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1. Preface 
  
Programming language design is probably the most emotive subject in Computational 
Science today. Nearly everyone uses a programming language and most people have 
something to say about their design. 
  
S-algol is presented as a member of a family of languages in the algol tradition that are 
constrained by a design methodology. This design methodology is based on the belief that 
most programming languages are too big and intellectually unmanageable. In addition it is 
believed that these problems arise in part from the languages being too restrictive. The 
number of rules to define a language increases when a general rule has additional rules 
attached to constrain its use in certain cases. Ironically these additional rules usually make 
the language less powerful. Power through simplicity, simplicity through generality is the 
guiding tenet. 
  
The design methodology is based on three semantic principles which can be attributed to 
Strachey [9] and Landin [5] and later developed by Tennent [10] and Morrison [7]. These are 
  
  
(a) The principle of data type completeness  
  
(b) The principle of abstraction  
  
(c) The principle of correspondence  
  
  
The principle of data type completeness states that the rules for using data types must be 
complete with no gaps. This does not mean that all operators in the language need be defined 
on all data types but rather that general rules have no exceptions. Examples of lack of 
completeness can be seen in Pascal [12], for example, where only some data types are 
allowed as members of sets. The Principle of Data Type Completeness is bound to lead to 
simpler languages since it avoids the complexity of special cases. 
  
Abstraction is a process of extracting the general structure to allow the inessential details to 
be ignored. It is a facility well known to mathematicians and programmers since it is usually 
the only tool they have to handle complexity. The principle of abstraction when applied to 
language design is invoked by identifying the semantically meaningful syntactic categories in 
the language and allowing abstractions over them. The most familiar form of abstraction is 
the function which is an abstraction over expressions. 
  
Finally, the principle of correspondence states that the rules for introducing and using names 
should be the same everywhere in a program. In particular there should be a one to one 
correspondence between introducing names in declarations and introducing names as 
parameters. 
  
Armed with the above rules the language may be designed as follows 
 
 Data Types 
  
Decide which data types, both simple and compound, are required by the language and define 
the operations on these data types. The flavour of the language will be determined by the data 
objects it can manipulate. The principle of data type completeness is invoked to ensure that 
all data objects have the same civil rights. Ignoring the principle means introducing rules to 
handle exceptions thus making the language more complex. For example, if arrays are 
allowed then arrays of arrays should be allowed as should expressions and functions with 
array results. 
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 The Store 
  
Introduce the store, if any, and the manner in which it may be used. First of all the 
relationship between the store and the data types should be defined. This includes the 
implementation of pointers, data locations and protection on these locations. For example, 
constants may be regarded as storage locations which may not be updated [4]. 
  
The introduction of the store forces consideration of the language control structures. The 
designer can take his pick and is well advised to read the excellent paper by Ledgard and 
Marcotty [6] on the subject. 
 
 Abstraction 
  
Tennent [10] has suggested that the method of applying the principle of abstraction is to 
identify the semantically meaningful syntactic categories and invent abstractions for each. 
This he does for Pascal and proposes some extensions to complete the abstractions. However, 
he points out that it is not always an easy matter to identify these categories in the first place. 
Examples of abstractions are functions which are abstractions over expressions and 
procedures which are abstractions over statements. An important point about abstractions is 
that they may be parameterised. 
 
 Declaration and Parameters 
  
Invent the declarations and the parametric objects together. There must be a one to one 
correspondence between the two. This does not mean that they necessarily have the same 
syntax but that for every type of declaration there is an equivalent parametric type. Parameter 
passing modes are also included in this correspondence. For example, the declarative 
equivalent of call by value is an initialising declaration. If functions, record classes etc can be 
declared then they can be passed as parameters even though they are not defined as data 
objects in the language. Finally, if the language has a facility to define new data types and 
give them a name then the type can be passed as a parameter. 
 
 Input and Output 
  
The I/O models for most high level languages tend to reflect the environment in which they 
were designed. Some attempts have been made to design and implement comprehensive I/O 
systems. Unfortunately where it has not been tied to particular hardware it has never been 
very successful. Nowhere else in the design of a programming language does the hardware 
intervene as much as it does in the I/O system. When a new I/O device becomes available the 
language must be able to make use of it. Of course, this situation is hopeless and perhaps the 
wisest approach to I/O is to allow the implementor to deal with it for a particular 
environment, as the Algol 60 designers proposed. 
 
 Iterate 
  
Re-evaluate the language and correct or justify any idiosyncrasies in the design. Hopefully 
the design process will converge. 
 
 Concrete Syntax 
  
The final stage of language design is to propose a concrete syntax. Ideally different groups of 
workers could have a different syntax. However, there are many users who do not wish to 
design their own syntax and so the language must provide at least one possibility. 
  
It seems very obvious to say that the syntax should be simple and easy to learn. That may be 
so but there is no doubt that some of the success of the language depends on the cosmetics. 
Also, a carefully chosen syntax can ease the problem of compilation. 
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How often the rules can be broken is for the designer's own conscience. However, every time 
the rules are broken the language becomes more complex. The rules were introduced to help 
design simpler and more intellectually manageable languages and should only be ignored 
with great care. 
  
S-algol is the first of the family of algols to be produced under this design methodology. It 
reflects my own personal preference for data objects and syntax. It also ignores the principle 
of abstraction with regard to sequencers and declarations. However there are no exceptions to 
the principle of correspondence or the principle of data type completeness in the language. I 
see this as the strength of the language. 
  
A number of people must be thanked for their help with the S-algol project. Firstly, Jack Cole 
whose enthusiasm and encouragement were responsible for the development of the system. 
Peter Bailey must be thanked for his help in testing the initial system on the PDP11 and in 
proof reading the original manual, as well as his enormous willingness to help when 
difficulties arose. Pete also wrote the VAX interpreter with Paul Maritz and the S-algol code 
generators. Paul Maritz implemented S-algol on the Zilog Z80 and pointed out a discrepancy 
in the application of the principle of correspondence to the language. Paul must also be 
blamed for the old binder for separately compiled modules. Fred Brown implemented a fast 
version of the Outline graphics for the Z80. Mike Livesey must be thanked for our 
discussions of the semantic principles on which the language is based and David Turner, now 
in Canterbury, with whom I started on language design deserves a special mention for his 
contribution [11]. Tony Davie, Michael Weatherill, Hamish Gunn and Ian Sommerville also 
may useful comments during the early design and implementation of S-algol. Tony also 
made numerous comments for improving this reference manual. 
  
In 1983, S-algol was used as a basis for PS-algol as part of the research in the PISA project. 
Al Dearle wrote versions of the interpreter in C and altered the compiler to generate new 
object code. It is on these versions that Dave Munro tailored the system to fit into the 
Macintosh environment. For this he rewrote the compiler in C, adapted the interpreter and 
surrounded it all with a Mac environment. To the language he added the raster graphics 
facilities of PS-algol [8] built by Al & Fred [2]. In parallel with this Dave made an equivalent 
system available on the SUN workstations. Al, Ray Carrick and Tony Davie have now 
written an introductory text based on S-algol. I hope you enjoy reading it and using the 
system.  
 
         Ron Morrison 
         18-9-88  
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2. Syntax Specification 
 
It is important that a programming language can be formally defined since it gives 
implementors a standard to work on. There are two levels of definition, syntactic and 
semantic. A formal semantic description, a denotational semantics, of S-algol is given by 
Adamson [1]. Here we will deal with the formal syntactic rules giving an informal semantic 
description of the syntactic categories. That is, we will define the set of all syntactically legal 
S-algol programs remembering that the meaning of any one of these programs is defined by 
the semantics. 
 
To define the syntax of a language we need another notation which we will call a meta 
language and in this case we choose a variation of Backus-Naur form. 
 
The syntax of S-algol is specified by a set of rules or productions as they are normally 
called. Each production specifies the manner in which a particular syntactic category (e.g. a 
clause) can be formed. The syntactic category name is enclosed in the meta symbols '<' and 
'>' thus distinguishing it from names or reserved words in the language. These syntactic 
categories can be mixed in productions with terminal symbols which are actual symbols of 
the language itself. Thus, by following the productions until we have only terminal symbols, 
we can derive legal programs. We can also use the productions in a compiler to check that a 
program is legal and a very efficient method of doing this, called Recursive Descent is 
described by Davie & Morrison [3].  
 
Other meta symbols include '|' which allows a choice in a production. The square brackets '[' 
and ']' are also used in pairs to denote an object is optional. When used with a '*' we have a 
zero or many times repetition. You should not confuse the meta symbols '|','<', '>', '*', and '[', 
']' with the actual symbols in S-algol and we will be careful to keep the two concepts 
completely separate in our description. In the syntactic description of S-algol these symbols 
are defined by the following non-terminal symbols: 
 
 <bar> ::= | 
 
 <lab> ::= < 
 
 <rab> ::= > 
 
 <star> ::= * 
 
 <lsb> ::= [ 
 
 <rsb> ::= ] 
 
As you may expect with any reasonable programming language, the productions for S-algol 
are recursive which means that there are an infinite number of legal S-algol programs. 
However the syntax of S-algol can be described in about 60 productions. We will break 
ourselves in gently with an example. 
 
 <integer_literal> ::= [<add_op>]<int_literal> 
 
 <int_literal>  ::= <digit>[<digit>]* 
 
 <add_op>  ::= + | - 
 
 <digit>   ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 
 
The above syntax indicates that an integer can be formed as an optional + or - followed by 
one or many digits. The full context-free syntax of S-algol is given in Appendix I. 



7 

 

3. Types and Type Rules 
 
The S-algol type system is based on the notion of types as sets of objects from the value 
space. These sets may be built in, like integer, or they may be formed by using one of the 
built in type constructors, like structure. The constructors obey the Principle of Data Type 
Completeness. That is, where a type may be used in a constructor, any type is legal without 
exception. This has two benefits. Firstly it allows a very rich type system to be described 
using a small number of defining rules since all the rules are very general without exception 
to them. This reduces the complexity of the defining rules. The second benefit is that the type 
constructors are as powerful as they can be since there is no way to restrict their domain. This 
increases the power of the language. 
 
