A Peer-To-Peer Infrastructure for Resilient Web Services

Stuart J. Norcross, Alan Dearle, Graham N.C. Kirby and Scott M. Walker
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland
{stuart, al, graham, scott}@dcs.st-and.ac.uk

Abstract

This paper describes an infrastructure for the deploy-
ment and use of Web Services that are resilient to the
failure of the nodes that host those services. The infra-
structure presents a single interface that provides mecha-
nisms for users to publish services and to find the services
that are hosted. The infrastructure supports the auto-
nomic deployment of services and the brokerage of hosts
on which services may be deployed. Once deployed, ser-
vices are autonomically managed in a number of aspects
including load balancing, availability, failure detection
and recovery, and lifetime management. Services are
published and deployed with associated metadata de-
scribing the service type. This same metadata may be
used subsequently by interested parties to discover ser-
vices.

The infrastructure uses peer-to-peer (P2P) overlay
technologies to abstract over the underlying network to
deploy and locate instances of those services. It takes
advantage of the P2P network to replicate directory ser-
vices used to locate service instances (for using a ser-
vice), Service Hosts (for deployment of services) and
Autonomic Managers which manage the deployed ser-
vices. The P2P overlay network is itself constructed using
novel middleware based on Web Services and a variation
of the Chord P2P protocol, which is self-configuring and
self-repairing.

1. Introduction

Increasingly, e-services are deployed using Web Ser-
vices mechanisms [1-3]. In many situations deployment
onto a single physical server node would yield unaccept-
able levels of availability or latency, since the centralisa-
tion of the e-service would leave it vulnerable to failure
or over-loading of the single node. This problem can be
addressed by replicating the e-service on multiple physi-
cal nodes. If a particular node then fails, acceptable ser-
vice may still be provided by the remaining replicas.

Clearly this introduces problems of coherency man-
agement for stateful services. Even with state-less ser-
vices, however, there are several other difficulties with
the approach. One is the need to predict in advance the

maximum load and the frequency of node failure, so that
appropriate levels of provisioning can be chosen. Given
that loads on internet services are notoriously bursty [4],
it is difficult to select a level of provisioning that will give
high availability at reasonable cost. This is because
maximum loads are orders of magnitude higher than av-
erage loads. Another problem is that although the e-
service itself may be replicated, clients need to be able to
locate a specific instance. If the directory that supports
this look-up is itself centralised, then the e-service may
become unreachable if the directory node fails or
becomes overloaded.

The latter problem may be addressed by replicating the
access directory, introducing in turn the need to manage
coherency as e-services are added and removed.

The issue of retaining flexibility in provisioning levels
can only be addressed by allowing dynamic adjustment of
replication levels in response to failures or changes in
access patterns. This applies equally to nodes hosting e-
services and to nodes hosting elements of the directory.
The management of this dynamic adjustment may be de-
signed as an autonomic process [5], which monitors the
state of the system, detects significant deviations from the
desired state, and carries out actions to restore equilib-
rium. Such autonomic management addresses the problem
that any statically configured distributed system is likely
to decay over time, as failures accumulate and access pat-
terns change. Given its importance, the autonomic proc-
ess should also be replicated to avoid it becoming a point
of failure, giving rise to the need for autonomic manage-
ment of the autonomic management process itself.

This paper describes an infrastructure designed to sup-
port the requirements outlined above. It allows a service
provider to deploy resilient e-services as Web Services
without regard to the details of placement and replication
factors. The e-services are automatically deployed onto an
appropriate number of server nodes, and the number of
these replicas is actively managed by the infrastructure in
response to failures and changes in access patterns. The
infrastructure provides a simple interface through which
users may locate particular e-service instances.

The infrastructure separates provision of e-services
from the provision of physical server hosts, thus support-
ing distinct markets in the two. An e-service provider may

buy server provision from any number of server provid-
ers, and have a particular e-service spread across them.
To control this, the autonomic management layer pro-
vides interfaces for policy to be specified by both e-
service and server providers.

The implementation of the infrastructure exploits work
by others on peer-to-peer (P2P) overlays, and a generic
resilient storage data structure that is applied at a number
of different levels.

