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Abstract

A language construct called environment is introduced. Environments are collections of
bindings and have first class data rights. As such, they provide the programmer with a type
secure mechanism to control bindings in the system. It is shown that environments may be
combined to provide a naming graph that subsumes the functions of file systems in
traditional operating systems. Such a mechanism provides a conceptually simple framework
for manipulating bindings which permits the control of complexity and system evolution
from within a unified language framework.

1 . Introduction

A persistent store is a conceptually unbounded space populated by objects.  In such a space,
the naming of objects becomes a problem: the use of names is highly restricted by the names
that have been previously used. This may be observed in programming systems which
adopt a simple, flat object naming strategy, such as Smalltalk-80 [13]. These systems have
a single name space in which names are introduced, resulting in the use of names being
restricted by the names that have been previously used. This problem may be overcome if
contextual naming is used.

In a contextual naming scheme, names are introduced within some context. Names may be
used many times within a system, one name denoting different objects in different contexts.
Contexts are used in everyday life to overcome naming problems; for example, when I say
that Ron has a beard to one of my colleagues, they know by context to whom I am
referring. The same sentence may mean something different or be meaningless to someone
else. As another example, to someone who knows a beardless person called Ron, the
sentence could be untrue. To an non-English speaking person, the sentence could contain
no meaningful information at all.

Many different contextual naming strategies may be found in the computer systems of the
present day. Some examples of these strategies are:

1 . block structure in programming languages;
2 . file directories in filing systems; and
3 . segments in operating systems.

Usually these contextual naming schemes impose a tree structure on naming. For example,
in a block structured programming language, the programmer may write the program
fragment shown in Example 1. The bindings contained in this static piece of program may
be represented by the tree shown in Figure 1.



begin
let a = 7
write a
begin

let a = "hello"
write a
begin

let a = 1.23
write a

end
end
begin

let a = "hi"
write a

end
end

Example 1. Block structured contexts.

a = 7

a = "hello"

a = 1.23 a = "hi"

Figure 1. A graph of block structured contexts.

Notice that each instance of the clause "write a", displays the value of different objects, due
to the imposition of the context tree. The tree shown in Figure 1, derived from the block
structure of Example 1, is static in nature. That is, the contextual structure is assembled by
the compiler. Block structure hides information contained within a block from objects
external to that block. Uses of an identifier are bound to the innermost textually enclosing
definition of that identifier. This is known as static scoping and is in contrast to the dynamic
scoping found, for example, in Lisp [16].

The block structuring paradigm imposes visibility conditions on identifiers. In many
languages, principally in the algol family, block structure and procedural abstraction are the
only mechanisms provided for program structuring. This static imposition of structure is not
sufficiently powerful to support the incremental construction of systems or incremental
change.

The context tree shown in Figure 1 is a special case of a more general structure, that of a
graph. In general, the persistent object space comprises a graph of objects. The
environments discussed in this paper provide extensible contextual naming on this graph.



The controlled evolution of data, including program, is of paramount importance in large
systems. In particular, persistent systems of data and program must be partially
reconstructible and thus incrementally enhanceable. Therefore, persistent systems need to
provide binding mechanisms to support incremental development. The understanding of
these mechanisms and their significance in the persistent environment is an important
consideration in the provision of contextual naming strategies. Binding mechanisms are
therefore discussed in the next section as background to this paper.

In the following section, a historical perspective is given, showing the various mechanisms
researchers have used in an attempt to provide contextual naming in programming languages
and databases. Included in this survey are the languages Clear [6], Pebble [7], Galileo [1
and an earlier proposal aimed at providing an extensible naming mechanism for Napier [4].

The main part of this paper introduces a language construct called ‘environment’ and written
env. Objects of type env are collections of bindings and have first class data rights. As
such, they provide the programmer with a type secure mechanism to control bindings in the
system. It is shown that environments may be combined to provide a naming graph that
subsumes the functions of file systems in traditional operating systems. Next, the paper
shows that such a mechanism provides a conceptually simple framework for manipulating
bindings which permits the control of complexity and system evolution from within a
unified language framework. Finally, some conclusions and a description of further work
are presented.

The work presented in this paper is part of a larger project – that of providing a persistent
programming environment. This research effort is more fully documented in the author's
Ph.D. thesis [11].

