acceptable variability depends on the

degree of consistency demanded by the customer.

Approaches for coping with variability in performance include:

• increasing the number of replicated measurements to determine the distribution of results for

each combination tested;

• identifying, and attempting to compensate for, the causes of variability by reducing the

number of uncontrolled/unobserved factors – additional probes could further monitor the

behaviour and state of both the target system and its conditions of use;

• designing experiments using Taguchi Methods (see section 4.3) to search for target system

configurations that are robust (i.e. that give consistently high performance and are insensitive

to the effects of uncontrolled factors).

5.2 DC-Directory

Given the results for DC-MailServer, the next case study investigated a simpler target system. DC-

Directory [10] is an LDAP and X.500 directory server from Data Connection Ltd (DCL). It exposes

hundreds of configurable aspects in a textual file. DCL supply scripts to make changes to the file,

Chapter 5: Case studies

94

which affect DC-Directory’s configuration when it next restarts. Additional scripts start, stop and

check the status of DC-Directory.

5.2.1 Experimental infrastructure

The synthetic workload used to drive DC-Directory in the experiments was generated by

DirectoryMark [12], an LDAP server benchmarking tool. It simulated multiple clients sending

sequences of LDAP requests, and reported the time taken for these requests to be processed. The

workload could be configured by setting the size of the directory information base, the number of

clients, the type of requests and the number of requests per client. A directory of 100,000 entries was

used, with 10 clients each sending 10,000 addressing (i.e. lookup) requests.

The configuration goal was to maximise DC-Directory’s throughput (in terms of requests serviced

per second), which was measured by DirectoryMark.

The UML deployment diagram in Figure 5.5 shows the machines and components involved in

running the experiments. For simplicity, DC-Directory was run on a single node. DirectoryMark ran

on an NT machine, connected directly to the Beowulf switch. ACT ran on a separate node, and used

remote shell invocations to call appropriate scripts that controlled DC-Directory and DirectoryMark.

Figure 5.5: Deployment diagram showing experimental infrastructure for DC-Directory

For each trial, ACT ran DC-Directory and obtained a measure of its throughput. In the event of

failure, the recovery function was invoked to report where the failure occurred and to collect

diagnostic information.

To automatically run, configure and measure DC-Directory required no alterations to the target

system itself. The target wrapper consisted of 345 lines of C++ code and a further 400 lines of shell

scripts. This was less than 1% of the target system’s size.

Chapter 5: Case studies

95

5.2.2 Normalising results

All measurements of throughput (i.e. all responses) for DC-Directory were normalised with

respect to the median response of the default configuration. This did not affect the shape of the graphs

or the conclusions.

Calculations of SNR used the normalised responses. This had the effect of decreasing all SNR

values by a constant. Figure 5.6 explains this algebraically, where α is the normalising term.

Figure 5.6: Normalised SNR

Consider a combination that consistently gives the same response as the default’s median

response. It will have a normalised SNR of 0 because all normalised values of the response will be 1,

and log10(1) is 0. However, responses for the default configuration gave a normalised SNR of -0.004.

This is because there was variability in the responses, and SNR punishes low values more than it

rewards high values. For example, the hypothetical responses {1,1,1,1} give an SNR of 0, while the

hypothetical responses {0.97,0.99,1.01,1.03} give an SNR of -0.007.

5.2.3 Importance of replicating observations

Based on advice from Data Connection Ltd (DCL), an experiment was conducted to investigate

the effects of varying DC-Directory’s TNE. This factor indicates the typical number of entries in the

database. DC-Directory uses TNE’s level to decide on the amount of memory required: the higher the

TNE, the larger the cache of database records stored in main memory.

At the beginning of each trial, DC-Directory was warmed using DirectoryMark to simulate ten

clients sending addressing requests for ten minutes. Trials were replicated four times for each level of

TNE, and throughput measured during each trial.

Chapter 5: Case studies

96

Figure 5.7 shows the results of the experiment. The graph can be partitioned into three regions,

indicated by the dotted lines: TNE ≤ 60,000, 70,000 ≤ TNE ≤ 160,000, and TNE ≥ 170,000. In the

first and third regions, throughput was consistent. In the middle region, throughput was generally

more variable26. This illustrates the importance of replicating trials.

Figure 5.7: Observations of DC-Directory's throughput for a selection of cache sizes

Additional metrics gathered during each trial included CPU and memory usage. A correlation was

observed between the variability in DC-Directory’s throughput and swap space usage (i.e. amount of

memory stored on disk rather than in RAM)27. Figure 5.8 shows the amount of swap space used,

measured 60 seconds into each trial. Again, the graph can be partitioned into three regions: swap

space usage was consistent when TNE was low or high, but varied in the middle region of the graph.

However, the correlation is not perfect: swap space usage varied when TNE was 60,000, yet

throughput was consistent (the range of observed responses was less than 3% of the median).

26 Throughput was consistent when TNE was 80,000 – no explanation of this behaviour is available.

27 It is assumed that all usage of swap space was due to DC-Directory.

0

0.2

0.4

0.6

0.8

1

1.2

0 50,000 100,000 150,000 200,000
TNE

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

Chapter 5: Case studies

97

Figure 5.8: DC-Directory's swap space usage for a selection of cache sizes

An experiment was conducted to investigate the effects of TNE on throughput after a longer warm-

up period. The warm-up consisted of ten clients sending addressing requests for ten minutes plus a

subsequent 10,000 lookup operations per client. Figure 5.9 shows the results, using 0.9 as the origin

of the graph.

Figure 5.9: Observations of DC-Directory's throughput after a longer warm-up period

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 50,000 100,000 150,000 200,000
TNE

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

0

20

40

60

80

100

120

140

160

0 50,000 100,000 150,000 200,000

TNE

Sw
ap

 s
pa

ce
 u

sa
ge

 (M
B

)

Chapter 5: Case studies

98

This graph can be partitioned into three regions: TNE levels of 60,000 or less gave consistently

high throughput, as did TNE levels of 120,000 or greater. Levels in the middle region generally gave

larger variability in throughput.

The effect of TNE on throughput depended on the length of the warm-up, as can be seen from the

graph of SNR in Figure 5.10. This indicates that DC-Directory’s behaviour changes over its run-time.

The appropriate warm-up to use during an experiment depends on the expected usage pattern of the

customer.

-12

-10

-8

-6

-4

-2

0

2

0 50,000 100,000 150,000 200,000

TNE

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

short warm up
Long warm up

Figure 5.10: DC-Directory's quality after various warm-ups

5.2.4 Use of Taguchi Methods

The following experiment demonstrates the use of Taguchi Methods for investigating the

behaviour of DC-Directory. For simplicity just four factors were varied, but Taguchi Methods allow

the design of experiments that explore the effects of dozens of factors.

The aim was to determine the effects of the following factors on DC-Directory’s throughput:

• TNE, which indicates the expected typical number of entries in the database;

• MaxLDAP, which is a constraint on the maximum number of simultaneous LDAP users that

can connect to DC-Directory;

Chapter 5: Case studies

99

• LDAPnum, which corresponds to the number of threads servicing the queue of LDAP requests;

• DispNum, which corresponds to the number of threads that search the database.

5.2.4.1 First phase experiment

The first phase experiment investigated the main effect of each factor, plus a sample of the

interaction effects. These were TNE.MaxLDAP (i.e. the interaction effect between TNE and MaxLDAP),

MaxLDAP.LDAPnum and MaxLDAP.DispNum. Figure 5.11 shows the levels tested for each factor, the

default levels used in a fresh installation of DC-Directory, and the constraints on legal configurations

defined by the software manufacturer.

Number of threads Factor
Level 1 Level 2 Level 3 Default Constraints

TNE 10,000 30,000 50,000 10,000 Integer; TNE > 0

MaxLDAP 100 1001 2000 1001 Integer; MaxLDAP > 0

LDAPnum 1 2 4 2 Integer; LDAPnum > 0

DispNum 2 5 8 5 Integer; DispNum > 1

Figure 5.11: Factors

Minitab TM was used to help design the experiment. It revealed that the most suitable orthogonal

array was L27(313), shown in Appendix E, with 27 combinations. This is a third of the size of a full

factorial design, which would have required 81 (i.e. 34) combinations.

DC-Directory was warmed using DirectoryMark, which simulated ten clients that each sent

addressing requests for ten minutes plus a subsequent 10,000 lookup operations per client. Trials were

replicated four times28 to measure the robustness of each combination. The experiment took 100

hours.

Appendix E contains a table of the experiment results showing, for each combination, the four

measurements of throughput and the SNR (i.e. quality). Figure 5.12 shows the main effect of each

factor on quality (see section 4.3.3.1 for a description of main effects plots). For example, it shows

that increasing MaxLDAP had a detrimental effect on quality.

28 Professor Harry Staines of Abertay University recommended a minimum of four replications.

Chapter 5: Case studies

100

Figure 5.12: Main effects plot

Figure 5.13 depicts the interaction effects that could be inferred from the experiment results (see

section 4.3.3.2 for a description of interaction plots). It suggests that the effect of TNE.MaxLDAP was

small, while the effects of MaxLDAP.LDAPnum and MaxLDAP.DispNum were big.

Figure 5.13: Interaction plot

Minitab TM was used to produce a multiple linear regression model of the target system’s quality,

shown in Figure 5.14. Linear and quadratic terms were used for each main effect because three levels

were tested for each factor. For some terms, there was no statistical evidence at the 5% level that their

effects were significant (as reported by Minitab TM). Using backward elimination to remove non-

significant terms (see section 4.3.3.3.1) gave the regression model in Figure 5.15.

Chapter 5: Case studies

101

Figure 5.14: First phase model, before backward elimination29

Figure 5.15: First phase model of DC-Directory's quality30

According to this model, the combination (within the region of the input space tested) of highest

quality would be that shown in Figure 5.16. The predicted optimal level of 5.43 for DispNum has been

truncated to 5, since it must be an integer.

Factor Level
TNE 32,930
MaxLDAP 100
LDAPnum 1
DispNum 5

Figure 5.16: Predicted optimal combination

5.2.4.2 Second phase experiment

A central composite design (see section 4.3.4) was used to test combinations in a region of the

response surface around the predicted optimal combination. The aim was to produce a model that

could more accurately predict whether there was a peak, and where it lay. The corner points, centred

at the predicted optimal combination, were at TNE ±5000, MaxLDAP ±45 and DispNum ±1. These levels

were chosen based on the predicted sharpness of the peak. The level of LDAPnum was fixed at 1

because levels below 1 are invalid, and the design must be symmetric about the centre. This decision

can be justified using the model in Figure 5.15, which predicts that quality decreases as LDAPnum

29 The levels of TNE were divided by 10,000, and MaxLDAP by 1000 to keep the coefficients

manageable.

30 Standard diagnostic tests showed that the assumptions of multiple linear regression were not

violated.

SNR = -0.0345 + 0.513xTNE - 0.733xMaxLDAP - 0.523xLDAPnum + 0.343xDispNum
 - 0.0782xTNE

2 + 0.076xMaxLDAP
2 - 0.103xLDAPnum

2 - 0.0323xDispNum
2

 + 0.0020xTNExMaxLDAP - 0.138xMaxLDAPxLDAPnum + 0.0758xMaxLDAPxDispNum

SNR = -0.892 + 0.515xTNE - 0.573xMaxLDAP + 0.343xDispNum - 0.0782xTNE
2

 - 0.0323xDispNum
2 - 0.135xMaxLDAPxLDAPnum + 0.0758xMaxLDAPxDispNum

Chapter 5: Case studies

102

increases so its optimal level is its smallest legal level (i.e. 1). Appendix F contains the experiment

design and results.

Multiple linear regression was used to model the response surface, giving the model in Figure

5.17. Backward elimination was used to remove non-significant terms, giving the model in Figure

5.18.

Figure 5.17: Second phase model, before backward elimination

Figure 5.18: Second phase model of DC-Directory's quality

Figure 5.18 predicted that, for the region of the response surface tested, quality would increase

linearly with TNE. To identify the optimal combination therefore required investigation of higher

levels of TNE. A further experiment was conducted to produce a model for higher levels of TNE.

Because there were no significant interaction effects in Figure 5.18, the main effect of TNE was

investigated in isolation of factors MaxLDAP, LDAPnum and DispNum. These were fixed at 100, 1 and 5

respectively, which allowed results from the above experiment to be used in producing the model (i.e.

results for the centre point and two of the star points). This gave the model in Figure 5.19, which

predicted that quality would peak when TNE is 58,720. The predicted optimal combination is that

shown in Figure 5.20.

