
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;30:363–386

A compliant persistent
architecture

Ron Morrison∗,1,†, Dharini Balasubramaniam1,‡,
Mark Greenwood2,§, Graham Kirby1,¶, Ken Mayes2,‖,
Dave Munro3,∗∗ and Brian Warboys2,††

1School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, U.K.
2Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
3Department of Computer Science, University of Adelaide, South Australia 5005, Australia

SUMMARY

The changing needs of modern application systems demand new and radical software architectures to
support them. The attraction of persistent systems is that they define precisely the extent to which they
are open, thereby allowing the dynamically changing resource requirements of applications to be tracked
accurately within the persistent environment. Thus, an ever-growing body of work is being established
to study the nature of running applications, and to use the information gleaned, to improve the run-
time execution of these applications. Here we propose a new architectural approach to constructing
persistent systems that accommodates, and thus is compliant to, the needs of particular applications.
By separating policy from mechanism in all components, the architecture may be tailored to the policy
needs of the application.‡‡ We first propose a generic architecture for compliance, and then show how it
may be instantiated. Finally, we describe an example of how the architecture operates in a manner that
is compliant to a target application. We postulate, since we have not yet measured, that the benefits of
compliant architectures will be a reduction in complexity, with corresponding gains in flexibility, portability,
understandability in terms of failure semantics, and performance. Copyright 2000 John Wiley & Sons,
Ltd.

KEY WORDS: persistence; nano-kernels; process modelling; programming languages; software architectures

∗Correspondence to: Ron Morrison, School of Computer Science, University of St Andrews, North Haugh, St Andrews,
Fife KY16 9SS, U.K.
†E-mail: ron@dcs.st-and.ac.uk
‡E-mail: dharini@dcs.st-and.ac.uk
§E-mail: markg@cs.man.ac.uk
¶E-mail: graham@dcs.st-and.ac.uk
‖E-mail: ken@cs.man.ac.uk
∗∗E-mail: dave@cs.adelaide.edu.au
††E-mail: brian@cs.man.ac.uk
‡‡Policy may be regarded as strategy for achieving a goal, such as a cache eviction algorithm, whereas mechanism is the method
by which the objective is achieved, such as the physical movement of the cache lines. As we see later, policy and mechanism are
composable to form new mechanism.

Received 23 April 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 4 October 1999

Accepted 1 December 1999

364 R. MORRISONET AL.

INTRODUCTION

The growing requirements of persistent application systems challenge software engineers to provide
the appropriate architectural infrastructure. Where the structure of the data is simple, file systems
and operating systems are sufficient to supply the infrastructure for the storage and use of data and
the execution of programs. When the structure of the data becomes more sophisticated, data models,
and in particular object-oriented models, implemented in databases may be used. The contribution of
orthogonal persistence [1] is to integrate the notions of long- and short-term data, and to allow programs
to be treated as first class data objects [2]. As the application system evolves, more data, meta-data,
programs and users are accumulated and must be accommodated by a further step in architectural
design. While process modelling systems [3] provide the conceptual support for this evolutionary style,
there is no agreed software architecture to supply these needs [4].

The challenge in supporting process modelling systems is in efficiently providing the radically
varying facilities required by different process models [5–7]. When implemented on a conventional
software architecture, there is often a repetition and duplication of both mechanisms and policy in
different architectural components which conflict with each other and add complexity to the overall
system. The repetition occurs when the same policies/mechanisms are implemented in different
components, and duplication occurs when the policies/mechanisms in different components are
radically different and may interact in an undesirable manner. This complexity makes it difficult to
predict how the system will perform, particularly in terms of failure semantics and run-time efficiency.

Process modelling systems may be seen as archetypal data intensive applications systems, sometimes
referred to as Persistent Application Systems (PASs) [8]. They are potentially long-lived, concurrently
accessed and consist of large bodies of programs and data. In particular, process models evolve
frequently, and therefore must accommodate dynamic change within the application domain. Thus,
the architectural problems encountered in implementing process modelling systems are similar to,
if not the same as, those investigated by the persistent programming community over many years
now [8–22].

This paper describes a new architectural approach to the construction of persistent systems that
accommodates the needs of particular applications. We describe this as beingcompliantto these needs.
The architecture takes advantage of the fact that persistent systems are well structured to discover the
dynamically changing demands of applications; since they define precisely the extent to which they
are open, the computation which takes place within the persistent environment may be relatively easily
tracked.

The novelty of a compliant architecture is that the components are designed, top down, with the
philosophy of fitting the architecture to the needs of the particular application. This contrasts with the
more traditional, bottom up, approach to providing static abstract components or layers designed to
meet the predicted needs of the majority of applications. The key scientific advance, in our approach,
is to separate mechanism and policy, a technique that has been used before but not all at once, and
consistently, on every component of the architecture.

We report here on our first attempt at building a compliant architecture. We start by proposing a
generic architecture for compliance and then show how it may be instantiated with components. We
also show how the architecture operates in a manner that is compliant to a target application.

The key components of our initial compliant architecture are: a nano-kernel, HWO, and its associated
library-based operating system which together constitute the Arena system [23,24]; a new persistent

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 365

programming language, ProcessBase [25]; and the mechanisms for defining and separating policy and
mechanism. We postulate, since we have not yet measured, that the benefits of compliant architectures
will be a reduction in complexity, with corresponding gains in flexibility, portability, understandability
in terms of failure semantics, and performance.

STRUCTURING SOFTWARE SYSTEMS

There are two common generic approaches to structuring complex software, which roughly correspond
to the notions of in-process and out-of-process computation. With in-process system structuring, the
architectural components are layered upon one another, communicating via the interface provided by
the supporting layer. All computation takes place within one process although it may be multi-threaded.
With out-of-process system structuring, the architectural components communicate with one another
through their published interfaces using a mechanism equivalent to Inter-Process Communication
(IPC).

In practice, both in-process and out-of-process system structuring are required for the most complex
systems. Furthermore, there are many variations of these extremes that complicate the structuring
domain. For example, in-process and out-of-process structuring may be mixed, where some of the
components are layered and some communicate using IPC. This may even occur at different layers
within the architecture.

Our goal is to achieve compliance within the system architecture and for simplicity immediately
focus on layered architectures. In effect, we are concentrating on a single application executing in a
single address space. Since we can regard all processes running on a single machine as running on a
single address space, we postulate that we will be able to adapt our work to out-of-process systems at
a future date.

Both in-process and out-of-process computation use self-defining components that present an
interface to the outside world. Each component is potentially a separate Virtual Machine (VM) that may
be scheduled accordingly. Understanding the overall architecture requires preserving the components,
since they define their own context in which the user may wish to consider the component (layer).

Within a layered architecture, however, it is often tempting to assume that, for efficiency, the layers
may be flattened, by some sophisticated compilation or reflective technique, to a single layer for
execution.∗ However, the flattening of layers is time-constrained in that the single layer is only of
use until the next time the system evolves. The evolution is best understood in the context of the
evolving layers, and that is precisely why it is necessary to preserve that context. There is, therefore, an
efficiency trade-off between the cost of execution in the layered form, and the costs of flattening and
execution in the flattened form. Such trade-offs are application-dependent and can only be evaluated
dynamically; thus, they are unlikely to yield a single winner.

