
On the Construction of
Persistent Programming Environments

Alan Dearle

Computational Science Department
University of St. Andrews

St. Andrews

March 1988

Acknowledgements

A number of people must be thanked for their help during this project. Firstly, Professor
Ron Morrison, my supervisor, for his constant patience, advice, encouragement and good
humour. Fred Brown, my sparring partner for the last five years, who is always ready to
"fix" problems that arise. Richard Connor, for his part in implementing the Napier type
checking module and for his suggestions on parametric polymorphism. The final member
of the PISA project at St. Andrews, Ray Carrick, must also be thanked for his part in the
research effort.

Others that must be mentioned are: Professor Malcom Atkinson for, amongst other things,
inventing persistence, Dr. Paul Cockshott for his advice in "the early days" and Pete
Bailey whose mark is unmistakeable on parts of the PS-algol and Napier abstract machine.

The Apple Computer Corporation also deserve a mention for producing an excellent
document production vehicle.

Finally, I would like to thank my wife, Fiona, who proof-read this thesis and put up with
my elations and depressions during the period of writing.

Abstract

This thesis presents research into the construction of persistent programming systems.
Much of the thesis is concerned with the design and implementation of persistent
programming languages, in particular PS-algol and Napier. Both languages support
machine independent vector and raster graphics data types. Napier provides an
environment mechanism that enables the incremental construction and binding of
programs. Napier has a powerful type system featuring parametric polymorphism and
abstract data types.

The machine supporting Napier, the Persistent Abstract Machine, is investigated. The
machine supports an efficient implementation of parametric polymorphism and abstract
data types.The Persistent Abstract Machine has a layered architecture in which permits
experimentation into language implementation and store design.

The construction of compilers in a persistent environment is explored. A flexible
compiler architecture is developed. With it, a family of compilers may be constructed at
relatively little cost. One such compiler is the callable compiler; this is a first class data
object in the persistent environment. The uses of such a compiler are explored, in
particular in the construction of an object browser.

The persistent object browser introduces a new software architecture that permits adaptive
programs to be constructed incrementally. This is achieved by writing, compiling and
linking new procedures into an executing program. The architecture has been sucessfully
applied to the construction of adaptive databases and bootstrap compilers.

Contents

1 Introduction 1
1.1 Writing Less Code 1
1.1.1 Language Design 2
1.2 Avoiding Rework 3
1.2.1 Uniform Treatment of Program and Data 4
1.2.2 Software Reuse 4
1.3 Using Integrated Project Support Environments 4
1.3.1 Public Common Tools Interface 6
1.3.2 Ada Programming Support Environment 6
1.4 Object Storage 6
1.4.1 Identification of Persistence 8
1.4.2 Persistence in PS-algol 9
1.5 The Napier System 9
1.6 Persistent Information Space Architecture 10
1.7 Thesis Browsing 11
1.7.1 Language Domain 11
1.7.2 System Building Domain 11
1.7.3 Applications Domain 12
1.8 Conclusions 12
2 Environments 13
2.1 Introduction 13
2.2 Contextual naming 13
2.3 Bindings 15
2.4 Programming in the large 16
2.5 Static Contexts 16
2.6 Language Approaches 16
2.6.1 Galileo 17
2.6.2 Name Spaces 18
2.6.3 Program Editors 20
2.7 Environments 20
2.7.1 Type checking 22
2.7.2 Binding to environments 24
2.7.3 Simulation of scope 25
2.7.4 Binding to the persistent store 26
2.7.5 Supporting incremental construction 27
2.7.6 An Implementation of Environments 29
2.8 Conclusions 31
3 Graphics 32
3.1 Introduction 32
3.2 Pictures 33
3.2.1 Storing a Picture in a Database 37
3.2.2 Retrieving a Picture From a Database 38
3.3 Raster Graphics 39
3.3.1 Pixels 39
3.3.2 Images 39
3.3.3 Raster-op 41
3.3.4 Aliasing 41
3.3.5 Colour Mapping 42
3.3.6 Mapping Pictures and Images to Output Devices 44
3.3.7 Fonts and menus 45
3.4 User Interaction 46
3.5 Implementation 46
3.6 Conclusions 47
4 The System Building Domain 48
4.1 Introduction 48