Figure 5.19: Model of TNE’s effect on DC-Directory's quality

Factor Level
TNE 58,720
MaxLDAP 89
LDAPnum 1
DispNum 5

Figure 5.20: Predicted optimal combination from follow-up experiment

SNR = 0.465 - 0.083xTNE + 0.203xMaxLDAP - 0.0207xDispNum
 + 0.0259xTNE

2 - 0.0810xMaxLDAP
2 + 0.00119xDispNum

2
 - 0.0389xTNExMaxLDAP - 0.0025xTNExDispNum + 0.0139xMaxLDAPxDispNum

SNR = 0.0266 + 0.0752xTNE - 0.00641xTNE
2

SNR = 0.0266+ 0.0363xTNE + 0.152xMaxLDAP - 0.0851xMaxLDAP
2

Chapter 5: Case studies

103

5.2.4.3 Results of validating the model

The aim of this experiment was to test the accuracy of predictions made by the first phase model

in Figure 5.15, in terms of the rank ordering of combinations. It used a validation set consisting of 16

previously untested combinations31. Their predicted rank ordering was compared to the observed rank

ordering using the rank correlation coefficient (see section 4.3.6). It yielded a correlation coefficient

of 0.62, which means that the predicted ranking gave the same order as the observed ranking for 81%

of the pairs of combinations.

Accurate prediction of which combination is optimal is more important than the rank ordering of

other combinations. It is important that the predicted optimal does indeed perform well. Of the 16

combinations in the validation set, the observed best was ranked 6th by the first phase model in Figure

5.15 – a poor prediction. However, the combination ranked 1st by the model was observed to be 2nd

best. Finding a near-optimal combination (e.g. 2nd best) may be sufficient for meeting the

configuration goal.

The predicted maximum investigated during the second phase experiment was not as high as the

first phase model in Figure 5.15 predicted. Indeed, the predicted optimal from the second phase

experiment was not as good as the combination in Figure 5.21, which was tested during the first phase

experiment. This suggests that assumptions made in designing the first phase experiment and

analysing the results were violated. This is discussed in the following two sections.

Factor Level
TNE 50,000
MaxLDAP 100
LDAPnum 1
DispNum 8

Figure 5.21: Combination with highest observed quality

31 The validation set consisted of a full factorial design with two levels per factor. Results revealed

that significant two-factor interaction effects at the 5% level were MaxLDAP.LDAPnum,

MaxLDAP.DispNum and LDAPnum.DispNum. There was no statistical evidence that TNE.MaxLDAP,

TNE.LDAPnum or TNE.DispNum were significant.

Chapter 5: Case studies

104

5.2.4.4 Consequences of ignoring significant effects

Validation of the first phase model in Figure 5.15 revealed that the model’s predictions were

sometimes inaccurate. The aim of this follow-up experiment was to test the hypothesis that

inaccuracies in predictions were (at least partly) due to ignoring a significant two-factor interaction

effect.

The interaction effects investigated in the first phase experiment described in section 5.2.4.1 were

TNE.MaxLDAP, MaxLDAP.LDAPnum and MaxLDAP.DispNum. However, results from the validation

experiment in section 5.2.4.3 revealed that, for this region of the response surface, the significant

interaction effects were MaxLDAP.LDAPnum, MaxLDAP.DispNum and LDAPnum.DispNum. The predictive

model should therefore have included these effects and the main effects of TNE, MaxLDAP, LDAPnum and

DispNum.

This follow-up experiment investigated these effects. It was designed using Taguchi Methods and

was similar to the first phase experiment described in section 5.2.4.1. The levels tested were as shown

in Figure 5.11. As before, DC-Directory was warmed by ten clients that each sent addressing requests

for ten minutes plus a subsequent 10,000 lookup operations per client. Trials were replicated four

times.

The resultant models, before and after backward elimination, are shown in Figure 5.22 and Figure

5.23 respectively. The combination predicted to be of optimal quality according to this model is

shown in Figure 5.24.

Figure 5.22: Model from follow-up experiment, before backward elimination

Figure 5.23: Model of DC-Directory from follow-up experiment

SNR = 0.436 + 0.181xTNE - 0.726xMaxLDAP - 0.689xLDAPnum + 0.217xDispNum
 - 0.0156xTNE

2 + 0.076xMaxLDAP
2 + 0.0956xLDAPnum

2 - 0.0308xDispNum
2

 - 0.151xMaxLDAPxLDAPnum + 0.0829xMaxLDAPxDispNum + 0.0431xLDAPnumxDispNum

SNR = 0.018 + 0.0869xTNE - 0.565xMaxLDAP - 0.197xLDAPnum + 0.217xDispNum
 - 0.0308xDispNum

2 - 0.151xMaxLDAPxLDAPnum + 0.0829xMaxLDAPxDispNum
 + 0.0431xLDAPnumxDispNum

Chapter 5: Case studies

105

Factor Level
TNE 50,000
MaxLDAP 100
LDAPnum 4
DispNum 6

Figure 5.24: Predicted optimal combination

Using the validation set from 5.2.4.3, the rank correlation coefficient for this model’s predictions

was 0.68 (i.e. 84% of the pairs of combinations have the same predicted and observed ranking). This

improved on the previous first phase model in Figure 5.15, which had a rank correlation coefficient of

0.62. This suggests that inclusion of all significant two-factor interaction effects is a necessary

condition for accurate interpolation. However, it is not a sufficient condition: for a simple model to

accurately describe the response surface, the relationship between factors and the response variable

must be simple.

5.2.4.5 Relationships between factors and the response variable

In the first phase experiments of sections 5.2.4.1 and 5.2.4.4, it was assumed that a linear or

quadratic model could accurately describe the main effect of a factor. The follow-up experiments

described here tested the validity of this assumption.

In each of the following experiments a single factor was varied, while the other three factors were

fixed at their middle levels (as listed in Figure 5.11); testing more than three levels per factor gave a

more detailed view of the factors’ effects. As before, DC-Directory was warmed by ten clients that

each sent addressing requests for ten minutes, plus a subsequent 10,000 lookup operations per client.

Trials were replicated four times.

The graphs in Figure 5.25 to Figure 5.28 show the main effects of TNE, MaxLDAP, LDAPnum and

DispNum respectively. Graphs on the left show the replicated measurements of throughput, while

graphs on the right show the SNR calculated using these values.

Lines in the SNR graphs show the SNR predicted by the first phase model in Figure 5.23 – data

points in the graphs below were not used to produce the model. The solid lines show predictions for

combinations in the tested region of the response surface, while the dotted lines show extrapolation

from the model. A straight line indicates that, when producing the model, there was no statistical

evidence at the 5% level that the quadratic term in the main effect was significant.

Chapter 5: Case studies

106

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20,000 40,000 60,000 80,000 100,000
TNE

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

Figure 5.25: Main effect of TNE

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1,000 1,500 2,000 2,500 3,000
MaxLDAP

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

Figure 5.26: Main effect of MaxLDAP

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8
LDAPnum

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

Figure 5.27: Main effect of LDAPnum

0.94

0.96

0.98

1

1.02

1.04

1.06

0 500 1,000 1,500 2,000 2,500 3,000
MaxLDAP

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

1

1.01

1.02

1.03

0 2 4 6 8
LDAPnum

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

0.98

0.99

1

1.01

1.02

1.03

1.04

0 20,000 40,000 60,000 80,000 100,000
TNE

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

Chapter 5: Case studies

107

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 2 4 6 8 10 12
DispNum

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

Figure 5.28: Main effect of DispNum

There were differences between the model’s predictions and the observed SNR shown in the

graphs above. This was due to simplifying assumptions made when producing the model: it was

assumed that the main effects were linear or quadratic. It was also assumed that some interaction

effects were zero (e.g. those involving three or more factors) and could therefore be ignored. Some of

these interaction effects were aliased with main effects: if one or more of these interaction effects

were non-zero, it would have affected the estimate of the main effect.

The graphs show that the main effect cannot always be accurately modelled by a quadratic

polynomial. For example, the main effect of DispNum (when the other factors are set to their middle

levels) would have been more accurately modelled by a piecewise curve: the effect of increasing

DispNum’s level from 2 to 3 was different from the effect of increasing DispNum’s level in the range 3

to 12.

The main purpose of models from first phase experiments is to predict a combination that is near

the optimal in the tested region of the response surface. This does not require that the model

accurately interpolates the response variable’s values for other combinations. The maxima for the

solid lines in Figure 5.25 to Figure 5.28 are close to the highest observed SNR (e.g. the solid line in

Figure 5.27 correctly predicts that the highest SNR will be when LDAPnum has level 1, despite the line

being a poor fit to the data). This suggests that the model in Figure 5.23 is sufficient for estimating the

optimal levels of TNE, MaxLDAP, LDAPnum and DispNum, based on their main effects.

Investigation of lower levels of MaxLDAP (i.e. less than 50) revealed a phase change, shown in

Figure 5.29. There was a five fold improvement in throughput when MaxLDAP had the level 10,

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 2 4 6 8
DispNum

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

Chapter 5: Case studies

108

compared to throughput when MaxLDAP had a level between 14 and 3000. This result shows the

importance of choosing the correct range of levels to test when designing an experiment. It also

demonstrates that extrapolating from a model can be inaccurate: the model in Figure 5.23 does not

predict a phase change. Predictions should only be made for combinations within the region tested.

0

1

2

3

4

5

6

0 10 20 30 40 50
MaxLDAP

Th
ro

ug
hp

ut
 (n

or
m

al
is

ed
)

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50
MaxLDAP

Th
ro

ug
hp

ut
 (S

N
R

, n
or

m
al

is
ed

)

Figure 5.29: Main effect of MaxLDAP, showing phase change

5.3 Conclusions

This chapter presented experiments with the target systems DC-MailServer and DC-Directory.

Experiments with DC-MailServer demonstrated the difficulties posed by variability in the behaviour

of complex software systems, highlighting the importance of replicating trials. Experiments with DC-

Directory included using Taguchi Methods to identify high-quality combinations. Figure 5.30

summarises these results, which are discussed below.

Factor levels Observed throughput (normalised)
Combination TNE MaxLDAP LDAPnum DispNum SNR Min Median Max
Default 10,000 1,001 2 5 0.004 0.9990 1.0000 1.0030
1st prediction 32,930 100 1 5 0.461 1.0526 1.0542 1.0569
2nd prediction 58,720 89 1 5 0.503 1.0570 1.0599 1.0617
Best so far 50,000 100 1 8 0.536 1.0623 1.0633 1.0656
3rd prediction 50,000 100 4 6 0.541 1.0628 1.0648 1.0648

Figure 5.30: Summary of results from using Taguchi Methods with DC-Directory

In Figure 5.30, “default” refers to the default configuration used when DC-Directory is installed.

The “1st prediction” and “2nd prediction” are the predicted optimal combinations according to the

models from the first phase and second phase experiments respectively (see sections 5.2.4.1 and

5.2.4.2). “Best so far” refers to the best combination found during these experiments. The “3rd

Chapter 5: Case studies

109

prediction” is the predicted optimal combination according to the model from the follow-up

experiment in which all significant two-factor interactions were investigated (see section 5.2.4.4).

The best combination found gives a clear improvement in SNR over the default combination. It

gives a 6% improvement in the minimum, median and maximum throughput. This is an indication of

success: most software manufacturers, including Data Connection Ltd, would be happy to achieve a

6% improvement in performance without investing experts’ time [99].

The predicted optimal combinations from the first and second phases are both better than the

default. However, the best combination found during these experiments was one of those initially

tested. It gives a median throughput 0.3% higher than that of the predicted optimal combination. This

combination could have been chosen by simply ranking the configurations tested, without need of a

predictive model. However, the predicted optimal combination from the model in section 5.2.4.4,

labelled “3rd prediction”, is of higher quality than those found previously. This high-quality

combination would have been difficult to identify without a predictive model, which validates use of

predictive models when searching the response surface. The difference between the 1st and 3rd

predictions highlights the importance of designing experiments well (e.g. including all significant

interaction effects).

The follow-up experiments in section 5.2.4.5 show that simple models, like those from first phase

experiments, cannot always accurately model the main effects of factors. However, results for DC-

Directory suggest that they are sufficient for predicting a combination near the optimal in the tested

region of the response surface. This validates the use of models from first phase experiments in

determining the centre for second phase experiments. This in turn supports the hypothesis that

Taguchi Methods are useful for identifying high-quality configurations.

