
1

 Persistence in the Grasshopper Kernel

†Anders Lindström, †Rex di Bona, *Alan Dearle, †Stephen Norris,
†John Rosenberg, *Francis Vaughan

† Department of Computer Science
University of Sydney, N.S.W. 2006
Australia

{anders, rex, srn, johnr}@cs.su.oz.au

* Department of Computer Science
University of Adelaide, S.A. 5001
Australia

{al, francis}@cs.adelaide.edu.au

Abstract

The Grasshopper operating system provides explicit support for orthogonal persistence. A

consequence of this is that the kernel itself must, in part, be persistent. To conform to the

model of persistence in Grasshopper, the kernel persistent store must provide a means to

stabilise entities independently of each other and must also be able to maintain an arbitrary

number of versions for each entity. The design of the kernel persistent store is constrained by

the need to be very efficient and to intrude as little as possible on the code using the store.

Entities in the store reside at fixed, unique virtual addresses by which they are identified. This

allows standard demand paging techniques are used making the store efficient and unobtrusive.

Rather than provide for the independent stabilisation of individual data structures, the store

provides regions, which are variable-size sets of possibly noncontiguous virtual pages, that

may be stabilised independent of each other and that may have many versions. These regions,

called persistent arenas, are used by higher-level software as pools for the allocation of smaller

data structures that must logically be stabilised together.

1 Introduction

The Grasshopper operating system is explicitly designed to support orthogonal persistence. It unifies
the traditional abstractions of virtual memory and files to provide a single abstraction of data. This
approach is motivated by the observation that data should be accessible in a uniform manner regardless of
its creator, longevity or type[3]. The chief advantage of orthogonal persistence is that it significantly
eases the programmer’s task when sharing of arbitrary data structures between different programs (or
different invocations of the same program) is required. An important implication of this is that failure
should be as transparent to users as possible. To be truly persistent, an operating system must provide
the following[11]:

• persistent objects as a basic user-level abstraction

• resilience of persistent objects – object state must survive system crashes

• persistent processes – running programs need not be explicitly restarted after a crash; they should
resume from a previous state

• an object protection mechanism

In Grasshopper, many aspects of persistence are implemented by user-level software. Nevertheless,
there is a small amount of data that must remain in the kernel in order to limit the damage caused by
malicious or malfunctioning programs. For example, protection information, the queue of running
computations and various memory management structures must all reside in the kernel. Given the goals
listed above it is therefore necessary that the kernel itself, at least in part, be persistent. Conventional
operating systems also require some amount of persistent kernel data; for example, meta-data for the file
system. By contrast, persistence pervades all aspects of the Grasshopper system, requiring that the
kernel’s persistent store be sufficiently general to accommodate many object types and sufficiently
efficient to avoid having an adverse effect on performance.

2

This paper describes the design and implementation of the kernel persistent store in Grasshopper. In
particular it focuses on how the goals of high efficiency, generality and ease of programming have guided
the design process. In addition, it shows that having knowledge of the persistent data structures that will
be used leads to simplifications unavailable in a general-purpose system.

2 Overview of Grasshopper

Grasshopper provides three basic abstractions: containers, loci, and capabilities. Containers are the
single abstraction of data storage and access. They are passive, persistent entities that provide a means for
storing and accessing data. There is no inherent need to limit the size of containers; in particular, they
may be larger than the virtual address space of the underlying hardware. For practical reasons though, the
current implementation limits containers to 264 bytes.

Loci (from locus of execution) are an abstraction of sequential execution. Each locus is basically a set
of registers and some other system-related data such as priority and resource usage. A locus’ addressing
environment is defined by its host container, which provides both the code and data that it needs to carry
out computation.

Grasshopper is a procedure-oriented[15] or object-thread-based system[7]. This means that a locus
need not be tied to its host container for its entire lifetime. Instead, it may move to another container by
invoking it. Invoking a container is very similar to calling a procedure; parameters may be passed and
the locus resumes from the point immediately after the invocation when it returns. The point at which a
locus begins execution after invoking a container is determined by the container’s invocation point1.
Invocation differs from calling a procedure in that the invoked container becomes the locus’ host container
and so provides a new addressing environment. This means that the locus can no longer access the
contents of the container from which the invocation occurred. To track invocations, the kernel maintains
a call-chain, analogous to a stack in Algol-like languages. It is comprised of invocation records that are
used to pass parameters to the invokee and restore the locus state when it returns.