Section 2 discusses related work and describes some
enabling technologies used in the infrastructure: RAFDA
Run Time (RRT), Cingal and JChord. Section 3 describes
the individual constituent components of the infrastruc-
ture, describing the Service Directory for locating service
instances, the Host Directory for locating Service Hosts,
and finally the autonomic mechanisms for the manage-
ment of deployed services.

2. Related work

2.1 Web services

Web Services provide a remotely accessible service to
programs executing in different address spaces in the
form of a set of remotely accessible methods. Using typi-
cal Web Service technologies such as Apache Axis [2]
and Microsoft .NET Web Services [3], services reside
within execution environments that instantiate the service
objects implementing their functionality, manage their
lifetimes and handle requests to the contained services.

A web service is implemented by creating a class that
conforms to the interface specified by the web service.
The service is deployed by specifying its name, publicly
accessible methods and the class that implements it. Dur-
ing a Web Service invocation, the container performs the
actual call on the underlying service object. The container
creates this service object by instantiating the implemen-
tation class using a statically defined constructor. It is not
possible to specify a particular object to act as the service
object, thus removing fine-grained control over the ser-
vices from the programmer.

The deployment of a web service makes a single in-
stance of the web service available via the container. To
deploy the web service in multiple containers, the pro-
grammer must perform a deployment operation on each
container. Existing Web Service systems do not permit
the replication of a service across multiple containers.

Once deployed, the service is accessible only via its
container and it cannot be migrated from one container to
another. In the event of container or host failure, or under
high-load, the web service may become unavailable. The
deployment of Web Services in a resilient manner is dif-
ficult.

Universal Description, Discovery and Integration
(UDDI) [6] is a specification for the creation of distrib-
uted registries of Web Services. It provides a mechanism
to publish and discover information about businesses, the
kinds of services they provide and how these services
may be accessed. When creating a program that wishes to
make use of a particular kind of service, the programmer
searches a UDDI registry to obtain a suitable service
based on business name, keywords or predefined tax-
onomies.

Part of the information returned from the UDDI regis-
try is metadata describing how to bind to the service. Us-
ing this information, the programmer creates an applica-
tion that accesses the service. Each service has a unique
ID and so if it fails or is to be relocated, the service pro-
vider can indicate this fact in the UDDI registry. A pro-
gram that attempts to access the service at an invalid loca-
tion can interrogate the UDDI registry to obtain the new
service location and transparently retry the call.

UDDI provides a distributed Web Service look-up
mechanism and can also indicate to service users that a
particular Web Service has been relocated. It does not
provide tools for the autonomic deployment or replication
of the services themselves and, by retaining a one-to-one
mapping between service identifiers and service in-
stances, does not support the look-up of replicated ser-
vices.

2.2 ServiceGlobe

The system that is most closely related to the one de-
scribed in this paper is ServiceGlobe [7]. It supports the
storage, publishing, deployment and discovery of e-
services. The system supports a variety of services; how-
ever, those of most interest are the so-called dynamic ser-
vices, which can be deployed and executed on arbitrary
ServiceGlobe servers. Services are discovered using
UDDI, which vyields the address of a Service Host. Ser-
vices are implemented by mobile code (written in pure
Java) that resides in code repositories. When a service
request arrives at a Service Host the implementing code is
fetched, if necessary, from the code repositories and exe-
cuted on a runtime engine residing on the host. The major
differences between the technology described in this pa-
per and the ServiceGlobe technology is that ServiceGlobe
appears to be aimed at transient stateless services.

2.3 RAFDA Run Time (RRT)

We now introduce several of the building blocks of
our infrastructure: RRT, Cingal and JChord.

The RRT [8] has been developed as part of the
RAFDA project (Reflective Application Framework for

Distributed Architectures) [9]. The RRT permits arbitrary
components from arbitrary applications to be exposed for
remote access. It allows the dynamic deployment, as Web
Services, of components in a running application. Remote
method calls can be performed on the exposed compo-
nents from different address spaces, possibly on different
machines. The RRT has five notable features that differ-
entiate it from typical Web Service technologies:

1. Specific, existing component instances rather than
component classes are deployed as Web Services.

2. The programmer does not need to decide statically
which component classes support remote access.
Any component from any application, including pre-
viously compiled applications, can be deployed as a
Web Service without the need to access or alter the
application’s source code.