Chapter 6: Discussion

110

6 Discussion

6.1 Testing the hypothesis

This section discusses the usefulness of automatically measuring a sequence of configurations, as

proposed in the hypothesis (see section 1.1). The goals discussed below are used as a basis for testing

the hypothesis:

• Find a robust configuration. The experiments described in section 5.2.4 identified a high

quality configuration of DC-Directory (in terms of robust throughput). This configuration

consistently delivered 6% higher throughput than the default, under the conditions described

in the case study.

• Find characteristics of interest. One of the experiments, described in section 5.2.4.5,

discovered a phase change. Other observations were also of interest to developers, such as

the effects of TNE on the variability in DC-Directory’s behaviour (see section 5.2.2).

• Help to construct a predictive model of the target system. The model in Figure 5.23 was

derived from experiment results. It was used to predict an “optimal” combination for DC-

Directory, which was of higher quality than the other combinations tested.

6.2 Use of Taguchi Methods

Below is a discussion of the assumptions made in using Taguchi Methods, and their validity when

designing experiments for DC-Directory:

• The experimenter knows which factors to vary. The software manufacturer recommended

with confidence a subset of the factors on which to concentrate, based on experience of

tuning DC-Directory by hand.

• The experimenter knows which levels to test. This is non-trivial as some factors have

thousands of legal levels (e.g. TNE for DC-Directory): deciding on levels to test is sometimes

informed guess work. The software manufacturer recommended ranges of levels for DC-

Directory’s factors, but further experiments are required to investigate behaviour of

combinations outside this range, to validate the original choice of levels.

Chapter 6: Discussion

111

• The experimenter knows which interactions to investigate. This is sometimes intuitive:

the software manufacturer has suggested several significant interactions. However, the

accuracy of a predictive model is influenced by whether all significant interaction effects are

investigated. Experiments that investigate a large number of interaction effects are expensive

so it is important to identify insignificant interactions that can be ignored. This requires a

priori information about the target system’s behaviour, which may be supplied in some cases

by the software manufacturer.

• The more factors involved in an interaction effect, the less likely it is to be important.

This does not always hold for complex software systems:

• A bottleneck can be a significant interaction effect involving multiple factors; it can

correspond to a set of factors whose levels limit the target system’s performance.

Changing these factors’ levels removes the bottleneck, but varying other factors not

involved in the bottleneck will not improve performance until the bottleneck is removed.

• The field of hazard analysis [77] has revealed that a hazard may be due to an interaction

effect involving multiple factors. A “hazard” is a (potentially large) set of conditions

that, when all are satisfied, will lead inevitably to an accident (e.g. deterioration in

performance). The “conditions” could be particular levels for a set of factors.

• Models from first phase experiments can predict a combination that is near the optimal

in the tested region of the response surface. The optimal levels predicted by the model of

DC-Directory in Figure 5.23 are close to the optimal levels observed in section 5.2.4.5,

which describes an investigation of the main effects. This is true for DC-Directory despite

some of its main effects being impossible to model accurately using linear and quadratic

terms.

Taguchi Methods can provide insight into a target system’s behaviour. Results for DC-Directory

were used to produce predictive models, revealed a high-quality configuration and formed the basis

for designing follow-up experiments (see section 5.2.4).

It requires expert knowledge to successfully design experiments using Taguchi Methods. The

region of the response surface that should be tested depends on the configuration goal and the likely

conditions of use. It is therefore important to choose well the factors to vary and the range of levels

Chapter 6: Discussion

112

for each. To produce models that accurately predict high-quality combinations requires that the

experimenter investigate (at least) all significant two-factor interaction effects.

The target system’s response surface must be simple for models to accurately interpolate the

response of untested combinations: use of a simple model assumes that relationships between factors

and the response variable are linear or quadratic. This assumption may not hold for a given target

system, so predictions of the effects of adapting factors should be used as guides and be treated with

caution.

Simple models of the response surface will not predict phase changes. The assumption that the

response surface is simple therefore makes it hard to detect phase changes. However, use of Taguchi

Methods can give clues:

• Presence of significant outliers with respect to the linear regression model (i.e. observations

that do not fit the model) suggests that the simple model is insufficient for describing the

response surface. This may indicate the presence of a phase change.

• It could be argued that combinations near some phase changes give high variability in

performance. Phase changes correspond to sudden shifts in the way the target system

behaves (e.g. a small increase in workload can cause a dramatic increase in the rate of

growth of an input queue). The point in the input space at which the phase change occurs

may not be fixed (e.g. the critical workload level may depend on the level of uncontrolled

factors). Therefore, performance of combinations near a phase change may be more variable

than those away from phase changes.

The experiments in section 5.2.2 demonstrate the necessity of replicating measurements. For some

levels of TNE, throughput varied by over 40%.

Other experiments, for a previous version of DC-Directory, revealed significant interaction effects

due to bottlenecks. Four factors were varied, relating to the number of threads that service particular

queues of requests, including LDAP requests (LDAPnum) and search requests (DispNum). DC-

Directory’s throughput was the same for all combinations tested: none of the factors varied had a

significant effect on throughput, under the conditions described in the case study and with all other

factors set to their default levels. This illustrates two important points: effects of factors can depend

on bottlenecks caused by other factors’ levels, and DC-Directory’s behaviour varies between versions.

Chapter 6: Discussion

113

6.3 Complementing on-the-fly adaptation

Running experiments before the target system goes into use has a number of limitations compared

to configuring the target system on-the-fly:

• It is only feasible if the target system can be taken off-line, or for changes that can be

planned and tested before the target system first goes into use.

• Some configurations are only available on-the-fly, such as those involving new versions of a

component.

• Replicating faithfully a customer’s environment can be difficult, particularly for distributed

heterogeneous systems operating over wide area networks. Conditions may also change after

the system goes into use, which can make observations from past experiments inapplicable.

• Producing a workload that is representative of the customer’s likely usage patterns can be

difficult. Logging a customer’s usage, where possible, allows an identical set of inputs to be

used during experiments, or a synthetic workload to be developed based on characteristics of

the logged input. An alternative is to use domain-specific benchmarks that describe common

usage patterns.

Despite these limitations, exploring the behaviour of a target system before it goes into use can be

beneficial and can complement on-the-fly adaptation. Advantages of exploring behaviour before the

target system goes into use, over exploring behaviour on-the-fly, include the following:

• Each trial can be run in a consistent manner, setting explicitly the state of the target system

and its conditions of use. This is important for estimating robustness and for accurate

comparison of target system configurations.

• Statistical techniques, such as Taguchi Methods, can be used for the design of experiments as

there is explicit control over the conditions for each trial.

• Testing of specific conditions allows experimenters to:

• validate adaptation tactics for on-the-fly adaptation;

• find appropriate configurations for particular conditions;

• suggest new adaptation tactics.

Chapter 6: Discussion

114

• Detrimental effects on performance (either temporary or permanent) are not a problem as

there are no real users and the target system is restored to a known state before each trial: the

target system can be restarted or even reinstalled as required.

• There are no ill effects from testing configurations that are invalid or that exhibit incorrect

behaviour, assuming that errors are detected and reported during the trials. This assumes that

the target system is isolated from the outside world when running experiments so errors

cannot affect external systems.

• There is generally more time available than when configuring the target system on-the-fly, so

the experimenter can test a wider range of configurations.

6.4 Experimental adaptations on-the-fly

Lehman states that “an E-type program that is used [i.e. a target system embedded in a real-world

domain] must be continually adapted else it becomes progressively less satisfactory” [74]. If the target

system cannot be taken off-line, this necessitates on-the-fly adaptation. A new version of ACT has

been designed to support on-the-fly evolution of software systems (see section 7.3).

If an appropriate adaptation is not known and the target system cannot be taken off-line, it is

necessary to make experimental adaptations while the target system is in use. However, it is hard to

measure the effect of an adaptation on-the-fly because uncontrolled factors can affect the target

system’s behaviour: it is not possible to run experiments in a controlled and isolated environment. For

example, the workload may change, components may fail and the execution platform may perform

unsolicited actions such as garbage collection.

The SNR metric can be used to measure the robustness of a target system’s behaviour on-the-fly.

Repeated observations of behaviour give an indication of the target system’s consistency and its

insensitivity to variation in uncontrolled factors. However, repeating observations necessitates a delay

in responding to deterioration in performance.

On-the-fly adaptation is potentially risky due to the disruption it can cause to users (e.g.

deterioration in performance, loss of data or system failure). Techniques for allowing adaptations to

be reversed include: use of a check-pointing mechanism to roll back to a known state [62], and

adapting a duplicate component instead of the original. However, some adaptations are irreversible at

Chapter 6: Discussion

115

run-time (e.g. involving I/O, causing space leaks, changing data that is not backed up, or affecting the

encapsulated state of an external component) so any disruption they cause is permanent.

The set of available adaptations is influenced by:

• the set of adaptation mechanisms that can be used on-the-fly;

• the target system administrator’s policy on the acceptable level of risk;

• any available predictions of adaptation costs (i.e. disruption caused while adapting), chance

of success (i.e. chance of improvement versus chance of a detrimental effect) or implications

of a detrimental effect.

“Careful” experimental adaptations made on-the-fly may reveal good configurations. Iterative

improvement algorithms (see section 4.2) may prove appropriate for making a series of small

adaptations to the target system’s configuration, using observations of the behaviour to decide

whether to accept or reverse each adaptation.

Chapter 7: Future work

116

7 Future work

7.1 Further experiments

Current work focuses on the use of Taguchi Methods to explore DC-Directory’s behaviour.

Further experiments are discussed below, which would be run if this research were to be continued.

Taguchi Methods could be used to design experiments involving dozens of factors. Additional

factors of DC-Directory could include:

• aspects of the workload (e.g. number of clients, ratio of addressing to modify requests, etc);

• concurrency policies (e.g. number of threads and thread priorities);

• distribution policies for deploying DC-Directory across multiple nodes of the Beowulf

cluster.

The set of fitness metrics could be increased to improve understanding of the target system’s

behaviour. Current experiments collect measurements of throughput, latency32 and resource usage.

However, only throughput is used in the configuration goal. Future work is required to expand the set

of fitness metrics and produce appropriate aggregating functions, based on the advice of target system

experts (i.e. administrators and developers).

Additional experiments are required to further investigate the suitability of multiple linear

regression for modelling DC-Directory, and to explore the use of other curve fitting techniques (e.g.

splines) for modelling non-linear or discontinuous response surfaces. Data mining techniques could

also be used to extract information from experiment results [50]. Feedback from experts could be used

to validate models and to suggest improvements such as other factors to include and other levels to

test. It would be interesting to further investigate the usefulness to developers and administrators of

predictive models, and to investigate how closely models mirror current understanding of the target

system.

32 DirectoryMark measures the latency for each addressing request. Measurements obtained during a

single trial could be combined using SNR to reward consistently low latency.

Chapter 7: Future work

117

Once the techniques have been successfully applied to DC-Directory, Taguchi Methods could be

used to design experiments for DC-MailServer. The case study described in section 5.1, which did not

use Taguchi Methods, revealed that coping with variability in behaviour is a big problem. Taguchi

Methods could be used to cope with this variability:

• Trials could be replicated for each combination. SNR could be used to measure consistency

and thus estimate each combination’s insensitivity to variation in uncontrolled factors.

• The TACT process (i.e. the combination of Taguchi Methods and ACT) could be used to

search for combinations that give high values of SNR.

• Taguchi’s robust design could be used to identify target system configurations that are

insensitive to variation in noise factors (see section 4.3.6). This would involve explicitly

varying the target system’s conditions of use, to identify and exploit the interaction effects

between control factors and noise factors.

The behaviour of other software systems could be explored to investigate further the applicability

of Taguchi Methods and other search strategies. However, ACT’s use is not restricted to just software

systems: ACT could coordinate experiments for any process that can be run, measured and configured

without human intervention.

7.2 Complementing other work

Use of ACT could be beneficial for other research programmes that assume appropriate target

system configurations are known a priori. Current plans are to integrate ACT into ArchWare [4].

Other programmes that could make use of ACT include DASADA [9] and Autonomic Computing

[63] (see section 2.8.3 for a description of these programmes).

Another possible avenue of further work is in the integration of ACT with Generative

Programming: “a software engineering paradigm based on modelling software system families such

that, given a particular requirements specification, a highly customised and optimised intermediate or

end-product can be automatically manufactured on demand from elementary, reusable

implementation components by means of configuration knowledge” [41]. The user’s requirements

(i.e. configuration goal) drive the assembly of the software system. A framework for a family of

software systems has variation points into which components are plugged to produce a complete

Chapter 7: Future work

118

system. Each variation point corresponds to a factor, and each valid component is a possible level.