The invocation mechanism is extremely important in Grasshopper since it can be used to provide
hardware-protected abstract data types(ADTs). Each instance of an ADT is implemented as a single
container whose operations are accessed by invocation. This has the important implication that the
kernel itself can be presented as a number of ADT instances whose services are accessed by invocation.
This means that kernel-level and user-level services are totally indistinguishable. This approach has also
been adopted in the Monads system[18].

Capabilities are the sole means of referencing and protecting entities in Grasshopper[9]. Whenever the
code executed by a locus calls for the manipulation of another object, for example the invocation of a
container, a capability must be presented. Grasshopper uses segregated capabilities – they are system-
protected entities that may only be accessed through system calls. In contrast to password capability
systems[2, 17], systems using segregated capabilities can keep a record of extant references to a particular
entity, thus allowing deletion of unreferenced entities and any kernel data structures associated with them.

1Each container can have only one invocation point; if it offers many services, one of the invocation

parameters can be used to choose between them.

3

container a container b container c

locus 1

locus 2

Figure 1. An example of loci and containers

Figure 1 illustrates an example of the basic abstractions. There are three containers, whose invocation
points are represented by black squares, and two loci. Locus 1 starts executing in container a.
Subsequently, it invokes b, after presenting the appropriate capability, and moves to c prior to returning
to b. Concurrently, locus 2 starts in container a and then invokes b. Note that the loci are not confined
to a single container and that many loci may execute concurrently in each container.

In addition to the three basic abstractions, Grasshopper provides a facility, called mapping, to share
data and code extremely efficiently by allowing parts of one container to become directly accessible in
another container. Mapping allows, for example, instances of abstract data types to share code rather than
having their own separate copy.

a

b

C1

C2

C3

c

d

e

Figure 2. Mappings are not restricted to one level. Reading b in C1 returns the
contents of e in C3.

Mapping in Grasshopper differs from similar features in other systems such as Mach[1] and
Chorus[19] in a number of important ways. First, mappings may overlap each other – the last mapping
made at a particular address overrides any others. Second, mappings are not restricted to one level. For
example, in Figure 2 address b in C1 corresponds to address d in C2, which corresponds to address e in
C3. This means that reading b in C1 will in fact return the contents of e in C3. Third, in addition to the
usual case where a mapping is perceived by all loci in a container, a mapping may be made private to one
particular locus. Such mappings are called locus-private mappings and take precedence over any global
mappings. This allows, for example, each locus in a container to have its stack occupying the same
address range as the stacks of other loci in that container. This technique both simplifies multi-threaded
programming and provides a useful security mechanism unavailable in conventional systems.

4

3 Data Management

The implementation of containers includes the following tasks:

• the management of physical memory allocated to containers

• the management of the virtual address space within a container

• the management of stable storage (disks etc.)

• the implementation of stability algorithms

Not all these tasks are performed by the kernel. Rather, the kernel provides mechanisms by which
user-level entities, called container managers, can implement any policy they choose. A container
manager may be responsible for any number of containers and may coexist with other container
managers. The advantage of this approach is that it provides a flexible system structuring facility,
enabling research to be conducted with minimum impact to the rest of the system. In addition, it
removes much complexity from the kernel making it both easier to write and maintain.

A container manager is implemented as a user-level container that presents a common system-defined
interface[10]. When the kernel requires some aspect of data management to be performed on a container it
invokes that container’s manager. For example, if a page fault occurs in a container, the kernel invokes
its manager with parameters that include the address of the fault. It is the manager’s responsibility to
service this fault in an appropriate way; for example, by retrieving the page from disk. This facility was
inspired by experience with the Mach external pager facility[21, 22] but extends the model to include
responsibility for stability and resilience.

4 The Model of Persistence

One of the perceived problems with persistent systems is that they incur an unreasonable overhead due to
checkpointing. The reason for this is that stabilisation in most persistent systems involves suspending
all current activity while modifications are saved on stable storage. This approach is sometimes called
the ‘stop the world’ method. The advantage of such an approach, used by many single-user systems such
as Napier88[8], is that it is relatively simple and automatically ensures a consistent recoverable state.

