
A Generic Storage API

Graham N.C. Kirby, Evangelos Zirintsis, Alan Dearle & Ron Morrison
School of Computer Science

University of St Andrews
St Andrews, Fife KY16 9SS, Scotland

{graham, vangelis, al, ron}@dcs.st-and.ac.uk

Abstract

We present a generic API suitable for provision of highly
generic storage facilities that can be tailored to produce
various individually customised storage infrastructures.
The paper identifies a candidate set of minimal storage
system building blocks, which are sufficiently simple to
avoid encapsulating policy where it cannot be customised
by applications, and composable to build highly flexible
storage architectures. Four main generic components are
defined: the store , the namer , the caster and the
interpreter. It is hypothesised that these are sufficiently
general that they could act as building blocks for any
information storage and retrieval system. The essential
characteristics of each are defined by an interface, which
may be implemented by multiple implementing classes..

Keywords: generic storage abstractions

1 Introduction

It is increasingly recognised that the traditional approach
to software system building, in which fixed abstract
components or layers are encapsulated to encourage
software reuse, is overly restricting for many
applications. The problem is that such fixed software
boundaries require the early fixing of policy decisions,
which are thus necessarily made to suit the predicted
requirements of “typical applications”. The policies are
then hidden from the application, even though the
application may have vital information about which
policies are best suited to its needs.

There are various approaches to opening up such
restrictions in a controlled manner, so that where
appropriate an application may exert control on the
policies operated by the underlying software platform.
Here we assume that such a mechanism is available, and
focus on one particular area of functionality: that of
storage.

Previously we have been involved in building a number
of object stores—including Napier88 (Morrison, Connor,
Kirby, Munro, Atkinson, Cutts, Brown and Dearle, 1999),
CASPER (Vaughan, Schunke, Koch, Dearle, Marlin and
Barter, 1992), Flask (Munro, Connor, Morrison, Scheuerl
and Stemple, 1994) and Lumberjack (Hulse, Dearle and
Howells, 1999). Here we are interested in identifying
basic storage abstractions that are sufficiently simple and
generic to avoid encapsulating particular policies to any

Copyright Notice Here. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

significant degree. These abstractions could then be used
as building blocks in the construction of various
individually customised storage infrastructures. This
paper proposes an API embodying one possible set of
primitive storage abstractions.

1.1 Context

It is straightforward to identify a number of desirable
properties of storage systems:

• unbounded capacity

• zero latency

• zero cost

• total reliability

• location independence

• no unauthorised access

• provision of historical views

This set of properties is, of course, a Utopian dream that
is never realisable and can only be approximated. Thus
storage implementers are faced with a series of
technological challenges to meet the aspirations of users.
For example, unbounded capacity may be approximated
by utilising free space on the network, and zero latency
may be approximated by parallel access and caching.
This assumes, of course, that data and systems can be
organised appropriately to make use of available
resources without imposing undue complexity on the
user.

In this work we have taken a more limited view,
considering the following aspirations:

• Actors, whether users or individual processes,
should be able to bind to, update and manipulate
data and programs transparently with respect to
their respective locations. Thus a given program
should work anywhere (with the appropriate
infrastructure installed), regardless of its
physical location or that of the data accessed.
The program should not need to be aware of its
own physical location or that of the data
accessed.

• Similarly, programs should be expressed
independently of the storage and network
technology involved in their execution.

• Storage facilities should be structure-neutral:
they should not impose their own structure on
the information stored. Actors should be able to
impose multiple interpretations over
information, simultaneously and safely.

• Information should not be discarded; arbitrary
historical views should be supported, so that
actors may reconstruct information extant at any
previous time.

• Protection and security should not be enforced
by restricting access to particular information
based on user authentication. Rather, raw stored
information should be open to all; where
restrictions on its use are required this should be
achieved using cryptographic techniques.

Although it was clearly not feasible to meet these
aspirations completely, they served as a useful focus in
guiding exploration of the various possibilities. The
methodology followed was to design a small set of
orthogonal components, specified by well-defined
interfaces, which could form the building blocks for
various storage architectures.