3.1 Universe of Discourse 
 
There is an infinite number of data types in S-algol defined recursively by the following 
rules. 
 

1. The scalar data types are integer, real, boolean, string, picture, pixel and file. 
 
2. #pixel is the type of an image made up of pixels arranged as a rectangular matrix. 
 
3. For any data type T, *T is the data type of a vector with elements of type T. 
  
4. The data type pntr comprises a structure with any number of fields, and any data 

type in each field. 
  
  

In addition to the above data types there is a number of other objects in S-algol to which it is 
convenient to give a type in order that the compiler may check their use for consistency. 
  
  

5. The type of a procedure with parameters T1,...,Tn and result type Tm is (T1,...,Tn -
> Tm). 

  
6. Clauses which yield no value are of type void. 
  
7. The class of a structure with fields of type T1,...,Tn is of type (T1,...,Tn)-structure 

and its fields are of type Ti-field. 
 

The universe of discourse of the language is defined by the closure of rules 1 and 2 under the 
recursive application of rules 3 and 4. 
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3.2 Type Rules 
 
The type rules form a second set of rules to be used in conjunction with the context free 
syntax to define well formed programs. The generic types that are required for the formal 
definition of S-algol can be described by the following: 
 

type ari thari th   is in tint | rea lrea l   
  
type orderedordered is  aritharith  | st r ingstring   
  
type writeablewr i teable   is orderedordered | boolbool   
  
type l iterall iteral  is wr iteablewr iteable | pixe lpixe l | ppntrntr  | f ilef ile   
  
type imageimage     is #pixe l #pixe l | #cpixel#cpixel   
  
type nonvoidnonvoid is li tera lli tera l | p icpic  | imageimage  | vectorvector   
  
type vectorvector  is *nonvoid*nonvoid | *cnonvoid*cnonvoid   
  
type typetype   is nonvoidnonvoid | voidvoid   
  

For example, in the above, the generic ari thari th can be either an intint or a realreal , representing the 
types integer and real in the language. In the type rules, the language types and generic types 
are written in shadow font to distinguish them from the reserved words. 
 
To check that a syntactic category is correctly typed the context free syntax is used in 
conjunction with a type rule. For example, the type rules for the two-armed if clause is 
 
  tt :: typetype , if <clause> :: boolbool then <clause> ::  tt  else <clause> :: t => tt => t   
  
This rule may be interpreted as follows. tt is given as a typetype  from the table above. That is, it 
can be any type including void. Following the comma, the type rule states that the reserved 
word if may be followed by a clause which must be of type boolean. This is indicated by :  :  
boolbool. The then and else alternatives must have clause of type t t, whichever type it is. That is, 
both alternatives must have the same type. The resultant type, indicated by =>=>,  of this 
production is also tt, the same as the alternatives. 
 
The type rules will be used throughout this manual, in conjunction with the context-free 
syntax rules to describe the language. A complete set of type rules for S-algol is given in 
Appendix II. 
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4. Literals 
 
Literals are one of the basic building blocks of a program and allow values to be introduced. 
A literal is defined by 
 
 <exp6>  ::= <literal> 
 
 <literal> ::= <integer_literal> | <real_literal> | <bool_literal> | 
     <string_literal> | <pixel_literal> | <pntr_literal> | <file_literal> 
 
4.1 Integer Literals 
 
These values of type int are defined by 
 
 <integer_literal> ::= [<add_op>]<int_literal> 
 
 <int_literal>  ::= <digit>[<digit>]* 
 
 <add_op>  ::= + | - 
 
 <integer_literal> =>=>   intint   
  
An integer literal is one or more digits possibly preceeded by a sign. 
 
 e.g. 1  0  -1256  8797 
 
 
4.2 Real Literals 
 
These are of type real and are defined by 
 
 <real_literal>  ::= <integer_literal>.[<int_literal>][e< integer_literal >] 
 
 <real_literal>    =>=>   realreal   
 
Thus, there are a number of ways of writing a real literal. For example 
 
 1.2  3.1e2  5.e5  
 1.  3.4e-2 3.4e+4 
 
3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031) 
 
4.3 Boolean Literals 
 
There are only two literals of type bool. They are the symbols true and false. They may be 
used with obvious meaning when a boolean literal is required. 
 
 <boolean_literal>  ::= true | false 
 
 <boolean_literal>  =>=>   boolbool   
 
4.4 String Literals 
 
A string literal is a sequence of characters in the character set (ASCII) enclosed by double 
quotes. The syntax is 
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 <string_literal> ::= <double_quote>[<char>]*<double_quote> 
 <char>   ::= any ascii character except ' or " | <special_character> 
 <special_character> ::= <single_quote><special_follow> 
 <special_follow> ::= n | p | o | t | b | <single_quote> | <double_quote> 
 
 <string_literal> =>=>   str ingstr ing   
 
The empty string is denoted by "". Examples of string literals are 
 
 "This is a string literal" 
 "I am a string" 
 
The programmer may wish to have a double quote itself inside a string literal. This requires 
using a single quote as an escape character and so if a single or double quote is required 
inside a string literal it must be preceded by a single quote. For example 
 
 "a'"" has a value a" and 
 "a''" has a value a' 
 
There are a number of other special characters which may be used inside string literals. They 
are 
 
 'n  newline 
 'p  newpage 
 'o  carriage return 
 't  horizontal tab 
 'b  backspace 
 
These characters are normally used in strings to represent special ASCII characters. 
 
4.5 Pixel Literals 
 
A pixel literal specifies the values in the planes of the pixel. It is defined by 
 
 <pixel_literal>  ::= on[&<pixel_literal>] | off[&<pixel_literal>] 
 
 <pixel_literal>  =>=>   pixe lpixe l   
 
For example 
 
 on  off & on & off 
 
4.6 File Literal 
 
There is only one file literal. It is used to denote an inactive file. 
 
 <file_literal>  ::= nullfile 
 
 nullfile   =>=>   filefile   
 
4.7 pntr Literal 
 
There is only one pntr literal. It is used to denote an empty structure. 
 
 <pntr_literal>  ::= nil 
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 nil    =>=>   pntrpntr   
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5. Primitive Expressions and Operators 
 
The order of execution of an S-algol program is strictly from left to right and top to bottom. 
This rule becomes important in understanding side-effects in the store. 
 
5.1 Boolean Expressions 
 
Objects of type bool in S-algol can have the value true or false. There are only two boolean 
literals, true and false and three operators. There is one unary operator, ~, and two binary 
operators, and and or. They are defined by the truth table below. 
 

a b ~a a or b a and b

true false false true false

false true true true false

true true false true true

false false true false false  
 
The precedence of the operators is important and is defined in descending order as 
 

~ 
and 
or 
 

Thus 
 

~a or b and c 
 
is equivalent to 
 

( ~a ) or ( b and c ) 
 
This is reflected in the syntax rules which are 
 
 <expression> ::= <exp1>[or<exp1>]* 
 <exp1>  ::= <exp2>[and<exp2>]* 
 <exp2>  ::= [~]<exp3> 
 
 <expression>  : bool: bool or <expression> :  bool  => bool:  bool  => bool   
 <expression>  : bool: bool and <expression> : bool => bool: bool => bool   
  [~]<expression> : bool => bool: bool => bool   
 
The evaluation of a boolean expression in S-algol is non-strict. That is, in the left to right 
evaluation of the expression, as soon as the result is found, no more computation is 
performed on the expression. For example 
 

true or <expression> 
 
gives the value true without evaluating <expression> and 
 

false and <expression> 
 
gives the value false without evaluating <expression>. 
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5.2 Comparison Operators 
 
Expressions of type boolean can also be formed by some other binary operators. For 
example, a = b is either true or false and is therefore boolean in nature. The operators are 
called the comparison operators and are 
 
 <  less than 
 ≤  less than or equal to (written <=) 
 >  greater than 
 ≥  greater than or equal to (written >=)  
 =  equal to 
 ≠  not equal to (written ~=) 
 is  a pntr has the given class 
 isnt a pntr does not have the given class 
 
The syntactic rules for these are 
 
 <exp2>  ::= [~]<exp3>[<rel_op><exp3>] 
 <rel_op> ::= <eq_op> | <compar_op> | <type_op> 
 
  t :  nonvoidt :  nonvoid, <expression> : t: t <eq_op> <expression> : t  => bool: t  => bool   
  wherewhere  <eq_op> ::= = | ≠ 
 
  t  :  orderedt :  ordered,<expression> :  t:  t  <compar_op> <expression> : t  => bool: t  => bool   
  wherewhere  <compar_op> ::= < | ≤ | > | ≥ 
 
 <expression> :  pntr:  pntr <type_op><identifier> => bool => bool   
  wherewhere  <type_op> ::= is | isnt 
 
Note that the operators <, ≤, > and ≥ are defined on integers, reals and strings whereas = and 
≠ are defined on all S-algol data types. Their interpretation for these data types is given with 
each data type as it is introduced below. The operators is and isnt are for testing a structure 
class. 
 
5.3 Arithmetic Expressions 
 
Arithmetic may be performed on data objects of type integer and real. The syntax of 
arithmetic expressions is 
 
 <exp3>   ::= <exp4>[<add_op><exp4>]* 
 <exp4>   ::= <exp5>[<mult_op><exp5>]* 
 <exp5>   ::= [<add_op>]<exp6> 
 <add_op>  ::= + | - 
 <mult_op>  ::= <star> | / | div | rem 
 
  t  :  ari tht :  ari th, <expression> : t: t <add_op> <expression> : t  => t: t  => t   
  t  :  ari tht :  ari th, <add_op> <expression> : t => t: t => t   
  
  <expression> :  int:  int <int_mult_op> <expression> : int => int: int => int   wherewhere  
<int_mult_op> ::= <star> | div | rem 
 
  <expression> :  rea l:  rea l <real_mult_op><expression> : real => rea l: real => rea l   wherewhere  
<real_mult_op> ::= <star> | /  
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The operators mean 
 
 +   addition 
 -   subtraction 
 *   multiplication 
  /   real division  
 div   integer division throwing away the remainder 
 rem   remainder after integer division 
 
In both div and rem the result is negative only if exactly one of the operands is negative. 
 