If the ‘stop the world’ method was used in Grasshopper, stabilising a single container would result in
all loci being suspended, including those unrelated to the container. Clearly, this would lead to
unacceptable response. The alternative is to stabilise containers independently. If this scheme is used,
then after a crash it is generally not the case that the most recent stable states of all the containers form a
consistent global state. Therefore, it is the system’s responsibility to find such a state, a so-called
consistent cut[5], from among the various checkpoints. There are a number of algorithms for achieving
this [12, 13, 14, 20] which differ in the degree of asynchrony and the amount of recovery time and meta
information required.

While this paper does not discuss the details of the algorithm used by Grasshopper, it is important to
note three salient features. First, each entity may have an arbitrary number of stable states created
independently from other entities. This is not to say that each container must have an arbitrary number
of stable states, but the more there are the easier it is, in general, to find a recent consistent cut. Second,
recovery involves finding the most recent consistent global state from among the set of entities. In
general, this state will not include the most recent stable states of all, or even any, of the individual
entities. This means that previous versions of entities need to be reestablished before the system can
continue. This process is called rolling back an entity. Third, an important property of the algorithm is
that stable states of individual entities which occurred before a consistent global state are guaranteed to be
never used again. This means that the resources they use, such as disk space, can be reclaimed.

5 The Need for a Kernel Persistent Store

In common with most multi-user systems, Grasshopper prohibits user-level programs from indis-
criminately tampering with the state of other programs and data. This means that some vital data

5

structures must be held in the kernel. This section identifies these data structures and shows that, to
achieve the goal of orthogonal persistence, they must themselves be persistent.

The state of a container can be divided into two parts: user-level state and kernel-level state. User-
level state comprises any data or meta-data that cannot be used to gain unauthorised access to other
entities. This includes the actual data in the container and any meta-information that the container’s
manager may keep in order to provide and maintain that data. The kernel-level state includes the data
structures representing both mappings into the container and the capabilities associated with it. These
data structures must be kept in the kernel, otherwise it would be possible for user-level programs to
manufacture capabilities for arbitrary entities or to perform mappings from other containers, so gaining
direct access to their contents. The state information of a locus also resides in the kernel. If it did not,
user-level programs would be able to affect other loci in an uncontrolled way. The state of a locus
consists of the following:

• current host container

• an invocation call-chain

• locus private mappings

• capabilities associated with the locus

Even though loci are not bound to remain in any particular container, each invocation record of the
locus’ call chain is inextricably linked to a certain container, as are the locus-private mappings. Thus,
rather than thinking of the state of a locus as being totally separate from containers, it is better to think
of it as being distributed among the containers in its call-chain.

Clearly, given the goals of Grasshopper, these kernel-level data structures must be persistent. If this
were not the case, user-level code would perceive differences before and after a crash, a situation that is the
antithesis of orthogonal persistence. For example, if mappings between containers were not persistent,
user-level code would have to redo the mapping after a crash in order to be consistent. Further, if loci
were not persistent, user-level code would have to decide from where to resume computation after a crash,
a task that, at best, would significantly complicate the code and, at worst, may not even be possible.

6 The Kernel Persistent Store

6 . 1 Design Issues

From the above discussion, it is clear that there is a need for a persistent store in which to hold kernel
data. To conform to the model of persistence in Grasshopper, described in section 4, the store must
fulfill two requirements: it should be able to stabilise the kernel-state of an entity independently from that
of other entities and it should be able to maintain an arbitrary number of stable states for each entity.
Secondary goals are that it should be efficient, since it has the ability to affect the performance of the
entire system, and that it should be not intrude on code that uses it; writing an operating system kernel is
already difficult enough.

Keeping these goals in mind, the design of the store must address the following questions:

1. How are objects in the store identified?

2. What is the object loading strategy?

3. What is the granularity of objects?

There are two possible answers to the first question: software identifiers or virtual addresses. In the
first approach, used in systems such as POMS[6], entities are uniquely identified by some software
naming scheme that is independent of the virtual address space. This means that the data space can be of
arbitrary size for which the virtual address space serves as a cache. The main problem with this approach
is that software identifiers, by definition, cannot simply be presented to the hardware to access an object.
Instead, software identifiers must be translated by a layer of software. Most systems that use this

6

approach have a language built on top of them that makes this translation transparent to programmers.
The Grasshopper kernel is implemented in C which does not provide the necessary language support.
Therefore, a function or macro would need to be called to perform the translation on every access to an
object. This violates the secondary goal of not intruding on the code.

