
NEMESI:Using a TCP Finite State Machine against TCP SYN Flooding Attacks
A. Gemona, I. Duncan, A. Miller

University of St Andrews
School of Computer Science
{ag,ishbel,alanr}@dcs.st-and.ac.uk

Abstract - Over the last few years the Internet has seen a
continuous rise of malicious traffic. These include the Denial of
Service (DoS) attacks, viruses, Trojans, spam mails and worm
attacks. In this paper we focus on experiments with TCP SYN
flooding attacks. We introduce a new approach to prevent such
attacks based on passive monitoring of the frequency of TCP
SYN packets and peak intervals, with respect to other packets,
in combination with a dynamically adapted connection drop
time.

I. INTRODUCTION

A Denial of Service (DoS) attack is a type of network
attack that is designed to make the services unavailable to
users. The effects of DoS [1] and the effects range from
slow-down or unavailability of a network service to
financial losses[2]. Typically a business will measure the
financial cost of an attack based on the period that the
services are down[3].

In Denial of Service (DoS) the source of the attack is a
single host while in the Distributed Denial of Service
(DDoS) multiple sources target the same destination. Both
forms of attack have the same result but not always the
same network traffic behaviour.

In this research we experiment with flood attacks
based on TCP SYN packets. We focus on TCP flooding
attacks because this is the most common type of attack
according to the CAIDA [4] project which shows that. The
90% of the DoS traffic is TCP-based attacks. It is
commonly believed that the existence of TCP SYN
flooding attacks is based on a protocol design weakness [5]
in combination with limited operating system resources
(such as queue length and buffer space).

In this paper we propose the NEMESI system for
defending against TCP SYN flooding attacks. We describe
the system architecture and present experimental results
based in defending against attacks from the TFN (Tribe
Flood Network) flooding tool. We propose a detection
algorithm based on TCP Finite State Machine modelling
and monitoring of the peak intervals of TCP SYN packets.

The remainder f the paper Is structured as follows.
Section 2 described the problem area and presents related
work. Sections 3 to 8 describe the layers architecture of the
system. Section 9 presents experimental results for the
validation of the system and section 10 presents
conclusions and further work.

II. PROBLEM DEFINITION AND RELATED WORK

The goal of any solution to SYN flooding attacks is to
continue to accept connection requests while under attack.
There are several ways to achieve this goal, but none of
them is highly effective.

In a standard TCP implementation each packet
received is temporarily buffered in a receive queue for
processing [6]. As connections are initialised by the TCP
stack, queue space is freed for new connections. During a
SYN flood attack a large amount of SYN packets are
received and the queue becomes full of pending requests.
At this point any further SYN packets received are dropped
by the server.

The maximum length of time a packet can spend in the
queue is determined by a timeout value. A connection
request will be dropped by the server if the three-way
handshake has not completed within the timeout period.

Increasing the length of the queue and reducing the
timeout value will reduce the effects of such attacks.
However making the queue longer requires more memory
and since the rate of packet arrival will still exceed the rate
at which connections can be processed, the queue will
eventually become full again. Shortening the timeout
period adversely affects the establishment of real
connections by enforcing a shorter window for the
establishment handshake to take place.

Both of these can be classified as brute-force solutions
that may waste of kernel memory and computation
resource (slowing down the server's response time) but will
be effective for some network configurations and attack
types.

One solution to reduce the threat of SYN flood attacks
is to reduce the amount of information stored for each in-
progress connection. In turn this means some modification
to the TCP communication protocol. This involves
checking how valid the information is, as there may be
spoofed packets. To apply the above solution, process
power and memory space are essential. By monitoring
traffic at the network gateway we can check the validity of
the information that the target host is receiving and detect
the DoS without using resources of the t host.