2 . Background

2 . 1 A model of binding

Traditionally, a binding consists of a name-value pair [20]. That is, a value is bound to a
name for some period during the evaluation of a program. This has been extended by
Burstall & Lampson to include a type [7] and further by Atkinson & Morrison to add
constancy [4]. Bindings can therefore be regarded as comprised of a four-tuple [18]:

1. name
2. value
3. type
4. constancy

We bindings will described as follows:

{name, value, type, constant}

Thus, the PS-algol constant binding (denoted by ‘=’)

let a = 7

may be written:

{a, 7, int, true}

and the variable binding (denoted by the ‘:=’ symbol)

let b := "hello mum"



may be written:

{b, "hello mum", string, false}

Bindings may be categorised by the following four properties,

1. whether the binding is to a location or value;
2. when the binding is performed;
3. when type checking is performed (if at all); and
4. what scoping is performed.

These properties are examined below.

Bindings may be made either to locations or values. When a binding is made to a location, it
is traditionally known as an L value binding [20]. In this kind of binding, the location does
not change although different values may be stored in it. Sometimes, bindings are made to
values which are immutable, this type of binding is known as an R value binding.
Applicative languages such as SASL [21] only have this kind of binding.

Bindings may be instantiated statically by the compiler or dynamically by the run time
system. If systems are bound statically, many errors may be detected early (at compile
time). Some languages designers consider this safety element so important that their
languages contain only static binding.

However, in order for a system to evolve, a measure of dynamic binding must exist. If a
program is entirely statically bound, any change to the program or data requires the entire
system to be recompiled to establish new bindings. This cost is prohibitively high for large
systems. The system must, therefore, accommodate some dynamic binding in order to
accommodate change.

In determining the appropriate binding mechanisms for a particular system, the designer is
faced with the problem of balancing safety against flexibility. The safety in the system is
derived from being able to say (even prove) something about the program before it runs
(i.e. statically) in order to improve confidence that it is correct. This explains the wish by
most language designers to employ static type checking as one of the devices for static
checking.

A second aspect of static checking is that the programs so checked are usually more
efficient. By performing the checking statically, the need for dynamic checking is removed
making the run time representation of the program execute faster and in less space.

Finally, an aspect of static checking that is often overlooked in programming systems is that
of the source code on program documentation. If a compiler can statically check a program,
then so can another user. Thus statically checked programs have better documentation
properties and consequently better cost properties throughout their life cycles.

Therefore, a delicate balance exists between static binding for safety and dynamic binding to
provide for evolution. Both methods of binding are necessary for large scale system
construction and evolution. Consequently, the system must provide for both static and
dynamic binding.



Type checking, like the instantiation of bindings, may be performed statically by the
compiler or dynamically by the run time system. Static type checking is generally performed
for one of two reasons; firstly, as an optimisation, checks may be factored out and since
types are known, more efficient code may be produced; secondly, and perhaps more
importantly, as a safety measure. Early type checking detects many erroneous programs
which may cause damage to a system. However, in order to accommodate change, systems
must provide some dynamic typing; in particular, all projections from union types require a
dynamic check.

2 . 2 Programming in the large

The size of applications that may be constructed using any methodology is limited by the
size of programs we can debug and maintain. When any program reaches a certain size, it is
extremely difficult for anyone to understand it. At that point, if not before, the system must
be broken down into separate components, the idea being that each of the components is of
a manageable complexity. Hopefully, someone will be capable of understanding how these
components may be fitted together in order to construct the required system. This task has
become known as "programming in the large".

If programming systems are to be used to support the construction of large systems, they
must provide modular construction facilities. Furthermore, these systems must also provide
easily understood mechanisms for binding modules together. These mechanisms must be
capable of accommodating change.

Software systems are constantly subject to pressures of change. Erroneous systems need to
accommodate change because they require maintenance. Successful software products are
used by people for tasks they were not originally intended to support. Users who like the
basic functionality of a product often bring pressure to bear on designers to support new
tasks which lie outwith the original product specification. Advances or changes in hardware
functionality also require change to software products. Often software is ported to a
machine other than the one for which it was first written. It is imperative that software
systems, especially large ones, support incremental change.