In the second approach, which is adopted by Grasshopper, each object resides in a fixed and unique
region of the kernel’s address space until it is destroyed and can therefore be identified by its virtual
address. The main advantage of this approach is that virtual addresses can be presented directly to the
hardware without the need for software translation. The disadvantage is that the size of the store is
limited by the virtual address range of the underlying hardware. We do not expect this to be a problem
since the store only contains kernel data; user-level data is kept in containers which are of arbitrary size.

The second question also has two possible answers: explicit loading or implicit loading. An explicit
loading scheme is one in which the store provides a command to retrieve an object. This method is
clumsy without language support. It is also inefficient since a check must be made on every access to
see if the object is in physical memory. An implicit loading scheme uses memory management hardware
to detect accesses to non-resident pages and does not intrude on code using the store.

The disadvantage of using implicit loading is that it implies that stabilisation must be performed on
page-sized units since memory management hardware can only detect modification of pages rather than
individual entities. In other systems this is not a problem since the entire store is stabilised
simultaneously, making page boundaries irrelevant. The Grasshopper kernel store, by contrast, is
required to support independent stabilisation of entities requiring it to place them on separate pages.

Placing individual data structures on separate pages would lead to unacceptable levels of internal
fragmentation – the typical data structure in the kernel is just a C structure that contains a small number
of scalars and pointers. While at first this seems to be an intractable problem, knowledge of the
relationships between these data structures allows us to make the key observation that it is not necessary
or even sensible to independently stabilise individual data structures. Rather, data structures form logical
groups and it is these groups that should be independently stabilised. For example, the state of a
container includes the capabilities and mappings associated with it, the data structures for which are
comprised of many smaller parts, for example, elements of a linked list. Stabilising a container then,
involves saving a whole group of smaller data structures, called a stability group, which may be clustered
together rather than lie on separate pages.

If stability groups are sufficiently large, internal fragmentation within pages can be alleviated making
an implicit loading scheme feasible. This conclusion, together with the fact that explicit loading
schemes are intrusive and inefficient, convinced us that an implicit loading scheme based on virtual
addresses was the best choice for the kernel persistent store.

6 . 2 Persistent Arenas

Rather than support the persistence of individual data structures, the kernel persistent store provides for
the creation of medium to large-size regions that may have any number of versions created independently
of each other. These regions are called persistent arenas and are used by higher levels of software as pools
for the allocation of individual data structures in a stability group. For example, each container has its
own persistent arena from which the many small data structures that comprise the kernel’s representation
of that container are allocated. Stabilising the container’s arena results in the atomic stabilisation of all
these data structures.

7

page10 page 11 page 12 page 13 page14

2 249 7 -78 a q d b l

arena 1 arena 2

meta
data

meta
data

Figure 3. Two arenas.

Figure 3 shows an example of two arenas. The figure illustrates two important aspects of persistent
arenas. First, the pages comprising the arena do not need to be contiguous in virtual memory. This is
because, in general, individual data structures within stability groups are smaller than a page; for
example, the list elements in arena 1. Of course, if a particular data structure is larger than a page,
contiguous virtual pages will be needed. The array in arena 2 in figure 3 is such a data structure. In
practice though, the occurrence of such large data structures in the kernel is rare. Allowing non-
contiguous pages makes increasing the size of arenas fairly easy since any free virtual page can be used.
This has the additional benefit of minimising external fragmentation of the virtual address space. The
second point to note from figure 3 is that persistent arenas are self-describing; that is, all meta-data
describing a persistent arena is embedded in the arena itself. This approach simplifies the provision of
multiple, independent versions since stabilising the data of a version automatically saves the meta-data for
that version independently of other arenas and other version of the same arena.

All versions of an arena have a distinguished page, the root page, that contains enough meta
information to reconstruct the whole arena. Figure 4 shows the structure of the root page. The first two
parts of the meta-data, the root page flag and the number of pages in a run, are used for recovery and are
explained in section 6.4. The rest of the meta-data includes the head of the arena page table, a version
number and the disk address of the root page of the previous version of the arena. Any space not used by
meta data can be used for data. It is therefore possible for small arenas to fit entirely on a single page.

Data RegionFirst bucket
in page table

version number

virtual address of next bucket in page table
disk address of previous versions root pageroot page flag

number of pages in run

Figure 4. Meta-data in an arena’s root page

An arena’s page table serves two purposes. First, it records which virtual pages belong to a version
of the arena. Second, it records which disk pages are used to store the data of these pages. Since arenas
are of arbitrary size, the page table may not entirely fit into the root page. Consequently, the page table
is implemented as a series of fixed sized buckets which reside on different pages of the arena. Each bucket
contains a pointer to the next one so that, by traversing through the list of buckets, all page table entries
can be found.