We categorize the solutions against such attacks based
on the approach used. These will include the algorithm, the
network installation place where the defence is applied and
the level of defence provided. We choose Bro[7], Snort [8]
and D-WARD [9] from intrusion detection systems (IDS)

Bro is a stand-alone intrusion detection system (IDS)
that observes network traffic and that characteristic makes

it a network intrusion detection system (NIDS). Snort is a
lightweight anomaly based NIDS that can be installed
anywhere in the network with the consideration of what to
protect. Both use the libpcap packet capture library to sniff
packets. libpcap is extensively used by Bro, Snort and
SHADOW [10] and appears to be a valid, well-known and
reliable capturing library.

Bro uses an event engine to look up the connection
state. The structure of the system is layered and that gives
compatibility to the design and algorithm. The detection is
based on policies that are defined by the user to recognize
general malicious traffic. Snort uses rules and does pattern
matching to detect attacks and probes in real time and
issues alerts.

D-WARD (DDoS Network Attack Recognition and
Defence) is a system that is located at the source network
router. It observes outgoing and incoming traffic and uses a
statistical approach to define legitimate traffic patterns.
The system attempts to separate attacking flows from
legitimate flows and therefore identify the attacking
machines.

III. STRUCTURE OF THE PROPOSED SYSTEM

NEMESI1 is located in the gateway. The point of
detection and the point of action have essential importance
for DoS[11]. Therefore applying monitoring at the edge of
the network and specifically at the gateway can provide
defence against SYN flood. This section is dedicated to
describing the levels of the system architecture, the
algorithms and experiments that show the performance.

The system architecture is separated in levels (Figure
1) based on the functionality. In detail the lower level is the
monitoring, where packets are captured from the network.
Next is the second level, where the connections are
identified as new or old through the connection
modelling. Here the connections pass through the Finite
State Machine (FSM) and data is gathered, for instance the
frequencies of SYN (synchronization), SYN/ACK
(acknowledgement of the synchronization) and ACK
(acknowledgement) packets. Data is checked from the
detection algorithm which is in the third level. The fourth
level is the action. After an attack is detected, a reset
packet is sent to the host to reallocate the service. An
extensive description of each of the levels is given below.

A. The Monitoring level

In this section we underline two main characteristics
of the functionality of this system level. One is the way the
packets are captured and the second is which traffic are
captured, as we are aware of incoming and outgoing
traffic, internal and external traffic.

We use libpcap in order to sniff packets form the
network. We attempt to make the system compatible and

1 Nemesi was the Greek goddess of punishment.

fast. We found libpcap a reliable library because we gain
portability for NEMESI to different UNIX based OS.

There are two types of traffic that we see at the
gateway, incoming and outgoing. Firewalls for instance
can provide security by blocking the malicious packets
from the incoming traffic; those that come from the
Internet. In our approach we attempt to monitor both types
of traffic. With the use of ebtables we can bridge the
interfaces on the gateway. One interface, eth1, is for the
traffic inside the protected network and the eth2 is the
interface that listens to the traffic that comes from the
outside of the protected network. By bridging the two
interfaces, both traffics can be monitored.

B. The Connection modelling level

On this section we examine the receiving frequency of
SYN packets, the intervals of TCP packets and the type of
connections (new or exciting connections). There are two
options for a packet when it arrives. One is that the packet
belongs to a connection that is already known to the
NEMESI (that means it is in the connection’s list) and the
other is that the packet belongs to unassigned connection in
the NEMESI’s list. Below there is a representation of the
connection modelling algorithm in pseudo code form.