ACT could run an experiment to help find a suitable combination: to help identify and configure

appropriate components for each variation point.

7.3 ACT 2.0

A new version of ACT, ACT 2.0, has been designed with four main aims:

• Extend the use of ACT 1.0 to support long-lived evolution processes. ACT 2.0 will help

make target adaptations to produce new and improved versions of the target system. In ACT

1.0, this is left to the experimenter and target system developers.

• Provide support for on-the-fly adaptation of target systems. ACT 2.0 will assist target

system developers to continually adapt target systems throughout their lifetimes.

• Provide a more flexible infrastructure. Use of an event-based architecture will impose a

looser coupling between ACT 2.0 components. This will make it easier to incorporate third

party components, such as gauges developed under the DASADA programme.

• Make explicit the policies, mechanisms and information in the ACT 2.0 infrastructure.

All information will be explicitly available when deciding on policies for using exposed

mechanisms. This will make it easier to guide and tailor the evolution process. This contrasts

with ACT 1.0, where probes and gauges used by a run function were all private to that

function.

Observation of a target system will help drive its evolution. ACT 2.0 will support long-lived

evolution processes that involve multiple experiments, changing configuration goals, and target

adaptations. Experiments will identify beneficial adaptations, evaluate new versions of the target

system and help focus the testing and maintenance efforts of target system developers. This work will

contribute to the ArchWare project by helping to recommend architectural changes. The ArchWare

ADL will be used to describe adaptations and the ArchWare environment will support adaptation of

the target system [4].

ACT 2.0 will use observation and adaptation mechanisms available at run-time to evolve the target

system on-the-fly. An evolution strategy will decide on appropriate adaptations, making use of the

following mechanisms:

Chapter 7: Future work

119

• Gauge components. Gauges will interpret observations of the target system and will

generate events to describe the target system at a higher level.

• Advice components. These will encode expert knowledge of the target system’s behaviour,

which includes adaptation tactics, predictions of patterns of behaviour, and the effects on

fitness metrics of factors and interactions.

• Model components. A model component will contain a model of the target system (e.g. a

description of the architecture using an ADL). It will use the model as a basis for interpreting

observations, reasoning about possible adaptations and recommending appropriate

configurations.

• Search strategy components. Experiments will be run both before the target system goes

into use and on-the-fly to search for beneficial adaptations. The latter could be useful as a

“last resort”, when degradation necessitates change but an appropriate adaptation tactic is not

known (see the discussion in section 6.4).

The event-based architecture of ACT 2.0 will provide a more flexible infrastructure, imposing

looser coupling between components. This will aid reuse of observation, adaptation and interpretation

mechanisms.

Fundamental to ACT 2.0’s design is the explicit representation of policies, mechanisms and

information. Following the principles of Compliant Systems Architecture [83], the aim is to make

explicit the mechanisms exposed by ACT 2.0, to define precisely the extent to which it is open.

Decisions about how to use the mechanisms exposed by a component could be made by other

components, promoting a separation of concerns between policy and mechanism. For example, an

evolution strategy will decide how to use a target system’s adaptation and observation mechanisms.

Entities that represent information explicitly will include:

• events, which will make communicated information explicit and available to all eligible

ACT 2.0 components;

• advice components, which will support the capture, evolution, use and reuse of expert

knowledge – in ACT 1.0, advice is implicit in the choice of factors, levels and search

strategy.

Chapter 7: Future work

120

7.3.1 Event-based architecture

ACT 2.0 components will communicate over an event bus, with events encoded in XML to

promote openness. The Siena content-based routing system [106] will be used for dissemination of

events, which is similar to the approach described in [61]. The format of messages will conform to the

Smart Events Schema [6] to promote interoperability with probes and gauges developed in the

DASADA programme.

A target wrapper component will be present on each of the target system’s nodes, to receive and

send events. Incoming events will either be infrastructure events for the probes, or events that request

adaptation or control of the target system. Each target wrapper will have an event handler to interpret

incoming events. These events will be mapped to low-level operations on the probes or on the target

system. Target wrappers will also generate events that represent the probes’ observations and the

state of ACT 2.0 components.

7.3.2 Evolution strategies

An evolution strategy component will coordinate the observation and adaptation of a target

system. It will be target-independent (i.e. no inbuilt knowledge of the target system). It will use

gauge, advice and model components as helpers to provide semantic information about the target

system. These helpers, along with search strategy components (see chapter 4), will assist decision-

making. They will be queried and/or will proactively generate events to interpret observations,

recommend when and what to measure, and suggest when and what to adapt.

Evolution strategies will use a component factory to instantiate helper components appropriate to a

target system and configuration goal. Target system administrators will recommend specific helper

components, which will themselves instantiate other components.

For simplicity of initial implementation, evolution strategies will maximise the output of a single

gauge that indicates how well the target system meets a particular configuration goal. The ability to

maximise a gauge’s output would be powerful: the gauge’s implementation, and thus the

configuration goal, could be arbitrarily complex. Adapting the gauge or changing which gauge is used

would change the configuration goal.

Chapter 7: Future work

121

A meta-strategy will control the choice, instantiation and configuration of an evolution strategy. If

there is more than one evolution strategy, the meta-strategy will orchestrate their concurrent usage to

ensure that conflicting instructions are resolved. For example, one evolution strategy could request

frequent adaptations when attempting to improve the target system’s performance, while a second

evolution strategy with higher priority could request infrequent adaptations to preserve the target

system’s correctness.

7.3.3 Use of advice

Advice components will contain specific pieces of information about the target system. They will

provide recommendations of how and when to observe and adapt the target system. An advice

component could include state information about recent observations of the target system, or could be

stateless. To use an advice component, it will not be necessary to have knowledge of the target

system’s architecture or an understanding of why advised actions are appropriate.

Making advice components explicit will aid automated generation of advice by providing an

infrastructure in which information is represented and managed. ACT 2.0 will automatically generate

advice components to encode information gleaned from past observations of the target system.

Figure 7.1 shows an example of advice for DC-MailServer33, in the form of two event-condition-

action rules. The AdviceMS component will consume events concerning either throughput or the length

of the IMS queue, which contains unprocessed e-mail messages. If throughput drops below a

threshold of 100 messages per second, it will generate an event to recommend the activation and

querying of a probe (ProbeimsQ) to measure the length of the IMS queue. If the IMS queue length

exceeds a threshold of 200, it will generate an event to recommend that a new message store

component be created.

33 This example advice component is simplistic, ignoring other explanations for a large IMS queue.

There would need to be additional advice components to check for other causes, to decide when to

decrement the number of message store instances, etc.

Chapter 7: Future work

122

AdviceMS Rule 1 Rule 2
Event Observed throughput Observed IMS queue length
Condition Throughput < 100mps & ProbeimsQ not active IMS queue length > 200
Action Activate and query ProbeimsQ to measure

IMS queue length
Create new message store component

Figure 7.1: Example rules for an advice component

7.3.4 Use of models

A model is a representation that exhibits some property of the target system (see section 2.3).

Models are important for successful on-the-fly evolution of a complex software system: they can form

the basis for deciding on adaptations by providing a context for reasoning about observations and

possible adaptations. Advice and gauges are special kinds of models: advice is a piece of information

about the target system (i.e. an incomplete model), and a gauge interprets observations in the context

of some property of the target system.

Models can include constraints, which can be used to guide observation and adaptation of the

target system. Two types of constraint are structural and behavioural. An example of a structural

constraint is that DC-Directory must have at least two dispatcher search threads. An example of a

behavioural constraint for DC-Directory is that latency for addressing requests must be less than

100ms. Absence of constraint violations can be used to validate whether a target system configuration

is legal and whether it would meet the configuration goal.

Model components will contain and use models to recommend how and when to observe and

adapt the target system. Model components will:

• register to receive appropriate events, particularly those events pertinent to the target system

properties being modelled;

• generate events that describe a property of the target system, and/or that recommend what to

observe and adapt;

• instantiate and/or communicate with other ACT 2.0 components.

A set of model components will together form a (potentially distributed) model of the target

system, where each model component contributes some details to the overall model. Each model

component will represent aspects (i.e. sets of related properties) of the target system, where the

representation is tailored to suit the aspects being modelled. Collaboration between model

Chapter 7: Future work

123

components is a challenging area requiring further work. A weaver, similar to those used in aspect-

oriented programming [70], could perhaps combine the models to form the basis of a cohesive

evolution strategy.

7.3.5 Challenges

There are a number of challenges involved in the design and implementation of ACT 2.0.

Appendix B contains a list of general issues relating to the feasibility of observation-driven evolution

and the policy decisions involved. Some design issues for ACT 2.0 are raised below:

• What will be the format of the experiment description (i.e. the input to ACT 2.0)? It should

include target-independent information for the evolution strategies and search strategies, and

target-specific information about how to interact with the target system. The extensibility of

XML is well suited to representing target-specific information.

• How will events be mapped to operations on the probes and target system? A balance is

required between keeping event handling code reusable and keeping the implementation of

operations simple.

• How will multiple adaptations be coordinated, particularly when adapting interdependent

distributed components [102]? Should adaptations be transactional with the ACID properties

of atomicity, consistency, isolation and durability [62]? An open research issue is if/when

these properties are required, and how they can be provided.

• What will be the interfaces for using gauge, advice, model and search strategy components?

How will a database of past observations be maintained and accessed?

• What discovery mechanism will be used for identifying available ACT 2.0 components? It is

envisaged that the component factory will maintain a list of available components, and that

some components will hard-code details of other components deemed appropriate.

• How will ACT 2.0 components be configured? A meta-object for each component will

control the configurable aspects of the component’s behaviour, and respond to queries about

the services the component provides.

Chapter 7: Future work

124

7.4 Further versions of ACT

If work on ACT were to be continued, a long-term goal would be to develop future versions of

ACT that drive and coordinate all agents involved in the evolution process. Fundamental to this would

be the development of evolution strategies for various activities such as performance tuning, porting

to new environments, and adding functionality. Observation, decision-making and adaptation would

be performed either automatically or by external agents, such as target system developers

implementing a new version of a component to meet a given specification. ACT would provide a

framework for these tasks, to produce new versions of a target system and evaluate their behaviour in

terms of the configuration goal. Realising this vision would require at least integration of systems for:

• process management to coordinate agents involved in the evolution process, throughout the

organisation;

• requirements engineering to specify explicitly and formally the configuration goals;

• resource management to allocate resources required by the running system and additional

resources required during adaptation;

• architectural modelling to maintain and evolve the high-level architecture of the target

system;

• configuration management to manage changes made to the target system, in particular new

versions of components and new architectural configurations;

• deployment to install, upgrade and activate components;

• testing to ensure the correctness of the target system during evolution by using techniques

such as regression testing and code coverage.

7.5 Summary

The work described in this thesis has shown the feasibility of running automated experiments to

assist target system administrators in comprehending and configuring software systems. In particular,

use of Taguchi Methods for identifying robust configurations is a promising direction of research.

The applicability of Taguchi Methods for complex software systems requires further investigation.

It is yet to be demonstrated whether the techniques scale for large numbers of factors, and whether the

Chapter 7: Future work

125

assumption of a simple model limits applicability in practice. ACT 1.0 could be used to investigate

these issues by running more experiments for DC-Directory and DC-MailServer. This would require

the continued cooperation of Data Connection Ltd (DCL) to validate results and evaluate their

usefulness in an industrial context.

ACT 2.0, which is at the design stage, is intended to support long-lived evolution processes that

involve multiple experiments, changing configuration goals and target adaptations. ACT 2.0 will

coordinate observation and adaptation of the target system both before the target system goes into use

and on-the-fly.

Chapter 8: Conclusions

126

8 Conclusions

This thesis proposed the following hypothesis: automating the empirical measurement of a

sequence of target system configurations can find robust configurations of the target system, can find

characteristics of interest and can help construct a predictive model. This led to the novel use of

Taguchi Methods for configuring software systems and the development of ACT (Automated

Configuration Tool). The hypothesis was tested and validated in an industrial case study for DC-

Directory.

ACT can be used to explore the behaviour of a wide variety of target systems using a variety of

search strategies. It has been used in two industrial case studies with products from Data Connection

Limited (DCL): DC-MailServer and DC-Directory. Experiments to-date have explored the effects on

target system performance of caching policies, concurrency policies, number of processors and

workloads. Quality was measured by comparing observations of the target system’s behaviour against

the configuration goal specified by the experimenter.