Having to linearly search the list of buckets initially appears to be inefficient but in practice an arena
rarely grows to a size that warrants more that one bucket. In addition, the page table is usually searched
in response to a page fault on a non-resident page. The cost of traversing the list of buckets is therefore
completely dominated by the cost of actually retrieving the data from disk. This of course ignores the
fact that traversing the list may itself cause page-faults but this would be true of any scheme that allows
for arbitrary sized arenas since some of the page table will eventually spill over to other pages.

8

In addition to the first bucket of the page table, the root page contains a version number for the arena.
This number serves as an ordinal between different versions of the arena and is used by the recovery
algorithm described below. The root page also contains the disk address of the root page of the previous
version of the arena. Thus, the root pages of the different versions of an arena form a list of disk pages
that may be traversed to find any one of those versions. Again, this facility is used by the recovery
algorithm discussed in section 6.4.

The process of stabilising a container includes stabilising its kernel-level state. This involves
identifying all pages in the container’s arena that have been modified since the last stabilisation and
saving them to new disk pages so that previous versions are not lost. Page modification is detected by
marking all pages in an arena read only – modification of a page will be signalled by an access violation.
Since this is handled in the kernel, the overhead is very low. The latency of saving modified pages to
disk, on the other hand, has the potential to be very high. Therefore, a lazy technique based on [16] is
employed. Briefly, modified pages are marked read-only while they are queued to be saved to disk. This
allows reads of the data to proceed before the disk writes complete. If a page is modified, an exception is
raised. At this time the page is copied to a new physical page frame before allowing the modification to
complete.

6 . 3 The Active Region Descriptor

The kernel address space is divided into two regions: the transient region and the persistent region. The
transient region is used for data structures that do not have to survive system shutdown such as I/O
buffers, the list of free physical pages etc. The pages in the persistent region are allocated to persistent
arenas as they are needed. The persistent region is further divided into two subregions: the active region
and the inactive region. The active region consists of all pages that are either currently allocated to arenas
or have been allocated and subsequently freed. All pages in the inactive region are free.

R

virtual page number

RF FFD D D D

0 1 2 3 4 5 6 7 8

56 7 3-10 5 5 5289

type

page number

Figure 5. The Active Region Descriptor

The kernel persistent store maintains a data structure, the active region descriptor (ARD), that has an
entry for every page in the active region. An entry is 8 bytes long and has two fields: the type field and
the page number field. The type field indicates whether the page is a root page, a data page or a free page.
The page number field of a root page entry contains the disk page number used to store the root page of
the current version of an arena. For example, in figure 5, pages 0 and 5 are root pages and are saved on
disk pages 56 and 289 respectively. The page number field of a data page is the virtual page number of
the root page of the arena to which the page belongs. For instance, page 2 belongs to the arena whose
root page is page 0 while pages 4, 6 and 8 belong to the arena whose root page is page 5. The page
number field of a free page is the virtual page number of the next page that is free in the active region.
Thus, the free page entries form a list that is used for allocation. For efficiency, the ARD is
implemented as a dense array – an entry is found simply by using its virtual page number to index
directly into the array.

Having described the ARD and the meta-data embedded in arenas, the algorithm used to handle page
faults can now be described:

On a page fault at va:

if va is in inactive region then
an error has occurred so raise an exception

entry = ARD[page number of va]

9

case entry.type of
FreePage:

error
RootPage:

read the disk page indicated by entry.page_number into memory
update memory management hardware

DataPage:
use entry.page_number to find the virtual address of the appropriate root page
find the disk address of the data page using the arena’s page table
read the disk page into memory
update memory management hardware

end case

When looking up the page table the list of buckets may need to be traversed. This may cause page
faults on the pages containing these buckets. So that these page faults may be correctly serviced, each
page that contains a page table bucket must have an entry in a previous bucket in the list. The root page
is a special case since the bucket it contains has no predecessor. This special case is handled by the above
algorithm – the disk address of the root page is held in the ARD which is always memory resident.

When an arena is stabilised, its page table must be modified to reflect the new disk pages used to store
the data. This will eventually result in the root page being modified and it must also be saved to a new
disk page. Having done this, the ARD entry of the root page is now out of date since it must always
contain the disk address of the current version. Therefore, the last step in stabilisation is to update the
ARD.

