
This paper should be referenced as:

Kirby, G.N.C. “Persistent Programming with Strongly Typed Linguistic Reflection”. In Proc. 25th
International Conference on Systems Sciences, Hawaii (1992) pp 820-831.

Persistent Programming with Strongly Typed Linguistic Reflection

G. N. C. Kirby

University of St Andrews, St Andrews, Fife KY16 9SS, Scotland.

Abstract

The technique of linguistic reflection is of particular
interest in persistent systems because it can allow long-
lived data and programs to evolve in a type-safe manner.
Existing reflective languages are hard to use because
programs contain a mixture of several different kinds of
code, with respect to their role in reflection. In some sys-
tems this problem is compounded by the presence of a
high level of syntactic noise. The paper discusses some
uses of strongly typed linguistic reflection in a persistent
system and describes an attempt to improve the
programmer’s interface to reflection. This involves
designing an extension to the strongly typed persistent
language Napier88, called TemplateNapier. The paper
also identifies some factors which make it difficult to
write and to understand reflective programs.

1: Introduction

1.1: Linguistic reflection

A reflective language is one that has facilities for con-
structing and executing new code from within a program.
The following shows a simple example of reflection in a
hypothetical language:

let a = reflect("7") + 2

Here the function reflect is used at run-time to compile
the representation "7" into executable code and to execute
that code to produce the integer value 7. The identifier a
is assigned the integer value 9 obtained using the result of
the evaluation.

An alternative strategy is to interpret the representa-
tion, rather than to compile it and then evaluate it. An
example of this is the eval function of Lisp [7]. This
paper however is concerned primarily with languages in
which the reflective process involves compilation.

In general linguistic reflection involves taking some
language value which represents source code, evaluating it

to produce another language value, and using that value in
the original context. The reflection process can take place
either at run-time, as in the example above, or at compile-
time, and may or may not be strongly typed.

1.2: Strong typing

Linguistic reflection is of particular interest in persis-
tent systems because it provides a way for long-lived data,
including programs, to evolve in a type-safe manner. In
any long-lived data-intensive application the form of the
data will inevitably be subject to change over time. As
strong typing is vital for maintaining the integrity of per-
sistent data, this paper will be limited to the consideration
of strongly typed reflection, which has been called type-
safe linguistic reflection [13]. With this form of reflec-
tion the type of any code produced by a program is
checked before it is used, to ensure that it is consistent
with the intended use. The technique has been used:

• to provide levels of genericity beyond conventional
polymorphism [3,14] in programming languages [11];

• to build adaptive object browsers [4,5,6]; and
• as an implementation technique for data models [1, 2].

1.3: Benefits of reflection

Consider two strongly typed languages A and B with
the same type system, where A supports reflection and B
does not. Given that they are both Turing complete, B
can express any computation that can be expressed in A.
However, some computations which describe highly
generic problems may admit a more efficient implementa-
tion in language A than in B. These are the computations
that cannot be fitted directly into the type system: any
non-reflective implementation of the computations must
involve interpretation. Using the reflective capabilities of
language A may allow a more efficient compiled solution.

This can be illustrated with the natural join function.
Assuming neither language has built-in support for rela-
tional operations, the most direct way to represent rela-
tions might be as sets of records. However in language B

it is not possible to write a generic join function to
operate over arbitrary sets, because the type of the result
set depends on the combination of attribute names used in
the records in the input sets but the program cannot
compute over those names as they are not values in the
language. The only solution is to use a more flexible
representation for the tuples of the relations. Instead of
records, arrays of (attribute-name,value) pairs can be used,
where the attribute names are strings, bringing them into
the domain of computation. The disadvantage of this
approach is that some static type constraints are lost, so
dynamic checks must be made on each call of the generic
function to ensure that the inputs represent valid relations.

In language A, however, the set representation can be
used. For every occurrence in the program of a join on a
particular pair of relations, the representation of a join
function specific to their types is generated. Using reflec-
tion the representation is transformed into an executable
function which is applied to the relations. So long as the
type of the function is checked when it is first produced it
can be used repeatedly without further type checking.

1.4: Requirements for reflection

Mechanisms for the following activities are required to
support strongly typed reflection in a language:

• building and manipulating representations of the con-
structs of the language;

• transforming those representations into executable
form (often achieved by the compiler itself);

• and type checking the programs so constructed (often
achieved by parts of the compiler).

Run-time linguistic reflection requires also:

• strongly typed dynamic binding of the values created
by reflection into running programs.

1.5: Goals

The goals of this paper are:

• to identify the advantages of strongly typed reflection
and its relevance to persistent programming;

• to describe an extension of Napier88 [8] which repre-
sents an attempt to integrate support for reflective
programming into an existing language;

• and to identify factors affecting the understanding and
construction of reflective programs.

2: Reflection and Persistence

It was stated earlier that reflection can allow solutions
to a certain class of problems, highly generic functions, to

be implemented more efficiently than would otherwise be
possible. This section identifies the ways in which effi-
ciency may be gained, describes an example of reflection
in use, and examines the impact of persistence on a reflec-
tive language system.

2.1: Genericity with reflection

2.1.1: Features of reflective solutions: Section
1.3 gave an outline of the way in which reflection can be
used to write a generic function. To recap, it involves us-
ing a generator which, for each call of the function, pro-
duces a representation of code for an instance of the func-
tion specialised for the appropriate types. This representa-
tion is compiled to produce the specific function required.
The key features of this method are:

• Strong typing is preserved by a type check on the re-
sult so that no type errors can occur.