The combination of Taguchi Methods and ACT yielded the TACT process. This was used to

design and run experiments in two phases, which produced models of the target system to identify

robust configurations (i.e. configurations that would deliver consistently high performance). The first

phase involved designing fractional factorial experiments to explore a region of the response surface

specified by the experimenter. Multiple linear regression was used to produce a model, which

predicted a combination near the optimal in the investigated region. The second phase tested

combinations in a small region around the predicted optimal to produce a more accurate model of the

response surface in that region. This second model was used to more accurately predict the optimal

combination.

Use of the TACT process with DC-Directory revealed that the assumptions of Taguchi Methods

were valid for DC-Directory. The combination predicted as optimal in the first phase experiment

performed well, and was confirmed to be near a high-quality combination.

A configuration of DC-Directory was found that consistently delivered 6% higher throughput than

the default configuration, under the conditions described in the case study. This is an indication of the

technique’s success: most software manufacturers, including DCL, would be happy to achieve a 6%

improvement in performance without investing experts’ time [99].

Chapter 8: Conclusions

127

A secondary use of the predictive model for DC-Directory was to rank untested combinations in

terms of quality, using estimates of the main effects and a selection of interaction effects. However,

the model of DC-Directory did not always accurately interpolate the response variable’s value for

untested combinations. Instead, the model provided rules of thumb to predict the effects of varying

the factors’ levels.

It requires expert knowledge of the target system to successfully use Taguchi Methods: to choose

which region of the response surface to investigate, to select levels for each factor, and to identify

significant interaction effects to investigate. Target system developers and administrators can

sometimes provide this information.

The experiments with DC-Directory have shown that the combination of Taguchi Methods and

ACT, forming the TACT process, can be used to identify high-quality configurations. TACT is

therefore a valuable addition to the techniques available for configuring software systems. It has been

suggested that use of Taguchi Methods has saved other industries, such as car manufacturing,

hundreds of millions of dollars by helping to produce robust products [2]. It is hoped that software

engineers will adopt these methods and will obtain similar rewards, finding target system

configurations that deliver consistently high performance.

In the future, the TACT process could be a common technique in software engineering. It could

help to produce robust systems that are not affected by variation in uncontrolled factors. Target

system developers could also use the TACT process to improve understanding of the target system’s

behaviour: to guide adaptations when progressing to new and improved versions of the target system.

The TACT process could become an integral part of software deployment. At the time of a target

system’s installation, the customer would indicate the expected workload. The target system would be

tuned automatically to select a configuration appropriate for the customer’s conditions. A tool like

ACT 2.0 could also be deployed with the target system. It could monitor the target system on-the-fly,

identify when and how the target system should adapt, and configure the target system as required.

The work presented here has demonstrated the usefulness of the TACT process. It has taken the

first steps towards the vision of the future outlined above, where Taguchi Methods and ACT are used

in a wide range of situations to improve the quality of software systems.

128

Appendix A: Glossary

Below is a glossary of terms that relate to the design and use of ACT for exploring the behaviour

of software systems, and statistical terminology relating to Design Of Experiments.

ACT implementer: The author of the Automated Configuration Tool (ACT); the

programmer who produces the core of ACT, which provides an

infrastructure for repeatedly running trials.

Adaptation: A deliberate change to the target system’s configuration or its

conditions of use.

Adaptation, experimental: Speculative adaptation of the target system’s configuration, where

the effect of the adaptation is not known in advance.

Adaptation function: A function in the target wrapper that adapts the target system’s

configuration or its conditions of use. Each adaptation function

sets the level for a particular factor, using an adaptation

mechanism.

Adaptation, target: An adaptation known to produce a desirable configuration. It

involves adapting the target system T to progress to a new target

system T’ that is deemed desirable.

Adaptation tactic: A rule for choosing an appropriate configuration of the target

system, based on observations of the target system and its

conditions of use.

Adaptation mechanism: An entity offering the capability to adapt the target system’s

configuration or its conditions of use. It is a mechanism for setting

the level of a configurable aspect or usage aspect.

Aliasing: Where the experimenter cannot infer which of several main

effects and/or interaction effects affected the response. The

effects whose influence cannot be separated are said to be aliased.

Architecture: “The fundamental organisation of a system embodied in its

components, their relationships to each other, and to the

129

environment, and the principles guiding its design and evolution”

[1].

Architecture description language: A formal notation for describing the architecture of a software

system. Typically identifies the components of the software

system and the inter-component communication, defined by

connectors. Abbreviated to ADL.

Automated Configuration Tool: An infrastructure to explore a target system’s behaviour, without

human intervention; it repeatedly configures and observes a target

system under various conditions, using a search strategy to

decide on the combinations to test. Abbreviated to ACT.

Black box system: A target system for which there is no knowledge of, or access to,

its internal workings. Interaction with the target system is solely

through the interfaces it exposes. Contrast with white box

systems.

Combination: A target system configuration and a condition under which it is

run; specifies the level for each factor.

Complex software system: A software system with emergent properties and/or non-

deterministic behaviour. Complex software systems generally

have many possible configurations, and it takes a long time to

empirically measure each.

Component: A computational unit that forms part of the target system.

Condition: The workload that drives a target system, and the environment in

which it runs.

Connector: A link between two or more components, across which they can

interact.

Configurable aspect: An implementation detail, exposed by the target system, that can

be set explicitly during an experiment. Referred to as a factor

when varied during an experiment.

130

Configuration: Specifies a level for each factor of the target system, to describe a

deployment of the target system.

Configuration goal: Specifies behaviour desired of the target system in terms of a

potentially conflicting set of fitness metrics. Observations of

these metrics are combined using an aggregating function to

produce a single response for each trial.

Configuration process: The set of activities involved in adapting a target system’s

configuration to meet a configuration goal. It encompasses both

tuning and evolving the target system, and can be done either

before the system goes into use, or on-the-fly.

Customer: The organisation (or individual) who will use the target system in

a real-world situation, for whom the configuration process is

performed.

Design Of Experiments: A methodology for planning experiments, in which main effects

and interaction effects can be inferred from the experiment

results. Abbreviated to DOE.

Distribution: The probabilities of an observation of the response having various

values.

Effect, interaction: An interaction effect between factors, say A and B (denoted AB),

refers to the degree to which A’s effect on the response variable

depends on the level of B, and vice versa. This can cause the

optimal level for a factor to vary, depending on the others’ levels.

An interaction effect between two factors is called a two-factor

interaction effect.

Effect, main: The effect on the response variable caused by adjusting the level

of a single factor in isolation.

131

Emergent properties: Behaviour of the whole system cannot be inferred from its parts.

The system’s behaviour is not the sum of its parts, but the product

of interactions among its parts and the environment [104].

Evolution: The strategic adaptation of a target system’s configuration over

time, to progress to new and improved versions of the target

system; it is the continuous process of identifying what to adapt

and when, and configuring the target system accordingly.

Experiment: The testing of a sequence of combinations, to empirically

measure the behaviour of target system configurations under given

conditions of use.

Experiment design: The set of combinations to test and the number of replications

for each combination.

Experimenter: The user of ACT, responsible for configuring and invoking ACT

for a particular target system.

Expert: An expert in the details of the target system’s operation. See

target system administrator or target system developer.

Factor: A configurable aspect of the target system, or a usage aspect.

Factor, uncontrolled: A factor that is not set explicitly during an experiment, for cost

or technical reasons.

Fitness metric: A measure of the “goodness” of a target system’s behaviour, in

terms of a single characteristic (e.g. throughput).

Fractional factorial design: An experiment design in which, given a list of factors and a list

of levels for each factor, only a subset of the possible

combinations is tested.

Full factorial design: An experiment design in which, given a list of factors and a list

of levels for each factor, every possible combination is tested.

132

Gauge: An entity that gathers and interprets observations (made by probes

or other gauges) in a context meaningful for evaluating behaviour

(e.g. in terms of a fitness metric).

Input space: A multi-dimensional space whose dimensions correspond to the

factors. Every combination corresponds to a point in the space,

giving a level for each factor.

Level: A value of interest to the experimenter, to which a factor can be

set. In this thesis, “level” means an uncoded level that corresponds

to a factor’s value. In contrast, a coded level is an index into an

enumeration of values.

Linear graph: A graph whose edges and vertices correspond to the columns of an

orthogonal array. Used to facilitate the assignment of factors,

and their interactions, to specific columns of an orthogonal array.

Loss function: A measure of the cost incurred when the response deviates from

the optimal. The response may be minimised, maximised or there

may be a nominal value (e.g. “12” is best).

Meta-strategy: A component of ACT; a special search strategy that dynamically

binds to and uses other search strategy components. A meta-

strategy can configure a search strategy and even dynamically

switch between strategies.

Model: A representation that exhibits some property (or properties) of a

target system.

Non-determinism: Where the amount of variability in a target system’s behaviour

does not meet the replicability demanded by the customer.

Observation: A measurement. Values of measurements can have a scale type of

nominal, ordinal, interval or ratio. These mean respectively that

the values refer to categories, that the values are ordered, that the

133

values increase in regular step sizes, or that there is a fixed zero

point so that relations such as “twice the value” are meaningful.

Observation mechanism: An entity offering the capability to observe an aspect of the target

system or its conditions of use.

On-the-fly: Refers to a running target system that is in use.

Orthogonal array: A matrix representing the set of combinations to be tested in an

experiment. Each row represents a combination and each column

represents a factor and/or an interaction between factors. The

matrix has the special property that every pair of columns includes

every combination of coded levels an equal number of times.

Parameter design: Taguchi’s technique for creating a fractional factorial design for

an experiment.

Population: The set of all possible values of the response variable for

combinations with a particular characteristic (e.g. a given factor

at a particular level).

Probe: An entity that makes observations, possibly at run-time, by

interacting with the target system and its environment.

Probe effect: Change in the target system’s behaviour caused by the act of

observing the target system.

Quality: A measure of how well a combination meets the configuration

goal. Taguchi defines a high quality combination as one that

imparts little loss to society from the time the target system is

shipped. A loss function estimates the loss to society based on a

single response: replicated measurements of the response can be

used to estimate quality (e.g. using signal to noise ratio).

Recovery function: A function in the target wrapper that restores the target system to

a stable state in the event of failure, allowing the experiment to

continue.

134

Repetitions: Repeated measurements obtained during a single trial, without

restoring the target system to a consistent state between

measurements. Repetition gives a more accurate measure of a

single sample, whereas replication gives measurements of

multiple samples.

Replicability: The consistency of responses from replicated trials. The

distribution of responses is an important part of replicability: the

distribution desired depends on the demands of the customer.

Replications: Measurements of a single combination obtained from multiple

trials, restoring the target system to a consistent state between

measurements. Replication gives measurements of multiple

samples, whereas repetition gives multiple measurements of a

single sample.

Response: A measure of a target system’s behaviour. Each trial gives a

single response.

Response variable: A measure of the behaviour of interest to the experimenter. This

could be the combination’s quality or the value for a particular

fitness metric. The set of responses from replicated trials

combine to give a single value of the response variable for each

combination (e.g. its mean response or signal to noise ratio).

Response surface: A surface that lies over the input space, using the dimensions of

the input space and an additional “response variable dimension.”

Each point on the surface shows the value of the response

variable for a combination.

Results database: A component of ACT; a repository of the results obtained during

an experiment.

Robust: Consistently good responses with low variability, even when

there is variation in the uncontrolled factors.

135

Run function: A function in the target wrapper that runs and empirically

measures a single trial of the target system.

Sample: A measurement of the response variable’s value, drawn from a

population.

Search strategy: A component of ACT that provides a policy for making

experimental adaptations to the target system’s configuration,

and to the conditions of use; generates a sequence of

combinations to test.

Search strategy implementer: A programmer who produces search strategy components for

ACT.

Signal to noise ratio: A metric for summarising the robustness of a combination, given

a set of responses from replicated trials. Abbreviated to SNR.

Significant: An effect is said to be statistically significant if it is accepted at a

given level of confidence (e.g. 95% confidence) that change in the

response variable’s value is due to that effect rather than an

alternative explanation (e.g. random variation).

TACT process: The combination of Taguchi Methods and ACT.

Taguchi Methods: A standardised set of statistical techniques for the Design Of

Experiments.

Target controller: A component of ACT; dynamically loads the functions in the

target wrapper and uses them to interact with the target system.

Target system: The (software) system to be configured.

Target system administrator: The person responsible for use of the target system; writes

functions for adapting, running, observing and evaluating the

behaviour of the target system.