The key advances of the research were:

• the identification of a candidate set of minimal
storage system building blocks, which are
sufficiently simple to avoid encapsulating policy
where it cannot be customised by applications,
and composable to build highly flexible storage
architectures

• insight into the nature of append-only storage
components, and the issues arising from their
application to common storage use-cases

2 Related Work

The compliant systems architecture approach is to
separate policy from mechanism wherever possible
(Morrison, Balasubramaniam, Greenwood, Kirby, Mayes,
Munro and Warboys, 2000). Each component’s
functionality is delivered by a set of mechanisms, and the
policy for using these mechanisms can be supplied by
components at conceptually higher levels. In the context
of the work described here, we wish to provide storage
facilities that are compliant to the needs of particular
applications. The storage mechanisms should be made
available to applications without forcing on them any
particular set of policies for their use.

The open implementation approach also aims to expose as
much policy decision as the applications require, but no
more. Techniques include the provision of reflective
middleware, allowing inspection and adaptation of the
middleware’s components (Duran-Limon and Blair,
2002), and meta-object protocols (Kiczales, Lamping,
Lopes, Maeda, Mendhekar and Murphy, 1997). Either of
these could be used to allow applications to select from a
range of storage facilities composed from the primitives
introduced here, or to define their own.

The basic storage abstraction proposed here offers
append-only storage without update or deletion. This is
motivated by work on the log-structured object store
known as Lumberjack (Hulse, Dearle and Howells,
1999), which is based on the store technology employed
within the persistent operating system Grasshopper
(Rosenberg, Dearle, Hulse, Lindström and Norris, 1996).

A unique contribution of the Lumberjack store is its non-
destructive update of both data and address maps, which
allows historical views of the store to be provided to
users. Furthermore, the store allows multiple logical logs
to be superimposed on a single physical log to facilitate
concurrent update.

A number of projects address the provision of storage
facilities using peer-to-peer overlay networks. These
include OceanStore (Kubiatowicz, Bindel, Chen,
Czerwinski, Eaton, Geels, Gummadi, Rhea,
Weatherspoon, Weimer, Wells and Zhao, 2000),
Mnemosyne (Hand and Roscoe, 2002), PAST (Rowstron
and Druschel, 2001b), Pastry (Rowstron and Druschel,
2001a), FreeHaven (Dingledine, Freedman and Molnar,
2001) and Freenet (Clarke, Sandberg, Wiley and Hong,
2000).

Recently efforts have been made to identify a common
API to facilitate comparison of such overlay networks
(Dabek, Zhao, Druschel, Kubiatowicz and Stoica, 2003).
The motivation is similar to that of the work described
here, although their design differs in supporting deletion
as a primitive operation.

3 Proposed Storage API

3.1 Generic Components

Four main generic components are proposed: the store,
the n a m e r , the cas ter and the in terpre ter . It is
hypothesised that these are sufficiently general that they
could act as building blocks for any information storage
and retrieval system. The essential characteristics of each
are defined by an interface, which may be implemented
by multiple implementing classes.

3.1.1 Stores

A store component allows arbitrary bit-strings to be
inserted and later retrieved. No assumptions are made
about the format or length of the bit-strings. So that a bit-
string may be retrieved, a key is returned by the store on
its insertion. A key is itself an arbitrary bit-string. All
stores implement the following interface:

interface Store {
put: BitString -> Key
get: Key -> BitString // may fail
getStoreID: -> BitString

}

Fig. 1: Store Interface

The put operation inserts a given bit-string into the store,
and returns a key. If that key is later presented via the get
operation, the original bit-string is returned. The get
operation fails if presented with an unknown key. There
are no update or deletion operations, thus a store may be
viewed as a monotonically increasing set of key—bit-
string bindings. This property was deliberately chosen to
make stores suitable as the fundamental building blocks
for a storage system with a full historical archive. Where

the effects of update and deletion are required by an
application, these may be obtained using namers as
described later.