• The method is more efficient than interpretation
because the type checking occurs only at the time of
the compilation while the result can be used many
times. Other computations may also be compiled
away where they depend only on the types of the
function arguments, for example the construction of
the algorithm that determines whether two tuples
match in natural join.

• The types of the values manipulated by the generic
function may be specified more precisely than with
the interpretive method, reducing the number of dy-
namic checks required and increasing efficiency. For
example with the reflective implementation of natural
join there is no need to check for duplicate attribute
names in the input relations as each tuple is repre-
sented by a record. A check would be required with an
interpretive implementation.

• Using reflection allows bindings, checks and other
computations to be made earlier than with interpreta-
tion. This increases safety; the programmer can be
more confident that the generic function will execute
correctly.

2.1.2: Example: natural join: This section shows
how a generic natural join function can be implemented
using reflection in the language Napier88 [8]. This lan-
guage supports run-time reflection only, although it will
be described in Section 2.2 how run-time reflection
coupled with persistence gives all the power of compile-
time reflection. Stemple et al. give a description of
generic natural join using compile-time reflection in the
language TRPL [10].

The problem involves writing a generic natural join
procedure which will work for relations with tuples of any
record type. The difficulty for any non-reflective strongly

typed language is in expressing the constraints that the
join procedure should be defined only over sets of record
types and that the type of the result relation depends on
the types of the input relations. Another problem is ex-
pressing the algorithm which computes that result type.

Figure 2.1 shows the outline of a Napier88 program
which defines a generator procedure that, given representa-
tions of the types of a pair of input relations, produces the
representation of a join procedure specific to those types.
This representation is then compiled and the resulting pro-
cedure can be used to perform a join on any relations of
those types. The reserved words in the program are writ-
ten in bold type.

The program starts with definitions of the types
typeRep and codeRep. The details are not shown: any rep-
resentations of Napier88 types and source code can be
used, so long as they are agreed upon by the writers of the
generator, the compiler and the code that constructs the
type representations passed to the generator. The type def-
initions are followed by the definition of the procedure
joinGenerator. The procedure takes two parameters
relation1Type and relation2Type of type typeRep. The
result of the procedure is a value of type any which is the
infinite union of all Napier88 types. The body of the pro-
cedure constructs a representation of a procedure to per-
form the join for the particular relation types specified by
the parameters, and assigns it to the identifier
joinProcedureRepresentation. The code which constructs
this representation has not been shown for brevity as it is
fairly complex. It must analyse the type representations
in order to synthesise the result type of the join and the
algorithms to determine when pairs of tuples match on
their common attributes and to construct new tuples from
those which do match.

! Representations of Napier88 types and code.
type typeRep is …
type codeRep is …

let joinGenerator = proc(
relation1Type,relation2Type : typeRep → any)

begin
! Construct representation of a join procedure
! for this particular pair of relation types.
let joinProcedureRepresentation =

… ! Of type codeRep.

! Return the compiled result.
compile(joinProcedureRepresentation)

end

Figure 2.1: A generic reflective procedure

The reflection is contained in the call to the procedure
compile which compiles the code representation to pro-
duce an executable procedure and injects it into the infinite

union type any. This allows compile to have a well de-
fined type, proc(codeRep → any), even though the
actual type of its result is not known statically. The any
value is returned as the result of joinGenerator. To use
that result it must be projected onto its specific type,
shown in Figure 2.2 where the reflective procedure is used
to perform a natural join on two relations. The program
begins by defining the tuple types of the two relations to
be joined, part and supplier, and the expected tuple type of
the result, partSupplier. It is assumed that the type
Relation , parameterised by a tuple type, has been
previously defined. The program next constructs
representations of the input relation types and passes them
to the generator jo inGenerator to obtain an a n y
containing a join procedure specific to those types. The
identifier psJoin is bound to that procedure. To do this
the any must be projected onto a specific type: the
program specifies the expected type of the procedure,
written after the reserved word onto. If the type is correct
it is the new procedure value, renamed join, which is
bound to psJoin. Otherwise an error is reported and a
dummy procedure (dummyJoin, assumed to have been
defined earlier) is bound. Such a failure would only occur
if there was an error in the generator procedure which
produced the join procedure representation.

type part is structure(
partName : string ; partNumber : int)

type supplier is structure(
supplierName : string ; partNumber : int)

type partSupplier is structure(
partName : string ; partNumber : int ;
supplierName : string)

! Reps of Relation[part] and Relation[supplier].
let partRelationRep = …
let supplierRelationRep = …

let wrap = joinGenerator(partRelationRep,
supplierRelationRep)

let psJoin = project wrap as join onto
proc(partRelation,supplierRelation →

partSupplierRelation) : join
default : { write("compilation failure") ;

dummyJoin }

! Construct instance of Relation[part].
let parts = …
! Construct instance of Relation[supplier].
let suppliers = …

let partsAndSuppliers = psJoin(parts,suppliers)

Figure 2.2: Using a reflective procedure

A new program like that in Figure 2.2 must be written
and compiled for each different pair of relation types to be

joined. Though the types of the inputs and of the result
must be written down in each case, the algorithms to per-
form the different joins are synthesised automatically.