Since our application domain is that of systems that evolve frequently we will forego the temptation
to flatten layers for the present. Our focus is therefore on constructing layered architectures that are
compliant to the needs of the application.

∗This is the situation found in real-time applications. The termoperating softwarehas been used to characterise such real-time
systems to emphasise the intimate connection between the real-time application and the real-time operating system [26].

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

366 R. MORRISONET AL.

DISCOVERING AND USING APPLICATION KNOWLEDGE

The key to the run-time efficiency of any software or hardware architecture is to ensure that the correct
components are available and ready to use at the time they are required. For example, within a storage
hierarchy, it is imperative to run-time efficiency to ensure that the data and programs are in the correct
place in the storage hierarchy when they are required for use. Thus, register allocation mechanisms,
caching techniques and page replacement algorithms should be optimised for such an effect.

To achieve optimum application efficiency, which requires application-specific knowledge, a
software architect must address two major questions. They are:

• How does the system discover what the application is doing?
• How should the architecture be structured to utilise the above knowledge?

Conventional software architectures, which we would term non-compliant, provide static abstract
layers to meet the average predicted needs of the majority of cases. The application knowledge
discovery is performed statically by simulating and benchmarking the applications that are intended
to be run on the system. The architecture is then structured to perform well under the benchmark
conditions. Optimisations are often based on strategies such as overall throughput and may use average
or common application execution profiles. The Unix operating system interface is a good example of
such an interface between kernel and application layers.

The advantage of the static interface approach is that it provides a high degree of code reuse and
therefore savings, in terms of code re-writing and portability. Many applications may reuse the interface
without regard to its implementation. However, they do so at the possible expense of individual
applications since the optimisations necessary for individual cases cannot be accommodated in the
general case. Thus, in such an architecture individual applications only occasionally run optimally, and
even then it is by accident.

In this paper, we will assume that applications have some information, such as working set size,
that may be used to improve their performance if used by the supporting architecture. We recognise an
ever growing body of work is being established to study the nature of running applications in persistent
systems [27–31], databases [32–34] and operating systems [35–37]. We presume that we may intercept
the results of any of this work, and concentrate here on how the software is structured to make use of
such information.

Throughout this paper we consider a typical PAS: a process modelling application which is
implemented in a Process Modelling Language (PML). The PML is in turn implemented in a Persistent
Programming Language (PPL) which is itself hosted by some Operating System (OS). This is
illustrated in Figure1. As described above, we will maintain the layers of abstraction for ease of
evolution and maintenance of the system. Our goal is to achieve this in conjunction with efficient
implementation of the application.

In the non-compliant approach of Figure1, the interfaces between the OS and the PPL, and the PPL
and PML are fixed and all management policy and mechanism is encapsulated behind the interface.
Thus even if an application has some knowledge of its particular execution profile it may be unable to
use it to expedite its own execution, since it is not able to communicate the information to the lower
layers.

Non-compliance occurs in many persistent programming systems in the interactions amongst the
application, the persistent object store manager and the operating system storage manager. Knowledge

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 367

Figure 1. A non-compliant architecture.

of the pattern of access to data at the application level, such as object clustering, is usually not useable
since management of the persistent storage is encapsulated within the persistent run-time system, and
ignores other software components, including the application. Furthermore, there are often competing
and harmful interactions between the duplicated storage management policies of the persistent object
store and the operating system secondary storage manager. For example, the after-image, shadow-
page mechanism [13] of the Napier88 standard release [38] implements a page replacement policy in
the persistent storage manager. This policy has to compete with the page replacement algorithm of
the operating system, sometimes with disastrous effects on performance. Non-compliant architectures
have the potential for many such impedance mismatches.

The crucial step in designing a compliant architecture is to recognise the power of structuring
complex software in layers while freeing it from the dangers of encapsulation [39]. Our desired effect of
high reuse of architectural components while eliminating repetition and duplication can be achieved by
the separation of policy from mechanism. In this the mechanisms presented by an architectural layer
may be controlled, in terms of policy, by the layers above. Thus, the layers provide the mechanism
through their interfaces, and the higher layers provide the policy in the manner in which they use the
interface calls.

SEPARATING POLICY AND MECHANISM

The desirability of separating mechanism from policy has been recognised for some time. It was a
motivating force in the design of the Hydra operating system [40], and more recently the trend in
operating systems has been to move policy out of the kernel and into the realm of the user.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

368 R. MORRISONET AL.

Micro-kernels such as Mach [41] and Chorus [42] support user-provision of store, file and network
management. The Psyche system [43] and work on scheduler activations [44] take thread scheduling
out of the kernel by enabling the kernel to make up-calls to the user level. User-level library-based
application-specific resource management appears in PANDA [45] and Exokernel [46].

Application-oriented systems have been produced to support real-time systems [47], customisable
thread packages [48], communications protocols [49] generalised kernels [50–52] and languages [53].
These approaches allow flexibility in terms of resource management policy, to the extent of dynamic,
run-time policy change [52]. In all of these systems it is the function of the application’s run-time
system to specialise the operating system.

In general, the above systems use two techniques to accommodate user-level policy: by providing
a user-level server process together with an Inter-Process Communication (IPC) mechanism, or by
providing a library of routines. Both Mach and Chorus use IPC, whereas PANDA and Exokernel are
termed library operating systems.

In the persistent world, the Grasshopper operating system [22,54] uses both libraries and an IPC
mechanism to provide a persistent micro-kernel. More recently work by the same group has produced
a library-based nanokernel called Charm [55,56]. This has similar design goals to Arena, to avoid
imposing inappropriate abstractions on higher layers, but goes further in exposing hardware-specific
details.

Figure2 illustrates how our example architecture may be structured to provide the policy/mechanism
separation. The interfaces between the levels of the architecture define a set of up-calls and down-calls.
The down-calls constitute the mechanisms that the higher layers may call upon. These include calls for
passing policy information. Up-calls constitute entry points to the higher layers that may be used to
request policy information.

At any particular layer, the mechanism provided from below, together with the policies implemented
at that level, constitute mechanism for the higher layers. Thus:

policyn +mechanismn−1 = mechanismn

Figure2 is illustrative of a particular application system. As we will see later, it may be implemented
in a number of ways depending on the components and the interface mechanisms.

The work reported here builds significantly on our experience in designing, constructing and using
operating systems, persistent object systems and process support systems–with particular reference to
our previous work on the Arena operating system and the Flask persistent object store [57]. Before we
can describe our approach to a generic compliant architecture, we will describe the techniques used in
Arena and Flask for compliance. We will then describe our first attempt at constructing a compliant
persistent architecture.