Target system developer: The person responsible for the target system implementation.

136

Target wrapper: A component of ACT, associated with a target system; consists of

a set of dynamically linked libraries (DLLs) containing

adaptation functions, a run function and a recovery function.

Test: Empirical measurement of the behaviour of a target system

configuration under a given condition of use. Each test involves

running a trial.

Trials: Runs of the target system, where the behaviour of a combination

is empirically measured during each trial, and the target system

and its conditions of use are configured between trials. Each trial

tests a combination.

Tuning: Configuring a target system at a given time, to find a configuration

that behaves in a desired way.

Usage aspect: An aspect of the conditions of use that can be set explicitly during

an experiment. Referred to as a factor when varied during an

experiment.

Variability: The variation in response from replicated trials. It is the inverse

of replicability.

White box system: A target system for which there is access to its internals (e.g.

source code). Interaction with the target system can delve behind

the interfaces that it exposes. Contrast with black box systems.

Workload: Facets of how the target system is used.

137

Appendix B: Issues in observation-driven configuration

The questions below concern the feasibility and policy issues involved in applying the techniques

described in this thesis. These questions should be answered when producing and using an automated

tool for the observation-driven evolution of a target system. The terms used are defined either in the

glossary in Appendix A or in the description of ACT 2.0 in section 7.3. The column on the right

indicates whether the question is pertinent to running experiments before the system goes into use (B),

to on-the-fly evolution (F) or to both (B/F).

• Is the target system suitable for automated observation, adaptation and control? B/F

• What aspects of the target system can be observed? B/F

• What in-built facilities are available for observation? B/F

• What techniques are appropriate for inserting additional probes? B/F

• How reliable are observations? Are probe effects significant? B/F

• What aspects of the target system can be adapted without human intervention? B/F

• What in-built facilities are available for adaptation? B/F

• What additional techniques are appropriate for adaptation? B/F

• Can adaptations be made on-the-fly? F

• What perturbation will users of the target system experience during

an adaptation?

F

• How is the consistency of the target system’s configuration and state

ensured? Can the tool reverse a change or recover from failure?

F

• Can the target system be controlled to start, drive, stop and restore it to a

consistent state for each trial?

B

• Do the conditions of use realistically reflect the customer’s likely workload

and environment?

B

• Is there a clear configuration goal? B/F

138

• What are the fitness metrics and what is the desired value (i.e. minimise,

maximise or nominal value) for each?

B/F

• What is the relative importance of each fitness metric? What is the

aggregating function?

B/F

• What is the aim? E.g. find a good configuration under a given condition,

discover specific characteristics of the target system, produce a predictive

model of the target system’s behaviour, or continually adapt the target system

to constantly meet the configuration goal.

B/F

• What are the constraints on the target system’s operation? F

• Is the target system in use? F

• What level of disruption to users is acceptable, in terms of

deterioration in performance, down-time and risk of data loss?

F

• What input does the experimenter give to the tool? B/F

• Can additional input be given to the tool on-the-fly? F

• What information does the experimenter provide about interacting with the

target system?

B/F

• How is each configurable aspect described, including its legal levels,

how to use the adaptation mechanism that configures it, and the

estimated cost of adapting it to a specific level (in terms of resource

requirements and expected perturbation)?

B/F

• How is each probe described, including what it measures, estimates

of probe effects it causes and how it can be configured?

B/F

• How is the estimated cost of using a probe described (i.e. the cost of

deployment, installation, activation, deactivation, uninstallation and

removal)?

F

• How does the tool start, drive, stop and restore the target system? B

139

• How are gauge, advice, model and search strategy components described? B/F

• How are the locations of components discovered? B/F

• What is the interface for the tool to use these components? B/F

• What resources are available? What resources are required by the tool and by the target

system (for normal usage, for testing, and during adaptation)?

B/F

• How are resources described? B/F

• Can the description of available resources be changed on-the-fly? F

• What is the evolution strategy for deciding how and when to adapt the target system’s

configuration?

B/F

• How are observations interpreted to recognise when the configuration goal is

met and to evaluate the benefits of an adaptation?

B/F

• What search strategies are available and how is one chosen? B/F

• What target-specific information (i.e. gauges, advice and models) is available

to guide configuration of the target system?

B/F

• How does the tool evaluate information to determine if and when it is

of use?

B/F

• How is target-specific information used? B/F

• How does the tool infer new knowledge from experiment results? B/F

• How does the tool minimise the risk of self-introduced degradation (i.e.

ensure that adaptations are appropriate and that adaptations are made in a

timely manner)?

F

• How do the resources required and perturbation caused by adaptations affect

the evolution strategy?

F

• How does the reversibility of adaptations affect the evolution strategy? F

• Is there a meta-strategy for adapting the evolution strategy while it is in use? B/F

140

• Is a database maintained of past observations, and of adaptations made to the target

system’s configuration?

B/F

• Where is the database stored and how is it queried / updated? B/F

• How is the database searched to find interesting behavioural characteristics

and to predict the behaviour of combinations?

B/F

141

Appendix C: Example of an experiment description

Figure C.1 to Figure C.6 show sections of an experiment description file for the example target

system of a mail server, described in section 5.1.

The factors section in Figure C.1 and Figure C.2 describes the configurable aspects of the target

system and the usage aspects of its conditions of use, denoted targFactors and conditionsFactors

respectively.

There are two configurable aspects, each denoted by the tag targFactor. The first sets the cache

size to a given integer, the legal levels being 50, 100, 500 and 1000. The expected time to adapt the

cache size is twenty seconds, given by the timeToAdapt tag. The function to perform the adaptation,

given by the adaptationFunc tag, is located in the DLL named libAppMailServer.so and is called

setCacheSize. The second configurable aspect sets the threshold at which the cache is considered full.

This may be set to an integer between the values 70 and 100 where the acceptable granularity

(legalGranular) for incrementing and decrementing the parameter is 5. Thus the legal levels of

FullThreshold are 70, 75, 80, 85, 90, 95 and 100. The suggested granularity (sampleGranular) for

changing FullThreshold, however, is 10; the experimenter is suggesting that only the values 70, 80,

90 and 100 should be used during trials. To adapt the FullThreshold is expected to take twenty

seconds and the adaptation function can be found in the DLL named libAppMailServer.so, called

setFullThreshold.

<?xml version="1.0"?>
<!DOCTYPE ACT SYSTEM "experimentDescription.dtd">
<ACT>
 <factors>
 <targFactors>
 <targFactor>
 <name>CacheSize</name>
 <levels>
 <enumeration TYPE="int">
 <level>50</level>
 <level>100</level>
 <level>500</level>
 <level>1000</level>
 </enumeration>
 </levels>
 <timeToAdapt UNITS="secs">20</timeToAdapt>
 <adaptationFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>setCacheSize</func>
 </funcLocation>
 </adaptationFunc>
 </targFactor>
 <targFactor>
 <name>FullThreshold</name>
 <levels>
 <range TYPE="int">

142

 <start>70</start>
 <end>100</end>
 <legalGranular>5</legalGranular>
 <sampleGranular>10</sampleGranular>
 </range>
 </levels>
 <timeToAdapt UNITS="secs">20</timeToAdapt>
 <adaptationFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>setFullThreshold</func>
 </funcLocation>
 </adaptationFunc>
 </targFactor>
 </targFactors>

Figure C.1: Example experiment description – factors

There is one usage aspect, shown in Figure C.2, denoted by the tag conditionsFactors. This

aspect, named POP3_user_instances, adapts the workload by setting the number of concurrent POP3

client connections. It may be set to any integer level in the range 5 to 600. The experimenter suggests

that this be changed in steps of 5 and expects the change to take negligible time (i.e. 0 seconds). The

function to perform the adaptation can be found in the DLL named libAppMailServer.so and is called

setPopThreads.

 <conditionsFactors>
 <conditionsFactor>
 <name>POP3_user_instances</name>
 <levels>
 <range TYPE="int">
 <start>5</start>
 <end>600</end>
 <legalGranular>1</legalGranular>
 <sampleGranular>5</sampleGranular>
 </range>
 </levels>
 <timeToAdapt UNITS="secs">0</timeToAdapt>
 <adaptationFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>setPopThreads</func>
 </funcLocation>
 </adaptationFunc>
 </conditionsFactor>
 </conditionsFactors>
 </factors>

Figure C.2: Example experiment description – usage aspects

The fitnessMetrics section, shown in Figure C.3, gives the names of the fitness metrics that are

generated during each trial. These are called Rcpt, Fetch, Apps, ASize, FSize, Fail, FInt and WIs.

 <fitnessMetrics>
 <fitnessMetric>Rcpt</fitnessMetric>
 <fitnessMetric>Fetch</fitnessMetric>
 <fitnessMetric>Apps</fitnessMetric>
 <fitnessMetric>ASize</fitnessMetric>
 <fitnessMetric>FSize</fitnessMetric>
 <fitnessMetric>Fail</fitnessMetric>
 <fitnessMetric>FInt</fitnessMetric>

143

 <fitnessMetric>WIs</fitnessMetric>
 </fitnessMetrics>

Figure C.3: Example experiment description – fitness metric names

The functions section, shown in Figure C.4, gives the location of each of the functions in the

target wrapper, which are used to control the target system. For example, the runFunc tag denotes the

run function, which is located in the libAppMailServer.so library and is called run.

 <functions>
 <runFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>run</func>
 </funcLocation>
 </runFunc>
 <recoveryFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>recover</func>
 </funcLocation>
 </recoveryFunc>
 <validationFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>validate</func>
 </funcLocation>
 </validationFunc>
 <newResultObjFunc>
 <funcLocation>
 <dll>libAppMailServer.so</dll>
 <func>newResultObj</func>
 </funcLocation>
 </newResultObjFunc>
 </functions>

Figure C.4: Example experiment description – functions

The resources section, shown in Figure C.5, describes the resources that are available to ACT for

the experiment. It states that there is a time limit of 100 hours imposed for running all the trials. The

machines available to carry out these trials are listed as machine 30 and machines 32 to 34.

 <resources>
 <timeAvailable UNITS="hrs">100</timeAvailable>
 <machines>
 <numberedList>30,32-34</numberedList>
 </machines>
 </resources>

Figure C.5: Example experiment description – resources

The miscellaneous section, shown in Figure C.6, gives an upper bound on the length of time for

each trial: a trial times out if it takes longer than 45 minutes. It also specifies that the maximum

number of recovery attempts to be made when testing any combination is one. If the trial fails after

one recovery attempt, a failure is recorded and testing continues for the next combination.

144

As there is no recommendation of a particular search strategy to use, ACT uses the default search

strategy (i.e. grid sampling, which runs a full factorial experiment).

 <miscellaneous>
 <timeout UNITS="mins">45</timeout>
 <maxRecovers>1</maxRecovers>
 </miscellaneous>
</ACT>

Figure C.6: Example experiment description – miscellaneous

145

Appendix D: Example of target wrapper functions

Figure D.1 shows the signatures of the target wrapper’s functions for a back-end mail server.

ACT discovers the names and locations of these functions from the experiment description. For the

adaptation functions, the experiment description also specifies the type of the levels to which each

factor can be set (restricted to one of int, float or string).