One of the advantages of having the meta-data of arenas embedded in the arenas themselves is that the
ARD does not need to stabilised after being updated. This is because the ARD does not hold any
information that cannot be recovered from the meta-data of the arenas, it is just an efficient way of
accessing it. Therefore, the ARD resides in the temporary region of the kernel’s address space.
Unfortunately, the process of reconstructing the ARD from the meta-data in the arenas, described later,
can be time-consuming. Therefore, if shutdown is orderly, the ARD is saved to a special area on disk so
the time taken to restart the system is reduced. This process must indicate whether the save succeeded or
not. This can be achieved using a time stamp method similar to Challis’ algorithm[4]. In contrast to
Challis’ algorithm though, the ARD is not shadowed. If it is not saved before a crash, it can be
reconstructed from the meta-data in arenas.

When an arena needs to grow, free virtual pages must be allocated to it. To minimise the size of the
ARD, the store always tries to allocate from the free list threaded through the ARD itself. If this is
unsuccessful, the active region is expanded into the inactive region which allocates new pages to the
active region but necessitates increasing the size of the ARD.

6 . 4 Recovery

When the system is restarted, whether after a crash or an orderly shutdown, the kernel persistent store need
only provide access to the most recent stabilised versions of arenas. It does not have to guarantee
consistency between the data of these versions; it is up to higher-level software to embed enough
information in each version so that a consistent global state may be found by inspecting the latest
versions and rolling back where appropriate.

When shutdown is orderly, the store saves the entire ARD to disk. On restart, the ARD is simply
read into memory – arenas will be brought in by the usual mechanism of demand paging.

10

other
meta
datais

 a
 r

oo
t

data

no
t a

 r
oo

t

1 2

no
t a

 r
oo

t

1 data

disk page 1 disk page 2 disk page 3 disk page 4

pages in run

data

Figure 6. Recovery tags.

When shutdown is not orderly, the recovery process is complicated by the fact that the ARD will not
be on disk. It must therefore be reconstructed from the meta-data contained in the root pages of the most
recent versions of the arenas. The first step in this process is to actually find the most recent root pages.
The is achieved by having a tag, called a recovery tag, at the beginning of each page indicating whether it
is a root page or not. The entire store is then scanned to find the root pages; version numbers are used to
find the most recent ones. The need to scan the entire store seems, at first, to be excessive. It must be
remembered though that the store only contains kernel data and is therefore relatively small. In addition,
the scan is performed on sequential disk blocks which means that average seek time for each page is low.
Once the ARD is reconstructed, the most recent versions will be available but the store does not
guarantee that these versions form a consistent global state. It is up to higher-level software to embed
enough information in each version so that such a state may be found by reinstating previous versions.

This approach is complicated by data structures that span more than one virtual page since, in this
case, the tag cannot be embedded at the beginning of intermediate pages. The current implementation
solves this problem by saving spanned pages in a contiguous run of disk pages and including the number
of pages in the run in the first page. When scanning the disk, the recovery algorithm uses this tag to
determine which disk page to look at next. For example, in figure 6, the second and third pages contain
data that spans a page boundary. This is indicated by the recovery tag at the beginning of page 2.
Therefore, the recovery algorithm would ignore page 3 and skip straight to page 4. The concern with this
scheme is that it requires the allocation of contiguous disk blocks but, as stated above, such large data
structures are rare and therefore do not cause problems in practice.

6 . 5 Virtual Memory Allocation

Another property of the store is that it shouldn’t, through its operation, cause dependencies between
arenas where such dependencies are not apparent to higher-level software. Without this guarantee, the
consistency algorithm, which is implemented above the store, will not take these dependencies into
account which could result in an incorrect system state after recovery. For example, in figure 7, arena A
is allocated virtual page 8 before a stabilisation point. After arena A has been stabilised virtual page 8 is
no longer needed (maybe because the arena became smaller) and is therefore freed. After this time arena B
is allocated virtual page 8 and is thereafter stabilised. If the system crashed at time T, the system would
resume with both A and B having virtual page 8 allocated to them.

11

Time

arena A

arena B

allocated page 8

allocated page 8

frees page 8

arena stabilised

arena stabilised

time T

Figure 7. A crash at time T leads to an inconsistent state: both arena’s are allocated
virtual page 8.