Arena

The Arena customisable operating system [24] provides a toolkit of user-level library resource
managers (ARMs–Arena Resource Managers), which act as a framework for operating system policy
instantiations. These resource managers operate on the Arena abstract hardware interface, provided by
a nano-kernel, the hardware object (HWO), which gives access to the mechanisms provided by the
hardware. Only the HWO need be re-implemented when the system is ported to other target hardware
platforms. The basic structure of the Arena system is illustrated in Figure3.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 369

Figure 2. A compliant version of Figure1.

Figure 3. The Arena operating system.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

370 R. MORRISONET AL.

The Arena system allows the application implementation architecture to correspond exactly to the
application logical architecture. This is made possible by coalescing the operating system policy with
the application run-time system policy. That is, the run-time implementation of the application is linked
to the ARMs.

The HWO nano-kernel is a thin layer of largely policy-free code that provides access to low-level
mechanisms via a set of primitives. This interface provides a set of down-calls that is used by the
hardware-independent ARMs. At present there are 34 primitives in the HWO interface, which is
accessed through a library.

The HWO is implemented at user-level wherever possible. However, for protection, the HWO may
operate in supervisor mode by traversing the trap interface. The HWO deals mainly with low-level
concerns such as register contexts and address translation, with the policy being provided by the ARMs
in the user-level libraries. For example, although the HWO has no notion of threads, it does provide
context-switching primitives to get and to set the register context (hwo getregcxtandhwo setregcxt).
Through these primitives, the ARMs may implement context switching and thus provide the policy for
scheduling threads.

The ARMs may interact with each other via published interfaces. So, for example, the Process
Manager (PM) may call the Store Manager (SM) with a request for a region of virtual address space to
use as a thread stack. Resource management policy may be changed by linking to a different resource
manager or by defining a new one. However, the interfaces remain the same (or within a sub-class
hierarchy) so that different versions of a manager may use a common third party. Thus, a PM may
pre-allocate thread stacks by obtaining a single large SM region at start-up, but both this pre-allocating
and another non-pre-allocating PM can use the same SM in the same manner.

Significantly, the interfaces provided by the user-level ARMs have three components:

(i) the operations available to the application code (down-calls from the application),
(ii) the operations used by other managers (horizontal calls), and

(iii) the operations used by the HWO (up-calls from the HWO).

A description of the up-call mechanism in Arena will be given later, but for the present it is sufficient
to note that in any separation of policy and mechanism (and not just in Arena), all three sets of
operations are required to completely describe the interface.

The Flask architecture

The Napier88 persistent object store [17] provides a generic architecture that has been used to support
Napier88 and, by others, to provide persistence to a variety of programming paradigms. These include
functional programming (Staple) [58], typeful programming (P-Quest) [59], object-oriented database
programming (Galileo) [9], LISP [60], and the PIOS database [61]. The most recent design of the
persistent object store, Flask [57], provides a flexible system in which concurrency control schemes and
recovery mechanisms may be specified according to the needs of the application. This allows the same
data to be used in conjunction with different concurrency control schemes and recovery mechanisms.

The framework of the Flask architecture is shown in Figure4 as a ‘V-shaped’ layered architecture
to signify the minimal functionality built-in at the lower layers. At the top layer the specifications
of the model are independent of the algorithms used to enforce them and can take advantage of the
semantics of these algorithms to exploit potential concurrency. For example, a particular specification

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 371

Figure 4. The Flask V-shaped architecture.

may translate into an optimistic algorithm or alternatively a pessimistic one, while the information they
operate over remains the same. More importantly, such an approach can accommodate different models
of concurrency control.

The focus of interest in the Flask architecture centres on the visibility of data from different actions
(e.g. threads, processes). This visibility is expressed in terms of the control of movement between a
globally visible database and conceptual stores called access sets. Each action is associated with a
local access set and may use other shared access sets. The specification of the movement of data may
be determined implicitly or explicitly but requires an interface language, such as CACS [62] to specify
the movements. As a result, the CACS specification determines the policy of data movement.

At the lowest level the atomicity layers ensures consistent update to the access sets and the global
database. The failure resilience layer utilises this atomicity to effect an action making its changes
permanent.

The Flask architecture has been implemented by marrying the notion of data visibility as expressed
by access sets to a concurrent shadow paging mechanism. The layers in Flask constitute a clear
instantiation of the policy/mechanism separation.

GENERIC COMPLIANCE

Our approach to defining and implementing a compliant architecture builds on the work of both the
Arena system and the Flask architecture. However, the Arena system collapses the architecture into
a single level by combining the application run-time system with the operating system. Furthermore,
Arena uses a common library binding mechanism, which often restricts it to be single language. By
contrast, the Flask V-shape only addresses concurrency control for policy/mechanism separation, but
it is multi-level and multi-language, a feature we wish to retain.

Our first attempt at a generic compliant architecture is illustrated in Figure5.
The compliant architecture retains layers for the reasons described earlier. The system functions are

the entities over which the application wishes to exert control through the policy/mechanism separation.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

372 R. MORRISONET AL.

Figure 5. A generic compliant architecture.

We expect the system functions to be entities such as concurrency control, scheduling, address space
and recovery, but there may be others, such as distribution, depending on the application.

The key feature of the compliant architecture is that mechanisms provided by layers are controlled
by policies implemented at higher layers, thereby providing increased functionality moving up the
levels of abstraction. This provides the necessary flexibility but also permits efficiency gains, since
many optimisations are achievable at a higher-level in the architecture.

Of course, layers may choose to pass mechanism directly to higher layers for policy to be
implemented at a more appropriate level, thereby effectively collapsing the layers within any particular
V (system function). Furthermore, layers may vary the mechanism used to implement their policy.
Thus, an application may run under an atomic transaction regime supported by a particular stable
storage mechanism on one occasion, and under a SAGA [63] regime supported by the same or a
different stable storage mechanism on another, depending on the requirements of the application.

The system functions are themselves replaceable and extendable, and may provide different
interfaces at each layer on different occasions. For example, should it be discovered that a certain
process model requires a particular scheduling abstraction, this can be provided at the correct layer by
replacing the scheduling system function.

A compliant architecture may therefore be structured by determining the following:

(i) the number of layers in the architecture;
(ii) the system functions that the architecture allows applications to control (e.g. recovery,

scheduling, clock ticks, etc.);
(iii) the method used for specifying policy information;
(iv) the method used for passing system information between layers and system functions (up-calls,

down-calls and horizontal calls).

Once the number of layers in an architecture has been fixed, the other three issues must be addressed
at the interfaces between all the layers. Policy specification may be different between different layers,
and the calling mechanisms do not rely on one particular technique but may be specific to the interfaces
between particular layers. Furthermore, system functions may be hidden at some level and only

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 373

Figure 6. A compliant persistent architecture.

accessible to the layers below. This, in effect, cuts off a particular V and makes the system function
opaque to the upper layers–presumably for implicit mapping.

The alternative to the above approach for constructing the architectural layers is to use a single
technique for up-calls and down-calls at the interfaces between all layers. However this may not always
be the most compliant approach, and we wish to preserve flexibility.