3. A remote reference scheme, synergistic with stan-
dard Web Services infrastructure, provides pass-by-
reference semantics, in addition to the pass-by-value
semantics supported by Web Services.

4. Parameter passing mechanisms are flexible and may
be dynamically controlled through policies. A de-
ployed component can be called using either pass-
by-reference or pass-by-value semantics on a per-
call basis.

5. The system automatically deploys referenced com-
ponents on demand.

2.4 Cingal

The Cingal system [10-12] (Computation IN Geo-
graphically Appropriate Locations) supports the deploy-
ment of distributed applications in geographically appro-
priate locations. It provides mechanisms to execute and
install components, in the form of bundles, on remote
machines. A bundle is the only entity that may be exe-
cuted in Cingal, and consists of a signed XML-encoded
closure of code and data and a set of bindings naming the
data. Cingal-enabled hosts contain appropriate security
mechanisms to ensure malicious parties cannot deploy
and execute harmful agents, and to ensure that deployed
components do not interfere with each other either acci-
dentally or maliciously. Cingal components may be writ-
ten using standard programming languages and pro-
gramming models. When a bundle is received by a Cin-
gal-enabled host, provided that the bundle has passed a
number of checks, the bundle is fired, that is, it is exe-
cuted in a security domain (called a machine) within a
new operating system process. Unlike processes running
on traditional operating systems, bundles have a limited
interface to their local environment. The repertoire of

interactions with the host environment is limited to: inter-
actions with a local store, the manipulation of bindings,
the firing of other bundles, and interactions with other
Cingal processes.

The Cingal infrastructure includes a number of ser-
vices that may be invoked from bundles executing within
machines. These are the store, store binder, process
binder and Valid Entity Repository (VER) providing stor-
age, binding and certificate storage respectively. Cingal
implements a two-level protection system. The first level
of security restriction is on the firing of bundles. A con-
ventional Unix or Windows style security model is not
appropriate for Cingal hosts, which do not have users in
the conventional sense. Instead, security is achieved by
means of digital signatures and certificates. Each host
maintains a list of trusted entities, each associated with a
security certificate. Entities might correspond to organisa-
tions, humans or other Cingal hosts. This data structure is
maintained by the VER. Bundles presented for firing
from outwith a Cingal host must be signed by a valid en-
tity stored in the VER. The VER maintains an associative
data structure indexed by the entity id and mapping to a
tuple including certificates and rights. Operations are
provided for adding and removing entities from the re-
pository. Of course these operations are subject to the
second protection mechanism, which is capability based.

2.5 JChord

JChord is our implementation of the Chord [13] peer-
to-peer look-up protocol. This implementation provides a
peer-to-peer overlay that supports Key-Based-Routing
(KBR) [14] for addressing nodes in the underlying net-
work. Under a KBR scheme every entity addressable by
an application has an associated m-bit key value (where m
is a system constant), and every key value maps to a
unique live node in the overlay network. Up-calls from
the routing layer inform the application layers of changes
to the key space, thus allowing an application to be aware
of changes to the set of keys that map to the local node.

Chord is a ring-based protocol, which at the simplest
level requires each node to maintain only a pointer to its
immediate successor in the ring. Each node also has a
unique key and the ring is arranged in key order modulo
2". The Chord protocol supports a single lookup opera-
tion, which takes a key value and returns the network
address of the Chord node to which the key value maps.
A look-up on key K will yield the address of the node N
whose key Ky is the first of the ring members to succeed
K in the key space. In this way the Chord protocol pro-
vides a distributed hash function that maps from keys to
overlay nodes. Each node maintains a list of nodes that
follow it in the ring, known as its successor list. A suc-

cessor list of size | allows the ring to survive the failure of
up to I-1 adjacent nodes. This provides resiliency of the
ring and the look-up protocol, though further measures
are required to ensure integrity of the data structures
hosted by ring nodes.