3 . Previous Language Approaches

The environments described in Section 4 of this paper support programming in the large by
providing incremental program construction mechanisms and contextual naming facilities.
This problem has also been tackled by other researchers. Some of the approaches taken,
both in the field of databases and in programming languages, are discussed in this section.

3 . 1 . Clear and Pebble

In the specification language Clear [6], Burstall and Goguen identify the three main
operations on environments (used in the Scott-Strachey sense of the word) as:

1 . create an empty environment;
2 . extend an environment with a  new binding; and
3 . find the value associated with a given name.

In the later language, Pebble [7,8], bindings are treated as first class data objects, where a
binding is defined as either a name bound to a value or a pair of bindings. Unlike Clear,
there does not appear to be any mechanism for creating an empty binding. However,
bindings containing a single name-value pair may be created as follows,

LET E:~[x~3]



where ‘E’ has as its value the binding “x bound to 3”. In this example, ‘E’ has type (x:int).
In the notation used earlier, the value of ‘E’ is

{x, 3, int, true}

Since Pebble is a purely applicative language, extending an binding produces a completely
new binding. For example, a new binding called ‘EE’ may be produced as follows,

LET EE:~[E,b~7]

and ‘EE’ has the following value,

{{x, 3, int, true},{b, 7, int, true}}

In Pebble, ‘EE’ has the following type,

(x:int)×(b:bool)

Pebble allows values associated with a given names to be extracted. For example, if the
programmer wished to extract the value bound to ‘x’ from the binding ‘E’, the following
could be written:

LET i:~E IN LET i IN x

which has the value 3.

In the papers on Pebble, Burstall states that programming in the large will become merely
typed functional (applicative) programming. However, it is not obvious how applicative
languages may help with incremental system construction since the must, by their very
nature, be statically bound. In fact, the bindings of Pebble are also statically type checked so
are more like the structure classes provided in many languages than the environments
provided by Napier. For these reasons, there will be no further discussion of purely
applicative (static) languages.

3 . 2 . Galileo

The language Galileo [1] recognises the need for control of names and values in a database
context. In Galileo, a run–time environment is defined to be a mapping from identifiers to
denotable values. Such an environment is obtained by evaluating an environment
expression. For example,

use a := 3 and b := 4 in a + b

yields the value 7. Here, the expression

a := 3 and b := 4

is an environment expression that yields an environment containing the bindings
{a,3,num,true} and {b,4,num,true}. The expression a + b may then be evaluated in this
environment.

The above example introduces two of the environment operations provided by Galileo,
namely the introduction of new bindings (using ‘:=’) and the combination of environments
(using ‘and’). Galileo provides other mechanisms that allow the programmer to select
single bindings from environments, recursively introduce names and values and to remove
names from environments.



Galileo provides persistence by having an environment called the global environment that
always persists. The global environment may contain bindings including other
environments. Galileo is in an interactive system in which every expression entered by the
user is evaluated with respect to an environment, initially the global one. The user may
evaluate expressions with respect to another environment using the command ‘enter’. This
command allows the user to traverse the tree of environments that may be found in the
global environment. For example, the following dialogue may be carried out in Galileo:

use anenv := ( a := 3 and b := 4 )
! This defines an environment called ‘anenv’ in the
!   global environment.
enter anenv:
! Now the current environment is ‘anenv’
a + b
! Yields 7 as before

The designers of Galileo suggest that environments help the user to develop and test
database schema incrementally or to express the overall structure in terms of smaller related
parts. They also suggest that they may be used as a modularisation mechanism in a manner
similar to that suggested by Burstall and Goguen for Clear.

3 . 3 . Name Spaces

In [4], Atkinson and Morrison introduce name spaces. Name spaces were proposed to form
part of the language Napier, then in its infancy. However, they were never implemented and
were eventually replaced by the environment mechanism described in this paper. Name
spaces were designed to permit the following:

1 . the storage of bindings in a name space;
2 . the dynamic use of names from a name space;
3 . the static use of names from a name space;
4 . the evolution of the names available in a

name space; and
5 . the safe exchange of arbitrary data between parts

of a system.

A name space is created by the following expression:

ns < identifier list> from
<sequence>

end from

This is best illustrated with an example, such as that shown in Example 2.

let new = ns a,b from
let a = 7
let aa := a * a
let b := proc( -> int ) ; aa

end from

Example 2. Name space instantiation.