Some examples of arithmetic expressions are 
 
 a + b  3 + 2  1.2 + 0.5  -2 + a / 2.0 
 
The language provides automatic coercion from integer to real where necessary. 
 
5.4 Arithmetic Precedence Rules 
 
The order of evaluation of an expression in S-algol is from left to right and based on the 
precedence table 
 
 * / div rem 
 + - 
 
That is, the operations *, /, div, rem are always evaluated before the binary versions of + and 
-. However, if the operators are of the same precedence then the expression is evaluated left 
to right. For example 
 
 6 div 4 rem 2  gives the value 1 
 
Brackets may be used to override the precedence of the operator or to clarify an expression. 
 
 <exp6>  ::= (<clause>) 
 
 t :  nonvoidt :  nonvoid,(<clause> :  t:  t) => t => t   
  
For example 
 
  3 * ( 2 - 1 )    yields 3 not 5 
 
5.5 String Expressions 
 
There is only one string operator ++ defined on strings. It concatenates the two operand 
strings to form a new string. For example 
 
 "abc" ++ "def" 
 
results in the string 
 
 "abcdef" 
 
The syntax rule is 
 
 <exp4>  ::= <exp5>[++<exp5>]* 
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  <expression> :  s tr ing:  s tr ing ++ <expression> : s tring => s tring: s tring => s tring   
 
A new string may be formed by selecting a substring of an existing string. For example, if s 
is the string "abcdef" then s( 3 | 2 ) is the string "cd". That is, a new string is formed by 
selecting two elements from s starting at element 3. The syntax rule is 
 
 <exp6> ::= <expression>[(<clause><bar><clause>)] 
 
 <expression> :  s tr ing:  s tr ing(<clause> :  int:  int  <bar> <clause> : int: int) => str ing=> str ing   
 
For the purposes of substring selection the first character in a string is numbered 1. The 
selection values are the start position and the length respectively. 
 
The characters in a string are ordered according to the ASCII character code. Thus 
 
 "a" < "z" 
 
To compare two strings, the characters are compared in pairs, one from each string, from left 
to right. Two strings are considered equal only if they have the same characters in the same 
order and are of the same length. Otherwise they are not equal. 
 
The null string is less than any other string. Thus the less-than relation can be resolved by 
taking the characters pair by pair in the two strings until one is found to be less than the 
other. This is the lexicographic order commonly used in dictionaries. The other relations can 
be resolved by using '=' and '<'. 
 
5.6 Picture Expressions 
 
The picture drawing facilities of S-algol allow the user to produce line drawings in two 
dimensions. The system provides an infinite two dimensional real space. Altering the 
relationship between different parts of the picture is performed by mathematical 
transformations which means that pictures are usually built up of a number of sub-pictures. 
The syntax of picture expressions is 
 
 <exp4>   ::= <exp5>[<pic_op><exp5>]* 
 <pic_op>  ::= ^ | & 
 
 <expression> :  pic  :  p ic  <pic_op><expression> :  pic => pic:  pic => pic   
  
  <picture_constr> ::= shift<clause>by<clause>,<clause> | 
     scale<clause>by<clause>,<clause> | 
     rotate<clause>by<clause> | 
     colour<clause>in<clause> | 
     text<clause>from<clause>,<clause>to<clause>,<clause> | 
     <lsb><clause>,<clause><rsb> 
 
 shift<clause>   : pic: pic  by<clause> : real : real ,<clause> :  rea l => pic :  rea l => pic   
 scale<clause>  : pic: pic  by<clause> : real : real ,<clause> :  rea l => pic :  rea l => pic   
 rotate<clause>  : pic: pic  by<clause> : real  => pic : real  => pic   
 colour<clause>  : pic: pic  in<clause> : pixe l => pic : pixe l => pic   
 text<clause>  : str ing: str ing from<clause> :  rea l :  rea l,<clause> : real : real   
      to<clause> : real : real ,<clause> :  rea l => pic :  rea l => pic   
 <lsb><clause> : rea l: rea l,<clause> : real : real  <rsb> => pic => pic   
  
In a line drawing system the simplest picture is a point. For example, the expression 
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[ 0.1,2.0 ] 

 
defines the point 0.1,2.0. 
 
Points in pictures are implicitly ordered. A binary operation on pictures operates between the 
last point of the first picture and the first point of the second. The resulting picture has as its 
first point, the first point of the first picture, and as its last, the last point of the second. 
 
There are two infix picture operators. They are '^', which joins one picture to another by a 
straight line from the last point of the first picture to the first point of the second, and '&' 
which includes one picture in another. The other transformations and operations on pictures 
are 

 
shift The new picture consists of the points obtained by adding the x and y shift 

values and the x and y co-ordinates of the points in the old picture. The 
ordering of the points is preserved. 

 
scale The new picture consists of the points obtained by multiplying the x and y 

scale values with the x and y co-ordinates of the points in the old picture, 
respectively. The ordering of the points is preserved. 

 
rotate The new picture consists of the points obtained by rotating the x and y co-

ordinates of the points in the old picture about the origin by the angle 
indicated in degrees. The ordering of the points is preserved. 

 
colour The new picture is the old one in a new colour. 
 
text Form a picture consisting of the text string. The two co-ordinates represent 

the start and end points of the string which will be scaled to fit. 
 

5.7 Pixel Expressions 
 
Pixels may be concatenated to produce another pixel of a greater depth using the operator '&'. 
 
 <exp4>  ::= <exp5>[&<exp5>]* 
 
  <expression> :  pixe l :  p ixe l &<expression> : pixel => pixel: pixel => pixel   
 
A pixel has depth representing the number of planes in the pixel. The planes are numbered 
from 0 and new pixels can be formed from subpixels of others. The syntax is 
 
 <exp6>  ::= <expression>[(<clause><bar><clause>)] 
 
 <expression> :  pixe l:  pixe l (<clause> :  int:  int  <bar><clause> :  int :  int ) => pixe l=> pixe l   
  
For example 
 
 let b = on & off & off & on 
 b (1 | 2 ) is the pixel off & off 
 
This last expression is interpreted as the pixel formed by starting at plane 1 in 'b' and 
selecting 2 planes. 
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5.8 Precedence Table 
 
The full precedence table for S-algol is now 
 
 / * div rem ^ & 
 + - ++ 
 ~ 
 = ≠ < ≤ > ≥ is isnt  
 and 
 or 
 
5.9 Other Expressions 
  
All the S-algol operators have now been described but we have not exhausted all the ways of 
writing down expressions. There are vector expressions, pntr expressions, vector and 
structure indexing expressions, if and case expressions as well as block expressions and 
the fact that literals, identifiers and procedure calls on their own constitute expressions. All of 
these are dealt with elsewhere in this manual. 
 



18 

 

6. Declarations 
 
Declarations are of four kinds defined by the following syntax: 
 
 <declaration> ::= <let_decl> | <structure_decl> | <proc_decl> | <forward> 
 
 <declaration> => void=> void   
  
Procedure, forward and structure declarations are dealt with in later chapters. 
 
6.1 Identifiers 
 
In S-algol an identifier may be given to a data object, a procedure parameter, a structure field 
and a structure class. An identifier may be formed by the syntactic rule 
 
 <identifier> ::= <id> | <standard_id> 
 
 <id>  ::= <letter>[<id_follow>] 
 
 <id_follow> ::= <letter>[<id_follow>] | <digit>[<id_follow>] | .[<id_follow>] 
 
That is, an identifier consists of a letter followed by any number of dots, letters or digits. For 
example 
 
 x1  ron  look.for.record1 Ron 
 
Note that case is significant in identifiers. The standard identifiers are those predefined for 
the user. They are given in section 11.2. 
 
6.2 Variables, Constants and Declaration of Data Objects 
 
Before an identifier can be used in S-algol it must be declared. The action of declaring a data 
object associates an identifier with a location of a certain type which can hold values that the 
identifier may take. In S-algol the programmer may specify whether the value is constant or 
variable. A constant may be manipulated in exactly the same manner as a variable except that 
it may not be updated. 
 
When introducing an identifier the programmer must indicate the identifier, the type of the 
data object, whether it is variable or constant and its initial value. Variables are declared by 
 
 <let_decl> ::= let <identifier><init_op><clause> 
 
  let <identifier><init_op><clause> : nonvoid => void: nonvoid => void   
 
For example 
 
 let a := 1 
 
introduces an integer variable with initial value 1. Notice that the compiler deduces the type.  
 
A constant is declared by 
 
 let <identifier> = <clause> 
 
For example 
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 let discrim = b * b - 4.0 * a * c 
 
introduces a real constant with the calculated value. The compiler will detect and flag as an 
error any attempt to assign to a constant. 
 
6.3 Sequences 
 
A sequence of clauses is made up of any mixture, in any order, of declarations and clauses. 
The type of the sequence is the type of the last clause or declaration. If there is more than one 
clause in a sequence then all but the last must be of type void. 
 
 <program> ::= <sequence>? 
 
 <sequence> ::= <declaration>[;<sequence>] | 
     <clause>[;<sequence>] 
 
 <sequence> :  void => void :  void => void   
 t :  typet :  type, <declaration> : void: void ;<sequence> :  t  => t:  t  => t   
  t  :  typet :  type, <clause> : void: void ;<sequence> :  t  => t:  t  => t   
 
6.4 Brackets 
 
Brackets are used to make a sequence of clauses and declarations into a single clause.  
 
 <exp6>  ::= begin[<sequence>]end | 
     {[<sequence>]} 
 
 begin end => void => void   
 { } => void => void   
 t :  typet :  type, begin[<sequence> :  t  :  t  ]end => t => t   
 t :  typet :  type, {[<sequence> :  t  :  t  ]} => t => t   
 
The {} method is there to allow a clause to be written clearly on one line. For example 
 
 let i := 2 
 for j = 1 to 5 do { i := i * i ; write i } 
 
However, if the clause is longer than one line the first alternative should be used for greater 
clarity. Nonvoid blocks are sometimes called block expressions. 
 