The JChord implementation consists of a set of Java
classes that provide the base Chord functionality, used by
higher-level applications in constructing a key-
addressable peer-to-peer overlay network. JChord uses
the RRT to publish two interfaces that facilitate inter-
node communications. The first of these interfaces (which
is not discussed here) supports the core Chord functions
used in maintaining the ring. The second interface,
JChordAPI, provides the lookup method as shown in
Figure 1.

public interface JChordAPI {
URL lookup(Key k)
¥

Figure 1. JChord interface for key look-up

The RRT allows arbitrary objects within a JVM to be
exposed to the network as Web Services. Using this
mechanism, individual JChord nodes may expose any
number of additional services. In the system described in
this paper, each JChord node hosts a number of additional
services including a Service Directory that supports the
discovery of Web Services, a Host Directory supporting
the discovery of machines willing to host services, and a
Data Storage service.

These services utilise a generic key-based data storage
architecture similar to the DHash layer used in the Coop-
erative File System (CFS) [15]. Data is stored on a root
node and replicated (for fault tolerance) on a number of
successive nodes in the ring. The generic storage layer on
each JChord node is exported using a Data Storage ser-
vice interface (not elaborated here). This service is also
used to implement other services exported by each
JChord node as described above.

Data D with key K is stored at the JChord node N that
is returned by JChord’s lookup method when called with
K. N is known as the primary node for D and the copy of
D stored at N is called the primary copy. When data is
first stored at a primary node, that node is responsible for
ensuring that the data is replicated for fault tolerance.
This is achieved by storing the data on the next r nodes in
the ring, where r is some autonomically managed aspect
of the system which may be equal to I, the successor list
length, but does not have to be.

Changes to the ring’s membership impact on the data
storage layer. For example, a new node inserted into the
ring may become the primary node for data already stored
on another node. Consequently, following such an inser-
tion, some existing data must be copied onto the new pri-
mary node. Similarly, data may have to be replicated fur-
ther as nodes holding replicas of data fail or leave the

ring. Thus the data storage layer needs to be aware of
changes in the ring topology. To accommodate this,
JChord provides an up-call mechanism, which informs
the generic storage system and other high-level compo-
nents of changes in the ring topology.

3. An Infrastructure for Resilient
Web Services

The primary concern of this paper is an infrastructure
for the deployment and use of Web Services that are resil-
ient to the failure of the nodes that host those services.
The external interface to this infrastructure is shown in
Figure 2.

public interface ResilientWSInfrastructure {

URL lookupService(URI service_id);

void publishService(URI service_id,
URL location);

void addServiceHost(Certificate[] certs,
URL service_host);

void deploy(Bundle impl, URI service_id
DeploymentSpecification spec);

URL lookupManager(URI service_id);

void registerManager(URL am,
URI service_id);

Figure 2. Resilient infrastructure interface

The two simplest methods provided by this interface
are lookupService and publishService. The publishService
method is used by a service provider to inform the system
of the URL of a new service instance. It has two parame-
ters: a URI used to uniquely identify the service, and a
URL denoting a deployment of that service. Although we
assume that a user wishing to locate an instance of a ser-
vice is in possession of the service URI, we are planning
to add a fuzzy matching service to complement this
whereby a user can discover service URIs from partial
information or metadata such as keywords, WSDL frag-
ments etc. An unpublishService method, omitted for brev-
ity, takes the same parameters and is used to remove in-
formation about a published service from the system. A
client wishing to make use of a service passes its URI to
the lookupService method, and receives the URL of an
instance of the service.

The implementation of the ResilientWSInfrastructure
interface utilises a number of services residing on the
JChord ring. All services are exported by every JChord
node, and are made resilient by replicating their state on
the ring as described in the previous section.

The first of these services is the Service Directory
which implements the IServiceDirectory interface shown
in Figure 3. It provides a mechanism to resolve a key for
a service, derived from its URI, to the network address of
an instance of that service—by implementing a one-to-
many mapping from each service key to the URLs of the
instances of that service.