The dynamic type check which takes place at the pro-
jection of the any value ensures that the reflection process
is entirely strongly typed: even if the representation pro-
duced by joinGenerator was not valid code there would be
no threat to the integrity of the language system as the
default branch would be followed. This illustrates a re-
striction of this style of reflection. Although it is possi-
ble for a generator to produce the representation of some
value whose type is not known statically, such a value
cannot be used in a program because a static type assertion
must be made at the point of the projection from any.1

2.2: The impact of persistence

Persistence allows the programmer to view data as hav-
ing a single form throughout its life, removing the need
for explicit translations between short-term program for-
mats and long-term storage formats. The language
Napier88 provides orthogonal persistence, that is any data
value may persist for an arbitrary length of time irrespec-
tive of its type. This has the benefits that:
• it removes the need to write code to translate long-

term data between different formats;
• and it allows values of all types including closures

and abstract data types to persist beyond a single pro-
gram execution. It is not possible to arrange this in a
strongly typed language without a built-in persistence
mechanism as there is no way to access all the details
of such values in order to ‘flatten’ them to write them
to the file system, or to reconstruct the values from
flattened representations.

Persistence is relevant to reflection in several ways: reflec-
tion can be used to solve some problems associated with
large persistent systems; the use of persistence allows
some reflective algorithms to be implemented more effi-
ciently; and persistence allows run-time reflective lan-
guages to simulate the capabilities of compile-time reflec-
tive languages. These will be illustrated in turn.

2.2.1: Data evolution: One problem with large, data-
intensive, strongly-typed systems is that of data evolu-
tion: the form of the data will change as the applications
which use it are inevitably modified. With large amounts
of data there is a need for generic tools to organise the up-
date of existing data and ensure that it remains consistent.
Some of these tools can be built using reflection.

For example, it might be necessary to change an

1In fact this is not quite true: the value could be stored or
manipulated in its any form, thus browser technology [4,5,6] could be
used to discover its structure.

attribute name of a relation in the persistent store. A non-
reflective procedure could be written to create a new rela-
tion with appropriate attribute names and copy the data
into it from the existing relation. However, that proce-
dure would have built into it the types of both the exist-
ing and new relations, giving it little potential for reuse.

Instead a generator can be written, parameterised by a
representation of the type of the existing relation and the
attribute name to be changed, which generates the repre-
sentation of a procedure to perform the update. Reflection
can then be used to convert that representation to an exe-
cutable form. The benefit of this approach is that the
same generic procedure can be used for changing any
attribute name in any other relation.

2.2.2: Reflective algorithm implementation:
The process of compilation is relatively expensive—so
the reflective technique described gives the greatest effi-
ciency gains over interpretation in cases where the value
produced by reflection is used many times after its cre-
ation. Persistence allows the compilation cost to be
amortised over many program executions rather than a
single one. This can be done by storing the compiled
forms of all calls to a generator in a persistent table, keyed
by the type representations used to create them. Before
another call to the generator is made the table is scanned
to discover whether the current type representations have
been used before. If so the corresponding value in the
table is used and no compilation is necessary.

This technique can be applied to the examples of natu-
ral join and data evolution given earlier. The degree of ef-
ficiency gained depends on several factors including the
size to which the tables grow, the frequency of hits, and
the cost of scanning the tables. Note that entries can be
deleted from the tables if necessary without affecting any-
thing other than the speed of future calls.

2.2.3: Run-time and compile-time reflection:
Orthogonal persistence allows generators to be persistent,
giving control over the time at which the compilation
costs are incurred. There is as always a trade-off between
flexibility and efficiency. Consider for example a genera-
tor which produces procedures to display values of any
type, as might be used in a store browser application.
One strategy is to keep the generator in the persistent
store and evaluate it whenever the browser is executed,
giving a procedure specific to the required type which can
then be called. This gives high flexibility and low storage
overhead, at the cost of a compilation on every execution.

Alternatively the generator can be evaluated repeatedly
for selected types at the time the application is built, and
only those procedures produced made persistent. This
gives greater efficiency at execution time, but the browser

is now less flexible: it will only work for the types which
the programmer thought of at the outset. The storage re-
quired is also greater, with wastage if some of those types
are never encountered. Finally a persistent cache can be
used, as described in Section 2.2.2. This is a scheme
which has been used to build browsers [4,5,6].

There exist applications of run-time reflection which
cannot be implemented with compile-time reflection: one
example will be shown in Section 3. Furthermore, run-
time reflection has all the power of compile-time reflec-
tion. Because generators can be persistent, the reflection
can be performed as early or as late in the program con-
struction process as required.

3: The Language TemplateNapier

A major problem with existing reflective languages is
that it is difficult to write and to understand reflective pro-
grams in these languages. The messier details of the gen-
erator procedure in Figure 2.1 were omitted but further
examples of reflective programming in several languages
are given in Section 4, where issues affecting the pro-
grams’ understandability are discussed. This section de-
scribes a new version of the Napier language designed to
improve the interface to the reflective facilities.

The language TemplateNapier is derived by extending
Napier88 with a new language construct, the template.
A template is a generator: it takes as parameters both
types and values and produces source code representations.
When a template is evaluated at run-time the
TemplateNapier source code produced is compiled and, if
successful, the result bound into the program. In the cur-
rent version of TemplateNapier the type string is used to
represent source code and the form of the language reflects
this. Future experiments will involve other representa-
tions such as abstract syntax graphs.

3.1: Template definitions

A template definition begins with the reserved word
template followed by any number of type parameters en-
closed in square brackets and value parameters in round
brackets. Following the template header is a body whose
type is string (or whatever other form of code representa-
tion is used). The last expression in the body defines the
code representation produced by the template.

The example in Figure 3.1 shows the definition of a
template that takes as parameters a structure type2 and the
name of one of its fields, and generates the representation
of a procedure to write out the value of that field for given

2Structure type in Napier88 and TemplateNapier is synonymous
with record type.

instances of the structure type. This could not be imple-
mented without reflection in any language that requires
structure field names to be known statically.