Figure 1 Level architecture of the system

Connection modelling pseudo code is :
1. listElement=search_List(ConnectionList,saddr,th_

sport,daddr,th_dport,th_seq);
2. theConn=listElement==NULL?NULL:listElement

->data;
3. if(theConn==NULL){

Conn newConn=newConnection (saddr,
daddr, th_sport, th_dport, th_flags, th_ack,
th_seq);
insertResult=insertToList(ConnectionList,ne
wConn);
if(insertResult==NULL){

error;
4. FSM(theConn,ip,tcp);

The number of SYNs and other types of TCP packets

received are countered. The deltas of the SYNs and total
TCP traffic are also measured. These measurements will
give data to use for the later level of the system where the
detection is taking place. The pseudo code is presented
below.
Data gathering pseudo code is:

1) For every TCP packet
If SYN

Num_currentSYNs ++;
2) Current_∆SYNs= Num_currentSYNs -

Num_previousSYNs;
3) Current_∆TCPpackets=Num_currentTCPpackets

– Num_previous_TCPpackets;
4) ∆ (deltas) are saved per unit time

This pseudo code demonstrates the 1st step in the

counter for the SYNs while there is a counter for every
type of packet. The differences, ∆, are saved periodically
every 2ms. The FSM output returns the number of
connections in various states to determine the traffic load.

C. The TCP Finite State Machine (FSM)

As the main characteristic during the SYN flood attack
is the multiple initializations for connections requests, a
finite state machine has been build to give states. The
connection state is SYN_RCVD when a synchronization
request arrives. A large number on the SYN_RCVD state
could determine the SYN flood attack. The importance of
checking the connection’s state is vital. Based on the RFC
793 (TCP state transition diagram), a new Finite State
Machine (FSM) is designed for the NEMESI,[12]. The
states describe the sender, the receiver and the NEMESI
state. The TCP state transition diagram is based on the two
end applications, sender side and receiver side. Because
NEMESI is in the middle of the sender and receiver, new
states are created to specify the status of the connection but

can also be used to extract information for the general
network status.

We use C++ to implement the algorithm. The FSM
function has a defined type Conn, where *Conn is the
structure containing the packets fields (for instance source
ports, source IPs). The FSM() takes as arguments the
standard headers structures const struct iphdr
*ip, const struct tcphdr *tcp and the return
value from the function that detects if there is any history
of that connection or it is new. Then the TCP header flag is
examined. A SYN packet for instance will be checked as
in: if (tcp->th_flags & TH_SYN). Then it is
checked for other flags to be on for example if it is an
SYN/ACK packet, the SYN and ACK flag is on. This
check is accuracy can be used to detect spoofed packets if
the flags that are on have no meaning. An attacker who is
building packets may use combination of flags that is not
valid and that could be detected. The attacker’s tool will
send a number of packets in order to reserve resources.
This will be observed from the monitor at this point with
this check. After the flag interpretation the algorithm
checks if the connection is new or has history by at the
argument passed. When the connection exists is checks the
previous state, for accuracy, and then gives a new state.

D. The Detection level

In this section we discuss the design principles of the
detection level, the algorithm and the experimental setup
where attacks are launched.

NEMESI is separated in to layers. Each layer has a
specific applicability. Despite the layered system the
defence algorithm is designed in a way that is strongly
bounded with the previous levels. The FSM output and the
counting results from the connection modelling level is
needed on the detection layer. By measuring the FSM
output we get the number of connections in various states
and in this case the number of connections in SYN_RCVD
state. This is compared to the limit of connections on
SYN_RCVD state. The rate of SYN packets per 2ms is
calculated at the monitoring level and the values are
examined on that level for any anomaly.

The pseudo code for the detection algorithm is:

A. Compare∆SYN=compare(Current_∆SYNs,
Previous_∆SYNs);

B. Compare∆TCP=compare(Current_∆TCPpackets,
Previous_∆TCPpackets);

C. If (Compare∆SYN AND Compare∆TCP increasing)
D. If (SYN_ACK packets are not increasing with the

same rate)
E. Check the number of connection on SYN_RCVD state
F. Check the number of connection on ESTABLISHED

state

The above presentation of the detection algorithm is
an overview of it. When the attack is detected then we need
to know from where the attack is coming from (internal or
external) in order to act against it. The ebtables are
configured to bridge the external and internal interfaces to
find the direction of the attack. If an attack is detected then
the action algorithm makes the decision for sending reset
packets to reallocate the service.