Within the infrastructure, Web Services are identified
by keys. Given a service S, its key Ks is obtained by ap-
plying a globally known hash function H to the URI for S,
URIs. Thus:

Ks = H(URls)

public interface IServiceDirectory {
void store(Key key, URL location);
void remove(Key key, URL location);
URL[] findAll(Key key);
URL findOne(Key key);

¥

Figure 3. Service Directory interface

The Service Directory instance located on a JChord
node N is responsible for storing the location information
for instances of all Web Services whose keys map to N
under the JChord look-up protocol.

To find the location of a node hosting service S with
key Ks, a JChord look-up is executed on K to yield the
JChord node N hosting the Service Directory instance that
contains the entries for Ks. The Service Directory at N is
then queried for the locations of nodes hosting service S.
The same look-up process is executed when publishing a
new location for a service, although here the final step is
to call to the Service Directory to add a new location en-
try for Ks.

The RRT on each JChord node exports an IServiceDi-
rectory interface as a web service bound to the name
“ServiceDirectory”. Like all services deployed using the
RRT, a reference to a Service Directory may be obtained
by specifying the URL of the remote RRT and the service
name with which that service is associated on that host.
This is provided by the RRT’s getServiceByName
method.

The lookupService and publishService methods from
the implementation of the ResilientWSInfrastructure in-
terface can now be expanded as shown in Figure 4. The
unpublishService method is omitted; however, the imple-
mentation is similar to publishService.

URL lookupService(URI id) {
Key k = H(id);
URL sdLocation = JChord.lookup(k);
IServiceDirectory sd = (IServiceDirectory)
RRT.getServiceByName(sdLocation,
"'ServiceDirectory');
return sd.findOne(k);

}

void publishService(URI id, URL location) {
Key k = H(id);
URL sdLocation = JChord. lookup(k);
IServiceDirectory sd = (IServiceDirectory)
RRT.getServiceByName(sdLocation,
""ServiceDirectory');
sd.store(k, location)

}

Figure 4. lookupService and publishService
An example of the system running is shown in
Figure 5. The JChord ring is represented by the five

nodes arranged in a pentagon in the centre of the diagram.
Each node exports a Service Directory implementation,
some of which are shown simply by the interface, and
some of which are elaborated to show their contents. A
number of Web Services are arranged around the outside
of the diagram offering services identified by the URIs
Sx, Sy and Sz. The hash of Sx maps to node R2 in the ring,
whereas the hashes of Sy and S; map to node R4. Thus a
look-up of the URI Sy from any location will map to node
R4, where an instance of IServiceDirectory can be found
and its findOne method invoked to yield an instance of

the Sy service.
EiENo

IServiceDirectory
IServiceDirectory @
O

IServiceDirectory

SYl!
Sz[\ | 1]

IServiceDirectory

Sz

IServiceDirectory

Figure 5. Example system state

3.1 Deploying services

Thus far, we have shown how service providers can
advertise extant services and users may locate them. The
infrastructure supports the autonomic deployment of ser-
vices and the brokerage of hosts on which services may
be deployed. This section deals with issues surrounding
service deployment.

In order to support automatic deployment, three addi-
tional elements of functionality are required: the ability
for hosts known as Service Hosts to advertise their will-
ingness to host services, the ability to supply the service
code implementing services, and the ability to deploy the
service code on available hosts. In the ResilientWSInfra-
structure interface, the first of these functions is provided
by the addServiceHost method while the others are pro-
vided by the deploy method.

The addServiceHost method allows Service Hosts to
be registered with the infrastructure. It is parameterised
with the URL of a host capable of hosting services and an
array of certificates, one for each entity for whom the
Service Host is prepared to host a service. The certificates

are used to identify individuals or organisations that wish
to deploy services onto that host.

This method utilises another service, the Host Direc-
tory, which implements the IHostDirectory interface
shown in Figure 6.

The algorithm to locate the appropriate Host Directory
is similar to that used to locate the appropriate Service
Directory. However, in the case of Host Directories, the
hash function is based on the certificate passed to the
addServiceHost and removeServiceHost methods (again
not shown) rather than on a URI.

public interface IHostDirectory {
void store(Key key, URL serviceHost);
void remove(Key key, URL serviceHost);
URL[] FfindAll(Key key);
URL findOne(Key key);

¥

Figure 6. Host Directory interface

We assume a model where each service provision en-
tity has an associated certificate and where each Service
Host specifies a set of certificates for which it will host
services. Thus a Service Host may be recorded in many
different Host Directories, one for each of the certificates
for which it will host services.