The program binds the identifier mkWriteField to a
template with one type parameter, T, and one value pa-
rameter, field, of type string. Inside the body of the
template the identifier repn is bound to a representation of
the type parameter, obtained by writing the reserved word
repof before the type identifier. The type representation
obtained is of type typerep, a base type in the language.
The programmer cannot examine the structure of a type
representation directly; instead, a number of standard
procedures which operate over type representations are
brought into scope automatically at the beginning of each
template definition. In the fifth line of the program the
standard procedure constructorName is used to discover
what kind of type is represented by the type parameter. If
the parameter is not a structure type an error is reported,
and the string produced by the template will not represent
valid code.

The resulting code representation lies at the end of the
template body. The first line of it contains a type defini-
tion for the type which was passed to the template, bind-
ing it to the name T1. The rest contains the definition of
a procedure which takes a value of type T1 as its parame-
ter. Embedded within the code representation are two
string expressions enclosed by the markers code< and >.
When the template is evaluated these expressions are
themselves evaluated and the resulting strings concatenated
with the surrounding code. The first expression uses the
standard procedure typerepDefn to obtain a string represen-
tation of the typerep while the second inserts the value
of the parameter field into the code. The code markers
thus provide syntactic sugar for string concatenation.
Note that TemplateNapier, like Napier88, uses brackets to
denote structure dereference e.g. a(b) to denote the field b
of structure a.

let mkWriteField = template[T](field : string)
begin

! Get representation of type.
let repn = repof T
if constructorName(repn) ~= "structure" do

write("not a structure type")

! The source code produced.
"type T1 is code< typerepDefn(repn) >
proc(instance : T1)

write(instance(code< field >))"
end

Figure 3.1: A template definition

3.2: Evaluating templates

Reflection is achieved in TemplateNapier by use of the
evaluate clause; this is the only reflective construct in
the language. Execution of an evaluate clause causes
the execution of a template body to produce some source
code, compilation of the source code to give a language
value (or failure), a type check on the value, and if suc-
cessful the binding of the value into the program.

An evaluation of the template defined in Figure 3.1 is
shown in Figure 3.2. The program begins with a defini-
tion of the structure type Person which will be used as the
type parameter. An instance of Person, fred, is created and
the procedure readString is used to prompt the user for the
name of the field to be written out, bound to the string
identifier desiredField. The template is then evaluated.
Note that this takes place at run-time. The template is
passed the appropriate number of type and value parame-
ters, in this case Person and desiredField respectively, and
the name writeTheField is given to denote the result of the
evaluation. The type Person is passed directly rather than
the programmer having to obtain a value which represents
it, a problem which was glossed over in Section 2.1.2.

Following the reserved word to is a list of type expres-
sions, each followed by a program clause, and the word
default also followed by a program clause. In the exam-
ple there is only one type expression in the list, proc(
Person). The name for the result of the evaluation,
writeTheField, is in scope in the program clauses up until
default. The body of the template is executed to produce
some source code representation which is then compiled
and writeTheField initialised with the result. The type of
the result is compared with the types in the list and the
clause following the first type to match is executed. If no
types match the result the code following default is exe-
cuted. Thus a dynamic type check on the result of the re-
flection takes place, ensuring strong typing.

! The type the result procedure will work for.
type Person is structure(name,address : string)

! An instance of Person.
let fred = Person("alfred","32 south street")
! Prompt user for a field name.
write("Which field?")
! Get the field name as a string.
let desiredField = readString()

evaluate mkWriteField[Person](desiredField) as
writeTheField to

! Result had expected type.
proc(Person) : writeTheField(fred)
! Compilation failed.
default : write("invalid field name entered")

Figure 3.2: Evaluating a template

If this program is executed and the user types in
“address” the template is evaluated to produce the code rep-
resentation shown in Figure 3.3. If the user supplies any
string other than “name” or “address” the code fails to
compile and the error following default is reported.

"type T1 is structure(name,address : string)
proc(instance : T1)

write(instance(address))"

Figure 3.3: Code produced by evaluation
of template mkWriteField

The code representation produced by the evaluation of
the template in this example does not itself contain any
template definitions or evaluations. However, templates
are first class values in the language and may in general
produce code that contains other templates, that are them-
selves evaluated when that code is executed.

In the current version of TemplateNapier the evaluation
of templates always takes place at run-time. However it
might be possible to implement a version in which evalu-
ation could occur at compile-time in cases where the tem-
plate parameters and all the identifiers referred to in the
template body were manifest. This could allow compile-
time and run-time reflection to be integrated using a single
mechanism—this is the subject of current research.

3.3: Bindings within templates

It has been shown how the values produced by tem-
plates can be bound into running programs using the
evaluate construct. It is also possible to bind values
from a running program into a template, using the eval
construct illustrated in Figure 3.4. If the template t is
evaluated then when the execution of the template body
reaches the point ¨ where the code representation is de-
fined, the current R-value of the identifier anInt is bound
into the code representation. Thus when the resulting
procedure is executed the identifier intValue is initialised
with the value 3 which is then written out.

let anInt = 3

let t = template[T]()
begin

…

¨ "proc() ; begin
let intValue = eval< anInt >
writeInt(intValue)

end"
end

Figure 3.4: Use of the eval construct

The eval mechanism can be used to bind to the value
of any identifier or expression in the static scope at the
point of the definition of a template result. Note the dif-
ference between this and the code mechanism which en-
ables pieces of code representation to be joined together.

3.4: Templates: miscellaneous

3.4.1: Viewing code generated by a template:
For debugging purposes it may be useful to examine the
code representation constructed in the evaluation of a tem-
plate. This can be achieved using the textof construct
shown in Figure 3.5. Executing this program results in
the identifier procedureText being bound to the code string
shown in Figure 3.3.