6.5 Scope Rules 
 
Any identifier that is declared has its scope limited to the following sequence. This means 
that the scope of an identifier starts immediately after the declaration and continues up to the 
next unmatched } or end. If the same identifier is declared in an inner sequence, then while 
the inner identifier is in scope the outer one is not. 
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7. Clauses 
 
The expression is a special type of clause which allows the operators in the language to be 
used to produce data objects. There are other clauses in S-algol which allow the data objects 
to be manipulated and some which are there to control the flow of the program. 
 
7.1 Assignment Clause 
 
The assignment clause has the following syntax. 
 
 <clause>::= <name>:=<clause> 
 
 t :  nonvoidt :  nonvoid, <name> :  t:  t  :=<clause> : t => void: t => void   
 
For example 
 
 discriminant := b * b - 4.0 * a * c 
 
gives 'discriminant' the value of the expression on the right. Of course, the identifier must 
have been declared as a variable and not a constant. The clause alters the value denoted by 
the identifier. 
 
7.2 if Clause 
 
There are two forms of the if clause defined by 
 
 <clause>::= if<clause>do<clause> | 
     if<clause>then<clause>else<clause> 
 
 if <clause> ::  boolbool do <clause> :: void => voidvoid => void   
  tt : typetype , if <clause> :: boolbool then <clause> ::  tt  else <clause> :: t => tt => t   
 
In the single pronged version, if the condition after the if is true then the clause after the do is 
executed. For example 
 
 if a < b do a := 3 
 
The second version allows a choice between two actions to be made. If the first clause is true 
the second clause is executed, otherwise the third clause is executed. Notice that the second 
and third clauses are of the same type and the result is of that type. For example 
 
 if x = 0 then y := 1 else x := y - 1 
 let temp = if a < b then 1 else 5 
 
7.3 case Clause 
 
The case clause is a generalisation of the if clause which allows the selection of one item 
from a number of possible ones. The syntax is 
 
 <clause>::= case<clause>of<case_list>default :<clause>  
 <case_list> ::= <clause_list>:<clause>;[<case_list>] 
 
 tt :: type  ;type  ;  t1 :t1 : nonvoidnonvoid, case <clause> :: t1 t1 of <case_list> 
        default : <clause> : t => t : t => t   
  wherewhere  <case_list> ::= <clause_list>:<clause> : t : t ; [<case_list>] 
  where where <clause_list> ::= <clause> : t1 : t1 [,<clause_list>] 
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An example of the use of the case clause is 
 
 case next.car.colour of 
 1,4  : "green" 
 2  : "blue" 
 default : "any" 
 
The value 'next.car.colour' is compared in strict order, i.e left to right, top to bottom, with the 
expressions on the left hand side of the colon. When a match is found the clause on the right 
hand side is executed. Control is then transferred to the next clause after the case clause. If no 
match is found then the default clause is executed. The above case clause has result type 
string. 
 
7.4 repeat ... while ... do Clause 
 
There are three forms of this clause which allow loops to be set up with the test at the start, 
the end or the middle of the loop. The three forms are encapsulated in the two productions. 
 
 <clause>::= repeat<clause>while<clause>[do<clause>] | 
     while<clause>do<clause> 
 
 repeat <clause> ::  voidvoid while <clause> :: boolbool   
          [do <clause> ::  voidvoid] => void => void   
 while <clause> :: boolbool  do <clause> ::  void => voidvoid => void   
 
In each of the three forms the loop is executed until the boolean clause is false. The while do 
version is used to perform a loop zero or many times whereas the repeat while is used for 
one or many times. 
 
7.5 for Clause 
 
The for clause is included in the language as a bit of syntactic sugar where it is known in 
advance how many times the loop will be executed. It is defined by 
 
 <clause>::= for<identifier>=<clause>to<clause>[by<clause>]do<clause> 
 
 for <identifier>=<clause> ::  in t int to <clause> ::  in tint  
    [by<clause> :: in tint ]do<clause> ::  void => voidvoid => void   
 
The clauses are the initial value, the limit, the increment and the clause to be repeated 
respectively. The first three are of type int and are calculated only once at the start. If the 
increment is 1 then the by clause may be omitted. The identifier or control constant is 
declared at the start of the void clause taking on the values defined by initial value, increment 
and limit. The scope of 'i' is the void clause. An example of the for clause is 
 
  let factorial := 1 ; let n = 8  
  for i = 1 to n do factorial := factorial * i 
 
With a positive increment, the for loop terminates when the control constant is initialised to a 
value greater than the limit. With a negative increment, the for loop terminates when the 
control constant is initialised to a value less than the limit. 
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7.6 abort Clause 
  
The reserved word abort simply stops the program when used. 
 
 <clause>::= abort 
 
 abort    =>=>   voidvoid   



23 

 

8. Procedures 
 
8.1 Declarations and Calls 
 
Procedures in S-algol constitute the abstractions over expressions, if they return a value, and 
clauses of type void if they do not. In accordance with the principle of correspondence, any 
method of introducing an identifier in a declaration has an equivalent form as a parameter. 
 
Thus, in declarations of data objects, giving an identifier an initial value is equivalent to 
assigning the actual parameter value to the formal parameter. Since this is the only type of 
declaration for data objects in the language, it is also the only parameter passing mode and is 
commonly known as call by value. 
 
Like declarations, the formal parameters representing data objects must have an identifier, a 
type and an indication of whether they are variable or constant. A procedure which returns a 
value must also specify its return type. The scope of the formal parameters is from their 
declaration to the end of the procedure clause. Procedures are defined with the following 
syntax. 
 
<proc_decl>  ::= procedure<identifier>[([<parameter_list>] 
      [<arrow><type_id>])] ; <clause> 
 
<parameter_list> ::= <parameter>[;<parameter_list>] 
 
<parameter>  ::= <type1><identifier_list> | 
     <structure_decl> | 
     <proc_type><identifier_list> 
 
<proc_type>  ::= ([<ptype_list>][<arrow><type_id>]) 
 
<ptype_list>  ::= <type1>[,<ptype_list> | 
     <proc_type>[,<ptype_list>] | 
     <s_decl>[,<ptype_list>] 
 
<s_decl>   ::= structure(<type1>[,<type1>]*) 
 
<type1>   ::= [c]<type_id> 
 
<type_id>   ::=  int | real | bool | string | pixel | pic | pntr | file | <star><type1> | 
     #pixel | #cpixel 
 
Thus we may declare the integer identity procedure, which we will call 'int.id' by 
 
 procedure int.id( int n -> int ) ; n 
 
The syntax of the procedure call is 
 

 <exp6>  ::= <application> 

 <application> ::= <identifier>[([<clause_list>])] 
 
There must be a one-to-one correspondence between the actual and formal parameters and 
their types. Thus to call the integer identity procedure given above we could use 
 
 int.id (42) 
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which will evaluate to the integer 42. The type of 'int.id' is written (int -> int). 
 
To complete the Principle of Correspondence for procedures, the parameters may be made 
constant. Variable parameters may be assigned to but since they are local variables this only 
has local effect. Constant parameters may not be assigned to. All parameters are passed by 
value. For example, the parameter in 'int.id' is not assigned to and is more appropriately a 
constant. Therefore the declaration should be 
 
 procedure int.id( cint n -> int ) ; n 
 
Note that the constancy of the parameter is not part of the type, a notion that is important 
when deciding type equivalence. 
 
 
8.2 forward Declarations 
  
In S-algol all names must be declared before they can be used and a identifier comes into 
scope immediately after its declaration. This is awkward when recursive procedure 
definitions are involved. Therefore in the case of the procedure, the identifier comes into 
scope after the parameter list has been specified allowing procedures to call themselves. 
  
A forward declaration is required for mutually recursive procedures. Its syntax is 
  
 <forward> ::= forward<identifier><proc_type> 
  
This is merely an aid to the compiler. However, there is one rule with forward declarations 
that has nothing to do with the one pass nature of the compiler but with the decision to allow 
clauses and declarations to be freely mixed. To avoid the possibility of an uninitialised 
identifier being used by jumping over a declaration, a forward declaration and the actual 
declaration may only be separated by structure class declarations and other procedure 
declarations. In other words its use is restricted to mutual recursion situations. 
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9. Aggregates 
 
S-algol allows the programmer to group together data objects into larger aggregate objects 
which may then be treated as single objects. There are three such object types in S-algol : 
vectors, structures and images. If the constituent objects are of the same type a vector is used 
and a structure for non-homogeneous collections. Images are collections of pixels. Vectors, 
structures and images have the full civil rights as any other data object in S-algol. 
 
All aggregate data objects in S-algol have pointer semantics. That is, when a aggregate data 
object is created, a pointer to the locations that make up the object is also created. The object 
is always referred to by the pointer which may be passed around by assignment and tested for 
equality. The location containing the pointer and the constituent parts of the aggregate data 
object may be independently constant or variable. 
 
 <exp6>  ::= <value_constructor> 
 
 <value_constructor> ::= <vector_constr> | <image_constr> | 
      <subimage_constr> | <picture_constr> 
 
9.1 Vectors 
 
9.1.1 Creation of Vectors 
 
A vector provides a method of grouping together objects of the same type. Since S-algol does 
not allow undefined values all the initial values of the elements must be specified. The syntax 
is 
 
 <vector_constr> ::= vector<range>of<clause> | 
      @<clause>of<type1><lsb><clause_list><rsb> 
 <range>  ::= <clause> :: <clause>[,<range>] 
 
 tt : nonvoid,: nonvoid,  vector<range>of<clause> : t => *t: t => *t   
 tt : nonvoid,: nonvoid,@<clause> :  int:  int  of<type1><lsb><clause> : t: t   
                [,<clause> : t: t]* <rsb> => *t=> *t   
  where where <range> ::= <clause> : int : in t :: <clause> : int : in t[,<range>] 
 
For example 
 
 @1 of int [ 1,2,3,4 ] 
 
is a vector of integers, i.e *int, with lower bound 1 and values 1, 2, 3 and 4. The elements are 
variable. Also 
 
 let abc := @1 of int[ 1,2,3,4 ] 
 
introduces a variable 'abc' of type *int and that initial value. 
 