A COMPLIANT PERSISTENT ARCHITECTURE

Figure6 provides a more detailed and compliant version of the architecture given in Figure1. There
are five layers in the architecture, discounting the hardware itself, remembering that the layers may
collapse within any particular system function. The layers are: the process model (PAS); the process
modelling language (PML); the persistent programming language (ProcessBase); the Arena ARMs,
which are linked with the ProcessBase run-time system; and the nano-kernel (HWO).

To illustrate how the architecture is constructed, we will describe the policy/mechanism divide
between the ARMs and the HWO, and between the ProcessBase language and Arena. Furthermore
we will use parameter passing to simplify the specification of policy information, and concentrate on
how information is transmitted between the layers. A major strength of our compliant architecture is
that it does not rely on any particular binding technique nor common interface structure. Thus, as we

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

374 R. MORRISONET AL.

Figure 7. System functions in the compliant architecture.

will see, the interface between the ARMs and the HWO is quite different from the interface between
ProcessBase and Arena.

Another view of the compliant persistent architecture is given in Figure7, which shows the system
functions of concurrency control, scheduling, address space and recovery.

Before describing a particular example of a compliant architecture, we must first finish our
description of the ARM/HWO interface.

Arena policy and HWO mechanism

At the bottom level of the compliant architecture, the HWO interface is a set of C++ functions in a C++
library. These provide the mechanism that Arena uses to access the hardware services. The ARMs of
Arena are also written in C++ and are also kept in C++ libraries for the upper layers of the architecture
to access. Thus, the overall binding mechanism is that of C++, and the interface may be extended using
the inheritance hierarchy, for extensions that conform to the sub-class late binding rules, or by adding
new libraries.

Compliance in Arena

We have already described how the Arena ARM code calls the HWO code (down-call) and other Arena
code (horizontal call). The missing component for compliance is the up-call, which signifies an event
in the HWO that is handled by ARMs.

Event handling comprises a major component of resource management policy. Event handling at
user-level in Arena has two components: first, to register a handler for an event; and secondly, to make
an up-call to execute that handler.

1. Registering an event handler. In Arena, the HWO defines a fixed set of event types. Event
handling at user-level is achieved by registering distinguished event handler threads with the
HWO and the PM. Each is specific to a particular event type, and will be made runnable in
response to an event of that type.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 375

Figure 8. An Arena up-call.

A number of uninitialised event threads are pre-allocated in the PM. Registering specific event
handlers is a two-stage process. The first stage occurs at initialisation, when the PM obtains a
pointer to the event state data structure in the HWO, using a call tohwo geteventstate(), and fills
in the uninitialised event thread context block pointers. The second stage occurs when an ARM,
interested in handling a particular event type, calls the PM throughm registerEventHandler(func,
evnum), passing it a function to be run by the specified event handler thread. The PM allocates a
new thread stack and callshwo initeventthread()to initialise the designated event thread block.

2. Executing an event handler–the up-call. The Arena up-call consists of running the PMswitch()
routine so that a runnable event thread can be scheduled. On an up-call, arising from an event,
the processor state has already been saved by the HWO, when the trap occurred. The user-
level context has been saved to a logicalEvent Context Buffer(ECB) whose implementation
is processor-dependent [67]. The HWO makes the thread corresponding to the event runnable,
using its pointer to the appropriate event thread context block residing within the user-level PM.
This pointer is set up as part of the registration process.
Having made the event thread runnable, the up-call mechanism proceeds by loading the PM
switch()execution context, and returning the processor to user-mode, control thus passing to the
PM. Whenswitch() is invoked by the up-call, the saved context is copied from the ECB to the
context block of the application thread, whose execution had been interrupted by the event. This
is achieved via a call tohwo getregcxt(). Theswitch()routine then selects the next thread to run.
This may, according to the application-specific scheduling policy, be the runnable event thread.
The selected thread begins execution via a call tohwo setregcxt()made at the end of theswitch()
routine.

Figure8 shows an example in which the persistent object store manager (POSM) handles page fault
events via up-calls from the HWO.

Thus, in Arena, the application or language system can determine event handling policy in two ways.
The policy implemented by the event thread can be language-specific, and also the policy implemented

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

376 R. MORRISONET AL.

by the thread scheduler can be language-specific. This is all achieved by binding in the appropriate
library functions.

Pending events are queued by the HWO so that the PM has opportunities to schedule the
corresponding threads and therefore handle events of the same kind in the correct order.

ProcessBase policy and Arena mechanism

The ProcessBase language and support system is designed as a core persistent implementation
platform. It consists of the language and its persistent environment. The persistent store is populated
and, indeed, the system uses objects within the persistent store to support itself. The ProcessBase
programming system provides the following facilities:

(i) orthogonal persistence–models of data independent of longevity,
(ii) type completeness–no restrictions on constructing types,

(iii) higher-order procedures–procedures are first class data objects,
(iv) information hiding without encapsulation–views of data that hide detail [39],
(v) a strongly typed stable store–a populated environment of typed data objects that may be updated

atomically,
(vi) hyper-code–a single representation of a value throughout its lifetime [65,66],
(vii) linguistic reflection–to allow evolution [67],
(viii) exceptions–for recovering from exceptional conditions.

The ProcessBase language is in the algol tradition, as were its predecessors S-algol [68], PS-
algol [69] and Napier88 [38]. The type system contains: the base types integer, real, boolean and
string; higher-order procedures that allow code to exist in the value space [2]; aggregates formed using
the vector and view types; and finally, an explicit constructor to provide locations. The type system
is mostly statically checkable, a property we wish to retain wherever possible. However, dynamic
projection out of unions for type any allows the dynamic binding required for orthogonal persistence [1]
and system evolution [70].

Compliance in ProcessBase

ProcessBase programs are compiled into ProcessBase Abstract Machine (PBAM) code that may then
be executed by the PBAM interpreter, which is written in C++. Compliance is accommodated at
the language level by a set of libraries, written in ProcessBase, which extend the functionality to
comply with any particular architecture. At present I/O, threads, semaphores, persistence, and string
and arithmetic functions are considered to be platform-dependent, compliant parts of the ProcessBase
language. Other compliant extensions occur as applications require them.

The PBAM is also split into a core part and an extensible, platform-dependent, compliant part. The
core part must be provided by all implementations whereas the compliant part may vary and may be
implemented in different ways depending on the host platform. The compliant part takes the form
of extra PBAM instructions. Figure9 illustrates the mapping of a combination of application code
and compliant libraries onto the PBAM. The normal mechanism is for programs to be compiled into
PBAM core instructions. However this may be extended in both core and compliant ProcessBase code,
by down-calls to both core and compliant PBAM instructions.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 377

Figure 9. Mapping ProcessBase to the PBAM.

Down-calls, from ProcessBase to the PBAM interpreter, are performed by using a special syntax to
invoke abstract machine instructions directly. The syntax is:

downcall opcode (...)
where thedowncallconstruct is followed by the op-code for the PBAM instruction and any parameters
it requires. The construct may also return a computed value. For example,

let sin ← fun (x : real) → real ; downcall sinOp (x)
is a procedure that implements thesine function by invoking the PBAM instruction denoted by the
sinOpopcode. The sine function could, of course, be written directly in ProcessBase, in which case it
would be compiled to the core PBAM instructions.