… ! Code as in Figure 3.2.
let procedureText =

textof mkWriteField[Person](desiredField)

Figure 3.5: Obtaining the code produced
by an evaluation

3.4.2: Equality of typereps: Equality over type rep-
resentations, instances of the base type typerep, is de-
fined as structural equivalence3. This allows the pro-
grammer to test a type parameter for equivalence to some
other type, even though the definition of that type may lie
in another program. For example a template definition
might begin as follows:

let x = template[A]()
begin

if repof A = repof structure(name : string)
then …
…

Here the type A is tested for structural equivalence with
the given anonymous structure type.

3.4.3: Escapes in string literals: The strings
"code<", "eval<" and ">" are used as markers to indicate
special regions of string literals. They can be included
without being interpreted as markers by preceding them
with apostrophes. For example the string "a '> b" written
in a template denotes the string "a > b".

3.4.4: Template types: In order to pass a template as
a procedure parameter or bind to it in the persistent store it
is necessary to be able to write its type. For example the
types of the templates mkWriteField and t defined in
Figures 3.1 and 3.4 respectively are written:

template[T](string)

3There are some exceptions to this; they are the same exceptions
that are specified in the Napier88 type matching rules.

and template[S]()
Any names could be used here in place of T and S. Two
templates have the same type if they have the same num-
ber of type parameters and value parameters and the corre-
sponding value parameters in both templates have the
same type. The names of the parameters do not have to
be the same.

3.4.5: Standard procedures: The essence of reflec-
tion is the analysis of existing programs and the synthesis
of new ones: many of the computations involved can be
pre-coded and made available to the programmer. In
TemplateNapier this is achieved by bringing a set of stan-
dard procedures into scope automatically at the beginning
of each template. Some of these manipulate type repre-
sentations; they are implemented at a level below
TemplateNapier and cannot be written in the language.
The other procedures are written in TemplateNapier and are
provided for convenience rather than by necessity. Some
manipulate other source code constructs besides type rep-
resentations; others perform utility functions such as vec-
tor manipulation.

3.4.6: Current implementation: The current proto-
type of TemplateNapier is written in Napier88 and is im-
plemented as a reflective layer above Napier88. It trans-
lates TemplateNapier programs into Napier88 programs
which are then compiled. This prototype version does not
allow templates to produce reflective code.

4: Analysis of Reflective Programming

In this section an attempt is made to identify some fac-
tors that make it more difficult to write and understand re-
flective programs than conventional programs.

4.1: Code categories

A reflective program contains a mixture of several dif-
ferent kinds of code with respect to their role in reflection.
The infinite set of valid TemplateNapier expressions can
be grouped into a series of categories of decreasing gener-
ality. The first contains the entire set of TemplateNapier
expressions, the second contains the non-reflective expres-
sions from the first, while the last two sets contain only
expressions which themselves represent other code. These
categories will be referred to by the following names re-
spectively: the general category, the general non-
reflective category, the codeRep category and the
manifest codeRep category. There is a subset relation
between these categories:

manifest codeRep ⊂ codeRep ⊂
general non-reflective ⊂ general

Reflective Program
(general level)

codeRep level

manifest
codeRep level

general non-
reflective level evaluate representation

of general level

compile

evaluatelanguage
value

bind back into program

template definition

general non-
reflective level

executable
code

reflective
constructs?

N

Yevaluate

Figure 4.1: Interactions between code categories

The definitions of the categories are now elaborated:

manifest codeRep
contains any manifest code which has the type used to rep-
resent source code, type string in the current version of
TemplateNapier. Expressions in this category are them-
selves representations of code and because they are mani-
fest, i.e. fixed at compile-time, they always produce the
same code representation when evaluated.

example: "proc(x : int → int) ; x * x"

codeRep
contains all expressions which represent source code. The
category includes arbitrary expressions and so the code rep-
resented by an expression may vary between evaluations.

example: "let x = y + " ++ readString()
Here the ‘++’ indicates string concatenation,
and the standard procedure readString returns
a string input by the user. The code
represented by this expression will vary
depending on what string is input.

general non-reflective
This contains any code of any type so long as it does not
include template definitions or evaluations. This category
includes all legal Napier88 code.

example: proc(x : int → int) ; x * x
This is a procedure literal whereas the ex-
ample of manifest codeRep code was a
string representation of that literal.

general
contains all TemplateNapier code of any type. Code may
contain reflective constructs.

example: evaluate x[int]() as result to …

Figure 4.1 above shows the interaction between these
categories as a reflective program is evaluated.

4.2: Interactions between categories

A TemplateNapier program consists of general code.
Template definitions within it contain a combination of
codeRep and manifest codeRep code. They may also
contain general code. When the c o d e R e p and
manifest codeRep code is evaluated, due to the execu-
tion of an evaluate clause at run-time, it produces the
representation of new general code, which is then com-
piled and evaluated. If that new code itself contains reflec-
tive constructs its evaluation will involve further com-
pile/evaluate cycles which continue until general non-
reflective code is produced. The value obtained by eval-
uating that code is bound to by the running program.

In examining even a simple reflective program the user
is presented with a mixture of 3 categories of code with
different roles in the reflective process. Consider the cate-
gories of code in the template definition shown in Figure
4.2. The manifest codeRep code is shown in outline
style, the codeRep code in italic and the general code in
plain text. In order to reduce confusion the reserved words
have not been emboldened.