Thus a Service Host S registers itself with the infra-
structure by creating a Host Directory entry for each cer-
tificate C for which S will host services using addSer-
viceHost. A key K¢ is generated for each certificate C by
applying the globally known hash function H to C:

Kc=H(C)

The implementations of addServiceHost and remove-
ServiceHost perform JChord look-ups on K¢, yielding the
Host Directory on which the appropriate store or remove
operations may be invoked.

The deploy method, shown in Figure 7, in the Resil-
ientWSInfrastructure interface, permits a service provider
to deploy a service onto a set of Service Hosts. The de-
ploy method takes three parameters: a Cingal bundle con-
taining the code and data implementing the service and
signed by an appropriate entity; a deployment specifica-
tion (not elaborated here) which includes information
such as the number of instances to be deployed; and the
URI identifying the service.

The implementation of deploy first extracts the certifi-
cate C from the bundle; this certificate is hashed to obtain
the key Kc. Next, it performs a JChord look-up on K¢ to
yield the appropriate Host Directory, and calls the findAll
method which returns all of the Service Hosts prepared to
host services signed with certificate C. Based on the de-
ployment specification an appropriate subset of these Ser-
vice Hosts is chosen. Next, the bundle is fired on each
one, making the service available at that host. This opera-
tion will normally succeed, but is subject to a certificate
check performed by the Service Host. Finally, each of the
newly deployed bundles is registered with the infrastruc-

ture using the publishService method provided by the
ResilientWSInfrastructure interface.

void deploy(Bundle b,
DeploymentSpecification spec, URI u) {
Certificate c = b.getCertificate();
Key k_cert = H(c);
URL hdLocation = JChord. lookup(k_cert);
IHostDirectory hd = (IHostDirectory)
RRT.getServiceByName(hdLocation,
"HostDirectory™);
URL[] host_urls = hd.findAll(k_cert);
//Choose hosts based on
//DeploymentSpecification parameter.
URL[] chosen_urls =
chooseHosts(spec, host_urls);
for (URL i : chosen_urls) {
Cingal . fire(bundle, i);
RWS_Infrastructure.publishService(u,i);

}
}

Figure 7. The deploy method

Figure 8 shows six service instances deployed on five
nodes; five of these services are hosted by Service Hosts.
Service Hosts A, B and D are prepared to accept bundles
signed with certificate Certl. H(Certl) maps to R1 and
consequently, the URLs for these Service Hosts are held
in the Host Directory at ring node R1. Similarly, the
URLSs of the Service Hosts willing to host services signed
with certificate Cert2 are held at R4. From the diagram it
can be seen that the deployer of service Sy holds certifi-
cate Certl whereas the deployer of service Sy holds cer-
tificate Cert2. One instance of the service S; is not hosted
by a Service Host and has been independently instantiated
and its URL published. The URLs of the service instances

ServiceHostA
(Cert1}

\.. ServiceHost B
. (Cert1 Cert2)

" __SeérviceHost C
N (Cert2)

IHostDirectory \\

|
;
\ /
\
\

H(Sy)
H(Sz)
H(Cert2)

ServiceHost D ,"
(Certl Cert3),”

/\‘ IHostDirectory -

IHostDirectory

Figure 8. Service Hosts and service instances
3.2 Autonomic services

The infrastructure described thus far provides the
functionality to deploy and locate instances of Web Ser-
vices. The infrastructure on which it is implemented is
resilient to failure. However, the availability of the repli-

cated services is likely to decay over time due to failures,
etc. To address this problem, a framework that supports
autonomic management is required. Autonomic Managers
are capable of deploying new service instances to replace
those that have failed and to stop or deploy services in
response to load changes. The long-term, reliable storage
and retrieval of service implementation bundles is neces-
sary for lifetime management of services by Autonomic
Managers. To be able to deploy a service, an Autonomic
Manager needs to be able to access a copy of the bundle
used to originally instantiate the service. This requirement
is addressed by the Data Storage service provided on each
node of the JChord ring.