In summary, a ProcessBase program may use a down-call to execute any PBAM instruction, core or
compliant. In reality any particular interpreter may partially disallow such freedom for safety, and only
permit a subset of the down-calls to be effective. A ProcessBase program written in the core language
is compiled to core PBAM instructions, but may also contain down-calls to core PBAM instructions.
A program written in compliant ProcessBase will also be compiled into core ProcessBase, but may
also contain down-calls to core and compliant PBAM instructions. The reason for the difference is
that the libraries that implement the compliant part also define the compliant op-codes available to the
application programmer.

The down-call mechanism provides a method of extending PBAM to be compliant to the needs of
the application. Where new PBAM instructions are required by the application, they may be provided
by the compliant part of the PBAM interpreter and called by the special syntax above. The down-call
mechanism can be used to pass policy information to a compliant PBAM interpreter that has provided
an instruction implementing mechanism that can be specialised by the given policy.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

378 R. MORRISONET AL.

From Figure9, we can see that policy can now be transmitted from the ProcessBase language to the
PBAM interpreter. The PBAM interpreter is written in C++ and is linked with the ARMs. Thus, the
policy information from the application may be transmitted to the resource managers of Arena via the
down-call mechanism of ProcessBase, and C++ parameter passing. The correct selection of resource
managers to interpret the application data is imperative to the success of any particular instance of the
compliant architecture.

ProcessBase libraries

The library mechanism, as part of the persistent store, is used to store all the standard functions and
data for an instantiation of the architecture. The standard functions may be implemented in the core or
the extension part of the language, and map appropriately to the PBAM.

Horizontal calls between separately compiled units can be made by binding in ProcessBase library
values and then calling them. Down-calls are usually placed in the library at the behest of the interpreter
and called in the same manner by the ProcessBase programs. Thus, the interpreter establishes which op-
codes are available in the extension defined by the library. Separate versions of the compliant libraries
may be implemented for each new architecture.

Although libraries may contain both compliant PBAM instructions and ProcessBase values, these
elements are composed in different ways. ProcessBase values are specified as required for each
compilation unit, whereas compliant PBAM instructions are specified for a particular instantiation
of the PBAM.

Up-calls in ProcessBase

Up-calls can be made to PBAM from Arena through the Arena event mechanism. Correspondingly,
an up-call from PBAM can be made to a ProcessBase program through the ProcessBase interrupt
mechanism. Thus, low-level events may be transmitted as a mechanism to the ProcessBase program,
which can handle the interrupt and apply the appropriate policy. This is achieved without collapsing
the architectural layers.

A choice of mechanisms is available for handling interrupts. We could have chosen the Arena
mechanism of using a separate thread to handle an interrupt, but since threads are not part of the
ProcessBase core, we have chosen to use higher-order functions to achieve our goal.

To illustrate the ProcessBase interrupt mechanism, consider an application that wishes to know about
clock ticks (every second say). To establish that the interrupt is available to the compliant application
code in ProcessBase, the interpreter arranges for the definition:

let clock ← interrupt 17 (int)

to be placed in the ProcessBaseinterrupt library. This indicates that such an interrupt, supplying a
single integer parameter, is available for use by compliant ProcessBase programs in this instantiation
of the architecture. An integer constant, 17 in this example, is specified as an implementation-level
identifier for the interrupt. TheinterruptDowncallprocedure in the library passes policy information
to particular interrupts using the PBAM instructioninterruptOp. For example, the policy information
could define when the interrupts should be active or inactive. TheinterruptDowncallprocedure is
defined by:

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 379

Figure 10. A ProcessBase up-call.

let interruptDowncall ← fun (name, status: string)
begin

! Map name to corresponding identifier id .
downcall interruptOp (id, status)

end

and may be called, for example, by:
interruptDowncall ("Clock", "on")

to indicate that clock interrupts may be taken. Interrupts are handled by a procedure that is associated
with the interrupt using thehandle interrupt clause. For example

handle interrupt clock using fun (time: int) ; {} ! Do something with time

The handle interrupt clause is valid for a particular scope and results in an unexpected
procedure call if the interrupt is ‘on’ and the event occurs. That is, control resumes from the point
of interruption after the procedure is called. Note that the parameter and result types of the procedure
must be the same as those of the interrupt. Figure10 illustrates the ProcessBase up-call mechanism.

We have now completed all the techniques for separating policy and mechanism in our compliant
architecture. We will now proceed with an example of how the architecture is designed, constructed
and executes.

AN EXAMPLE OF COMPLIANCE

Most persistent application systems have an object store garbage collector. In our example architecture
we wish to inform the garbage collector, which is incremental, that if it encounters certain objects
(roots) then the application may wish to nominate other objects to be clustered with those roots. The
roots and nominated objects may change from time to time and in relation to each other. For example,
a root object may have different nominated objects at any particular point in the execution of the
application.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

380 R. MORRISONET AL.

The garbage collector runs as an asynchronous thread and is activated, to execute one increment, by
a timer interrupt. The whole activity of associating objects with others may be turned on and off by the
application as it requires.

The process of defining an architecture compliant to the above needs involves four stages as
described earlier:

(i) The first is to specify the number of layers in the architecture. Given space restrictions and
the fact that we have only described the bottom layers, we will again restrict the architecture to
having the HWO, the Arena run-time system and the ProcessBase language. We therefore assume
that the application is written in or translated into ProcessBase for this example. To extend the
definition to higher layers would involve defining further up-call and down-call mechanisms.

(ii) We have also restricted the number of system functions controlled by the architecture to that of
storage placement, and even then to particular root values. We assume that all the other functions
are pre-defined and not under explicit control of the programmer, but of course these may still
be specific to the architecture and used by the language processor.

(iii) Policy information will be passed as ProcessBase parameters.
(iv) The final activity in defining the compliant architecture is to specify the up-calls and down-calls.

We start from the top defining the ProcessBase level. The compliant ProcessBase library for this
application will contain a down-call to define the roots from which we wish to cluster. It will
also include the definition of an interrupt (up-call) which will ask the application to specify the
objects to be clustered around the given root. Finally the library contains a down-call to control
switching the interrupt on and off. The following code specifies all of this:

let cluster ← interrupt 23 (any) → * any
! The cluster interrupt, when handled, takes a root and returns a vector of objects.
! The type any is used to make the interrupt dynamically polymorphic.

let clusterOp ← opcode 251 (* any)
! This compliant instruction, op-code 251, specifies the roots of clustering.

These definitions constitute mechanism and are defined by the ProcessBase compliant library and
provided by the PBAM compliant interpreter.