The policy for key generation is under control of
individual stores. Possible policies include: creating keys
containing random bit sequences, with sufficient length
ensuring low enough probability of accidental clashes;
creating keys containing numbers within an increasing
sequence; and creating keys by hashing on the content of
the bit-strings being stored. Again, with suitable lengths
the probability of accidental clashes can be reduced to
negligible levels. Using a hashing scheme would open the
possibility of information being shared between stores,
allowing a data item to be retrieved from a different store
from that in which it was originally inserted, since the
scheme would ensure that all stores involved mapped the
same key to the same bit-string. Thus a store need not
necessarily be a container for information, so long as it
allows insertion and retrieval through the standard
interface.

Fig. 2 illustrates the use of the put and get operations to
add a bit-string and later retrieve it.

Fig. 2: Main Store Operations

The getStoreID operation returns a bit-string that is, with
high probability, unique to that store instance. This
provides a mechanism for encoding references to other
stores within a given store. One application for this is the
proxy store implementation described later.

A desire for simplicity drove the decision to have a store
generate the key for a given bit-string, rather than let the
key be supplied by the caller. It could be argued,
however, that this departs from the other main motivating
principle, that of avoiding the encapsulation of policy, in
that the caller cannot control the key generation policy.
This design also results in additional complexity when it
comes to storing cyclic data structures. For these reasons
it might be preferable to add a second variant of the put
operation with an explicit key:

put: BitString, Key

3.1.2 Casters

A caster component translates information for storage
into a bit-string representation suitable for insertion into a
store, and vice-versa. A particular caster may be generic,
thus applicable to a range of entities, or specific to a

particular type of entity. For example, a generic caster has
been defined for programming language objects, and
specific casters for MS Word documents and XML
documents. All casters implement the following interface,
where t is the type over which the caster operates:

interface Caster[t] {
reify: t -> BitString
reflect: BitString -> t // may fail

}

Fig. 3: Caster Interface

Here it is assumed that t may encompass a range of
subtypes. The reify operation translates a given entity into
a bit-string representation. The reflect operation performs
the inverse, taking a bit-string representation and
returning the represented entity. This will fail if presented
either with an intrinsically invalid representation, or with
a representation for an entity that is not of type t. If
appropriate, a caster may use cryptographic techniques to
verify that a presented bit-string has not been tampered
with, and that it did originate from a reified entity of the
correct type.

3.1.3 Interpreters

An interpreter maps one bit-string to another, and may
encompass arbitrary computation. Typical uses are for
encryption and compression. All interpreters implement
the following interface:

interface Interpreter {
interpret: BitString -> BitString

}

Fig. 4: Interpreter Interface

3.1.4 Namers

The components described above are sufficient to allow
information of any kind to be stored and retrieved. For
practical use, however, two further abilities are required:

• to support update and deletion operations, even
though the underlying storage components never
discard information;

• to be able to access stored information through
symbolic names as well as arbitrary system-
specified keys.

These are provided by a namer component, which
implements a modifiable many-to-many mapping
between symbolic names and keys. A name may be
bound to multiple keys, allowing a set to be retrieved in a
single operation; a key may be bound to multiple names,
giving aliasing. Mappings may be updated so that a given
name may refer to various keys over time. All namers
implement the following interface:

interface Namer {
bind: Name, Key
unbind: Name, Key
lookup: Name -> set[Key]

}

Fig. 5: Namer Interface

The bind and unbind operations establish and remove a
binding between the given name and key respectively.
The lookup operation returns all the keys currently bound
to the given name; this may be an empty set.

Fig. 6 illustrates the use of the bind and lookup operations
to add a name to key binding, and later to retrieve the set
of keys currently bound to that name.

Fig. 6: Main Namer Operations

An update operation may thus be provided with respect to
symbolic names: a name n may be initially bound to a
key k1 using a particular namer; when presented to an
appropriate store k1 allows a data item d1 to be retrieved.
The n-k1 binding may then be removed from the namer
and a new binding between n and a key k2 established.

The key k2 allows the retrieval of a different data item d2
from the store. Thus the overall effect is an update of the
data item corresponding to the name n, even though the
initial data item d1 is never discarded from the store.

3.2 Implementation

Various implementations of the generic components were
developed, and a number of implementation dimensions
identified.