Here ‘new’ has as its value the following set of bindings, using the notation introduced
earlier:

{{a, 7, int, true},
{b, (proc( -> int ) ; aa), proc(-> int ), false}}



Notice that, unlike the environment expressions of Galileo, name spaces are first class data
objects. Note also that the name space does not contain the binding

{aa, 49, int, false}

This is because only the bindings denoted by names in the identifier list after ‘ns’ are
exported from the block into the name space.

In order to accommodate change, name spaces provide a mechanism to add new bindings
and to remove old bindings. A new binding may be added to a name space using following
construct:

extend <name space expression> with <identifier list> from
<sequence>

end from

This is similar to the instantiation of a name space. Bindings may be dropped from name
spaces by the use of the drop construct:

drop <identifier list> from <name space expression>

In order to use a name space, the user may write

using <name space expression> with <signature> compile
<sequence>

end compile

This notation is used to denote dynamic binding to a name space. The name space
expression yields a value of type name space. The type of the name space is checked
dynamically to ensure that it satisfies (i.e. includes) the interface specified in the signature.
If the type checking is successful, the sequence is evaluated in the new environment which
is formed by enriching the static environment with the bindings in the name space. Thus,
the signature specifies a formal store and the name space expression provides an actual store
each time the statement is executed. This is similar to the situation with regard to parameters
in procedure definition and application, in which the formal store is specified by the formal
parameters and the actual store is provided by values at application time. The dynamic
binding is thus localised to the scope of the using .. compile construct.

Name spaces may also be used statically, the notation for which is:

using <name space> compile
<sequence>

end compile

Here the sequence is statically bound to the name space. Notice that in this case the name
space must be statically determinable, which is indicated by the fact that we must specify a
name space rather than permitting the use of a name space expression.. However, despite
the static nature of the binding, the name space must still be checked to ensure that it
contains the bindings required of it. The reason for this is that the bindings may have been
removed from the name space using drop. Indeed, an error condition or exception may arise
at run time due to a required binding not being present in the name space. This is shown in
Example 3.



let new = ns a from ! Define name space containing
let a = 7 !   one binding {a,7,int,true}.

end from

let useNew = proc() ! Define a procedure which
begin !   uses ‘new’ by binding to it

using new compile !   statically and writes out
write a !   the value of ‘a’.

end compile
end

drop a from new ! Drop the binding from the
useNew() !   name space; then call the

!   procedure will cause an
!   exception when ‘a’ is
!   checked.

Example 3. Using a name space.

This seems to contradict the idea that the binding is a static one. Careful analysis of the
situation reveals that the problem is in the nature of the binding. The static binding is made
to the name space itself and not to the bindings contained in the name space.

4 . The datatype environment in Napier

The programming language Napier [19] introduces the concept of an environment in order
to provide support for the control of names and to allow incremental system construction.
This is achieved by providing an extensible mechanism that permits the storage of bindings.
The environments provided in Napier provide the three main operations defined in Clear,
with the addition of one new operation – the dropping of bindings. The operations on
Napier environments are therefore:

1. create an empty environment;
2. extend an environment with a

(name, value, type, constancy) 4-tuple;
3. extract the location associated with a name; and
4. remove a binding from an environment.

4 . 1 Creating an empty environment

Environments, written ‘env’, are introduced using a predefined function called
‘environment’. It has the following form:

let environment = proc( -> env )

The function ‘environment’ returns a new empty environment, i.e. an environment
containing no bindings. In Napier, bindings are always introduced with the word ‘let’.
When bindings are declared within a block, the programmer may write something like the
program shown in Example 4.

begin
let a = 7
let b = proc( -> int )  ; a

end

Example 4. An illustration of traditional
block structure.



4 . 2 Extending an environment

Bindings are also introduced into environments using the word ‘let’. The user must also
specify the environment in which the binding is to be made. The syntax of binding
introduction is, therefore,

in <environment-clause> <declaration>

The environment in the environment clause may be statically or dynamically determined.
The programmer may therefore write the code shown in Example 5.

let e = environment() ! Create a new environment ‘e’.
in e let a = 7 ! Add the binding {a, 7, int, true}

!   to ‘e’.