Two data structures are maintained in the ProcessBase application to facilitate the clustering of
particular roots. They are an array of roots, and for each root an associated array of cluster objects. Type
any is again used to make the typing polymorphic. The data structure and the application fragment to
control the up-call and down-call are defined by the following code:

let init ← any (0)
let initObject ← vector @1 of [init, init, init]
! A vector (array) of dummy objects.

let clusterRoots ← vector @1 of [init, init, init, init, init]
! The empty vector of cluster roots.

let clusterObjects ← vector @1 of [initObject, initObject, initObject, initObject]
! The empty vector of vectors of associated objects.
! The root index is used to identify the vector of associated objects within this.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 381

handle interrupt cluster using fun (root: any) → * any
begin

let i ← loc (lwb (clusterRoots))

while 'i <= upb (clusterRoots) and root ∼= clusterRoots (i) do i := 'i+1
! The ' is a location dereference operation.

if 'i <= upb (clusterRoots) then clusterObjects (i) else initObjects
end

! The handle interrupt clause handles the interrupt if it is switched on.
! It returns the vector of associated objects for the root to the PBAM interpreter.
! The program then resumes from where it left off.

...
! Set up the cluster roots.
! Set up the associated cluster objects.
! Make a down-call to clusterOp to establish the roots.

! Turn the up-call on.
ionterruptDowncall ("cluster", "on")

...

! Turn the up-call off again.
interruptDowncall ("cluster", "off")

The policy for clustering is now set by initialising the cluster roots and their associated objects.
At any time in the application execution, the roots may be altered by assigning to the roots vector
and making a down-call to theclusterOp instruction. The associated objects may also be altered
dynamically by merely assigning into theclusterObjectsvector. Thus we have established the
mechanism provided by the PBAM interpreter and indicated how the dynamic policy may be passed
from the ProcessBase application to the PBAM interpreter.

At some level in the compliant architecture the policy/mechanism interface is fixed. For compliance,
the closer that interface is made to the hardware the better. In our case it is the HWO/ARM interface,
which is a little above the bare hardware since the HWO was also designed for portability. Our
remaining task is to use this interface, and to integrate the PBAM interpreter with the appropriate
ARMs, re-implementing them if necessary. Again we will concentrate only on object clustering.
Figure11 illustrates how the PBAM interpreter is placed in relation to the other Arena code.

The incremental garbage collector (GC) is a PBAM function that shares state with the PBAM. The
function is registered with the PM and associated with the event timer. The event timer is set using
the hwo settimeout(n)hardware object call. Thus, everyn ticks the garbage collector will be made
runnable to collect one increment. When the garbage collector has completed its increment it suspends
itself on theeventTimerqueue.

When activated the garbage collector first waits until the interpreter comes to the end of its current
instruction, to ensure that the execution of the PBAM instruction is atomic. It then proceeds to garbage
collect, and if it encounters a root object, which it can identify from the shared state with the PBAM
interpreter, it makes an upcall to ascertain the associated cluster objects. The interpreter is now restarted
to handle the interrupt and return the cluster objects which the garbage collector can then use.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

382 R. MORRISONET AL.

Figure 11. Example compliant architecture.

The dynamic sequence of activity may look something like:

(i) The PBAM interpreter registers the GC with the timer event in the PM and sets the timer interval.
(ii) The application registers some root objects (down-call from ProcessBase (PB) to PBAM).

(iii) The application activates the clustering (down-call from PB to PBAM, horizontal call from
PBAM to GC).

(iv) A timer interrupt activates the GC (up-call from HWO to PM, horizontal call from PM to GC).
(v) The GC encounters a root and requests a list of nominated objects from the application

(horizontal call from GC to PBAM, up-call from PBAM to PB, return from PB, return to GC
with object list).

(vi) The application deactivates the cluster facility (down-call from PB to PBAM, horizontal call
from PBAM to GC).

The degree to which an application is made compliant depends upon the amount of individual
programming that the implementor will deem cost effective. There is a trade-off between fixing the
interfaces for reuse, and thereby denying compliance, and the cost of re-coding for compliance. Such
trade-offs can only be evaluated in the context of the particular application system.

CONCLUSIONS

Our experience in designing, constructing and using operating, persistent object and process support
systems has led us to the conclusion that the next breakthrough in the architectural support for
potentially large, long lived and concurrently accessed, user-centred systems is in customisable

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 383

software support. We have coined the termcompliantto describe architectures that are customisable
and accommodate the needs of particular applications.

This paper recognises the power of structuring complex software in layers and has shown how to
achieve compliance within such a system. Central to this is the separation of policy from mechanism
across the interface layers. Down-calls may be used to define the mechanism that a lower layer
provides, while up-calls can supply the necessary policy details to drive the mechanisms.

Many techniques may be used for compliance. In this paper, we have suggested that the following
decisions have to be made to instantiate such an architecture:

(i) the number of layers in the architecture,
(ii) the system functions that the architecture allows applications to control (e.g. recovery,

scheduling, clock ticks, etc.),
(iii) the method used for specifying policy information, and
(iv) the method used for passing system information between layers and system functions (up-calls,

down-call and horizontal calls).

We postulate that any architecture implementing the above can be made compliant without the need
for any common or regular interface mechanisms. There are clearly a number of questions that merit
further investigation, including:

(i) What are the limits to the degree of compliance that can be achieved using this architecture?
(ii) In which situations should mechanism be made available to higher layers, and in which should

it be hidden?
(iii) Can undesirable interactions arise between up-calls, down-calls and horizontal-calls?
(iv) What are the required features of systems programming languages used in this style?

While it is clear that compliant architectures may be built, it is not obvious that they will meet their
design goals. Here we have described a proof of concept experiment where a compliant architecture
is built out of a nano-kernel, HWO, and its associated library-based operating system which together
constitute the Arena system; a new persistent programming language, ProcessBase; together with the
mechanisms for defining and separating policy and mechanism by up-calls and down-calls. At the time
of writing, the instantiation of the architecture includes the following:

(i) Arena running on the EDS multi-processor and on Pentium;
(ii) a distributed object store running on Arena;

(iii) a Java graphical interface to Arena;
(iv) an after-image shadow paging recovery manager running on Arena;
(v) a compiler for ProcessBase;
(vi) a ProcessBase interpreter running on Arena and on Solaris.

This is certainly not the only manner in which compliance can be achieved, and we suspect it is only
the first in many such explorations by ourselves and others.

ACKNOWLEDGEMENTS

This work was supported by EPSRC grants GR/L32699 and GR/L34433 ‘Compliant Systems Architecture’, and

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

384 R. MORRISONET AL.

is continuing with support by EPSRC grants GR/M88938 and GR/M88945 ‘Compliant Systems Architecture
Phase 2’. The ideas contained within, and presentation of, this paper were enhanced by a long discussion with Al
Dearle on the return journey from a Pastel Workshop in Lillehammer, and by the comments of the anonymous
referees.

REFERENCES

1. Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R. An approach to persistent programming.Computer
Journal1983;26(4): 360–365.

2. Atkinson MP, Morrison R. Procedures as persistent data objects.ACM Transactions on Programming Languages and
Systems1985;7(4): 539–559.

3. Warboys B. The IPSE 2.5 Project: Process modelling as the basis for a support environment.Proceedings of 1st
International Conference on System Development Environments and Factories; Berlin: Germany, 1989.