3.2.1 Stores

Two styles of store component were implemented. A
local store is confined to a single address space on one
host machine, and holds its data on that node. A proxy
store is able to communicate with other stores, both local
and remote, and to forward insertion and retrieval A local
store may be transient, with its data held solely in
memory, or it may have the ability to make its data
persistent. One persistent variant appends all inserted bit-
strings to a single file, while another creates a new file for
each new bit-string, with the file name corresponding to
the key allocated to that data item.

A proxy store maintains a set of references to other stores
that may be contacted. To enable this to be manipulated
the store provides the operations addTarget and
removeTarget. The former adds a new store to the set;
this may be specified as a direct reference to another store
in the same address space, or as a remote reference to a
store on another node, in the form of a URL or a unique
identifier. For both local stores and proxy stores it is
possible to specify whether a store allows itself to be
contacted by other proxy stores. Fig 7 illustrates a proxy
store that is connected to two other remote stores. The
proxy store functionality could also be used to construct
richer topologies such as peer-to-peer networks.

Fig. 7: Linked Proxy Stores

To address the bootstrap problem—how does an actor
obtain access to an existing store at the start of
execution—a static operation getRootStore returns a
personal store specific to that actor. This root store is
persistent in that it organises the storage of its data on
non-transient storage. It may itself be either a local store
or a proxy store.

3.2.2 Casters

Various caster components were implemented, including
one specifically for XML documents, a generic caster for
Java objects, and a caster for store and namer
components. The store caster enables a store instance to
be reified as a bit-string and stored within another store,
thus the reify-store sequence of operations may be
applied recursively to stores themselves. The store caster
operates by reifying a store’s contents to a single bit-
string in XML form.

3.2.3 Interpreters

Simple interpreter components were implemented,
providing encryption and compression.

3.2.4 Namers

As with stores, a namer component may be transient, in
which case it may be saved by reifying it and storing the
resulting bit-string in a store, or persistent. In the latter
case the namer organises the recording of its bindings on
non-transient file storage.

It is also necessary to provide access to a root namer for
each actor, obtained via a static operation in the same
way as for root stores.

3.3 Examples of Use

In order to evaluate the applicability of the generic
components in constructing various storage architectures,
a number of storage use cases were identified,
representative of common storage paradigms. The project
report (Zirintsis, Kirby, Dearle and Morrison, 2003)
contains a full description; a single example is given here
for illustrative purposes, showing how the components
may be used to store and retrieve a programming
language object. The code fragment in Fig. 8 shows an
object being reified and inserted into a store.

// Create an instance of class Person
Person graham =
 new Person("Graham", 37);

// Retrieve the root store
Store rootStore = XBase.getRootStore();

// Create a Caster for persons
PersonCaster personCaster =
 new PersonCaster();

// Flatten the person into a bit-string
BitString personRep =
 personCaster.reify(graham);

// Put the representation in root store
Key grahamKey =
 rootStore.put(personRep);

Fig. 8: Inserting Data into a Store

The code fragment in Fig. 9 shows the object being
retrieved from a different context:

// Retrieve the root store
Store rootStore = XBase.getRootStore();

// Retrieve the representation of the
person using the key
BitString grahamRep =
 rootStore.get(grahamKey);

// Create a Caster for persons
PersonCaster personCaster =
 new PersonCaster();

// Recreate the object
Person reflectedGraham =
 personCaster.reflect(grahamRep);

Fig. 9: Retrieving Data from a Store

A caster specific to XML documents was developed. In
some senses this is not necessary, since a document’s
textual representation can already be viewed as a bit-
string. However, it would not be particularly useful to
provide a storage system that simply stored each XML
document as a single bit-string in its own file, and thus a
scheme to break down documents into multiple bit-strings
was implemented.

The XML caster allows the user to determine the
granularity of the fragments into which a document is
split. At one extreme of the spectrum, a single fragment
can contain the entire document, while at the other a
separate fragment can be generated for each XML tag.
Different points on this spectrum exhibit different
tradeoffs with respect to storage space required, overhead
in scanning the document, accessing particular regions
within it, etc.