Example 5. Static use of environments.

In this example, the first let declaration introduces the name ‘e’ into the static environment
of the program. In the second line, the environment to which ‘e’ is bound is enriched with
the new binding

{a, 7, int, true}

Note that the introduction of the binding {a, 7, int, true} to ‘e’ does not affect the static
environment. An exception is generated if a name is added that has already been used to
identify another binding in the environment. The example shown in Example 2 above would
be written in Napier as shown in Example 6.

let locala = 7 ! Declare ‘locala’ in local env.
let new = environment() ! Declare ‘new’ in local env.
in new let a = locala ! Declare ‘a’ in ‘new’.
in new let b := proc( -> int ) ! Declare ‘b’ in ‘new’.

begin
locala * locala

end

Example 6. Instantiation of environments.

4 . 3 Projecting out of an environment

Bindings may be extracted (projected) from environments with the use clause. It has the
following syntax:

use <environment clause> as <signature> in <clause>

For example, to use the environment defined in Example 6 and write out the value
associated with ‘a’, the programmer would write the program shown in Example 7.

use new as a : int in
begin

writeint( a )
end

Example 7. Using values stored in environments.



The signature need only specify a partial match on the bindings stored in the environment.
The environment may therefore contain bindings other than the ones specified, but must
contain at least the bindings denoted in the signature. If any of the bindings are not present,
an exception is raised.

Values may be exported from an environment by returning a value from the clause bound to
the use statement. For example, if the programmer wished to extract and return the value
associated with the name ‘a’ from the environment, the following could be written,

let valueOfa = use new as a : int in a

This is equivalent to the following piece of code written using traditional language
constructs,

let a = 7
let valueOfa = a

4 . 4 Dropping bindings from environments

Bindings may be removed from an environment using the drop construct. This has both the
same syntax and semantics as in the case of name spaces, namely,

drop <identifier list> from < environment clause>

This expression removes the binding containing the identifier from the environment
specified in the environment clause. The effect of dropping a binding is illustrated in
Example 8. Note that the binding is not deleted, merely removed from the environment.
This distinction, which is very important, is also shown in Example 8.

let new = environment()
! ‘new’ is an empty environment.
in new let a = 7
! ‘new’ now contains the binding {a, 7, int, true}.
use new as a : int in begin

in new let aa := a * a
end

! ‘new’ now contains the bindings {a,7,int,true} and
!   {aa,49,int,true}.
drop a from new
! ‘new’ now contains only the binding {aa,49,int,true}.

Example 8. Dropping values from environments.

4 . 5 Binding to environments

Recall that a difficulty arose in Example 3 concerning the use of using and drop with name
spaces. The problem with name spaces was that the binding was always to the name space
and not to the bindings stored in the name space. Example 9 is semantically equivalent to
Example 3; as with Example 3, it will cause an exception to occur on the last line.



let new = environment() ! Define an env containing
in new let a = 7 !   one binding {a,7,int,true}.

let useNew = proc() ;
begin

use new as a : int in
writeint( a )

end

drop a from new ! Drop the binding from the env.
useNew() ! Calling the procedure will cause an

!   exception when a is checked.

Example 9. Example 3 revisited.

However, using environments, this example may be rewritten as shown in Example 10.
This example will write out the value 7, rather than raising an exception.

let new = environment() ! Define an env containing
in new let a = 7 !   a binding {a,7,int,true}.

let useNew = use new as a : int in ! Define a proc
proc() ; writeint( a ) !   which writes out the

!   value of a.

drop a from new ! Drop the binding from the env.
useNew() ! Calling the procedure will cause

!   7 to be written out.

Example 10. Example 3 with the desired semantics.

The difference between the two examples is in the difference between the lines

let useNew = proc() ;
begin

use new as a : int in
writeint( a )

end

in Example 9, and

let useNew = use new as a : int in ! Define a proc
proc() ; writeint( a ) !   which writes out the

!   value of a.

in Example 10.

In Example 9, the use clause is within the procedure body. This means that every time the
procedure is called, the use clause is executed. It then dynamically performs type checking
and checks to ensure that the desired binding is in the environment. When the procedure is
called the binding is no longer in the environment and an exception will be raised.