! Plain text is general code.
let mkWriteField = template[T](field : string)
begin

let repn = repof T

! Italic text is codeRep code.
! Outline text is manifest codeRep code.
"type T1 is code< typerepDefn(repn) >
proc(instance : T1)

write(instance(code< field >))"
end
…

Figure 4.2 continued over page

evaluate mkWriteField[Person](desiredField) as
writeTheField to

…

Figure 4.2: Code categories in a template
definition

The string literal denoting the result of the template
contains manifest codeRep code, except for the parts
enclosed in code brackets, which contain codeRep code.
The general code before the string literal is executed
when the template is evaluated. The codeRep code is
also executed then, to produce the representation of some
new general code, but the manifest codeRep code is
not executed at that stage. It is composed with the new
code produced by the codeRep code.

Consider the evaluation, at run-time, of a template
which produces non-reflective code. Two distinct code ex-
ecution phases occur. The first is that described above,
producing the representation of some general code. That
representation is then compiled, and, if the compilation is
successful, executed to give the result value. Thus in the
first phase it is the existing general non-reflective
code and the codeRep code which is executed, while in
the second phase it is the manifest codeRep code and
the new general non-reflective code. If the template
constructs reflective code there is an evaluation cycle
which continues until non-reflective code is produced.

The different code categories within a template defini-
tion appear different to the programmer. The general
code and manifest codeRep code looks similar, the
only difference being that the code in the two categories is
executed during different evaluation phases. However, the
codeRep code looks different because it may encode an
infinite number of different segments of general code,
depending on the environment in which it is evaluated. In
trying to understand a template definition, the programmer
attempts to visualise the code which it would produce for
a particular set of input types and values. To do this it is
necessary, mentally, to compute the resulting general
code and to compose it with the manifest codeRep
code. Even if the computation itself is not hard, the com-
position is, because of the discontinuity between the cate-
gories. Some parts of the resulting code are derived di-
rectly from the manifest codeRep code in the program,
whereas the other adjoining parts are obtained only as a
result of computation. The visualisation task is even
more difficult where multiple levels of reflection take
place and it is not clear whether that facility will find prac-
tical applications.

4.3: Code categories in other languages

4.3.1: TRPL: TRPL is a statically typed language that
supports compile-time reflection [11]. Figure 4.3 shows
the code categories in a fragment of TRPL code which per-
forms a function similar to that of the template
mkWriteField shown in Figure 3.1:

@ Plain text is general code.
@ Italic text is codeRep code.
@ Outline text is manifest codeRep code.

macro WRITEFIELD(field);
EREP(fred.f, f := field);

person = struct make_person(name:string,
address:string);

variable fred : person :=
make_person("alfred","32 south street");

PRINT(WRITEFIELD(address));

Figure 4.3: Code categories in TRPL

The reflection occurs in the macro WRITEFIELD. The
body of the macro consists of a call to the pre-defined
macro EREP, which expands to a graph representation of
the code passed to it. That code is fred.f, where f is sub-
stituted by whatever field name has been passed to
WRITEFIELD. Although a graph form of code represen-
tation is used this is disguised by EREP which allows the
manifest codeRep code to be written textually. The
optional substitutions written after the main code fred.f
provide the means for linking in the codeRep code. In
this case there is one substitution for f. Following the
macro definition there is the definition of type person and
the creation of an instance fred. Finally the macro
WRITEFIELD is called to produce code to dereference a
field of fred, and the pre-defined macro PRINT used to
write out the result. The expansion of these macros takes
place at compile-time; after their expansion the program
contains no reflective constructs. The type checking that
is necessary for strongly typed linguistic reflection occurs
as normal during compilation of the expanded program.

For simplicity this trivial example has been used; it
does not demonstrate the full power of TRPL. Here the
field name address has to be manifest so the field to be
written out cannot depend on user input at run-time, un-
like the TemplateNapier example. Some more useful ex-
amples of reflection in TRPL are given in [12].

4.3.2: PS-algol and Napier88: The language PS-
algol [9] is a predecessor of Napier88. Both languages
handle reflection in a similar way and reflective programs

written in PS-algol and Napier88 have the same categories
as TemplateNapier. Figure 4.4 shows how the field
selection example can be written in PS-algol.

The program begins with the definition of the proce-
dure mkWriteField which takes as parameters string repre-
sentations of a structure class and a field name, and pro-
duces a string. The structure class representation plays the
same role as the structure type representation in the
TemplateNapier implementation. The string produced by
mkWriteField is the representation of another procedure
which itself takes a single parameter of type pntr, the in-
finite union of all structure types, and writes out the value
of one of its fields.

let mkWriteField = proc(string structureClass,
field → string)

begin
! Construct string representation of
! structure definition using structureClass.
let structureDefn = …

! Italic text is codeRep code.
! Outline text is manifest codeRep code.
"structure T1 " ++ structureDefn ++
"proc(pntr instance)

write(instance(" ++ field ++ "))"
end

structure Person(string name,address)
let fred = Person("alfred","32 south street")
write("Which field?")
! Get the field name as a string.
let desiredField = readString()

let procText = mkWriteField(
class.identifier(fred),desiredField)

structure procHolder(proc(pntr) writeProc)
let dummyProcHolder =

procHolder(proc(pntr a) ; {})
let resultHolder =

compile(procText,dummyProcHolder)
let writeTheField = resultHolder(writeProc)
! writeTheField is of type proc(pntr).

writeTheField(fred)

Figure 4.4: Code categories in PS-algol

After the definition of mkWriteField the structure class
Person is defined, an instance created, and a field name
obtained from the user. The standard procedure
class.identifier is used to obtain a representation of the
structure class P e r s o n which is then passed to
mkWriteField to produce a procedure representation. The
interface to the compiler is more complex than in
Napier88: as well as the source representation it takes a
pointer to a structure of the appropriate type to contain the

compilation result. The compiler checks the type of the
result against it and then returns another instance of that
structure type containing the result. Finally the structure
is dereferenced to give the procedure writeTheField which
is called with the parameter fred.