Various notations for expressing this granularity were
experimented with. The most flexible allows the user to
specify a simplified XML schema to which the document
conforms; the amount of detail given in the schema
determines the fragmentation granularity, and allows
control over which sub-parts of the document are reified
together within the same bit-string. A simple graphical
tool was provided to ease the task of creating this schema,
making it relatively straightforward to specify a simple
fragmentation pattern: the user simply collapses a sub-
tree within the schema in order to specify that
corresponding sub-parts in the document should be
reified together. This is illustrated in Fig. 10.

Fig. 10: Specifying Fragment Granularity

Other issues include the format of the individual
fragments—it was chosen to make these well-formed
XML documents in their own right—and the means of
representing references between fragments. Inter-
fragment references can be represented using keys, where
one fragment contains the key corresponding to another
fragment, which may be retrieved from an appropriate
store. This is simple, but precludes any later update of the
document since key-data bindings are fixed. For more
flexibility symbolic names may be used, allowing for
subsequent modification of the structure. In both cases
there is a requirement for some other mechanism to
establish which store and/or namer to use. Yet another
approach is to make the references fully self-describing,
by including some denotation of the appropriate store
and/or namer within the reference itself—at the cost of
making all references significantly larger.

A further problem with using keys to represent references
is that keys are generated within stores rather than
externally, so it is not possible to form a reference to a
fragment until after that fragment has been inserted into a
store and its key obtained. This is not insurmountable for
XML, given that the fragment graph is always acyclic, so
long as the caster creates the fragments in the correct
order. It would be a more significant problem for
potentially cyclic structures, as would arise if this
approach were to be applied to storage of complete object
graphs. In this case, either names would be used to

represent references, or, if available, the variant put
operation described in section 3.1.1 could be used with
prior generated keys.

4 Further Work

The key advances of this research, as identified earlier,
are: the identification of a candidate set of minimal
storage system building blocks, and insight into the
nature of append-only storage components. Although the
tangible results—interface definitions and component
implementations—may appear relatively straightforward,
these were only arrived at after a prolonged design
process that explored a wide range of possibilities.

4.1 Autonomic Storage

The research is being continued in a new project “Secure
Location-Independent Autonomic Storage Architectures”.
This will build on the work described here by further
developing the idea of a distributed log-structured (i.e.
append-only) storage architecture, in which information
may be stored and retrieved transparently with respect to
location. The autonomic management aspect (IBM, 2002)
will attempt to address the complexity arising from both
changing patterns of usage and the various technological
opportunities available to the implementer. Infrastructure
changes are required to intercept new technologies as
they become available. User behaviour changes such as
mobility, e.g. working more at home than at work, and
software restructuring, e.g. using new or different
software, all require complex restructuring of the storage
software. User patterns are also influenced by diurnal
cycles worldwide; reacting to these patterns efficiently
will be essential for high availability. On top of all this,
the infrastructure will have to deal with hardware failures.

The project will attempt to relieve the store implementer
of the complex tasks of reasoning about computations and
resources, allocating, replicating, and moving
computations and data to optimise performance, resource
usage, and fault-tolerance to meet the desired intrinsic
properties. The infrastructure should approximate the
Utopian set of ideal characteristics: unbounded capacity;
zero latency; zero cost; complete reliability; location
independence; a simple interface for users; complete
security; and provision of a complete historical archive.

Our approach to engineering a useful approximation
involves designing a write-once log-structured storage
layer operating above a P2P overlay network. Content-
based addressing can be used to achieve location-
independent access to data; replication of data “in the
right place, at the right time” can be used to achieve
reliability and low latency.
Our vision is one of an autonomic storage architecture
that presents a simple interface abstracting over all
implementation technologies to approximate the user’s
desired properties which are extracted automatically from
observed usage patterns. This turnkey solution would
plug into the user’s chosen operating systems and present
a simple view of the store regardless of user location. The
aim is to design, implement and evaluate a prototype

system of this nature. To achieve this aim we have
identified 3 objectives:

• to design a secure location-independent
autonomic storage architecture, specified in
terms of open interfaces