In Example 10, the projection out of the environment to yield the binding is performed only
once - before the procedure closure is formed. The binding {a, 7, int, true} yielded by
projection from the environment is then bound into the closure of the procedure. The value
(the binding itself) is never again looked up in the environment, so the drop operation has
no effect on the procedure. It will be shown that environments exhibit the same semantics as
block structure. That is, the bindings made by a use clause are direct L value bindings.



4 . 6 Type checking

The type env is the infinite union of all labelled cross products. That is, all environments
have the same type, namely env, and members of this type may contain zero or many
{name, value, type, constancy} tuples. Furthermore, there are an infinite number of
members of this set whose tuples are drawn from the infinite number of types, values and
names which may be constructed from the type, value and name space, respectively.

The use statement projects bindings out of the infinite union. The flexible binding
mechanism provided by environments in no way weakens the type system. The program is
still strongly typed; however, it is no longer statically typed. Furthermore, the programmer
must specify the types associated with the bindings that are to be used in an environment.
This specification allows the segment of code within the use clause to be statically type
checked with respect to the projection.

The provision of environments allows the programmer to choose to delay some type
checking until execution time. Such a mechanism is extremely important in an otherwise
strongly typed persistent environment. If a point of dynamic type checking is not provided
in a statically typed persistent environment, the user would have to specify the type of the
entire persistent store every time he or she wanted to interact with it. Furthermore, the type
of the store is constantly changing as users add or remove objects of different types from it.
The type env permits the user to partially specify the type of the store.

It is expected that programmers will statically bind data structures used within "programs"
and use the environments to structure the information space in the manner that files and
directories are used to structure the stores provided in today's operating systems.

The code within the use clause is statically bound to the bindings projected from the
environment. The following occurs when a use is executed:

1. the bindings are looked up in the environment;
2. the types of the bindings are checked against the signature;
3 if either the types do not match or the bindings are not present, an exception

is raised;
4. if an exception is not raised, the bindings are introduced into the environment

– this constitutes dynamic binding; and
5. the clause associated with the use is executed with the bindings already

instantiated in the environment. All further uses of the locations are statically
bound.

Notice that since the projection is from an infinite union, it is always necessary to specify
the types of the bindings that are to be used. The use of a unification algorithm, such as the
one used in ML [14], will not help here since we must specify all the necessary type
information. This is necessary if strong static type checking is to be retained everywhere
apart from at the time of projection. The mechanism provides the maximum amount of static
type checking, whilst retaining the flexibility required for incremental system evolution.

The need to specify potentially large amounts of type information in order to use an
environment is worrying. Although not visible to the user, type information must be
encoded into the environments so that type checking may be performed at the time of
projection. This information is stored in the implementation of the environment and allows a
reversal from traditional type checking to be made.



In traditional type checking systems, the user writes down a program associated with type
definitions. The program is then submitted to the compiler which tells the user whether the
program is correct or not. In the system described above, the user may traverse the
information space using a browser [10,12]. This browser may report the types of the
objects stored in the environments. If it were used in conjunction with a callable compiler,
like the one described in [9], the user could interactively construct programs to operate
against data held in the information space. In such a programming environment, the
distinction between browsing and compiling becomes blurred, since different tools in the
support system are being combined transparently to provide a high degree of programmer
support. Research is currently being undertaken to blurr this distincion further in order to
provide a more integrated support environment for persistent programming [15].

4 . 7 Simulation of scope

The semantics of composition of environments is equivalent to the more familiar block
structure in programming languages; for example, in a block structured programming
language such as PS-algol the programmer may write the program shown in Example 11.

let a := 7
begin

let a := 6
write a ! Writes out 6.
a := 4
write a ! Writes out 4.

end
write a ! Writes out 7.
a := 32
write a ! Writes out 32.

Example 11.
Scope and block structure in algol-like languages.

Similarly, in Napier, the programmer may write the code shown in Example 12.

let env1 = environment()
in env1 let a := 7
let env2 = environment()
in env2 let a := 6

use env1 as a : int in
begin

use env2 as a : int in
begin

writeint( a ) ! Writes out 6.
a := 4
writeint( a ) ! Writes out 4.

end
writeint( a ) ! Writes out 7.
a := 32
writeint( a ) ! Writes out 32.

end

Example 12. Scope and block structure using environments.