A number of parties could be responsible for storing
the bundle in the Data Storage service. However, the ob-
vious place for the activity to be carried out is in the de-
ploy method. The mechanism for storing bundle data in
the Data Storage service is similar to the other ring activi-
ties described in this paper and is consequently omitted.

In order to instantiate new services and stop under-
subscribed services, the Autonomic Manager must have
the same credentials as the entity that instantiated the ser-
vice. If this were not the case, any arbitrary process could
pose as an Autonomic Manager and maliciously start and
stop services. Consequently, the Autonomic Manager
must be signed with the same certificate as the supplier of
the service being managed. A corollary of this is that
Autonomic Managers must themselves be self-managing
since they cannot be safely managed by a third party.

As described above, Autonomic Managers are self-
managing. In order for them to be resilient to failure, a
service provider must instantiate multiple manager proc-
esses for any given service, and the redundant replicas
peered together. Thus, for some particular service, a set of
Autonomic Managers exists. Whilst this might suggest a
multiplicity of managers, a set of managers may manage
more than one service.

Services find their Autonomic Managers using the
lookupService method described earlier. Similarly, this
same mechanism allows an Autonomic Manager to find
its peers. However, for efficiency, Autonomic Managers
will normally use some optimised method of inter-peer
communication, such as a ring-based protocol, in order to
maintain coherent state. A similar approach can be used
to peer instances of a stateful service in order to maintain
coherent state.

Managers must be capable of instantiating new copies
of themselves in response to overload, peer failure etc, in
the same manner as the instantiation of the services they
manage. Clearly, to bootstrap this process, some manag-
ers must be manually deployed on some set of willing
hosts.

Autonomic Managers must be compliant with the 1Au-
tonomicManager interface, shown in Figure 9. Users may

write their own implementations; however, library code is
provided that implements a standard Autonomic Man-
ager. This code must be signed by the entity (organisation
or user) providing the service and deployed either using
the deploy method or some other technology. In order that
instances of some service S may find their Autonomic
Manager AMs, Autonomic Managers register themselves
using the registerManager method in the ResilientWSIn-
frastructure interface. Instances of service S can look up
their Autonomic Manager using the lookupManager
method which yields an instance of an Autonomic Man-
ager. Service instances use the report method to report
information such as service load etc. Based on the aggre-
gate information gleaned from the service instances, the
Autonomic Manager AMs can start and stop instances of
S.

public interface lAutonomicManager{
void report(AutonomicData d);

Figure 9. Autonomic Manager interface

The implementations of registerManager and lookup-
Manager are similar to those for publishService and look-
upService and use the same Service Directory service. A
service key Ksav, corresponding to the Autonomic Man-
agers for a service S, is generated by hashing the concate-
nation of the service’s URI Us and a globally known salt
string AMsa. 1. The aim of the salt string is to avoid creat-
ing a bottleneck whereby a single JChord node is respon-
sible both for instances of a service and the Autonomic
Managers for that service. Thus:

Ks.am = H (Us + AMga 1)

A JChord look-up on Ks v Yields the Service Direc-
tory where the URLSs of each of the Autonomic Managers
for the service are stored. The methods registerManager
and unregisterManager (again, omitted for brevity) call
the store or remove methods (respectively) on the inter-
face while lookupManager calls findOne. The same set of
Autonomic Managers can be made responsible for the
management of a number of different services by register-
ing their URLs with the URIs for those services.

@ AM1 AM2

\
\
\
\
\
\
\

IServiceDirectory

Figure 10. Peered Autonomic Managers
Figure 10 shows three peered Autonomic Managers
AM1, AM2 and AMS3, all of which are responsible for

managing instances of service S. The key for the Auto-
nomic Manager for service S maps to ring node R4. In the
diagram it can be seen that two instances of S have ob-
tained the URLSs of two different Autonomic Managers.

4. Status and further work

The underlying components—RRT, Cingal and
JChord—are fully implemented. We are currently work-
ing on a full implementation of the infrastructure, and aim
to have a fully functional system by the time of the con-
ference. We plan to carry out an experimental evaluation
of the performance and resilience of the infrastructure,
initially on a local cluster and then on PlanetLab.