• to design and implement a corresponding set of
plug-compatible components that provide
autonomic storage

• to evaluate the architecture and the prototype
implementation by deploying it and observing its
evolving behaviour under varying loads and
usage patterns

Such an architecture is highly dynamic: data flows around
the system in response to: changes in users’ location and
behaviour; changes in the access patterns of processes;
changes in the physical resources allocated to the system;
or changes in the topology of the physical infrastructure.
It is essential for the underlying policies to evolve in
response to such changes, but the complexity is such that
it is infeasible for this to be controlled by human users or
administrators. The system must therefore be autonomic,
managing such changes automatically.

4.2 Other Projects

The research is also feeding directly into a number of
other ongoing projects. The Cingal project (Dearle,
Connor, Carballo and Neely, 2003), a joint project
between St Andrews University and Strathclyde
University, is developing thin server technology to allow
code and data to be pushed safely to appropriate locations
in a global network. The work described here is
influencing the design of storage facilities incorporated
into thin servers.

The GLOSS project (Dearle, Morrison, Kirby, Nixon,
Connor, Dunlop, Coutaz and Clarke, 2000) seeks to
develop a distributed event-based infrastructure to
support the deployment of pervasive contextual services
on a global scale. A crucial aspect of this is the storage of
events and other contextual information on widely
distributed nodes, to which the current research will be
highly relevant (Dearle, Kirby, Morrison, McCarthy,
Mullen, Yang, Connor, Welen and Wilson, 2003) (Kirby,
Dearle, Morrison, Dunlop, Connor and Nixon, 2003).

Finally, in ArchWare (Morrison, Kirby and
Balasubramaniam, 2001), a project on evolvable software
architectures, this research is contributing to thinking on
open, software systems that are susceptible to evolution.

5 Conclusions

This paper has proposed a simple and generic storage
API, which could be exposed directly to applications that
have need to exert fine control over storage
implementation policies. The initial motivation was
flexibility; further experimentation is required to
investigate whether the API could be implemented so as
to deliver acceptable performance and scalability.

One of the most interesting research questions opened up
by this work is the viability of pervasive global storage,

accessible from anywhere, from which no information is
ever discarded. Intuitively this currently seems
unachievable, but continuing research coupled with
further advances in storage hardware technology may
well allow this ideal to be closely approximated.

6 Acknowledgements

This work was supported by EPSRC grant GR/R45154
“Bulk Storage of XML Documents”. Dharini
Balasubramaniam and Aled Sage also contributed to the
work. Further research in this area is being supported by
EPSRC grant GR/S44501 “Secure Location-Independent
Autonomic Storage Architectures”.

7 References

Clarke, I., Sandberg, O., Wiley, B. and Hong, T. W.
(2000): Freenet: A Distributed Anonymous
Information Storage and Retrieval System In
Designing Privacy Enhancing Technologies:
Lecture Notes in Computer Science 2009, Vol.
2009 (Ed, Federrath, H.) Springer, pp. 46-66.

Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J. and
Stoica, I. (2003): Towards a Common API for
Structured Peer-to-Peer Overlays In 2nd
International Workshop on Peer-to-Peer
Systems (IPTPS '03) Berkeley, CA, USA.

Dearle, A., Connor, R. C. H., Carballo, J. and Neely, S.
(2003): Computation in Geographically
Appropriate Locations (Cingal), EPSRC.

Dearle, A., Kirby, G. N. C., Morrison, R., McCarthy, A.,
Mullen, K., Yang, Y., Connor, R. C. H., Welen,
P. and Wilson, A. (2003): Architectural Support
for Global Smart Spaces In Lecture Notes in
Computer Science 2574 (Eds, Chen, M.-S.,
Chrysanthis, P. K., Sloman, M. and Zaslavsky,
A. B.) Springer, pp. 153-164.

Dearle, A., Morrison, R., Kirby, G. N. C., Nixon, P.,
Connor, R. C. H., Dunlop, M., Coutaz, J. and
Clarke, S. (2000): GLOSS: Global Smart Spaces
EC 5th Framework Programme IST-2000-
26070.