/**
 * Adaptation functions for target system’s factors.
 */
void setCacheSize(int level); /* set the target system cache size */
void setFullThreshold(int level); /* set the full threshold for the cache */
void setFetchTimeLimit(float level); /* set acceptable time limit for fetch */
void setQueuePolicy(const string& level); /* set queuing policy for input queue */

/**
 * Adaptation functions for conditions of use.
 */
void setPopThreads(int level); /* set number of POP3 user instances */
void setNetworkLoss(float level); /* set simulated packet loss level */
void setScenario(const string& level); /* set workload */

/**
 * Other functions.
 */
bool validate(const Config & c); /* validate the target system config */
void recover(const Config & c); /* restore target to consistent state */
IResultObj * run(); /* run target and measure performance */
IResultObj *newResultObj(const vector<Value *> & levs); /* construct result obj */

Figure D.1: Example functions in the target wrapper

146

Appendix E: First phase experiment design

Factor levels (coded) Factor levels (uncoded) Throughput (normalised)
TNE MaxLDAP LDAPnum DispNum TNE MaxLDAP LDAPnum DispNum Rep 1 Rep 2 Rep 3 Rep 4 Mean SNR

1 1 1 1 10,000 100 2 2 1.04179 1.04286 1.03887 1.04011 1.04091 0.3482
1 1 2 2 10,000 1,001 2 2 1.03664 1.04058 1.03610 1.03802 1.03783 0.32251
1 1 3 3 10,000 2,000 2 2 1.04010 1.04090 1.03611 1.04088 1.03950 0.33642
1 2 1 1 10,000 100 1 5 1.01618 1.01351 1.00902 1.01522 1.01348 0.11621
1 2 2 2 10,000 1,001 1 5 0.87137 0.87319 0.87380 0.87376 0.87303 -1.17944
1 2 3 3 10,000 2,000 1 5 0.99704 1.00065 1.00056 1.00127 0.99988 -0.00108
1 3 1 1 10,000 100 4 8 0.98439 0.98155 0.98125 0.98179 0.98224 -0.15563
1 3 2 2 10,000 1,001 4 8 0.82424 0.82573 0.82606 0.82351 0.82489 -1.67214
1 3 3 3 10,000 2,000 4 8 0.93522 0.94136 0.93701 0.93796 0.93789 -0.55705
2 1 1 2 30,000 100 1 2 1.04869 1.04978 1.05120 1.05066 1.05009 0.42448
2 1 2 3 30,000 1,001 1 2 1.05589 1.05607 1.05547 1.05524 1.05567 0.47054
2 1 3 1 30,000 2,000 1 2 1.05621 1.05371 1.05361 1.05452 1.05451 0.461
2 2 1 2 30,000 100 4 5 1.02139 1.02600 1.02556 1.02599 1.02474 0.2122
2 2 2 3 30,000 1,001 4 5 1.02035 1.01656 1.01214 1.01762 1.01667 0.14346
2 2 3 1 30,000 2,000 4 5 1.01656 1.01357 1.01418 1.01461 1.01473 0.12699
2 3 1 2 30,000 100 2 8 0.99739 0.99871 0.99468 0.99634 0.99678 -0.02804
2 3 2 3 30,000 1,001 2 8 0.98185 0.98176 0.98165 0.98112 0.98159 -0.16137
2 3 3 1 30,000 2,000 2 8 0.94995 0.94706 0.95160 0.94836 0.94924 -0.4525
3 1 1 3 50,000 100 4 2 1.06305 1.06361 1.06563 1.06227 1.06364 0.5359
3 1 2 1 50,000 1,001 4 2 1.06139 1.06127 1.05931 1.06508 1.06176 0.52049
3 1 3 2 50,000 2,000 4 2 1.05289 1.05763 1.06576 1.01239 1.04717 0.39515
3 2 1 3 50,000 100 2 5 1.03708 1.03372 1.03558 1.03254 1.03473 0.29651
3 2 2 1 50,000 1,001 2 5 1.02495 1.02683 1.01093 1.02186 1.02114 0.18125
3 2 3 2 50,000 2,000 2 5 0.90870 0.91028 0.90458 0.90881 0.90809 -0.83747
3 3 1 3 50,000 100 1 8 0.99866 1.00509 1.00254 1.00110 1.00185 0.01594
3 3 2 1 50,000 1,001 1 8 0.99073 0.99282 0.99061 0.98954 0.99093 -0.0792
3 3 3 2 50,000 2,000 1 8 0.81118 0.81172 0.81286 0.80691 0.81067 -1.82325

147

Appendix F: Second phase experiment design

 Factor levels (normalised) Factor levels (uncoded) Throughput results
 TNE MaxLDAP DispNum TNE MaxLDAP DispNum Rep 1 Rep 2 Rep 3 Rep 4 Mean SNR

0 0 0 32,930 100 5 1.05695 1.05256 1.05524 1.05311 1.05446 0.46061
0 0 0 32,930 100 5 1.05485 1.05372 1.05452 1.05349 1.05414 0.45800
0 0 0 32,930 100 5 1.05566 1.05424 1.05576 1.05377 1.05486 0.46387
0 0 0 32,930 100 5 1.05681 1.05236 1.05167 1.05186 1.05318 0.44996
0 0 0 32,930 100 5 1.05689 1.05043 1.05209 1.05568 1.05377 0.45486

Centre
point

0 0 0 32,930 100 5 1.05541 1.05572 1.05274 1.05130 1.05379 0.45506
-1.682 0 0 24,520 100 5 1.05126 1.05088 1.04638 1.05032 1.04971 0.42134
1.682 0 0 41,340 100 5 1.05871 1.06006 1.05310 1.06057 1.05811 0.49051

0 -1.682 0 32,930 24 5 1.05263 1.04366 1.05009 1.05295 1.04983 0.42224
0 1.682 0 32,930 176 5 1.05060 1.01334 1.05227 1.05818 1.04360 0.36682
0 0 -1.682 32,930 100 3 1.05782 1.05400 1.05609 1.05252 1.05511 0.46589

Star
points

0 0 1.682 32,930 100 7 1.05255 1.04737 1.05396 1.05339 1.05182 0.43873
-1 -1 -1 27,930 55 4 1.04988 1.05230 1.05233 1.05312 1.05191 0.43953
1 -1 -1 37,930 55 4 1.05887 1.05642 1.05505 1.05749 1.05696 0.48113
-1 1 -1 27,930 145 4 1.05717 1.05131 1.04751 1.04899 1.05124 0.43392
1 1 -1 37,930 145 4 1.04215 1.05588 1.05928 1.05687 1.05355 0.45253
-1 -1 1 27,930 55 6 1.04830 1.05021 1.05177 1.05052 1.05020 0.42542
1 -1 1 37,930 55 6 1.05852 1.05211 1.05801 1.05625 1.05622 0.47503
-1 1 1 27,930 145 6 1.05465 1.05288 1.05365 1.05581 1.05425 0.45884

Corner
points

1 1 1 37,930 145 6 1.05493 1.05221 1.05589 1.05815 1.05529 0.46742

The “normalised” factor levels describe a central composite design (see section 4.3.4), where level 0 refers to the centre point. Uncoded levels depend

on the step size (e.g. the step size for TNE is 5000 for each unit of normalised factor).

148

References

[1] "IEEE Recommended Practice for Architectural Description of Software-Intensive Systems:
Standard 1471", IEEE, ISBN: 0-7381-2519-9 (2000)
[2] "Taguchi Methods: Dr Genichi Taguchi", The American Supplier Institute,
http://www.amsup.com/taguchi_methods/dr_taguchi.htm (2000)
[3] "8th European Workshop on Software Process Technology Proceedings", ed. V. Ambriola,
Lecture Notes in Computer Science 2077, Springer, ISBN: 3-540-42264-1 (2001)
[4] "ArchWare", EC 5th Framework Programme. IST-2001-32360 (2001)
[5] "A Proposal for DASADA Gauge Infrastructure Working Group: Draft v1.0", ABLE Research
Group, Carnegie Mellon University (2001)
[6] "Smart Event Schema", Programming Systems Lab, Columbia University,
http://www.psl.cs.columbia.edu/2001/12/readme.html (2001)
[7] "Stress and Performance Tool ESP-Build 5531.0", Microsoft,
http://www.microsoft.com/exchange/downloads/2000/ESP.asp (2001)
[8] "AFRL-Rome DASADA Program", AFRL/IF, http://www.rl.af.mil/tech/programs/dasada/ (2002)
[9] "DASADA Program", DARPA, http://www.schafercorp-ballston.com/dasada/ (2002)
[10] "Data Connection Directory Systems - DC-Directory", Data Connection Ltd (DCL),
http://www.dataconnection.com/dirs/dcdir.htm (2002)
[11] "Data Connection Internet Applications Solutions: Email", Data Connection Ltd (DCL),
http://www.dataconnection.com/inetapps/email.htm (2002)
[12] "DirectoryMark Benchmark Information", Mindcraft, http://www.mindcraft.com/directorymark/
(2002)
[13] "Engineering Statistics Handbook (Section 1.3.5.10 - Levene Test for Equality of Variances)",
National Institute of Standards and Technology: Statistical Engineering Division,
http://www.itl.nist.gov/div898/handbook/ (2002)
[14] "Kinesthetics eXtreme", Programming Systems Lab, Columbia University,
http://www.psl.cs.columbia.edu/kx/ (2002)
[15] "Oxford English Dictionary Online", http://dictionary.oed.com/ (2002)
[16] "Catastrophe Theory", Exploratorium,
http://www.exploratorium.edu/complexity/CompLexicon/catastrophe.html (2003)
[17] "DirectoryMark Benchmark Information", Mindcraft, http://www.mindcraft.com/directorymark/
(2003)
[18] "Invest-UK: UK Sectors: Software", DTI,
http://www.invest.uk.com/investing/uk_sectors.cfm?action=viewIntro&sid=117 (2003)
[19] "What Is PID—Tutorial", ExpertTune Inc, http://www.expertune.com/tutor.html (2003)
[20] M. Abdeen and M. Woodside, "Seeking Optimal Policies for Adaptive Distributed Computer
Systems with Multiple Controls", in Third International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT'02), Kanazawa, Japan (2002)
[21] S. Abdennadher and T. Frühwirth, "Essentials of Constraint Programming", Springer-Verlag,
ISBN: 3540676236 (2003)
[22] A.M. Alkindi, D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd, "Optimisation of application
execution on dynamic systems", Future Generation Computer Systems, Vol. 17, No. 8, p. 941-949
(2001)
[23] A. Andersen, G.S. Blair, and F. Eliassen, "A Reflective Component-Based Middleware with
Quality of Service Management", in Proms 2000, Protocols for Multimedia Systems, Cracow, Poland
(2000)
[24] T.W. Anderson and D.A. Darling, "Asymptotic theory of certain goodness of fit criteria based on
stochastic processes", Annals of Mathematical Statistics, Vol. 23, No. 2, p. 193-212 (1952)
[25] R.M. Balzer, "Probe Run-Time Infrastructure", http://schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-TimeInfrastructureDesign.ppt (2001)
[26] R.M. Balzer and N.M. Goldman, "Mediating Connectors", in ICDCS Workshop on Electronic
Commerce and Web-Based Applications, Austin, Texas (1999)

149

[27] R. Bellman, "Adaptive Control Processes: A Guided Tour", Princeton University Press (1961)
[28] J.P. Bigus, J.L. Hellerstein, T.S. Jayram, and M.S. Squillante, "AutoTune: A Generic Agent for
Automated Performance Tuning", in Practical Application of Intelligent Agents and Multi Agent
Technology, Manchester, UK (2000)
[29] G.S. Blair, A. Andersen, L. Blair, and G. Coulson, "The Role of Reflection in Supporting
Dynamic QoS Management Functions", in Seventh International Workshop on Quality of Service
(IWQoS '99), London, UK (1999)
[30] G.S. Blair, A. Andersen, L. Blair, G. Coulson, and D. Sanchez, "Supporting Dynamic QoS
Management Functions in a Reflective Middleware Platform", IEE Proceedings - Software, Vol. 147,
No. 1, p. 13-21 (2000)
[31] F.P. Brooks, "The Mythical Man-Month: Essays on Software Engineering". Anniversary ed,
Addison-Wesley, ISBN: 0-201-83595-9 (1995)
[32] CDSA, "Working Conference on Complex and Dynamic Systems Architecture Proceedings",
DSTC, Brisbane, ISBN: 1-864-99582-3 (2001)
[33] C. Chaudet and F. Oquendo, "pi-SPACE: A Formal Architecture Description Language Based on
Process Algebra for Evolving Software Systems", in Fifteenth IEEE International Conference on
Automated Software Engineering (ASE'00), Grenoble, France (2000)
[34] S. Cheng, D. Garlan, B. Schmerl, J.B. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu, "Software
Architecture-based Adaptation for Pervasive Systems", in International Conference on Architecture
of Computing Systems, Karlsruhe, Germany (2002)
[35] G. Clarke and D. Cooke, "A Basic Course in Statistics", Arnold, ISBN: 0-713-13496-8 (1983)
[36] C.A. Coello Coello, "Comprehensive Survey of Evolutionary-Based Multiobjective Optimization
Techniques", Knowledge and Information Systems, Vol. 1, No. 3, p. 269-308 (1999)
[37] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, "The AETG System: An Approach to
Testing Based on Combinatorial Design", IEEE Transactions on Software Engineering, Vol. 23, No.
7, p. 437-444 (1997)
[38] P.R. Cohen, "Empirical Methods for Artificial Intelligence", The MIT Press: Cambridge,
Massachusetts, ISBN: 0-262-03225-2 (1995)
[39] M. Courtois and M. Woodside, "Using Regression Splines for Software Performance Analysis
and Software Characterization", in Proc 2nd Int. Workshop on Software and Performance
(WOSP2000),, Ottawa, Canada (2000)
[40] P.Y. Cunin, R.M. Greenwood, L. Francou, I. Robertson, and B.C. Warboys, "The PIE
Methodology - Concept and Application", in Software Process Technology: Lecture Notes in
Computer Science 2077, V. Ambriola, Editor. Springer (2001)
[41] K. Czarnecki and U. Eisenecker, "Generative Programming: Methods, Tools and Applications",
Addison-Wesley, ISBN: 0-201-30977-7 (2000)
[42] A. Dearle, Q.I. Cutts, and R.C.H. Connor, "Using Persistence to Support Incremental System
Construction", Journal of Microprocessors and Microprogramming, Vol. 17, No. 3, p. 161-171 (1993)
[43] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, "MIMO Control of an Apache
Web Server: Modeling and Controller Design", in American Control Conference, Anchorage, Alaska
(2002)
[44] Y. Diao, J.L. Hellerstein, S. Parekh, and J.P. Bigus, "Managing Web Server Performance with
AutoTune Agents", IBM Systems Journal, Vol. 42, No. 1, p. 136-149 (2003)
[45] E.O. Doebelin, "Control System Principles and Design", John Wiley & Sons, ISBN: 0-471-
08815-3 (1985)
[46] J. Dowling, T. Schäfer, V. Cahill, P. Haraszti, and B. Redmond, "Using Reflection to Support
Dynamic Adaptation of System Software: A Case Study Driven Evaluation", in OOPSLA'99
Workshop on Reflection and Software Engineering, Denver, Colorado (1999)
[47] N.R. Draper and H. Smith, "Applied Regression Analysis". 2nd ed, John Wiley & Sons, ISBN:
0-471-02995-5 (1981)
[48] DSG, "Projects", Distributed Systems Group, Trinity College Dublin,
http://www.dsg.cs.tcd.ie/Projects/Projects.htm (2001)
[49] H.A. Duran-Limon and G.S. Blair, "Reconfiguration of Resources in Middleware", in 7th IEEE
International Workshop on Object-oriented Real-time Dependable Systems (2002)