This use of environments in this way will be familiar to programmers who have
programmed in block structured programming languages. It is no accident that
environments should exhibit the same semantics as block structure; it is a consequence of
the language design principle of only introducing a few powerful concepts. The block
structured paradigm is widely believed to be a good one, the only problem with block
structure is that the totally static composition it provides restricts software evolution. The
environment construct is designed to permit the same program structuring facilities as block
structure whilst permittiing change.

The binding mechanism used in environments is also the same as that used in the block
structure of Napier. In Napier, variable binding is by L-value binding and constant value
bindings are R-value bindings. The bindings stored in an environment exhibit the same
behaviour – all variable bindings are to locations and all constant bindings are to values.

4 . 8 Binding to the persistent store

In Napier, the root of the persistent store is called ‘ps’ and is of type env. Any data that is
reachable from ‘ps’ is persistent. In persistent systems, the root of persistence must always
be an extensible data structure of some kind to permit change in the system. This explains
why both Galileo and Napier use similar mechanisms.

Napier uses reachability as its persistence criterion and making any data structure persistent
is simply a matter of binding that data structure to something reachable from ‘ps’. For
example, suppose that a binary tree, for simplicity over integers, has been defined in a
program and that an instance of such a tree is to be made persistent. This may be performed
as shown in Example 13. The final line of this program binds data structure bound to ‘atree’
in the local environment, to be bound to ‘savetree’ in the persistent environment ‘ps’. In
order to use this data structure in another program, the user may write the code shown in
Example 14.

rec type Tree is variant( tip : null ;
node : structure( val : int ;

left, right : Tree ))

let twig = Tree(tip : nil )
let atree = Tree( node : struct( val = 7,

left = twig,
right = twig ) )

in ps let savetree = atree

Example 13. Binding to the persistent store using environments.

rec type Tree is variant( tip : null ;
node : structure( val : int ;

left,right : Tree ) )

use ps as savetree : Tree in
if savetree is node then
begin

writes( "It is a node with value : " )
writeiint( savetree'node( val ) )

end
else writes( "It is a tip" )

Example 14. Accessing the persistent store using environments.



Notice how the type definition of ‘Tree’ serves to unify the types across the persistent store
and allows type checking to be performed statically and separately in each of the programs.
Note that the type information must be stored in the environment so that the system may
check that the object in the environment is of the expected type. In order to perform this
check, the type must also be declared in the program which uses the environment. This
check is performed in the use statement.

In general, the persistent store will form a graph consisting of environments and data bound
to those environments. An example of a graph of persistent objects is shown in Figure 2.
The environment at the root of persistence called ‘ps’ contains a few objects ‘a’,‘b’ and ‘c’
and two environments called ‘trig’ and ‘al’. The environment ‘trig’ contains a few objects
which we will assume to be the normal trigonometric functions. This environment is also
reachable from the environment called ‘al’.

ps

a b ctrig al

env

sin cos tan exp log
env

trig
env

Figure 2. The persistent store as a graph of environments.

This graph of environments subsumes the function of traditional file hierarchies, replacing it
with a strongly typed data structuring mechanism. This mechanism, unlike files, may be
used to store structured data of arbitrary complexity. This ability is stated by Balzer in [5] to
be one of the most important features required of new generation operating systems.

4 . 9 Supporting incremental construction

The way in which environments may be used to support incremental system construction is
now examined. Suppose that the persistent store is arranged at some time in the manner
shown graphically in Figure 2. The user may then carry out the following dialogue through
an interactive compiler. After the completion of the dialogue, the persistent store will be
arranged as shown in Figure 3. The effect of the interaction is to place a new function called
‘square' in the environment called ‘al’. Notice that the procedure called ‘square’ has the
location of the procedure ‘exp’ bound into it. Thus, if the programmer assigned another
value to the location ‘exp’, the function ‘square’ would also change.