Dingledine, R., Freedman, M. J. and Molnar, D. (2001):
The Free Haven Project: Distributed
Anonymous Storage Service In Lecture Notes in
Computer Science, Vol. 2009.

Duran-Limon, H. A. and Blair, G. S. (2002):
Reconfiguration of Resources in Middleware In
7th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems.

Hand, S. and Roscoe, T. (2002): Mnemosyne: Peer-to-
Peer Steganographic Storage In 1st International
Workshop on Peer-to-Peer Systems.

Hulse, D., Dearle, A. and Howells, A. (1999):
Lumberjack: A Log-Structured Persistent Object
Store In Advances in Persistent Object Systems
(Eds, Morrison, R., Jordan, M. and Atkinson, M.
P.) Morgan Kaufmann, San Francisco, pp. 187-
198.

IBM (2002): Autonomic Computing: IBM's Perspective
on the State of Information Technology, IBM.

Kiczales, G., Lamping, J., Lopes, C. V., Maeda, C.,
Mendhekar, A. and Murphy, G. C. (1997): Open
Implementation Design Guidelines In 19th
International Conference on Software
Engineering Boston, Massachusetts, USA.

Kirby, G. N. C., Dearle, A., Morrison, R., Dunlop, M.,
Connor, R. C. H. and Nixon, P. (2003): Active
Architecture for Pervasive Contextual Services
In International Workshop on Middleware for
Pervasive and Ad-hoc Computing (MPAC 2003),
ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003) (Eds, Ururahy,
C., Sztajnberg, A. and Cerqueira, R.) Pontifícia
Universidade Católica do Rio de Janeiro, Rio de
Janeiro, Brazil, pp. 21-28.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,
Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C. and
Zhao, B. (2000): OceanStore: An Architecture
for Global-Scale Persistent Storage In 9th
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS 2000).

Morrison, R., Balasubramaniam, D., Greenwood, R. M.,
Kirby, G. N. C., Mayes, K., Munro, D. S. and
Warboys, B. C. (2000): A Compliant Persistent
Architecture, Software - Practice and
Experience, Special Issue on Persistent Object
Systems, 30, 363-386.

Morrison, R., Connor, R. C. H., Kirby, G. N. C., Munro,
D. S., Atkinson, M. P., Cutts, Q. I., Brown, A. L.
and Dearle, A. (1999): The Napier88 Persistent
Programming Language and Environment In
Fully Integrated Data Environments (Eds,
Atkinson, M. P. and Welland, R.) Springer, pp.
98-154.

Morrison, R., Kirby, G. N. C. and Balasubramaniam, D.
(2001): ARCHWARE: ARCHitecting Evolvable
softWARE EC 5th Framework Programme IST-
2001-32360.

Munro, D. S., Connor, R. C. H., Morrison, R., Scheuerl,
S. and Stemple, D. (1994): Concurrent Shadow
Paging in the Flask Architecture In Persistent
Object Systems (Eds, Atkinson, M. P., Maier, D.
and Benzaken, V.) Springer-Verlag, pp. 16-42.

Rosenberg, J., Dearle, A., Hulse, D., Lindström, A. and
Norris, S. (1996): Operating System Support for
Persistent and Recoverable Computations,
Communications of the ACM, 39, 62-69.

Rowstron, A. I. T. and Druschel, P. (2001a): Pastry:
Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems In
Lecture Notes in Computer Science 2218 (Ed,
Guerraoui, R.) Springer, pp. 329-350.

Rowstron, A. I. T. and Druschel, P. (2001b): Storage
Management and Caching in PAST, A Large-
scale, Persistent Peer-to-peer Storage Utility In

Symposium on Operating Systems Principles,
pp. 188-201.

Vaughan, F., Schunke, T., Koch, B., Dearle, A., Marlin,
C. and Barter, C. (1992): Casper: A Cached
Architecture Supporting Persistence, Computing
Systems, 5, 337-364.

Zirintsis, E., Kirby, G. N. C., Dearle, A. and Morrison, R.
(2003): Report on the XBase Project, University
of St Andrews CS/03/1.

