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Abstract - Over the last few years the Internet has seen a 
continuous rise of malicious traffic. These include the Denial of 
Service (DoS) attacks, viruses, Trojans, spam mails and worm 
attacks. In this paper we focus on experiments with TCP SYN 
flooding attacks. We introduce a new approach to prevent such 
attacks based on passive monitoring of the frequency of TCP 
SYN packets and peak intervals, with respect to other packets, 
in combination with a dynamically adapted connection drop 
time. 

I. INTRODUCTION 

A Denial of Service (DoS) attack is a type of network 
attack that is designed to make the services unavailable to 
users. The effects of DoS [1] and the effects range from 
slow-down or unavailability of a network service to 
financial losses[2]. Typically a business will measure the 
financial cost of an attack based on the period that the 
services are down[3]. 

In Denial of Service (DoS) the source of the attack is a 
single host while in the Distributed Denial of Service 
(DDoS) multiple sources target the same destination. Both 
forms of attack have the same result but not always the 
same network traffic behaviour. 

In this research we experiment with flood attacks 
based on TCP SYN packets. We focus on TCP flooding 
attacks because this is the most common type of attack 
according to the CAIDA [4] project which shows that. The 
90% of the DoS traffic is TCP-based attacks. It is 
commonly believed that the existence of TCP SYN 
flooding attacks is based on a protocol design weakness [5] 
in combination with limited operating system resources 
(such as queue length and buffer space). 

In this paper we propose the NEMESI system for 
defending against TCP SYN flooding attacks. We describe 
the system architecture and present experimental results 
based in defending against attacks from the TFN (Tribe 
Flood Network) flooding tool. We propose a detection 
algorithm based on TCP Finite State Machine modelling 
and monitoring of the peak intervals of TCP SYN packets. 

The remainder f the paper Is structured as follows. 
Section 2 described the problem area and presents related 
work. Sections 3 to 8 describe the layers architecture of the 
system. Section 9 presents experimental results for the 
validation of the system and section 10 presents 
conclusions and further work. 

 

II. PROBLEM DEFINITION AND RELATED WORK 

The goal of any solution to SYN flooding attacks is to 
continue to accept connection requests while under attack. 
There are several ways to achieve this goal, but none of 
them is highly effective. 

In a standard TCP implementation each packet 
received is temporarily buffered in a receive queue for 
processing [6]. As connections are initialised by the TCP 
stack, queue space is freed for new connections. During a 
SYN flood attack a large amount of SYN packets are 
received and the queue becomes full of pending requests. 
At this point any further SYN packets received are dropped 
by the server. 

The maximum length of time a packet can spend in the 
queue is determined by a timeout value. A connection 
request will be dropped by the server if the three-way 
handshake has not completed within the timeout period. 

Increasing the length of the queue and reducing the 
timeout value will reduce the effects of such attacks. 
However making the queue longer requires more memory 
and since the rate of packet arrival will still exceed the rate 
at which connections can be processed, the queue will 
eventually become full again.  Shortening the timeout 
period adversely affects the establishment of real 
connections by enforcing a shorter window for the 
establishment handshake to take place. 

Both of these can be classified as brute-force solutions 
that may waste of kernel memory and computation 
resource (slowing down the server's response time) but will 
be effective for some network configurations and attack 
types. 

One solution to reduce the threat of SYN flood attacks 
is to reduce the amount of information stored for each in-
progress connection. In turn this means some modification 
to the TCP communication protocol. This involves 
checking how valid the information is, as there may be 
spoofed packets. To apply the above solution, process 
power and memory space are essential. By monitoring 
traffic at the network gateway we can check the validity of 
the information that the target host is receiving and detect 
the DoS without using resources of the t host. 

We categorize the solutions against such attacks based 
on the approach used. These will include the algorithm, the 
network installation place where the defence is applied and 
the level of defence provided. We choose Bro[7], Snort [8] 
and D-WARD [9] from intrusion detection systems (IDS) 

Bro is a stand-alone intrusion detection system (IDS) 
that observes network traffic and that characteristic makes 



it a network intrusion detection system (NIDS). Snort is a 
lightweight anomaly based NIDS that can be installed 
anywhere in the network with the consideration of what to 
protect. Both use the libpcap packet capture library to sniff 
packets. libpcap is extensively used by Bro, Snort and 
SHADOW [10] and appears to be a valid, well-known and 
reliable capturing library. 