To avoid this problem each version of an arena includes a list of virtual pages freed from the arena
since the last consistent state. Such pages are called locally free pages. When a particular version
becomes part of a consistent state, all locally free pages can be moved to the global pool to become
globally free. This is guaranteed to avoid inconsistency since the consistency algorithm ensures that no
entity will be rolled back beyond the last consistent state.

To allocate free pages to an arena, its list of locally free pages is inspected first. If it is empty, a
globally free page is allocated either from the list threaded through the ARD or by extending the active
region into the inactive region.

6 . 6 Disk Allocation

On recovery it is possible that past versions, back to and including the version contained in the last
consistent state, will need to be reinstated. Therefore, the disk pages recording these versions must not be
reused until a new consistent state is found that includes a later version of the arena. To speed this
process, each arena maintains a list of disk pages used by previous versions of the arena. When a version
becomes part of a consistent cut, members of this list may be freed, since there is no longer a possibility
that they will be used.

When an arena is rolled back to a previous state by the consistency algorithm any disk pages allocated
to the more recent versions may be freed since they will never be needed again. Therefore, the list of disk
pages must also include the version number of the state in which the pages were allocated. On rollback,
any disk pages allocated after the consistent version can be freed.

6.7 Memory Allocation for Meta Data

Each arena’s meta data, including the lists in section 6.6 and 6.5, is embedded within itself. This means
that as more meta-data is required, the memory will have to be allocated from the arena itself. For
example, the list of locally free virtual pages and the list of allocated disk blocks are both dynamic
structures of unpredictable size. In most cases, allocating memory for these structures is no different
from allocating memory for normal data and so the same mechanism can be used. This significantly
eases the implementation of arenas and means that arbitrary size limits, based on statically sized meta-
data, need not be imposed.

In one particular case, increasing the size of the page table, care must be taken. As mentioned
previously, the page table is implemented as a list of fixed sized buckets that must be searched linearly to
find a particular entry. As buckets fill, new buckets must be allocated from the arena to extend the page
table. The problem is that waiting until the last bucket is full to allocate a new bucket may not succeed

12

since the last page allocated to the arena, the one in the last entry of the bucket, may already be full. If
this occurred, a new page would have to be allocated to the arena, which would require a new page table
entry. Since the original task was to create more page table entries, this process must fail.

The solution is to allocate a new bucket before the last entry in the last bucket is used to expand the
arena. This requires the allocation of a new virtual page to the arena to accommodate the new bucket.
Unfortunately, the rest of this page may never be used, wasting both virtual memory and disk space.
Again, we rely on the fact that arenas are sufficiently small on average that they rarely require more than
one bucket.

7 Conclusion

In order to meet the goals of orthogonal persistence, the kernel of the Grasshopper operating system needs
a persistent store that supports multiple versions and independent stabilisation of entities and that is
efficient and unobtrusive.

An important limitation while designing the store is that the kernel is implemented in C and therefore
sophisticated language support is not available. A significant consequence of this is that, to be
unobtrusive, the store must be based on virtual addresses rather than software identifiers. The drawbacks
of this approach are that the size of the store is limited by the underlying hardware and that stabilisation
must be performed on pages, complicating the need for multiple versions and independent stabilisation of
entities.

These problems are alleviated by the fact that the store is not general purpose; it is used for kernel data
structures only. This means that the general form of data structures and the relationships between them
are known in advance. In particular, individual data structures are small, from tens to hundreds of bytes,
and form natural groupings that should be stabilised together.

These groupings are exploited by the store. Rather than provide for the independent stabilisation of
individual data structures, it provides for the independent stabilisation of regions of the virtual address
space, called persistent arenas. These regions are used as memory pools for stability groups by higher
levels of software, which are also responsible for the consistency between them.

Acknowledgments

The work described in this paper is supported by Australian Research Council grant A49130439 and
by an equipment grant under the Alpha Innovators program from Digital Equipment Corporation. We
would like to thank the Flamingo people at the Mill for the their help in getting us started and the OSF
group from Nashua for answering many questions during kernel development. The authors would also
like to thank the other members of the Grasshopper group – Matty Farrow, Frans Henskens and David
Hulse – for their assistance in developing the ideas presented in this paper.

References

[1] Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Trevanian, A. and Young, M. “Mach:
A New Kernel Foundation for Unix Development”, Proceedings, Summer Usenix Conference, pp.
93-112, 1986.

[2] Anderson, M., Pose, R. and Wallace, C. S. “A Password-Capability System”, The Computer
Journal, vol 29, 1, pp. 1-8, 1986.