The main point of this example is to show how the
categories are differentiated. The manifest codeRep
code is that enclosed by quotes, and the codeRep code is
composed with it using string concatenation. There is no
convention dictating where the codeRep and manifest
codeRep code should occur within the program, and the
user may not be able to tell from a superficial examina-
tion of the program which string expressions are involved
in reflection and which are used in other ways.

4.3.3: PS-algol with place-holders: Cooper has
used reflection in PS-algol for, among other things,
constructing data models [1,2]. To improve the
readability of reflective programs he created a variant of
the language in which place holders can be used to indicate
the variable parts of a generator, the codeRep code.
Figure 4.5 shows the example from Figure 4.4 written in
this way. The procedure mkWriteField now returns a
pointer to a structure containing the compiled procedure,
rather than the source text. When the ‘procedure’ replace
is called the place holders, written in capital letters
preceded by #, are replaced by the specified text.

structure procHolder(proc(pntr) writeProc)
let mkWriteField = proc(string structureClass,

field → pntr)
begin

! Construct string representation of
! structure definition using structureClass.
let structureDefn = …

let program =
begin

structure T1 #STRUCTUREDEFN
proc(pntr instance)

write(instance(#FIELD))
end

replace(program,#STRUCTUREDEFN,
structureDefn)

replace(program,#FIELD,field)

let dummyProcHolder =
procHolder(proc(pntr a) ; {})

compile(program,dummyProcHolder)
end

… ! Definitions of Person, fred and desiredField.

Figure 4.5 continued over page

let resultHolder = mkWriteField(
class.identifier(fred),desiredField)

let writeTheField = resultHolder(writeProc)
! writeTheField is of type proc(pntr).
writeTheField(fred)

Figure 4.5: Code categories in PS-algol
with place holders

The advantage of this approach is that the generator is
easy to read: the manifest codeRep code within the def-
inition of program looks just like normal general code.
It is also easy to pick out the codeRep code, the parts of
the generic definition which vary between instantiations,
as each section is indicated by a place holder.

The cost is in complicating the type system. In the
example program and the place holders do not have well-
defined types, replace is a macro rather than a procedure
and program is defined as though it were a procedure but
treated as a string. This may be confusing to the pro-
grammer. In the design of TemplateNapier the intention
was to use a similar method to improve readability while
conforming to the spirit of the type system of the parent
language.

4.4: Decisions in designing a reflective language

This section identifies desirable features in a reflective
language and some of the choices to be made in designing
such a language.

4.4.1: What are the goals? The language should be
powerful and understandable. This suggests the follow-
ing:
• The type system should be coherent and simple.
• Code in different categories should be linked together

without undue syntactic noise. At the same time it
should be easy to identify the role of a given section
of code in the reflective process, and to distinguish
which code is fixed and which is produced as the re-
sult of computation.

• There should be mechanisms allowing programs to
bind to values created by reflection, and allowing
those values to contain bindings to values in the pro-
grams which created them. Ideally a simple mecha-
nism will support a wide spectrum of binding times.

4.4.2: What are the choices to be made?
• In what form is code represented in the language?

Some possibilities are the string, as used in PS-algol,
Napier88 and TemplateNapier, the abstract syntax
graph as used in TRPL, or a combination of both.

• When can reflection take place? The possibilities are
at compile-time, at run-time, or a combination of

both. It is not known of any languages which sup-
port both facilities; this is a current research topic.

• How is the code produced by generators distinguished
from normal code and the different categories of gen-
erated code distinguished from one another?

• Does the definition of the code produced by generators
appear at predictable points within a program? In the
languages described this is under the control of the
programmer who decides whether the definitions occur
at the end of the generators (templates or procedures),
which is probably the most understandable, or are dis-
tributed throughout the program.

• What pre-defined abstractions are available to the pro-
grammer for manipulating code representations? PS-
algol and Napier88 have none built in, while the sets
of abstractions provided by TRPL and
TemplateNapier are broadly similar.

• Is meta-reflection possible? This occurs when the
code produced by a generator itself contains reflective
constructs. It is possible in all the languages that
have been discussed but whether it is of practical use
is not clear.

4.4.3: What factors affect understanding?
Practical experience in writing reflective programs has
shown that they are considerably more difficult to write
and understand than conventional ones. Some reasons for
this are:
• A reflective program describes a potentially infinite

class of programs rather than a single one. To under-
stand it the programmer first must analyse the com-
putation which constructs the resulting program and
then abstract out the essential features of all the pos-
sible results. It is the existence of mani fe s t
codeRep code which makes this possible at all. It
provides a constant framework around which the vari-
able parts of the target computation are distributed.

• The codeRep and manifest codeRep categories
appear different even though they both represent parts
of the target computation. Once evaluated their re-
sults are integrated seamlessly but this is not apparent
from the source program.

• Different code categories are evaluated at different
times in the evaluation of a generator. In the situa-
tion without meta-reflection there are two stages: dur-
ing the first the general and codeRep code is eval-
uated to produce general non-reflective code, and
during the second that code is evaluated together with
the original manifest codeRep code to give a final
result. The user has to remember that adjacent parts
of the reflective program may not be evaluated to-
gether. They may also be evaluated in different envi-
ronments; the code and eval mechanisms in

TemplateNapier exist to allow values from the envi-
ronment in which the source code is evaluated to be
bound into the result code.