Bro uses an event engine to look up the connection 
state. The structure of the system is layered and that gives 
compatibility to the design and algorithm. The detection is 
based on policies that are defined by the user to recognize 
general malicious traffic. Snort uses rules and does pattern 
matching to detect attacks and probes in real time and 
issues alerts. 

D-WARD (DDoS Network Attack Recognition and 
Defence) is a system that is located at the source network 
router. It observes outgoing and incoming traffic and uses a 
statistical approach to define legitimate traffic patterns. 
The system attempts to separate attacking flows from 
legitimate flows and therefore identify the attacking 
machines. 

III. STRUCTURE OF THE PROPOSED SYSTEM 

NEMESI1 is located in the gateway. The point of 
detection and the point of action have essential importance 
for DoS[11]. Therefore applying monitoring at the edge of 
the network and specifically at the gateway can provide 
defence against SYN flood. This section is dedicated to 
describing the levels of the system architecture, the 
algorithms and experiments that show the performance.  

The system architecture is separated in levels (Figure 
1) based on the functionality. In detail the lower level is the 
monitoring, where packets are captured from the network. 
Next is the second level, where the connections are 
identified as new or old through the connection 
modelling. Here the connections pass through the Finite 
State Machine (FSM) and data is gathered, for instance the 
frequencies of SYN (synchronization), SYN/ACK 
(acknowledgement of the synchronization) and ACK 
(acknowledgement) packets. Data is checked from the 
detection algorithm which is in the third level. The fourth 
level is the action. After an attack is detected, a reset 
packet is sent to the host to reallocate the service. An 
extensive description of each of the levels is given below. 

A. The Monitoring level 

In this section we underline two main characteristics 
of the functionality of this system level. One is the way the 
packets are captured and the second is which traffic are 
captured, as we are aware of incoming and outgoing 
traffic, internal and external traffic. 

We use libpcap in order to sniff packets form the 
network. We attempt to make the system compatible and 
                                                           
1 Nemesi was the Greek goddess of punishment. 

fast. We found libpcap a reliable library because we gain 
portability for NEMESI to different UNIX based OS. 

There are two types of traffic that we see at the 
gateway, incoming and outgoing. Firewalls for instance 
can provide security by blocking the malicious packets 
from the incoming traffic; those that come from the 
Internet. In our approach we attempt to monitor both types 
of traffic. With the use of ebtables we can bridge the 
interfaces on the gateway. One interface, eth1, is for the 
traffic inside the protected network and the eth2 is the 
interface that listens to the traffic that comes from the 
outside of the protected network. By bridging the two 
interfaces, both traffics can be monitored. 

B. The Connection modelling level 

On this section we examine the receiving frequency of 
SYN packets, the intervals of TCP packets and the type of 
connections (new or exciting connections). There are two 
options for a packet when it arrives. One is that the packet 
belongs to a connection that is already known to the 
NEMESI (that means it is in the connection’s list) and the 
other is that the packet belongs to unassigned connection in 
the NEMESI’s list. Below there is a representation of the 
connection modelling algorithm in pseudo code form. 

 

Figure 1 Level architecture of the system



Connection modelling pseudo code is : 
1. listElement=search_List(ConnectionList,saddr,th_

sport,daddr,th_dport,th_seq); 
2. theConn=listElement==NULL?NULL:listElement

->data; 
3. if(theConn==NULL){ 

Conn newConn=newConnection (saddr, 
daddr, th_sport, th_dport, th_flags, th_ack, 
th_seq); 
insertResult=insertToList(ConnectionList,ne
wConn); 
if(insertResult==NULL){ 

error; 
4. FSM(theConn,ip,tcp); 

 
The number of SYNs and other types of TCP packets 

received are countered. The deltas of the SYNs and total 
TCP traffic are also measured. These measurements will 
give data to use for the later level of the system where the 
detection is taking place. The pseudo code is presented 
below. 
Data gathering pseudo code is: 

1) For every TCP packet  
If SYN 

Num_currentSYNs ++; 
2) Current_∆SYNs= Num_currentSYNs - 

Num_previousSYNs; 
3) Current_∆TCPpackets=Num_currentTCPpackets 

– Num_previous_TCPpackets; 
4) ∆ (deltas) are saved per unit time 
 
This pseudo code demonstrates the 1st step in the 

counter for the SYNs while there is a counter for every 
type of packet. The differences, ∆, are saved periodically 
every 2ms. The FSM output returns the number of 
connections in various states to determine the traffic load. 