! Only ‘ps’ is in scope at the beginning of the session.
! First introduce the environment ‘trig’ into the local env.

let trig = use ps as trig: env in trig
! Next, declare ‘square’ in the local environment,
! which uses ‘exp’ from the environment ‘trig’.

let square = use trig as exp:proc( int,int -> int ) in
proc( a : int -> int ) ; exp( a,2 )

writeint( square( 7 ) ) ! Test out ‘square’

49
! The system writes out 49; we are satisfied and so save
!   ‘square’ in the environment called ‘al’.

use ps as al : env in
begin

in al let square := square
end

Example 15. The incremental construction of a program.

ps

a b ctrig al

sin cos tan exp log

env

env

trig square
env

closure for exp closure for:
proc( a : int -> int );
exp( a,2 )

Figure 3. The persistent store after the interaction
in Example 15.

Sometimes, this behaviour is undesirable and the programmer may wish to ensure that
future changes to the system cannot affect the program he or she has constructed. In such a
case, the programmer would project out of the environment to yield a value rather than a
location. This would allow a static R-value binding to be made. In such a situation,
Example 15 could be rewritten as shown in Example 16.



let trig = use ps as trig: env in trig
let exp = use trig as exp:proc( int,int -> int ) in exp

let square = proc( a : int -> int ) ; exp( a,2 )

use ps as al : env in
begin

in al let square := square
end

Example 16. Alternative version of Example 15.

Here the value stored in the location associated with ‘exp’ is first projected out of the
environment and is then bound into the closure of the procedure ‘square’. If R-value
bindings are used in this way, the procedure closure cannot be affected by changes to the
environment. This style of binding is therefore safer than the L-value binding shown earlier,
but the hidden cost is that it cannot be maintained incrementally and rebinding is necessary
to accommodate change.

The store shown in Figure 3 not only exhibits graph structure in terms of data structures and
environments, but also with respect to code. Procedures in a persistent environment, such
as the one described here, also form a graph structure. One procedure may be bound to
many programs. This kind of architecture allows for a higher degree of software reuse [17]
than conventional software architectures.

Example 15 shows that by a short interaction with the system, new definitions may be
incrementally added to it. Similarly, if the programmer wished to change a definition this
could be achieved by assigning to a location within an environment. For example, the
programmer may wish to change the implementation of square, defined in Example 15. This
may be achieved by the interaction shown in Example 17.

use ps as al : env in
use al as square : proc( int -> int ) in

square := proc( a : int -> int ) ; a * a

Example 17. Incremental changing of a program.

5 . Conclusions

The problems of building large systems have been known for many years. If these
problems are to be overcome, mechanisms to control names and control system evolution
must be provided in programming systems. These two areas have been observed as being
of particular importance in the PISA project [2]. For example, during the development of
the persistent object browser [10], a design flaw was discovered and the knowledge that the
browser had gained had to be discarded. This was necessary because of the way that the
system had been bound.

Control over binding mechanisms is extremely important in large persistent information
spaces, as has been foreseen by myself and others [1,4,5,6]. In response to these
problems, the datatype environment was introduced in order to provide a mechanism that
would allow incremental construction and change within a large system.



The environment mechanism provides a contextual naming scheme that can be composed
dynamically. The use clause may be nested and environments involved calculated
dynamically or statically, thus permitting the name bindings to be constructed dynamically.
This does not yield full dynamic scoping in the Lisp sense, since all objects in the individual
environments are statically bound. The technique complements the block structure in the
language and completes the context mechanisms required for persistent information spaces.

Environments therefore provide the programmer with a number of binding mechanisms and
styles with which to bind objects. Used with care, this mechanism provides the power
needed to evolve large flexible persistent object stores containing valuable information.

Thus, environments provide a way of smoothly integrating the programming language with
the programming environment. They also provide a structuring mechanism over the name
space which is similar to the structure imposed by directories on a file system.

6 . Further work

Problems still remain in this area, in particular, how functions like ‘ls’ in Unix may be
expressed in a strongly typed system [3]. The problem here is that functions like ‘ls’ operate
in an untyped environment. It is difficult to see what type a function like ‘ls’ would have in
a strongly typed environment. Another difficulty in this area is that the names stored in
environments are names and not strings. If functions like ‘ls’ are to be written over
environments some capability is necessary to turn names into strings and vice versa.

The implementation of environments in the Napier system is ongoing and is expected to be
complete soon. The Napier language also features first class procedures, objects with
universal and existential types, graphical objects and, most importantly, orthogonal
persistence.
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