• The programmer must understand several mappings
between code categories. These are:
• between general code and its representation as

used in manifest codeRep;
• between general code and its representation used

in code manipulation functions;
• and between codeRep code and the general

code to which it evaluates.
The first two are normally the same but they could be
different. It might be more convenient to view the
code as text in manifest codeRep and as abstract
syntax for manipulating it.

• It is hard to read abstract syntax in textual form. This
was used for the manifest codeRep code in early
versions of TRPL, but the current version provides
automatic conversion from a normal textual represen-
tation to abstract syntax.

5: Conclusions

This paper has described how the technique of strongly
typed linguistic reflection can be useful in implementing
efficient generic code. This is relevant to persistent sys-
tems in that the technique can be used to build generic
tools for manipulating strongly typed data. The facility of
orthogonal persistence also allows the use of cacheing to
further improve the efficiency of the technique.

Some short-comings in several existing reflective lan-
guages have been identified, and a new persistent reflective
language based on Napier88 introduced. A prototype im-
plementation of the language, TemplateNapier, has been
completed. The design aim is to provide reflective con-
structs which are integrated harmoniously with the other
language features inherited from Napier88.

The paper concludes with an attempt to analyse the rea-
sons why reflective programs are hard to understand, and
identifies a number of choices facing the designer of a
reflective language.

6: Acknowledgements

I thank Ron Morrison, Richard Connor and Quintin
Cutts at St Andrews, and Tim Sheard, Dave Stemple and
Leo Fegaras at Amherst, for helpful comments, advice and
discussions.

This work was supported by an SERC PhD
studentship and by SERC Grant GR/F 02953.

7: References

[1] R. L. Cooper, M. P. Atkinson, A. Dearle and D.
Abderrahmane, “Constructing Database Systems in a
Persistent Environment”, Proc. 13th Int. Conf. on Very
Large Data Bases pp 117-125 (1987).

[2] R. L. Cooper, “On The Utilisation of Persistent
Programming Environments”, PhD Thesis, University
of Glasgow Research Report CSC 90/R12 (1990).

[3] L. Cardelli and P. Wegner, “On Understanding Types,
Data Abstraction, and Polymorphism”, ACM
Computing Surveys Vol 17 No 4 pp 471-523 (1985).

[4] A. Dearle and A. L. Brown, “Safe Browsing in a
Strongly Typed Persistent Environment”, Computer
Journal Vol 31 No 6 pp 540-544 (1988).

[5] A. Dearle, Q. I. Cutts and G. N. C. Kirby, “Browsing,
Grazing and Nibbling Persistent Data Structures”, In
“Persistent Object Systems”, J. Rosenberg and D. Koch
(eds), Springer-Verlag pp 56-69 (1989).

[6] G. N. C. Kirby and A. Dearle, “An Adaptive Graphical
Browser for Napier88”, University of St Andrews
Research Report CS/90/16 (1990).

[7] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart
and M. I. Levin, “The Lisp Programmers’ Manual”,
M.I.T. Press, Cambridge, Massachusetts (1962).

[8] R. Morrison, A. L. Brown, R. C. H. Connor and A.
Dearle, “The Napier88 Reference Manual”, Universities
of Glasgow and St Andrews PPRR-77-89 (1989).

[9] “PS-algol Reference Manual, 4th edition”, Universities
of Glasgow and St Andrews PPRR-12-88 (1988).

[10] D. Stemple, L. Fegaras, T. Sheard and A. Socorro,
“Exceeding the Limits of Polymorphism in Database
Programming Languages”, Lecture Notes in Computer
Science Vol 416, Springer-Verlag, pp. 269-285 (1990).

[11] T. Sheard, “A user’s Guide to TRPL: A Compile-time
Reflective Programming Language”, University of
Massachusetts COINS Technical Report 90-109 (1990).

[12] T. Sheard and D. Stemple, “Examples in TRPL”,
University of Massachusetts COINS Technical Report
(1991).

[13] D. Stemple, R. B. Stanton, T. Sheard, P. Philbrow, R.
Morrison, G. N. C. Kirby, L. Fegaras, R. L. Cooper, R.
C. H. Connor, M. P. Atkinson and S. Alagic, “Type-
Safe Linguistic Reflection”, in preparation.

[14] C. Strachey, “Fundamental concepts in programming
languages”, Oxford University Press, Oxford (1967).

	Citation
	Title
	Abstract
	1: Introduction
	1.1: Linguistic reflection
	1.2: Strong typing
	1.3: Benefits of reflection
	1.4: Requirements for reflection
	1.5: Goals

	2: Reflection and Persistence
	2.1: Genericity with reflection
	2.1.1: Features of reflective solutions
	2.1.2: Example: natural join

	2.2: The impact of persistence
	2.2.1: Data evolution
	2.2.2: Reflective algorithm implementation
	2.2.3: Run-time and compile-time reflection

	3: The Language TemplateNapier
	3.1: Template definitions
	3.2: Evaluating templates
	3.3: Bindings within templates
	3.4: Templates: miscellaneous
	3.4.1: Viewing code generated by a template
	3.4.2: Equality of typereps
	3.4.3: Escapes in string literals
	3.4.4: Template types
	3.4.5: Standard procedures
	3.4.6: Current implementation

	4: Analysis of Reflective Programming
	4.1: Code categories
	4.2: Interactions between categories
	4.3: Code categories in other languages
	4.3.1: TRPL
	4.3.2: PS-algol and Napier88
	4.3.3: PS-algol with place-holders

	4.4: Decisions in designing a reflective language
	4.4.1: What are the goals?
	4.4.2: What are the choices to be made?
	4.4.3: What factors affect understanding?

	5: Conclusions
	6: Acknowledgements
	7: References