E. Action level

The action level is the last level of the system.
NEMESI aims to block the malicious traffic and continue
the functionality of the network without bringing it down.
During the screening process, between the detection and
action part of the system; alerts are triggered. These are
mainly:

The system receives a high traffic load that contains
connection requests with the same source or multiple IPs.
This defines an increase of the SYN rate.

There is an anomaly between the numbers of
connections in states.

When a SYN flood is detected then, in order to block
these requests, reset (RST) packets are sent to the IPs that
request connectivity. The real requests would try to
reconnect. If there is no reply, then the malicious packets
have been stopped in the gateway. The system does not use
or execute any of the TCP implementation data structures.
It uses the information for the received packets and its own
system data structures which keep the information of the
received packets and extracted data. This saves heavy
kernel procedures.

IV. ANALYSIS RESULT

In order to determine how fast NEMESI detects the
attacks or if there are any false positives or characteristics
of real flooding traffic traces, attacks have to be launched.
We configure an experimental network to launch real
attacks with prototype tools. Tribe flood network (TFN),
stacheldraht and Trin00 are attacking tools that could cover
most of the attack cases. Those tools have complicated
structure and a study for Tribe Flood Network (TFN) and
stacheldraht has been done from Dittrich[13], [14]and for
Distributed Denial of Service tools from Dietrich[15]. The
TFN has been used in our research work (figure 2a) to
launch attacks in the network configured in Figure 2b.

All the machines have FEDORA Core installed. The
attack is initialized at the first level. In the second level
Zombie machines send the bogus requests. Zombies are
“clients” that are infected with a client version of the
attacking tool. These machines run a client application; in
our case we run TFN the client application td. The Zombie
machine does not send bogus packets until the
master/control machine sends an acknowledgement to start
the attack. These applications may have different versions
of building packets.

Running experiments with TFN we succeed to monitor
malicious traffic. NEMESI’s results are shown below in
Figure 3 and Figure 4.

Figure 3a: A sample of departmental web server traffic
during term time. This traffic is characterised as normal.
This figure shows the evolution for opening and closing
connections. The numbers for FIN_ACK, SYN and
SYN_ACK packets follow the same patterns.

Figure 3b: The ratio of the number of connections in
the SYN_RCVD state to the number of connection in all
states. A variable ratio is observed. This is expected,
because the number of SYN packets has to be close or the
same to the number of connection on SYN_RCVD state.
These measurements are for the same sample of traffic
(figure 3a, b).

Figure 2a. TFN scheme

Figure 2b Experimental setup

Ratio of connections on SYN_RCVD state to connections in all states.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80

Time (per 2 seconds)

Number of connections on SYN_RCVD state to number of connections in all states

Figure 3a A sample of the departmental web server traffic

Figure 3b The ratio of connections in the SYN_RCVD state to number of connections in all states

TFN flood traffic monitored at the gateway external interface eth2: 192.168.2.1

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90

Time (seconds)

N
um

be
r o

f S
YN

 p
ac

ke
ts

SYN

Figure 4a SYN flood attack traffic

Monitoring web server traffic

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Time (2 secoonds)

N
um

be
r o

f p
ac

ke
ts

FIN_ACK
SYN
SYN_ACK

Figure 4a: This snapshot of traffic is captured from the
gateway point, during SYN flood attack. This type of
attack is characterized as a pulse attack [9] because it sends
floods periodically till the services are overwhelmed. The
service that is attacked is the http (web service).

Figure 4b: Shows the ratio of number of connections
in the SYN_RCVD state to the number of connection in all
states. A large amount of connections is saved under the
SYN_RCVD state at the beginning of flood and remain
until the end of data capture.