[3] Atkinson, M. P., Bailey, P., Chisholm, K. J., Cockshott, W. P. and Morrison, R. “An Approach
to Persistent Programming”, The Computer Journal, 26, 4, Nov., pp. 360-365, 1983.

[4] Challis, M. F. “Database Consistency and Integrity in a Multi-User Environment”, Databases:
Improving Usability and Responsiveness, pp. 245-270, 1978.

[5] Chandy, K. and Lamport, L. “Distributed Snapshots: Determing Global States of Distributed
Systems”, Transactions on Computer Systems, vol 3, 1, pp. 63-75, 1985.

13

[6] Cockshott, W. P., Atkinson, M. P., Chisholm, K. J., Bailey, P. J. and Morrison, R. “POMS: A
Persistent Object Management System”, Software Practice and Experience, 14(1), 1984.

[7] Dasgupta, P., LeBlanc, R. J. and Appelbe, W. F. “The Clouds Distributed Operating System”,
Proceedings, 8th International Conference on Distributed Computing Systems, 1988.

[8] Dearle, A., Connor, R. C. H., Brown, A. L. and Morrison, R. “Napier88 - A Database
Programming Language?”, Proceedings Second International Workshop on Database Programming
Languages, Morgan Kaufmann, pp. 179-195, 1989.

[9] Dearle, A., di Bona, R., Farrow, J., Henskens, F., Hulse, D., Lindström, A., Norris, S.,
Rosenberg, J. and Vaughan, F. “Protection in the Grasshopper Operating System”, Universities of
Sydney and Adelaide, GH-04, 1993.

[10] Dearle, A., di Bona, R., Lindström, A., Rosenberg, J. and Vaughan, F. “User-level Management of
Persistent Data in the Grasshopper Operating System”, Universities of Adelaide and Sydney,
Technical Report GH-08, 1994.

[11] Dearle, A., Rosenberg, J., Henskens, F. A., Vaughan, F. and Maciunas, K. “An Examination of
Operating System Support for Persistent Object Systems”, Proceedings of the 25th Hawaii
International Conference on System Sciences, vol 1, Hawaii, U. S. A., ed V. Milutinovic and B. D.
Shriver, IEEE Computer Society Press, pp. 779-789, 1992.

[12] Johnson, D. “Efficient Transparent Optimistic Recovery for Distributed Application Systems”,
Carnegie Mellon University, CMU-CS-93-127, 1993.

[13] Johnson, D. B. and Zwaenepoel, W. “Recovery in Distributed Systems Using Optimistic Message
Logging and Checkpointing”, 7th Symposium on Principles of Distributed Computing, ACM, pp.
171-181, 1988.

[14] Koo, R. and Toueg, S. “Checkpointing and Rollback Recovery for Distributed Systems”, IEEE
Transactions on Software Engineering, vol 13, 1, pp. 23-31, 1987.

[15] Lauer, H. C. and Needham, R. M. “On the Duality of Operating System Structures”, Operating
Systems Review, vol 12, 2, pp. 3-19, 1979.

[16] Li, K. and Naughton, J. “Concurrent Real-Time Checkpoint for Parallel Programs”, 2nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 79-88, 1990.

[17] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R. and van Staveren, H.
“Amoeba: A Distributed Operating System for the 1990s”, IEEE Computer, 23(5), pp. 44-53,
1990.

[18] Rosenberg, J. and Abramson, D. A. “MONADS-PC: A Capability Based Workstation to Support
Software Engineering”, Proc. 18th Hawaii International Conference on System Sciences, pp. 515-
522, 1985.

[19] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Herrmann, F.,
Kaiser, C., Langlois, S., Leonard, P. and Neuhauser, W. “CHORUS Distributed Operating
Systems”, Computing Systems, 1(4), pp. 305-367, 1988.

[20] Strom, R. and Yemini, S. “Optimistic Recovery in Distributed Systems”, Transactions on
Computer Systems, vol 3, 3, pp. 204-226, 1985.

[21] Vaughan, F., Lo Basso, T., Dearle, A., Marlin, C. and Barter, C. “Casper: a Cached Architecture
Supporting Persistence”, Computing Systems, vol 5, 3, pp. 337-359, 1992.

[22] Young, M. W. “Exporting a User Interface to Memory Managment from a Communication-
Oriented Operating System”, Ph.D. Thesis, Carnegie Mellon University, 1989.