Multi dimensional vectors, which are not necessarily rectangular, can also be created. For 
example 
 
let Pascal = @1 of c*cint[  @1 of cint [ 1 ], 
     @1 of cint [ 1,1 ], 
     @1 of cint [ 1,2,1 ], 
     @1 of cint [ 1,3,3,1 ], 
     @1 of cint [ 1,4,6,4,1 ], 
     @1 of cint [ 1,5,10,10,5,1 ] ] 
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'Pascal' is of type c*c*cint. It is constant as are all its elements. This is a fixed table. The use 
of the word cint indicates that the elements are to be constant. 
 
The above form of vector expression is sometimes very tedious to write especially for large 
rectangular vectors with a common initial value. Therefore another form of vector expression 
is available. For example 
 
 vector -1 :: 3 of -2 
 
produces a five element integer vector with all the elements variable and initialised to -2. The 
lower bound of this vector is -1 and the upper bound is 3. The element initialising expression 
is evaluated only once and assigned to each of the elements. The elements are variable. 
 
9.1.2 upb and lwb 
 
Since vectors may be assigned, it is often necessary to interrogate the vector to find its 
bounds. The reserved words upb and lwb are provided in S-algol for this purpose. 
 
 <exp6>  ::= <bounds_op>(<clause>) 
 <bounds_op> ::= lwb | upb 
 
 <bounds_op>(<expression> :  *nonvoid:  *nonvoid) => int => int   
 
An example of the use of thes procedures is 
 
 let a = vector 1 :: 19 of -42 
 
 upb (a)  yields 19 
 
9.1.3 Indexing 
 
To obtain the elements of a vector, indexing is used. For vectors the index is always an 
integer value. The syntax is 
 
 <exp6>   ::= <expression>(<dereference>) 
 <dereference>  ::= <clause_list> 
 
 t :  nonvoidt :  nonvoid,<clause> : *t *t (<clause> : int: int) => t=> t   
 
 t  :  nonvoidt :  nonvoid,<clause> : *ct *ct (<clause> : int: int) => t=> t   
 
For example 
 
 a (3 + 4) 
 
Before indexing is performed, the bounds of the vectors are checked against the index. 
 
9.1.4 Equality and Equivalence 
 
Two vectors are equal if they are the same vector. That is the same pointer. Two vectors are 
type equivalent if they have the same dimensionality and equivalent base types. Notice that 
the bounds are not part of the type. In order to ensure that constancy can always be checked 
statically objects of type *T and *cT are not assignment compatible. That is, they may not be 
assigned to the other or substituted for the other in parameterisation. 
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9.2 Structures 
 
9.2.1 Creation of Structures 
 
Objects of different types can be grouped together into a structure. The fields of a structure 
have identifiers that are unique within the current scope. The structures are sets of labelled 
cross products from the value space. 
 
Structures may be created from a declaration. The syntax of structure class declarations is 
 
 <structure_decl > ::= structure<identifier>[([<field_list>])] 
 <field_list>  ::= <type1><identifier_list>[;<field_list>] 
 
For example, we may declare such a type by 
 
 structure person( cstring name ; bool sex ; int age, height ) 
 
This declares a structure class, 'person', with four fields of type string, bool, int and int 
respectively. The string field is constant. It also declares the field identifiers, 'name', 'sex', 
'age' and 'height'. 
 
To create a structure from a declaration we use the class identifier as a constructor, followed 
by the initialising values for the fields. The syntax is 
 
 <structure_creation> ::= <identifier>[([<clause_list>])] 
 
For example 
 
 let ron = person( "Ronald Morrison", true, 42, 175 ) 
 
creates the appropriate structure. The initialising values must be in one-one correspondence 
with the structure type declaration. Each dynamic use of a class identifier with fields creates 
a pointer to a new instance of the structure class. 
 
9.2.2 Equality and equivalence 
 
Two structures are equal if they have the same pointer. All pointers to structures belong to 
the universal union pntr. 
 
9.2.3 Indexing 
 
To obtain the field of a structure, the field identifier is used as an index. For example 
 
 ron (age) 
 
yields 42 from the above. For the indexing operation to be legal the structures must contain a 
field with that identifier. 
 
A comma notation may be used for vectors or structures when the elements or fields are 
themselves pointers or vectors. The indexing of vectors and structures may therefore be 
freely mixed. For example, if 'v' is a vector of vectors of persons then 'v(i)(j)(name)' and 
'v(i,j,name)' and 'v(i,j)(name)' would be equivalent expressions. 
 
9.3 Images 
 
9.3.1 Creation of Images 
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An image is a rectangular grid of pixels. Images may be created and manipulated using the 
raster operations provided in the language. The creation of images is defined by 
 
 <image_constr> ::= image<clause>by<clause>of<clause> 
 <subimage_constr> ::= limit<clause>[to<clause>by<clause>] 
        [at<clause>,<clause>] 
 
 image<clause> : int  : in t by<clause> : int  : in t of<clause> : pixe l =>#pix : pixe l =>#pix elel   
 t :  imaget :  image,limit<clause> : t : t [to<clause> :  int:  int by<clause> : int: int] 
      [at<clause> :  int:  int ,<clause> :  int:  int] => t=> t   
 
The integer values above must be ≥ 0 and are subjected to an upper bound check. An image 
is a 3 dimensional object made up of a rectangular grid of pixels. To form an image we could 
write 
 
 let c = image 5 by 10 of on 
 
which creates 'c' with 5 pixels in the X direction and 10 in the Y direction all initially on. The 
origin of all images is 0,0 and in this case the depth is 1. 
 
Full three dimensional images may be formed by, for example 
 
 let d = image 64 by 32 of on & off & on & on 
 
Images are first class data objects and may be assigned, passed as parameters or returned as 
results. For example 
 
 let b := a 
 
will assign the image 'a' to the new one 'b'. In order to map the operations usual on bitmapped 
screens, the assignment does not make a new copy of 'a' but merely copies the pointer to it. 
Thus the image acts like a vector or pointer on assignment. 
 
There are 8 raster operations which may be used as described in the following syntax. 
 
 <clause>::= <raster> 
 
 <raster> ::= <raster_op><clause>onto<clause> 
 <raster_op> ::= ror | rand | xor | copy | nand | nor | not | xnor 
 
 <raster_op><clause> : image: image  onto<clause> :  #pixel  => void:  #pixel  => void   
 
thus 
 

xor b onto a 
 
performs a raster operation of 'b' onto 'a' using xor. Notice that 'a' is altered 'in situ' and 'b' is 
unchanged. Both images have origin 0,0 and automatic clipping at the extremities of the 
destination image is performed. 
 
The raster operations are performed by considering the images as bitmaps and altering each 
bit in the destination image according to the source bit and the operation. The operations 
mean 
 
 ror   inclusive or 
 rand  and 
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 xor   exclusive or 
 copy  overwrite 
 nand  not and 
 nor   not inclusive or 
 not   not the source 
 xnor  not exclusive or 
 
9.3.2 Indexing 
 
The limit operation allows the user to set up windows in images. For example 
 
 let c = limit a to 1 by 5 at 3,2 
 
sets 'c' to be that part of 'a' which starts at 3,2 and has size 1 by 5. 'c' has an origin of 0,0 in 
itself and is therefore a window on 'a'. 
 
Rastering sections of images on to sections of other images can be performed by, for example 
 
 xor  limit a to 1 by 4 at 6,5 onto 
   limit b to 3 by 4 at 9,10 
 
Automatic clipping on the edges of the limited region is performed. If the starting point of the 
limited region is omitted 0,0 is used and if the size of the region omitted then it is taken as the 
maximum possible. That is, from the starting point to the edges of the host image. Limited 
regions of limited regions may also be defined. 
 
If the source and destination images overlap, then the raster operation is performed in such a 
manner that each bit is used as a source before it is used as a destination. 
 
The standard identifier 'screen' is an image representing the output screen. Performing a 
raster operation onto the image 'screen' alters what may be seen by the user. The standard 
identifier 'cursor' is an image representing the cursor. The cursor may be altered in the same 
manner as any image. 
 
9.3.3 Depth Selection 
 
In systems that support multiple planes the standard identifiers 'screen' and 'cursor' will have 
a depth greater than 1. All the operations that we have already seen on images(raster, limit 
and assignment) work more generally with depth. Thus the raster operations perform the 
raster plane by plane in one to one correspondence between source and destination. 
Automatic depth clipping at the destination is performed and if the source is too small to fill 
all the destination's planes then these planes will remain unaltered. The limit and assignment 
operations also work with the depth of the image. 
 
The depth of the image may be restricted by the depth selection operation. For example 
 
 let b = a( 1|2 ) 
 
yields 'b' which is an alias for that part of 'a' which has the two depth planes 1 and 2. 'b' has 
depth origin 0 and dimensions 64 by 32. 
 
The full syntax of the depth selection operation is 
 
 <exp6>  ::= <expression>[(<clause><bar><clause>)] 
 
 t :  imaget :  image,<expression> : t: t (<clause> :  int:  int  <bar><clause> : int : in t ) => t=> t   
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9.3.4 Equality and Equivalence 
 
Two images are equal if they have the same pointer. All images have equivalent types. In 
order to ensure that constancy can always be checked statically objects of type #pixel and 
#cpixel are not assignment compatible. That is, they may not be assigned to the other or 
substituted for the other in parameterisation. 
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10. Input and Output 
  
The S-algol I/O system operates on files. A file is a collection of data. Two files, standard 
input and standard output which have the reserved identifiers s.i and s.o respectively, are of 
special interest. They represent in any implementation the standard input and output devices. 
In the language s.i and s.o are variables of type file. Other files may be created but this is 
implementation dependent. 
  
10.1 Input 
  
The read functions regard the file as a series of ascii characters. The functions mean 
  
  
 read  read the next character in the file. 
  
 readi  skip tab, space and newline characters and read an integer literal. 
  
 readr  skip tab, space and newline characters and read a real literal. 
  
 readb  skip tab, space and newline characters and read a boolean literal. 
  
 reads  skip tab, space and newline characters and read a string literal. 
  
 peek  look at the next character and return it without reading it. 
  
 read.a.line read from the current position up to a newline symbol. Give the result     as a string without the newline symbol. 
  
 read.byte read one 8 bit byte as an integer. 
 
 read.16  read 16 bits to form an integer 
 
 read.32   read 32 bits to form an integer 
  
 eof   test for end of file. 
  