4. Finkelstein A, Kramer J, Nuseibeh B (eds.),Software Process Modelling and Technology; Research Studies Press, 1994.
5. Bruynooghe RF, Parker JM, Rowles JS. PSS: A system for process enactment.Proceedings of 1st International Conference

on the Software Process: Manufacturing Complex Systems, Redondo Beach, CA, 1991; 142–158.
6. Reisig W, Rozenberg G. Informal introduction to petri nets.Proceedings of the Advanced Course on Petri Nets; Lecture

Notes in Computer Science, 1491, Reisig W, Rozenberg G (eds.), Dagstuhl, 1996; 1–11.
7. Wise A, Lerner, BS, McCall, EK, Osterweil LJ, Sutton SM. Specifying coordination in processes using Little-JIL.

Department of Computer Science, University of Massachusetts at AmherstTechnical Report 98–38, 1998.
8. Atkinson MP, Morrison R. Orthogonally persistent object systems.VLDB Journal1995;4(3):319–401.
9. Albano A, Cardelli L, Orsini R. Galileo: a strongly typed, interactive conceptual language.ACM Transactions on Database

Systems1985;10(2):230–260.
10. Morrison R, Dearle A, Bailey PJ, Brown AL, Atkinson MP. The persistent store as an enabling technology for integrated

project support environments.Proceedings of 8th IEEE International Conference on Software Engineering; London, 1985;
166–172.

11. Atkinson MP, Morrison R, Pratten GD. A persistent information space architecture.Proceedings of 9th Australian
Computing Science Conference, Australia, 1986.

12. Dearle A. On the construction of persistent programming environments.PhD Thesis, University of St Andrews, 1988.
13. Brown AL. Persistent object stores.PhD Thesis, University of St Andrews, 1989.
14. Connor RCH, Brown AL, Carrick R, Dearle A, Morrison R. The persistent abstract machine.Persistent Object Systems;

Rosenberg J, Koch DM (eds.),Proceedings of the 3rd International Workshop on Persistent Object Systems, Newcastle,
Australia, 1990; 353–366.

15. Rosenberg J. The MONADS architecture–a layered view.Implementing Persistent Object Bases; Dearle A, Shaw GM,
Zdonik SB (eds.),Proceedings of the 4th International Workshop on Persistent Object Systems, Martha’s Vineyard, USA,
1990; 215–225.

16. Atkinson MP, Birnie A, Jackson N, Philbrow PC. Measuring Persistent Object Systems.Persistent Object Systems;
Albano A, Morrison R (eds.),Proceedings of the 5th International Workshop on Persistent Object Systems (POS5), San
Miniato, Italy, 1992; 63–85.

17. Brown AL, Mainetto G, Matthes F, M¨uller R, McNally DJ. An open system architecture for a persistent object store.
Proceedings of 25th International Conference on Systems Sciences, Hawaii, 1992; 766–776.

18. Brown AL, Morrison R. A generic persistent object store.Software Engineering Journal1992;7(2):161–168.
19. Dearle A, Rosenberg J, Henskens FA, Vaughan F, Maciunas KJ. An examination of operating system support for persistent

object systems.Proceedings of 25th International Conference on Systems Sciences, Hawaii, 1992; 779–789.
20. Matthes F, Schmidt JW. System construction in the tycoon environment: architectures, interfaces and gateways.

Proceedings of Euro-ARCH ’93, Hamburg, 1993; 301–317.
21. Munro DS. On the integration of concurrency, distribution and persistence.PhD Thesis, University of St Andrews.

Technical Report CS/94/1, 1993.
22. Dearle A, di Bona R, Farrow J, Henskens F, Lindstr¨om A, Rosenberg J, Vaughan F. Grasshopper: An orthogonally

persistent operating system.Computer Systems1994;7(3):289–312.
23. Mayes KR. Trends in Operating Systems Towards Dynamic User-Level Policy Provision. University of Manchester

Technical Report UMCS-93-9-1, 1993.
24. Mayes KR, Bridgland J. Arena–a Run-Time Operating System for Parallel Applications.Proceedings of 5th EuroMicro

Workshop on Parallel and Distributed Processing (PDP’97), 1997; 253–258.
25. Morrison R, Balasubramaniam D, Greenwood M, Kirby GNC, Mayes K, Munro DS, Warboys BC. ProcessBase reference

manual (Version 1.0.6). Universities of St Andrews and Manchester, 1999.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

A COMPLIANT PERSISTENT ARCHITECTURE 385

26. Mukherjee B, Schwan K, Gopinath P. A survey of multiprocessor operating systems kernels. Georgia Institute of
Technology,Technical Report GIT-CC-92-05, 1993.

27. Cutts QI, Connor RCH, Kirby GNC, Morrison R. An execution driven approach to code optimisation.Proceedings of 17th
Australasian Computer Science Conference (ACSC’94); Christchurch, New Zealand, 1994; 83–92.

28. Sjøberg DIK, Cutts QI, Welland R, Atkinson MP. Analysing persistent language applications.Persistent Object Systems;
Atkinson MP, Maier D, Benzaken V (eds.),Proceedings of the 6th International Workshop on Persistent Object Systems,
Tarascon, France, 1994; 235–255.

29. Hosking A. Residency check elimination for object-oriented persistent languages.Persistent Object Systems: Principles
and Practice; Connor RCH, Nettles S (eds.),Proceedings of the 7th International Workshop on Persistent Object Systems,
Cape May, NJ, 1996; 174–183.

30. Cutts QI, Lennon S, Hosking A. Reconciling buffer management with persistence optimisations.Advances in Persistent
Object Systems; Morrison R, Jordan M, Atkinson MP (eds.),Proceedings of the 8th International Workshop on Persistent
Object Systems (POS8) and 3rd International Workshop on Persistence and Java (PJW3), Tiburon, CA, 1999; 51–63.

31. Hosking A, Nystrom N, Cutts QI, Brahnmath, K. Optimizing the read and write barriers for orthogonal persistence.
Advances in Persistent Object Systems; Morrison R, Jordan M, Atkinson MP (eds.),Proceedings of the 8th International
Workshop on Persistent Object Systems (POS8) and 3rd International Workshop on Persistence and Java (PJW3), Tiburon,
CA, 1999; 149–159.