We are also working on a web service discovery com-
ponent, called the Discovery Service, that maps from
some fuzzy meta-data to service keys. Examples of fuzzy
data might include fragments of WSDL, the identity of
providers, keywords etc.

5. Conclusions

We have presented the design of an infrastructure for
resilient e-services. The resilience arises from dynami-
cally managed replication of both the e-services them-
selves, and the directories used to locate instances of the
e-services. Users and providers of e-services are shielded
from most of the inherent complexity by the infrastruc-
ture’s autonomic management capability, and the self-
healing nature of the underlying P2P protocols.

Acknowledgements

This work was supported by EPSRC Grants
GR/S44501 “Secure Location-Independent Autonomic
Storage Architectures”, GR/M78403 “Supporting Internet
Computation in Arbitrary Geographical Locations” and
GR/R51872 “Reflective Application Framework for Dis-
tributed Architectures”, and by Nuffield Grant
URB/01597/G *“Peer-to-Peer Infrastructure for Auto-
nomic Storage Architectures”. Much of the JChord im-
plementation work was carried out by Stephanie Ander-
son.

References

[1] Wa3C, "Web Services", 2004
http://w3c.org/2002/ws/

[2] The Apache Software Foundation, "Apache
Axis", 2004 http://ws.apache.org/axis/

[3] Microsoft Corporation, "Web Services",
http://msdn.microsoft.com/webservices/

[4] D. Clark, W. Lehr, and I. Liu, "Provisioning for
Bursty Internet Traffic: Implications for Industry

(5]

(6]

[7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

and Internet Structure", Proc. MIT ITC Work-
shop on Internet Quality of Service, 1999.

J. O. Kephart and D. M. Chess, "The Vision of
Autonomic Computing”, IEEE Computer, vol.
36 no. 1, pp. 41-50, 2003.

UDDl.org, "UDDI Version 2.04 API, Published
Specification”, 2002
http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.pdf

M. Keidl, S. Seltzsam, K. Stocker, and A.
Kemper, "ServiceGlobe: Distributing E-Services
Across the Internet”, Proc. 28th International
Conference on Very Large Databases (VLDB
2002), Hong Kong, China, 2002.

A. J. Rebon Portillo, S. Walker, G. N. C. Kirby,
and A. Dearle, "A Reflective Approach to Pro-
viding Flexibility in Application Distribution”,
Proc. 2nd International Workshop on Reflective
and Adaptive Middleware, ACM/IFIP/USENIX
International Middleware Conference (Middle-
ware 2003), Rio de Janeiro, Brazil, 2003.

A. Dearle, G. N. C. Kirby, A. J. Rebon Portillo,
and S. Walker, "Reflective Architecture for Dis-
tributed Applications (RAFDA)", 2003
http://www-systems.dcs.st-and.ac.uk/rafda/

J. C. Diaz y Carballo, A. Dearle, and R. C. H.
Connor, "Thin Servers - An Architecture to Sup-
port Arbitrary Placement of Computation in the
Internet", Proc. 4th International Conference on
Enterprise Information Systems (ICEIS 2002),
Ciudad Real, Spain, 2002.
http://www-systems.dcs.st-and.ac.uk/cingal/

A. Dearle, G. N. C. Kirby, A. McCarthy, and J.
C. Diaz y Carballo, "A Flexible and Secure De-
ployment Framework for Distributed Applica-
tions™, in Lecture Notes in Computer Science
3083, W. Emmerich and A. L. Wolf, Eds.:
Springer, 2004, pp. 219-233.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, "Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications”,
Proc. ACM SIGCOMM 2001, San Diego, CA,
USA, 2001.

F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,
and |. Stoica, "Towards a Common API for
Structured Peer-to-Peer Overlays”, Proc. 2nd In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS '03), Berkeley, CA, USA, 2003.

F. Dabek, F. Kaashoek, D. Karger, R. Morris,
and |. Stoica, "Wide-Area Cooperative Storage
With CFS", Proc. 18th ACM Symposium on
Operating Systems Principles, Banff, Canada,
2001.