150

[50] U.M. Fayyad, D. Haussler, and P.E. Stolorz, "KDD for Science Data Analysis: Issues and
Examples", in Second International Conference on Knowledge Discovery and Data Mining (KDD-
96), Portland, Oregon (1996)
[51] N.E. Fenton, "Software Measurement: A Necessary Scientific Basis", IEEE Transactions on
Software Engineering, Vol. 20, No. 3, p. 199-206 (1994)
[52] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, "Computer Graphics: Principles and
Practice". 2nd ed, Addison-Wesley, ISBN: 0-201-12110-7 (1990)
[53] G.F. Franklin, J.D. Powell, and A. Emami-Naeini, "Feedback Control of Dynamic Systems". 3rd
ed, Addison-Wesley, ISBN: 0-201-52747-2 (1994)
[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: Elements of Reusable
Object-Oriented Software", Addison Wesley, ISBN: 0-201-63361-2 (1995)
[55] D. Garlan, R. Monroe, and D. Wile, "ACME: An Architecture Description Interchange
Language", in CASCON’97, Toronto, Canada (1997)
[56] D. Garlan, B. Schmerl, and J. Chang, "Using Gauges for Architecture-Based Monitoring and
Adaptation", in Working Conference on Complex and Dynamic Systems Architecture, Brisbane,
Australia (2001)
[57] P.W. Gill, "Probing for a Continual Validation Prototype", MSc Thesis, Worcester Polytechnic
Institute (2001)
[58] B. Gowing and V. Cahill, "Meta-Object Protocols for C++: The Iguana Approach", in Reflection
96, San Francisco (1996)
[59] R.M. Greenwood, D. Balasubramaniam, S. Cîmpan, G.N.C. Kirby, K. Mickan, R. Morrison, F.
Oquendo, I. Robertson, W. Seet, B. Snowdon, B.C. Warboys, and E. Zirintsis, "Process Support for
Evolving Active Architectures." in 9th European Workshop on Software Process Technology,
Helsinki, Finland (2003)
[60] R.M. Greenwood, I. Robertson, and B.C. Warboys, "A Support Framework for Dynamic
Organizations", in Software Process Technology: Lecture Notes in Computer Science 1780, R.
Conradi, Editor. Springer (2000)
[61] P.N. Gross, S. Gupta, G.E. Kaiser, G.S. Kc, and J.J. Parekh, "An Active Events Model for
Systems Monitoring", in Working Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia (2001)
[62] T. Haerder and A. Reuter, "Principles of Transaction-Oriented Database Recovery", ACM
Computing Surveys, Vol. 15, No. 4, p. 287-317 (1983)
[63] P. Horn, "Autonomic Computing: IBM's perspective on the state of information technology",
IBM (2001)
[64] R. Jain, "The Art of Computer Systems Performance Analysis", John Wiley & Sons, ISBN: 0-
471-50336-3 (1991)
[65] M.G. Kendall, "Rank Correlation Methods". 4th ed, Charles Griffin & Company Ltd, London,
ISBN: 0-852-64199-0 (1970)
[66] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd, "Application Execution Steering Using On-
the-fly Performance Prediction", in HPCN Europe High Performance Computing and Networking 98,
Amsterdam, Holland (1998)
[67] G. Kiczales, J. des Rivières, and D. Bobrow, "The Art of the Metaobject Protocol", MIT Press,
Cambridge, Massachusetts, ISBN: 0-262-61074-4 (1991)
[68] G. Kiczales, J. Lamping, C.V. Lopes, C. Maeda, A. Mendhekar, and G.C. Murphy, "Open
Implementation Design Guidelines", in Proceedings of the 19th International Conference on Software
Engineering, Boston, Massachusetts (1997)
[69] G. Kiczales, J. Lamping, C. Maeda, D. Keppel, and D. McNamee, "The Need for Customizable
Operating Systems", in Fourth Workshop on Workstation Operating Systems, Napa, California (1993)
[70] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin,
"Aspect-Oriented Programming", in 11th European Conference on Object-Oriented Programming
(ECOOP) (1997)
[71] G.N.C. Kirby, "Persistent Programming with Strongly Typed Linguistic Reflection", in 25th
International Conference on Systems Sciences, Hawaii (1992)

151

[72] G.N.C. Kirby, "Reflection and Hyper-Programming in Persistent Programming Systems", PhD
Thesis, University of St Andrews (1992)
[73] M.M. Kokar, K. Baclawski, and Y.A. Eracar, "Control Theory-Based Foundations of Self-
Controlling Software", IEEE Intelligent Systems, Vol. 14, No. 3, p. 37-45 (1999)
[74] M.M. Lehman, "Laws of Software Evolution Revisited", in 5th European Workshop, EWSPT
'96, Nancy, France (1996)
[75] M.M. Lehman, "Feedback in the Software Process", in Software Engineering Association Easter
Workshop, London, UK (1997)
[76] M.M. Lehman, J.F. Ramil, and G. Kahen, "Experiences with Behavioural Process Modelling in
FEAST, and Some of its Practical Implications", in 8th European Workshop on Software Process
Technology, Witten, Germany (2001)
[77] N.G. Leveson, "Safeware: System Safety and Computers", Addison-Wesley, ISBN: 0-201-
11972-2 (1995)
[78] D. McAuley, "Some Futures in Broadband Communications", in Distinguished Lecture, St
Andrews, (2001)
[79] J.R. Milligan, "Dynamic Assembly for Systems Adaptability, Dependability, and Assurance
(DASADA): Assured Component-Based Development via Probes and Gauges", in Scuola Superiore
G. Reiss Romoli (SSGRR'2001), L'Aquila, Italy (2001)
[80] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, "Process migration", ACM
Computing Surveys, Vol. 32, No. 3, p. 241-299 (2000)
[81] Minitab, "Minitab Homepage", http://www.minitab.com/
[82] R. Morrison, D. Balasubramaniam, R.M. Greenwood, G.N.C. Kirby, K. Mayes, D.S. Munro, and
B.C. Warboys, "ProcessBase Reference Manual (Version 1.0.6)", Universities of St Andrews and
Manchester (1999)
[83] R. Morrison, D. Balasubramaniam, R.M. Greenwood, G.N.C. Kirby, K. Mayes, D.S. Munro, and
B.C. Warboys, "A Compliant Persistent Architecture", Software - Practice and Experience, Special
Issue on Persistent Object Systems, Vol. 30, No. 4, p. 363-386 (2000)
[84] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearle, G.N.C. Kirby, and D.S. Munro,
"Napier88 Reference Manual (Release 2.2.1)", University of St Andrews (1996)
[85] P. Naughton and H. Schildt, "Java 2 - The Complete Reference". 3rd ed, McGraw-Hill Osborne
Media, ISBN: 0-072-11976-4 (1999)
[86] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.
Rosenblum, and A. Wolf, "An Architecture-Based Approach to Self-Adaptive Software", IEEE
Intelligent Systems, Vol. 14, No. 3, p. 54-62 (1999)
[87] L.J. Osterweil, A. Wise, J.M. Cobleigh, and L.A. Clarke, "Architecting Dynamic Systems Using
Containment Units", in Working Conference on Complex and Dynamic Systems Architecture (2001)
[88] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus, "Using Control Theory
to Achieve Service Level Objectives in Performance Management", Real-Time Systems, Vol. 23, No.
1, p. 127-141 (2002)
[89] D.L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, Vol. 15, No. 12, p. 1053-1058 (1972)
[90] P. Pazandak, "Understanding Probes: Probe Architecture & Functionality", Object Services &
Consulting, Inc., http://www.objs.com/DASADA/Understanding%20Probes.htm (2000)
[91] M.S. Phadke, "Planning Efficient Software Tests", Crosstalk: The Journal of Defense Software
Engineering, October 1997, p. 11-15 (1997)
[92] S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, ISBN: 0-
13-360124-2 (1995)
[93] A.I. Sage, G.N.C. Kirby, and R. Morrison, "ACT: a Tool for Performance Driven Evolution of
Distributed Applications", in Working Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia (2001)
[94] U. Sankar and D. Thampy, "Applying Taguchi Methods in Software Product Engineering", in
Software Engineering Process Group Conference (SEPG), Bangalore, India (2002)
[95] M. Shaw, "Beyond objects: a software design paradigm based on process control", ACM
SIGSOFT Software Engineering Notes, Vol. 20, No. 1, p. 27-38 (1995)

152

[96] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck,
"Network File System (NFS) version 4 Protocol (RFC 3530)", IETF,
http://www.ietf.org/rfc/rfc3530.txt (2003)
[97] I. Sommerville, "Software Engineering". 6th ed, Addison-Wesley, ISBN: 0-201-39815-X (2001)
[98] H. Staines, "Efficient Experimental Design", Simbios Statistical Services, Abertay (2002)
[99] R. Stamp, Data Connection Ltd (DCL), Personal communication (2002)
[100] C. Szyperski, "Component Software: Beyond Object-Oriented Programming", Addison-Wesley,
ISBN: 0-201-17888-5 (1997)
[101] G. Taguchi, "Introduction to Quality Engineering: Designing Quality into Products and
Processes", Asian Productivity Organization, Tokyo, Japan, ISBN: 92-833-1083-7 (1986)
[102] G. Valetto, G.E. Kaiser, and G.S. Kc, "A Mobile Agent Approach to Process-based Dynamic
Adaptation of Complex Software Systems", in 8th European Workshop on Software Process
Technology, Witten, Germany (2001)
[103] V. Vetland and M. Woodside, "A Workbench for Automation of Systematic Measurement of
Resource Demands of Software Components", CMG Transactions, No. 92, p. 42-48 (1997)
[104] B.C. Warboys, P. Kawalek, I. Robertson, and R.M. Greenwood, "Business Information
Systems: A Process Approach", McGraw-Hill, ISBN: 0-077-09464-6 (1999)
[105] D.L. Wells and P. Pazandak, "Taming Cyber Incognito: Tools for Surveying
Dynamic/Reconfigurable Software Landscapes", in Working Conference on Complex and Dynamic
Systems Architecture, Brisbane, Australia (2001)
[106] A. Wolf and A. Carzaniga, "Content-based Networking: A New Communication
Infrastructure", in NSF Workshop on an Infrastructure for Mobile and Wireless Systems, Scottsdale,
Arizona (2001)
[107] C.F. Wu and M. Hamada, "Experiments: Planning, Analysis and Parameter Design
Optimization", John Wiley & Sons, ISBN: 0-471-25511-4 (2000)