32. Cattell RGG, Skeen J. Object operations benchmark.ACM Transactions on Database Systems1992;17(1):1–31.
33. Dietrich SW, Brown M, Cortes-Rello E, Wunderlin S. A practitioner’s introduction to database performance benchmarks

and measurements.Computer Journal1992;35(4):322–331.
34. Maynard AMG, Donnelly CM, Olszewski BR. Contrasting characteristics and cache performance of technical and multi-

user commercial workloads.ACM SIGPLAN Notices1994;29(11):145–156.
35. Gallivan K, Gannon D, Jalby W, Malony A, Wijshoff H. Experimentally characterizing the behaviour of multiprocessor

memory systems: A case study.IEEE Transactions on Software Engineering1990;16(2):216–222.
36. Bowen NS, Pradhan DK. Program fault tolerance based on memory access behavior.Proceedings of 21st International

Symposium on Fault-Tolerant Computing, Montreal, Canada, 1991; 426–435.
37. Wall DW. Predicting program behavior using real or estimated profiles.AGM SIGPLAN Notices1991;26(6):59–70.
38. Morrison R, Brown AL, Connor RCH, Cutts QI, Dearle A, Kirby GNC, Munro DS. Napier88 reference manual (Release

2.2.1). University of St Andrews, 1996.
39. Kirby GNC, Morrison R. A persistent view of encapsulation.Computer Science ’98; McDonald C (eds.),Proceedings of

the 21st Australasian Computer Science Conference (ACSC’98), Perth, Australia, 1998; 231–244.
40. Wulf WA, Cohen E, Corwin WM, Jones AK, Levin R, Pierson C, Pollack FJ. HYDRA: The kernel of a multiprocessor

operating system.Communications of the ACM1974;17(6):337–345.
41. Acceta M, Baron R, Bolosky W, Golub D, Rashid R, Tevanian A, Young M. Mach: A new kernel foundation for Unix

development.Proceedings of Summer USENIX Conference, 1986; 93–112.
42. Rozier Met al., CHORUS distributed operating systems.Computing Systems1988;1(4):305–367.
43. Marsh BD, Scott ML, LeBlanc TJ, Markatos EP. First-class user-level threads.ACM Operating Systems Review1991;

25(5):110–121.
44. Anderson TE, Bershad BN, Lazowska ED, Levy HM. Scheduler activations: Effective kernel support for the user-level

management of parallelism.ACM Transactions on Computing Systems1992;10(1):53–79.
45. Assenmacher H, Breitbach P, Buhler P, H¨ubsch V, Peine H, Schwarz R. Meeting the application in user space.Proceedings

of 6th ACM SIGOPS European Workshop, 1994; 82–87.
46. Engler DR, Kaashoek MF, O’Toole J. Exokernel: An operating system architecture for application-level resource

management.ACM Operating Systems Review1995;29(5):251–266.
47. Gheith A, Schwan K. CHAOSarc: Kernel support of multiweight objects, invocations and atomicity in real-time

multiprocessor applications.ACM Transactions on Computer Systems1993;11(1):33–72.
48. Bershad BN, Lazowska ED, Levy HM. Presto: A system for object-oriented parallel programming.Software–Practice and

Experience1988;18(8):713–732.
49. Hutchinson NC, Mishra S, Peterson LL, Thomas VT. Tools for implementing network protocols.Software–Practice and

Experience1989;19(9):895–916.
50. Campbell RH, Johnston GM, Russo VF. Choices (Class Hierarchical Open Interface for Custom Embedded Systems).

ACM Operating Systems Review1987;21(3):9–17.
51. Shrivastava SK, Dixon GN, Parrington GD. An overview of the Arjuna distributed programming system.IEEE Software

1991;8(1):66–73.
52. Mukherjee B, Schwan K. Experimentation with a reconfigurable microkernel.Proceedings of USENIX Symposium on

Microkernels and other Kernel Architectures, San Diego, CA, 1993; 45–60.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

386 R. MORRISONET AL.

53. Philbin J. Customizable policy management in the Sting operating system.Lecture Notes in Computer Science748;
Proceedings of the US/Japan Workshop on Parallel Symbolic Computing: Languages, Systems and Applications, 1992;
380–401.

54. Rosenberg J, Dearle A, Hulse D, Linstr¨om A, Norris S. Operating system support for persistent and recoverable
computations.Communications of the ACM1996;39(9):62–69.

55. Hulse D, Dearle A. Trends in operating system design: towards a customisable persistent micro-kernel. University of
Stirling, Technical Report Pastel RT1R4, 1998.

56. Dearle A, Hulse D. Operating system support for persistent systems: past, present and future.Software–Practice and
Experience2000;30(4):295–324.

57. Munro DS, Connor RCH, Morrison R, Scheuerl, S, Stemple D. Concurrent shadow paging in the Flask architecture.
Persistent Object Systems; Atkinson MP, Maier D, Benzaken V (eds.),Proceedings of the 6th International Workshop
on Persistent Object Systems (POS6), Tarascon, France, 1994; 160–42.

58. Davie AJT, McNally DJ. Statically typed applicative persistent language environment (STAPLE) reference manual.
University of St Andrews,Technical Report CS/90/14, 1990.

59. Cardelli L. Typeful programming. DEC Systems Research Center,Technical Report 45, 1989.
60. Kirschke H.Persistenz in Objekt-Orientierten Programmiersprachen; Logos Verlag: Berlin, 1997.
61. Rabitti Fet al, Design and implementation of PIOS: a physically independent object server. ESPRIT BRA Project 6309

FIDE2 Technical Report FIDE/93/70, 1993.
62. Stemple D, Morrison R. Specifying flexible concurrency control schemes: an abstract operational approach.Proceedings

of 15th Australian Computer Science Conference, Hobart, Tasmania, 1992; 873–891.
63. Garcia-Molina H, Salem K. Sagas.ACM SIGMOD Record1987;16(3):249–259.
64. Mayes KR, Quick S, Warboys BC. User-level threads on a general hardware interface.Operating Systems Review1995;

29(4):57–62.
65. Kirby GNC, Connor RCH, Cutts QI, Dearle A, Farkas AM, Morrison R. Persistent hyper-programs.Persistent Object

Systems; Albano A, Morrison R (eds.),Proceedings of the 5th International Workshop on Persistent Object Systems (POS5),
San Miniato, Italy, 1992; 86–106.

66. Connor RCH, Cutts QI, Kirby GNC, Moore VS, Morrison R. Unifying interaction with persistent data and program.
Interfaces to Database Systems; Sawyer P (ed.).Proceedings of the 2nd International Workshop on User Interfaces to
Databases, Ambleside, Cumbria, 1994; 197–212.

67. Kirby GNC. Persistent programming with strongly typed linguistic reflection.Proceedings of 25th International
Conference on Systems Sciences, Hawaii, 1992; 820–831.

68. Morrison R. On the development of Algol.PhD Thesis, University of St Andrews, 1979.
69. PS-algol Reference Manual, 4th edition; Universities of Glasgow and St Andrews,Technical Report PPRR-12–88, 1988.
70. Morrison R, Connor RCH, Cutts QI, Kirby GNC, Stemple D. Mechanisms for controlling evolution in persistent object

systems.Journal of Microprocessors and Microprogramming1993;17(3):173–181.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:363–386

	INTRODUCTION
	STRUCTURING SOFTWARE SYSTEMS
	DISCOVERING AND USING APPLICATION KNOWLEDGE
	SEPARATING POLICY AND MECHANISM
	Arena
	The Flask architecture

	GENERIC COMPLIANCE
	A COMPLIANT PERSISTENT ARCHITECTURE
	Arena policy and HWO mechanism
	Compliance in Arena

	ProcessBase policy and Arena mechanism
	Compliance in ProcessBase
	ProcessBase libraries
	Up-calls in ProcessBase

	AN EXAMPLE OF COMPLIANCE
	CONCLUSIONS