C. The TCP Finite State Machine (FSM) 

As the main characteristic during the SYN flood attack 
is the multiple initializations for connections requests, a 
finite state machine has been build to give states. The 
connection state is SYN_RCVD when a synchronization 
request arrives. A large number on the SYN_RCVD state 
could determine the SYN flood attack. The importance of 
checking the connection’s state is vital. Based on the RFC 
793 (TCP state transition diagram), a new Finite State 
Machine (FSM) is designed for the NEMESI,[12]. The 
states describe the sender, the receiver and the NEMESI 
state. The TCP state transition diagram is based on the two 
end applications, sender side and receiver side. Because 
NEMESI is in the middle of the sender and receiver, new 
states are created to specify the status of the connection but 

can also be used to extract information for the general 
network status.  

We use C++ to implement the algorithm. The FSM 
function has a defined type Conn, where *Conn is the 
structure containing the packets fields (for instance source 
ports, source IPs). The FSM( ) takes as arguments the 
standard headers structures const struct iphdr 
*ip, const struct tcphdr *tcp and the return 
value from the function that detects if there is any history 
of that connection or it is new. Then the TCP header flag is 
examined. A SYN packet for instance will be checked as 
in: if (tcp->th_flags & TH_SYN). Then it is 
checked for other flags to be on for example if it is an 
SYN/ACK packet, the SYN and ACK flag is on. This 
check is accuracy can be used to detect spoofed packets if 
the flags that are on have no meaning. An attacker who is 
building packets may use combination of flags that is not 
valid and that could be detected. The attacker’s tool will 
send a number of packets in order to reserve resources. 
This will be observed from the monitor at this point with 
this check. After the flag interpretation the algorithm 
checks if the connection is new or has history by at the 
argument passed. When the connection exists is checks the 
previous state, for accuracy, and then gives a new state. 

D. The Detection level 

In this section we discuss the design principles of the 
detection level, the algorithm and the experimental setup 
where attacks are launched. 

NEMESI is separated in to layers. Each layer has a 
specific applicability. Despite the layered system the 
defence algorithm is designed in a way that is strongly 
bounded with the previous levels. The FSM output and the 
counting results from the connection modelling level is 
needed on the detection layer. By measuring the FSM 
output we get the number of connections in various states 
and in this case the number of connections in SYN_RCVD 
state. This is compared to the limit of connections on 
SYN_RCVD state. The rate of SYN packets per 2ms is 
calculated at the monitoring level and the values are 
examined on that level for any anomaly. 
 
The pseudo code for the detection algorithm is: 

A. Compare∆SYN=compare(Current_∆SYNs, 
Previous_∆SYNs); 

B. Compare∆TCP=compare(Current_∆TCPpackets, 
Previous_∆TCPpackets); 

C. If (Compare∆SYN AND Compare∆TCP increasing) 
D. If (SYN_ACK packets are not increasing with the 

same rate) 
E. Check the number of connection on SYN_RCVD state 
F. Check the number of connection on ESTABLISHED 

state 



The above presentation of the detection algorithm is 
an overview of it. When the attack is detected then we need 
to know from where the attack is coming from (internal or 
external) in order to act against it. The ebtables are 
configured to bridge the external and internal interfaces to 
find the direction of the attack. If an attack is detected then 
the action algorithm makes the decision for sending reset 
packets to reallocate the service. 

E. Action level 

The action level is the last level of the system. 
NEMESI aims to block the malicious traffic and continue 
the functionality of the network without bringing it down. 
During the screening process, between the detection and 
action part of the system; alerts are triggered. These are 
mainly: 

The system receives a high traffic load that contains 
connection requests with the same source or multiple IPs. 
This defines an increase of the SYN rate. 