V.CONCLUSIONS

NEMESI is designed to use a combination of network
and host approaches against TCP SYN flood attacks. The
system uses passive monitoring at the gateway and a TCP
Finite State Machine to generate states for connections. It
is a small, flexible, and compatible system with the
capability of detecting other types of flooding attacks as an
extension of this work. It does not require any modification
in either hardware or software. The system can distinguish
SYN Flood attacks from Flash Crowd (FC). In order to test
the detection algorithm we launch real attacks with
prototypes tools to get traffic patterns. We use these
patterns as attack conditions for the algorithm. Launching
real attacks we can measure the performance of the system
and examine for any false positives.

Characteristics of the functionality:

1. Sniffing gateway traffic using libpcap. The
implementation of the software is in C++.

2. Saving the host and network resources by applying a
defense at the gateway

3. The use of TCP Finite State Machine (FSM) is
essential for NEMESI for flooding detection. In
extension the detection algorithm uses the SYN
rates, arriving intervals and does anomaly traffic
pattern recognition.

4. Intrusion detection systems can detect attacks
without necessarily blocking the attack traffic. We
aim to distinguish the malicious traffic from the
legitimate traffic and stop it at the gateway.

REFERENCES

[1] OUT-LAW.COM, P.M. MP pitches Denial of Service law to
Parliament, Journal article, 2005,
www.channelregister.co.uk/2005/03/10/mp_pitches_denial_of_ser
vice_law_to_parliament/

[2] Kleinbard, D. eBay, Buy.com, CNN.com and Amazon come
under attack; FBI probes Yahoo! incident, 2000
http://money.cnn.com/2000/02/08/technology/yahoo/

[3] Leyden, J. Blaster copycat author jailed for 18 months,
http://www.theregister.co.uk/2005/01/31/blaster_kiddo_sentencin
g/

[4] Moore, D. Inferring Internet Denial-of-Service Activity CAIDA.
in Proceedings of the 10th USENIX Security Symposium
Washington, D.C., USA. 2001

[5] Glenn Carl, G.K., Richard R. Brooks, and Suresh Rai. Denial-of-
Service Attack-Detection Techniques. 2006

[6] Wright, G.R. and W.R. Stevens, TCP/IP Illustrated , Volume 2:
Addison - Welsey. 1171.

[7] Paxson, V., Bro : A system for detecting network intruders in real-
time. 1998, Lawrence Berkeley National Laboratory: Berkley

[8] Roesch, M., SNORT - Lightweight intrusion detection for
networks. 1999, Proceedings of LISA '99: 13th Systems
Administration Conference.

[9] Mirkovic, J., D-WARD: Source-End Defence Against Distributed
Denial-of-Sevice Attacks. 2003, University of California: Los
Angeles.

[10] Northcutt, S. About the SHADOW Intrusion Detection
System,http://www.nswc.navy.mil/ISSEC/CID/, Naval Surface
Warfare Center, 1998

[11] Adam Greenhalgh, M.H., filipe Huici, Using Routing and
Tunneling to combat DoS attacks. 2005, University Colleg
London.

[12] Gemona Anastasia, A.M.R., Ishbel Duncan, Colin Allison, END
TO END DEFENCE AGAINST DDOS ATTACKS. 2004,
University of St Andrews, School of Computer Science: IADIS in
Spain

[13] Dittrich, D., The "Tribe Flood Network" distributed denial of
service attack tool. 1999, University of Washington.

Ratio SYN_RCVD /Total

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

Time (seconds)

Ratio SYN_RCVD /Total

Figure 4b The ratio of connections in the SYN_RCVD state to number of connections in all states.

[14] David, D., The "stacheldraht" distributed denial of service attack
tool. 1999, University of Washington: Washington

[15] Detrich S., L.N., Dittrich, D. Analyzing Distributed Denial Of
Service Tools: The Shaft Case. 2000: Proceedings of the 14th
Systems Administration Conference (LISA 2000) New Orleans,
Louisiana, USA December 3– 8, 2000