  
Of these functions read, reads, peek and read.a.line are of type string, readi, read.byte, 
read.16 and read.32 of type int, readr of type real and readb and eof of type bool. 
  
The characters in the file are read until the literal of the required type is formed. 
  
The file clause in brackets may be omitted if the standard input is used. Foe example 
  
 let a = readr  
  
'a' is now a constant of type real with the value of the real literal just read from the standard 
input. In the input stream, spaces, tabs and newlines before numbers are elided. 
  
 let c = reads ( s.i ) 
 
reads a string literal, also from the standard input, and initialises the constant 'c' to that value. 
  
The read functions perform their activity on files of ascii characters. It is sometimes useful to 
read 8,16 or 32 bits from a file rather than an ascii character. The procedures read.byte, 
read.16 and read.32 are provided for this. For example 
  
 let q = read.byte ( in ) 
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will read an 8 bit byte from the file 'in' and form it into an integer. 
 
 let q = read.16( in ) 
 
will read 16 bits from the file 'in' and form them into an integer. The significance of the 
individual bits is determined by the computer's architecture. 
 
 let q = read.32( in ) 
 
will read 32 bits from the file 'in' and form them into an integer. The significance of the 
individual bits is determined by the computer's architecture. 
  
10.2 Output 
  
Output to files may be performed in S-algol by the following syntax: 
 
 
 <clause> ::= <write_clause> 
 
 <write_clause> ::= write<write_list> | 
          output <clause>,<write_list> | 
      out.byte<clause>,<clause>,<clause> | 
      out.16<clause>,<clause>,<clause> | 
      out.32<clause>,<clause> 
  
 <write_list>  ::= <clause>[:<clause>][,<write_list>] 
 
 
  <write_clause> => void=> void   
 wherewhere<write_list>::= <clause>:wr iteable:wr iteable [:<clause> : int: int][,<write_list>] 
 
 output<clause> : f ile: f ile,<write_list> => void=> void   
 wherewhere<write_list>::= <clause>:wr iteab:wr iteab lele [:<clause> : int: int][,<write_list>] 
 
 out.byte<clause> : f i le: f i le,<clause> : int: int ,<clause> : int => void: int => void   
  
 out.16<clause> : f ile: f ile,<clause> : int: int ,<clause> : int => void: int => void   
  
 out.32<clause> : f ile: f ile,<clause> : int => void: int => void   
  
write allows output to the standard output, s.o, only whereas output takes a file descriptor as 
the first data object. For example 
  
 write "I am O.K.",32160,3.4e-2,"Done" 
 
will write that list of objects to the standard output and 
  
 write 13.2 : 16, 3 : 10, 152 : 3 
 
will write 13.2, 3 and 152 to the standard output right justified in fields of width 16, 10 and 3 
respectively. 
  
Note that the field size may be any integer expression, allowing variable formats. If the field 
size is missing when writing out reals or integers then 'r.w' and 'i.w' respectively are used as 
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the field sizes. If the object cannot fit into the field size then the object is written out in its 
exact size. 
 
The operations out.byte, out.16 and out.32 are the reverse of read.byte, read.16 and read.32 
respectively. For example 
 
 out.byte out.file,a,0 
 
will write the zeroth ( least significant ) byte of 'a' to the file out.file. 
 
 out.16 out.file,a,0 
 
will write the zeroth ( least significant ) 16 bits of 'a' to the file out.file. 
 
 out.32 out.file,a 
 
will write the 32 bits of 'a' to the file out.file. 
  
10.3 i.w, s.w and r.w 
  
Types int and real have one other facility. The predefined integer variables 
  
 i.w  integer width initially 12 
 s.w  space width initially 2 
 r.w  real width initially 14 
  
may be used to control output. s.w spaces are written out after any integer or real. i.w and r.w 
are used to set the field sizes for integers and real respectively, but may be overridden by the 
field size in the write clause. If the number fits neither then the exact size is written. 
  
10.4 End of File 
  
A test for end of file can be made using the reserved word eof. For example 
  
 while ~eof do write read  
 
copies the input stream to the output stream until the end of the input stream is reached. 
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11. Standard Procedures and Identifiers 
  
11.1 Standard Procedures 
  
procedure sqrt( creal x -> real ) 
! the non-negative square root of x where x ≥ 0. 
  
procedure exp( creal x -> real ) 
! e to the power x. 
  
procedure ln( creal x -> real ) 
! the logarithm of x to the base e where x > 0. 
  
procedure sin( creal x -> real ) 
! sine of x( radians ). 
  
procedure cos( creal x -> real ) 
! cosine of x( radians ). 
  
procedure atan( creal x -> real ) 
! arctangent ( radians ) of x where -π / 2 < atan( x ) < π / 2. 
  
procedure code( cint n -> string ) 
! string of length 1 where s( 1|1 ) = character with numeric code abs( n rem 128 ). 
  
procedure decode( cstring s -> int ) 
! numeric code for s( 1|1 ). 
  
procedure truncate( creal x -> int ) 
! the integer i such that | i | ≤ | x | < | i | + 1 where i * x ≥ 0. 
  
procedure rabs( creal x -> real ) 
! the absolute value of real number x. 
  
procedure abs( cint n -> int ) 
! the absolute value of integer n. 
  
procedure length( cstring s -> int ) 
! the number of characters in the string s. 
  
procedure eformat( creal n ; cint w,d -> string ) 
! the string representing n with w digits before the decimal point and d digits after 
! with an exponent. 
  
procedure fformat( creal n ; cint w,d -> string ) 
! the string representing n with w digits before the decimal point and d digits after. 
  
procedure gformat( creal n -> string ) 
! the string representing n in eformat or fformat whichever is suitable. 
  
procedure letter( cstring s -> bool ) 
! length( s ) = 1 and  
! s ≥ "A" and s ≤ "Z" or s ≥ "a" and s ≤ "z". 
  
procedure digit( cstring s -> bool ) 
! length( s ) = 1 and  
! s ≥ "0" and s ≤ "9". 
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procedure iformat( cint n -> string ) 
! integer n as a string of characters. 
  
procedure shift.l( cint value,count -> int ) 
! shift the first parameter left 'count' places bringing in zeros at the low order end and  
! dropping digits at the left. 
  
procedure shift.r( cint value,count -> int ) 
! shift the first parameter right 'count' places bringing in zeros at the high order end and 
! dropping digits on the right. 
  
procedure b.and( cint value1,value2 -> int ) 
! logical (bitwise) 'and' of value1 and value2. 
  
procedure b.or( cint value1,value2 -> int ) 
! logical (bitwise) 'or' of value1 and value2. 
  
procedure b.not( cint value -> int ) 
! logical (bitwise) 'not' of value. 
  
procedure b.xor( cint value1,value2 -> int ) 
! logical (bitwise) 'exclusive or' of value1 and value2. 
 
procedure fiddle.r( creal n -> *int ) 
! split a real into a vector of two integers. 
 
procedure find.substr( cstring target,substring -> int ) 
! return the starting position of string 'substring' in 'target', zero otherwise. 
  
procedure random( cint x -> int ) 
! takes the non-zero seed 'x' and produces a non-zero random number between -maxint - 1 ! 
and maxint. 
  
procedure open( cstring name ; int access.mode -> file ) 
! Open the existing file named. Access mode is '0' for read only, '1' is write only,  
! '2' is reading and writing. Return the file descriptor. 
 
procedure create( cstring name -> file ) 
! create the named file and return the file descriptor. 
 
procedure close( cfile  f) 
! close the file f. 
 
procedure flush( cfile  f)  
! Clear out the internal buffer for file f. This should be done before closing the file  
! after writing. 
 
procedure seek( cfile  f ; cint offset,key)  
! This moves the current position in file f 'offset' bytes through the file with 'key' 
!  interpreted as:- 
! '0' - move to offset bytes from start of file. 
! '1' - move offset bytes from current position. 
! '2' - move back offset bytes from end of file. 
 
procedure trace 
! Print a snapshot of the current procedure calls. 
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procedure date( -> string ) 
! gives the date and time in a format determined by the implementation. 
 
procedure time( -> int ) 
! returns the number of clock ticks ( 1/60 second ) passed since a reference time t = 0.  
 
procedure draw( c#pixel i ; cpic p ; creal x1,x2,y1,y2 ) 
! draw the picture p on the image i. 
! the picture is bounded by x1,x2,y1,y2 in its coordinate space. 
 
procedure X.dim( c#pixel i -> int ) 
! return the x dimension of image i. 
 
procedure Y.dim( c#pixel i -> int ) 
! return the y dimension of image i. 
 
procedure locator( -> pntr ) 
! returns a structure containing information about the status of the mouse. 
! the structure returned is a mouse( defined below ). 
 
procedure cursor.tip( cpntr the.tip -> pntr ) 
! make the effective tip of the cursor 'the.tip' return old tip 
! both pointers are pointers to point.strc( cint point.x,point.y ) 
 
procedure cursor.on 
! make the cursor track the mouse ( the default state ). 
 
procedure cursor.off 
! make the cursor invisible. 
 
procedure Pixel( c#pixel i ; cint xpos,ypos -> pixel ) 
! return the pixel at xpos,ypos in i. 
 
procedure constant.image( c#pixel i -> #cpixel ) 
! return a copy of image i with constant pixels. 
 
procedure variable.image( c#cpixel i -> #pixel ) 
! return a copy of image i with variable pixels. 
 
procedure fill( c#pixel i ; cpixel col ; cint xpos,ypos ) 
! seed fill image i from position xpos,ypos with the pixel col. 
 