There is an anomaly between the numbers of 
connections in states. 

When a SYN flood is detected then, in order to block 
these requests, reset (RST) packets are sent to the IPs that 
request connectivity. The real requests would try to 
reconnect. If there is no reply, then the malicious packets 
have been stopped in the gateway. The system does not use 
or execute any of the TCP implementation data structures. 
It uses the information for the received packets and its own 
system data structures which keep the information of the 
received packets and extracted data. This saves heavy 
kernel procedures. 

IV. ANALYSIS RESULT 

In order to determine how fast NEMESI detects the 
attacks or if there are any false positives or characteristics 
of real flooding traffic traces, attacks have to be launched. 
We configure an experimental network to launch real 
attacks with prototype tools. Tribe flood network (TFN), 
stacheldraht and Trin00 are attacking tools that could cover 
most of the attack cases. Those tools have complicated 
structure and a study for Tribe Flood Network (TFN) and 
stacheldraht has been done from Dittrich[13], [14]and for 
Distributed Denial of Service tools from Dietrich[15]. The 
TFN has been used in our research work (figure 2a) to 
launch attacks in the network configured in Figure 2b. 

All the machines have FEDORA Core installed. The 
attack is initialized at the first level. In the second level 
Zombie machines send the bogus requests. Zombies are 
“clients” that are infected with a client version of the 
attacking tool. These machines run a client application; in 
our case we run TFN the client application td. The Zombie 
machine does not send bogus packets until the 
master/control machine sends an acknowledgement to start 
the attack. These applications may have different versions 
of building packets.  

Running experiments with TFN we succeed to monitor 
malicious traffic. NEMESI’s results are shown below in 
Figure 3 and Figure 4. 

Figure 3a: A sample of departmental web server traffic 
during term time. This traffic is characterised as normal. 
This figure shows the evolution for opening and closing 
connections. The numbers for FIN_ACK, SYN and 
SYN_ACK packets follow the same patterns. 

Figure 3b: The ratio of the number of connections in 
the SYN_RCVD state to the number of connection in all 
states. A variable ratio is observed. This is expected, 
because the number of SYN packets has to be close or the 
same to the number of connection on SYN_RCVD state. 
These measurements are for the same sample of traffic 
(figure 3a, b). 

Figure 2a. TFN scheme 

Figure 2b Experimental setup 
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Figure 3b The ratio of connections in the SYN_RCVD state to number of connections in all states 
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Figure 4a: This snapshot of traffic is captured from the 
gateway point, during SYN flood attack. This type of 
attack is characterized as a pulse attack [9] because it sends 
floods periodically till the services are overwhelmed. The 
service that is attacked is the http (web service). 

Figure 4b: Shows the ratio of number of connections 
in the SYN_RCVD state to the number of connection in all 
states. A large amount of connections is saved under the 
SYN_RCVD state at the beginning of flood and remain 
until the end of data capture. 

V.CONCLUSIONS 

NEMESI is designed to use a combination of network 
and host approaches against TCP SYN flood attacks. The 
system uses passive monitoring at the gateway and a TCP 
Finite State Machine to generate states for connections. It 
is a small, flexible, and compatible system with the 
capability of detecting other types of flooding attacks as an 
extension of this work. It does not require any modification 
in either hardware or software. The system can distinguish 
SYN Flood attacks from Flash Crowd (FC). In order to test 
the detection algorithm we launch real attacks with 
prototypes tools to get traffic patterns. We use these 
patterns as attack conditions for the algorithm. Launching 
real attacks we can measure the performance of the system 
and examine for any false positives. 
 
Characteristics of the functionality: 

1. Sniffing gateway traffic using libpcap. The 
implementation of the software is in C++. 

2. Saving the host and network resources by applying a 
defense at the gateway 

3. The use of TCP Finite State Machine (FSM) is 
essential for NEMESI for flooding detection. In 
extension the detection algorithm uses the SYN 
rates, arriving intervals and does anomaly traffic 
pattern recognition. 

4. Intrusion detection systems can detect attacks 
without necessarily blocking the attack traffic. We 
aim to distinguish the malicious traffic from the 
legitimate traffic and stop it at the gateway. 
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