procedure make.menu( c#pixel title ; c*c#pixel entries ; cbool vertical -> pntr ) 
! Returns a 'menu' structure to pass to call.menu.  'vertical' indicates the menu orientation. 
! The menu has a 'title' and a vector of icons called 'entries' 
 
procedure call.menu( cpntr a.menu ; cint xpos,ypos -> int ) 
! Causes a menu to appear with its bottom left hand corner at position xpos,ypos relative to 
! 'screen'. The integer returned indicates if the user made a selection. If not then the integer 
! is one more than the upper bound of the vector of icons. 
 
procedure depth( c#pixel i -> int ) 
! return the number of planes in image i. 
 
procedure colour.map( cpixel p ; cint i ) 
! when pixel p is displayed the integer i will be sent to the display hardware. 
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procedure colour.of( cpixel p -> int ) 
! return the integer sent to the hardware when pixel p is displayed. 
 
procedure string.to.tile( cstring the.string,font ; cint font.size -> #pixel ) 
! returns an image which contains 'the.string' in the 'font' in the 'font.size'. 
! Any font.size may be specified - scaling is automatically performed. 
! Any installed Mac font can be named. 
 
procedure line.end( c#pixel i ; pixel p ; cint x,y,direct -> int ) 
! searches for the first pixel of colour p from position x,y in image i 
! direct specifies the search direction 
! odd numbers do not look at boundary pixels 
! 0,1 - left ; 2,3 - right ; 4,5 - down ; 6,7 - up 
! return the position of the pixel or 1 past the position last searched 
 
procedure line( c#pixel i ; cint x1,y1,x2,y2,style ) 
! draws a line from x1,y1 to x2,y2 on image i 
! style may be 0 - draw: set pixels to on ; 1 - erase: set pixels to off  ; 2 - xor: invert pixels. 
 
procedure clear.output 
! Delete all text from the output window and clear graphics from the output window. 
 
procedure plane.of( c#pixel i ; cint p -> *int ) 
! returns the p'th plane of image i. 
 
procedure pixel.depth( cpixel p -> int ) 
! returns the number of planes in pixel p. 
 
procedure input.pending( -> bool ) 
! returns true  if a read or peek would complete immediately. 
 
procedure interrupt( -> bool ) 
! returns true  if an interrupt (control-\ on the Mac) has been received since the last call of 
! this procedure or the start of the program. 
 
procedure interrupt.on 
! Enable interrupts (control-\ on the Mac) to be trapped. 
 
procedure interrupt.off 
! Disable interrupts (control-\ on the Mac) being trapped. 
 
11.2 Standard Identifiers 
  
A number of standard identifiers exist in the language. They are 
  
 r.w   variable initially 14 
 s.w   variable initially 2 
 i.w   variable initially 12 
 s.i   variable set to the standard input 
 s.o   variable set to the standard output 
 maxint  constant, the maximum integer 
 epsilon  constant, the largest real e such that 1.0 + e = 1.0 
 pi   constant, π 
 maxreal  constant, the largest real 
 screen         constant, #pixel representing the screen 
  cursor   constant, #pixel representing the cursor 
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Note that the minimum integer value is -maxint - 1 and the minimum real value is -maxreal. 
 
11.3 S-algol Prelude 
 
structure mouse( cint X.pos,Y.pos ; cbool selected ; c*cbool the.buttons ) 
! This is the structure returned by the locator standard procedure. 
 
structure point.strc( cint point.x,point.y ) 
! This is the structure returned by the cursor.tip standard procedure. 
 
structure trnsfrm.strc( cint trnsfrm ; cpntr mrtre ; creal trnsfrm.x,trnsfrm.y ) 
! The following 5 are used internally by the draw procedure. 
 
structure culr.strc( cpntr nxtre ; cpixel shade ) 
 
structure oprtn.strc( cpntr lft,rght ; cint opoo ) 
 
structure scrbl.strc( cstring msge ; creal xxl,yyl,xxr,yyr  ) 
 
structure poin.strc( creal pnx,pny ) 
 
structure menu( c#pixel menu.image ; c*cint menu.dimensions.vector ; cbool vertical ) 
! This is the structure returned by the make.menu standard procedure and used by 
! call.menu. 
 
let Outline.error = "'n***** S-algol Run-Time Error *****'n'n" 
let charry = @1 of *c*cint[ frst,scnd ] 
let nilpic = text "" from 0,0 to 0,1 
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Appendix I 
 
Context Free Syntax 
 
Session: 
 
<program>  ::= <sequence>? 
 
<sequence>  ::= <declaration>[;<sequence>] | 
     <clause>[;<sequence>] 
 
 
Declarations: 
 
<declaration>  ::= <let_decl> | <structure_decl> | <proc_decl> | <forward> 
 
<let_decl>  ::= let <identifier><init_op><clause> 
 
<init_op>   ::= = | := 
 
<structure_ decl > ::= structure<identifier>[([<field_list>])] 
 
<field_list>  ::= <type1><identifier_list>[;<field_list>] 
 
<proc_decl>  ::= procedure<identifier>[([<parameter_list>] 
      [<arrow><type_id>])] ; <clause> 
 
<parameter_list> ::= <parameter>[;<parameter_list>] 
 
<parameter>  ::= <type1><identifier_list> | 
     <structure_decl> | 
     <proc_type><identifier_list> 
 
<proc_type>  ::= ([<ptype_list>][<arrow><type_id>]) 
 
<ptype_list>  ::= <type1>[,<ptype_list> | 
     <proc_type>[,<ptype_list>] | 
     <s_decl>[,<ptype_list>] 
 
<s_decl>   ::= structure(<type1>[,<type1>]*) 
 
<forward>  ::= forward<identifier><proc_type> 
 
<type1>   ::= [c]<type_id> 
 
<type_id>   ::=  int | real | bool | string | pixel | pic | pntr | file | 
<star><type1> | 
     #pixel | #cpixel 
 
<identifier_list> ::= <identifier>[,<identifier_list>] 
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Clauses: 
 
<clause>   ::= if<clause>do<clause> | 
 
     if<clause>then<clause>else<clause> | 
 
     repeat<clause>while<clause>[do<clause>] | 
 
     while<clause>do<clause> | 
 
    
 for<identifier>=<clause>to<clause>[by<clause>]do<clause>| 
 
     case<clause>of<case_list>default :<clause> | 
 
     <name>:=<clause> | 
 
     <write_clause> | 
 
     <raster> | 
 
     abort | 
 
     <expression> 
 
<case_list>  ::= <clause_list>:<clause>;[<case_list>] 
 
<write_clause> ::= write<write_list> | 
         output <clause>,<write_list> | 
     out.byte<clause>,<clause>,<clause> | 
     out.16<clause>,<clause>,<clause> | 
     out.32<clause>,<clause> 
  
<write_list>  ::= <clause>[:<clause>][,<write_list>] 
 
<raster>   ::= <raster_op><clause>onto<clause> 
 
<raster_op>  ::= ror | rand | xor | copy | nand | nor | not | xnor 
 
<clause_list>  ::= <clause>[,<clause_list>] 
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Expressions: 
 
<expression>  ::= <exp1>[or<exp1>]* 
 
<exp1>   ::= <exp2>[and<exp2>]* 
 
<exp2>   ::= [~]<exp3>[<rel_op><exp3>] 
 
<exp3>   ::= <exp4>[<add_op><exp4>]* 
 
<exp4>   ::= <exp5>[<mult_op><exp5>]* 
 
<exp5>   ::= [<add_op>]<exp6> 
 
<exp6>   ::= <standard_exp> | 
 
     <literal> | 
 
     <value_constructor> | 
 
     (<clause>) | 
 
     begin[<sequence>]end | 
 
     {[<sequence>]} | 
 
     <expression>(<clause><bar><clause>) | 
 
     <expression>(<dereference>) | 
 
     <application> | 
 
     <structure_creation> | 
 
     <name> | 
 
     <bounds_op>(<clause>) 
 
<dereference>  ::= <clause_list> 
 
<application>  ::= <identifier>[([<clause_list>])] 
 
<structure_creation> ::= <identifier>[([<clause_list>])] 
 
<name>   ::= <identifier> | 
 
     <expression>(<clause_list>)[(<clause_list>)]* 
 
<bounds_op>  ::= upb | lwb 



43 

 

Value constructors: 
 
<value_constructor> ::= <vector_constr> | <image_constr> | 
 
     <subimage_constr> | <picture_constr> 
 
<vector_constr> ::= vector<range>of<clause> | 
 
     @<clause>of<type1><lsb><clause>[,<clause>]*<rsb> 
 
<range>   ::= <clause>::<clause>[,<range>] 
 
<image_constr> ::= image<clause>by<clause>of<clause> 
 
<subimage_constr> ::=
 limit<clause>[to<clause>by<clause>][at<clause>,<clause>] 
 
<picture_constr> ::= shift<clause>by<clause>,<clause> | 
 
     scale<clause>by<clause>,<clause> | 
 
     rotate<clause>by<clause> | 
 
     colour<clause>in<clause> | 
 
    
 text<clause>from<clause>,<clause>to<clause>,<clause> | 
 
     <lsb><clause>,<clause><rsb> 
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 Literals: 
 
<literal>   ::= <integer_literal> | <real_literal> | <boolean_literal> | 
     <string_literal> | <pixel_literal> | <pntr_literal> | 
     <file_literal> 
 
<integer_literal> ::= [<add_op>]<int_literal> 
 
<int_literal>  ::= <digit>[<digit>]* 
 
<real_literal>  ::= <integer _literal>.[<int _literal>][e<integer_literal>] 
 
<boolean_literal> ::= true | false 
 
<string_literal> ::= <double_quote>[<char>]*<double_quote> 
 
<char>   ::= any ascii character except " and ' | <special_character> 
 
<special_character> ::= <single_quote><special_follow> 
 
<special_follow> ::= n | p | o | t | b | <single_quote> | <double_quote> 
 
<pixel_literal>  ::= on[&<pixel_literal>] | off[&<pixel_literal>] 
 
<pntr_literal>  ::= nil 
 
<file_literal>  ::= nullfile 
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Miscellaneous and microsyntax: 
 
<lab>    ::= < 
 
<rab>    ::= > 
 
<lsb>    ::= [ 
 
<rsb>    ::= ] 
 
<star>   ::= * 
 
<bar>    ::= | 
 
<add_op>   ::= + | - 
 
<mult_op>  ::= <int_mult_op> | <real_mult_op> | ++ | <pic_op> | 
<pixel_op> 
 
<int_mult_op> ::= <star> | div | rem 
 
<real_mult_op> ::= <star> | / 
 
<pic_op>   ::= ^ | & 
 
<pixel_op>  ::= & 
 
<rel_op>   ::= <eq_op> | <compar_op> | <type_op> 
 
<eq_op>   ::= = | ≠ 
 
<compar_op>  ::= | < | ≤ | > | ≥ | 
 
<type_op>  ::= is | isnt 
 
<arrow>   ::= -> 
 
<double_quote> ::= " 
 
<single_quote> ::= ' 
 
<identifier>  ::= <id> | <standard_id> 
 
<id>    ::= <letter>[<id_follow>] 
 
<id_follow>  ::= <letter>[<id_follow>] | <digit>[<id_follow>] | 
.[<id_follow>] 
 
<letter>   ::= a | b | c | d | e | f | g | h | i | j | k | l | m | 
 
     n | o | p | q | r | s | t | u | v | w | x | y | z | 
 
     A | B | C | D | E | F | G | H | I | J | K | L | M | 
 
     N | O | P | Q | R | S | T | U | V | W | X | Y | Z 
 
<digit>   ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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<standard_exp> ::= <standard_name>[(<clause>)] 
 
<standard_name> ::= upb | lwb | eof | read.a.line 
     read | readi | readr | readb | peek | reads | read.name | 
read.byte 
     read.16 | read.32 
 
<standard_id>  ::= r.w | i.w | s.w | s.o | s.i | maxint | maxreal | 
     epsilon | pi | cursor | screen 
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Appendix II 
 
Type Rules 
 
type ari thari th   is in tint | rea lrea l   
  
type orderedordered is  aritharith  | st r ingstring   
  
type wr i teablewr i teable   is orderedordered | boolbool   
 
type l iterall iteral  is wr iteablewr iteable | pixe lpixe l | pntrpntr | f ilef ile   
  
type imageimage     is #pixe l #pixe l | #cpixel#cpixel   
  
type nonvoidnonvoid is li tera lli tera l | p icpic  | imageimage  | vectorvector   
  
type vectorvector  is *nonvoid*nonvoid | *cnonvoid*cnonvoid   
  
type typetype   is nonvoidnonvoid | voidvoid   
 
 
 
Program :Program :   
  
<sequence> ::  voidvoid ? => void => void   
  
t :t :  typetype , <declaration> :: voivoidd ; <sequence> ::  t   => tt   => t   
  
t  :t :  typetype , <clause> :: voidvoid ; <sequence> ::  t  => t  =>  tt   
  
  
 
Dec lara tions :Dec lara tions :   
  
<declaration> => void => void   
where where <let_decl> ::= let<init_op><clause> :: nonvoidnonvoid   
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Clauses  :Clauses  :   
  
if <clause> ::  boolbool do <clause> :: void => voidvoid => void   
  
tt :: typetype ,  if <clause> :: bb oolool  then <clause> :: tt  else <clause> ::  t => tt => t   
  
repeat <clause> ::  voidvoid while <clause> :: bool bool  [do <clause> :: voidvoid] => void => void   
  
while <clause> :: boolbool   do <clause> :: void => voidvoid => void   
  
for <identifier>=<clause> ::  in t int  to <clause> :: intint   
     [by<clause> :: in tint ]do<clause> ::  void => voidvoid => void   
  
tt :: type  ;type  ;   t1 : t1 : nonvoidnonvoid, case <clause> ::   t1  t1 of <case_list>  
       default : <clause> ::  t => tt => t   
wherewhere  <case_list>  ::= <clause_list>:<clause> : t : t ; [<case_list>] 
where where <clause_list> ::= <clause> : t1 : t1 [,<clause_list>] 
 
t :  nonvoidt :  nonvoid, name : t : t := <clause> :: t => voidt => void   
  
 
<write_clause> => void=> void   
wherewhere  <write_list> ::= <clause> :  wri teable:  wri teable [:<clause> : int: int][,<write_list>] 
 
output<clause> : f ile: f ile,<write_list> => void=> void   
wherewhere  <write_list> ::= <clause> :  wri teable:  wri teable [:<clause> : int: int][,<write_list>] 
 
out.byte<clause> : f i le: f i le,<clause> : int: int ,<clause> : int => void: int => void   
  
out.16<clause> : f ile: f ile,<clause> : int: int ,<clause> : int => void: int => void   
  
out.32<clause> : f ile: f ile,<clause> : int => void: int => void   
  
<raster_op><clause> : image: image  onto <clause> : #pixe l  => void: #pixe l  => void   
  
abort  => void => void   
  
t :  nonvot :  nonvo idid,<expression> : t  => t: t  => t   
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Expressions :Expressions :   
  
<expression> ::  boolbool  or  <expression> ::  bool  => boolbool  => bool   
  
<expression> ::  boolbool  and  <expression> :: bool => boolbool => bool   
  
[~]<expression> :: bool => boolbool => bool   
  
tt :: nonvoidnonvoid, <expression> ::  tt   <eq.op> <expression> ::  tt  => bool => bool   
 
tt :: oror dereddered, <expression> ::  tt   <compar_op> <expression> :: tt  => bool => bool   
  
<expression> :  pntr:  pntr <type_op><identifier> => bool=> bool   
  
t :t :  ar ithar ith, <expression> ::  t  t  <add_op><expression> ::  t => tt => t   
  
t  :  ari tht :  ari th, <add_op> <expression> ::   t  => t t  => t   
  
<expression> ::  int int <int_mult_op> <expression> :: int => intint => int   
  
<expression> ::  rea l rea l <real_mult_op> <expression> ::  real => rea lreal => rea l   
  
<expression> ::  str ing str ing ++ <expression> ::  s tring => s tringstring => s tring   
  
<expression> ::  pixe l pixe l & <expression> :: p ixe l => pixelpixe l => pixel   
  
<expression> ::  pic  pic  <pic_op> <expression> :: p ic => picpic => pic   
  
t t :  l iteral:  l iteral , <literal>  : t => t : t => t   
  
t  :  nonvoidt :  nonvoid, <value_constructor>  : t => t : t => t   
  
t  :  typet :  type, ( <clause> :: tt ) => t => t   
  
begin  end => void => void   
  
{ } => void => void   
  
t :  typet :  type, begin <sequence> :: tt end => t => t   
  
t  :  typet :  type, { <sequence> :: t t } => t => t   
  
<expression> ::  str ingstr ing ( <clause> ::  in tint   <bar> <clause> :: int  int  ) => s tr ing => s tr ing   
  
<expression> ::  pixe lpixe l ( <clause> :: int int <bar> <clause> :: in t int ) => pixel => pixel   
  
t :  imaget :  image,<expression> :: tt ( <clause> :: int int <bar> <clause> ::  int  int  ) => t => t   
  
t  :  nonvoidt :  nonvoid,<expression> : *: *[c]tt  (<clause> : int: int) => t=> t   
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Value constructors:Value constructors:   
  
t  :  nonvoidt :  nonvoid, vector<range>of<clause> : t => *t: t => *t   
  
t :  nonvoidt :  nonvoid, @<clause> : int: int of<type1><lsb><clause> : t: t   
                  [,<clause> : t: t]* <rsb> => *t=> *t   
where where <range> ::= <clause> : int : in t :: <clause> : int : in t[,<range>] 
  
image <clause> :  int   :  int  by<clause> : int  : int of <clause> : :  pixe l => #pixel pixe l => #pixel   
  
t :  imaget :  image,limit<clause> : t : t [to<clause> :  int:  intby<clause> : int: int] 
     [at<clause> :  int:  int ,<clause> :  int:  int] => t=> t   
  
shift<clause> : pic  : pic  by<clause> : real  : real  ,<clause> : real => pic: real => pic   
  
scale<clause> : pic : p ic by<clause> : rea l : rea l ,<clause> : real => pic: real => pic   
  
rotate<clause> : pic : p ic by<clause> :  rea l => pic:  rea l => pic   
  
colour<clause> : pic  : pic  in<clause> : pixe l => pic: pixe l => pic   
  
text<clause> : pic  : pic  from<clause> :  rea l :  rea l ,<clause> :  real:  real   
          to<clause> : real  : real  ,<clause> : real  => pic: real  => pic   
  
<lsb><clause> : real: real ,<clause> : rea l: rea l<rsb> => pic=> pic   
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li tera ls  li tera ls  ::   
  
<digit>[<integer_literal>] => int => int   
  
<integer_literal>.[<integer_literal>][e<scale_factor>] => rea l => rea l   
  
true | false => bool => bool   
  
<double_quote><char><double_quote> => st ring => st ring   
  
on[&<pixel_literal>] | off[&<pixel_literal>] => pixel => pixel   
  
nil => pntr=> pntr   
 
nullimage => image=> image   
 
nullfile  => f ile=> f ile   
  
t :  nonvoidt :  nonvoid, <standard_expression>  : t  => t : t  => t   
  
t  :  nonvoidt :  nonvoid, <standard_identifier>  : t  => t : t  => t   
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Appendix III 
 
Program Layout 
 
Semi-Colons 
 
As a lexical rule in S-algol, a semi-colon may be omitted whenever it is used as a 
separator and it coincides with a newline. This allows many of the annoying semi-
colons in a program to be left out. However, to help the compiler deduce where the 
semi-colons should be, it is a rule that a line may not begin with a binary operator. 
For example 
 
 a * 
 b 
 
is valid but 
 
 a 
 * b 
 
is not. 
 
This rule also applies to the invisible operator between a vector and its index list. 
For example 
 
 let b = a( 1,2 ) 
 
is valid but 
 
 let b = a 
    ( 1,2 ) 
 
will be misinterpreted since vectors can be assigned. The same is true for strings, 
structures and images. 
 
Comments 
 
Comments may be placed in a program by using the symbol '!'. Anything between 
the ! and the end of the line is regarded by the compiler as a comment. For example 
 
  a + b  ! add a and b 
 
 
  