4.2 History 48
4.2.1 The S-algol abstract machine 48
4.2.1.1 Object management 48
4.2.2 The PS-algol abstract machine 49
4.2.2.1 Frames 50
4.2.2.2 Addressing 50
4.2.2.3 Objects 50
4.2.2.4 The Standard Frame 51
4.2.2.5 The I/O system 51
4.2.2.6 Persistent Object Support 51
4.2.2.7 Pids and Lons 52
4.3 The Persistent Abstract Machine 52
4.3.1 Design Principles 52
4.3.2 Heap Objects 53
4.3.3 PAM Object Formats 54
4.3.3.1 Strings 55
4.3.3.2 Files 55
4.3.3.6 Code Vectors 57
4.3.3.7 Stack Frames 58
4.3.3.8 Abstract data types 59
4.3.3.9 The Root Object 59
4.3.4 Stable Storage 60
4.3.5 The Instruction Set 61
4.3.6 Types 61
4.3.7 Support for Infinite Unions 62
4.3.8 Implementation of Variants 63
4.3.9 Polymorphism 64
4.3.9.1 First Class procedures 65
4.3.9.2 Parameter Passing 65
4.3.9.3 Returning values 66
4.3.9.4 Structure Creation 67
4.3.9.5 Implementation Approaches 67
4.3.9.6 P.A.M. Implementation of Polymorphism 67
4.3.10 Abstract Data Types 70
4.3.10.1 Potential Problem Areas 71
4.3.10.2 P.A.M. Implementation of abstract data types 72
4.3.11 Debugging Support 72
4.4 Conclusions 73
5 Abstract Program Graphs 74
5.1 Introduction 74
5.2 Traditional Compilation Systems 74
5.3 Persistent Systems 75
5.4 Persistent Architecture Intermediate Language 75
5.4.1 PAIL graphs 75
5.4.1.1 Basic tree structure 76
5.4.1.2 Symbol tables 76
5.4.1.3 Control 77
5.4.1.4 Assignment 77
5.4.1.5 Store Allocation 78
5.4.1.6 Indexing 79
5.4.1.7 Scoping 79
5.4.2 Support for system building 80
5.4.2.1 Code Generation 81
5.4.2.2 Debugging 82
5.4.2.3 Optimisation 82
5.4.2.4 Syntax Directed Editing 85
5.4.2.5 Distribution 86
5.4.2.6 Protection 86

5.5 Conclusions 87
6 The Compilation Environment 88
6.1 Introduction 88
6.2 Advantages of using a persistent environment 88
6.3 Architecture Composition Rules 89
6.3.1 I/O independence 89
6.3.2 Plug Compatibility 90
6.3.3 Binding Independence 93
6.3.4 Information Hiding 94
6.4 Compiler Composition 95
6.5 First Class Compilers 97
6.6 Interactive Compilers 100
6.7 Conclusions 101
7 Browsing 102
7.1 Introduction 102
7.2 Graphics 102
7.3 A Simple Browser 102
7.4 A First Class Compiler 105
7.5 Binding 106
7.6 Fire Walls 108
7.7 Performance 108
7.8 Persistence 109
7.9 Browser Software Architecture 109
7.10 Browsers as a bootstrapping tool 110
7.11 Adaptive Databases 110
7.12 Conclusions 111
8 Conclusions 112
8.1 Programming Language Design 112
8.1.1 Graphics 112
8.1.2 Environments 112
8.1.3 Polymorphism 113
8.2 Abstract Machine Design 113
8.2.1 Modularisation 113
8.2.2 Uniform Object Format 114
8.2.3 Parametric Polymorphism 114
8.3 Compiler construction 114
8.3.1 Modularisation 114
8.3.2 PAIL 114
8.3.3 Optimisations 114
8.3.4 Callable Compilers 115
8.4 Adaptive Object Browsers 115
8.5 Future Research 115
8.5.1 Windows 115
8.5.2 Browsing Information Graphs 116
8.5.3 Debugging 117
8.6 Finally 117
Appendix 1 118
References 123

1 Introduction

The constant decrease in the cost of hardware components has given rise to a proliferation
of computer systems in every aspect of everyday life. Kettles, toys, aircraft, libraries,
banks and nuclear power stations are all affected by the so called computer revolution.
The dramatic reduction in the cost of hardware is unparalleled in the industrial revolution.
In no other area have production costs halved and power doubled in an unerring four year
cycle [bro87]. Consequently, it should be of no surprise that the software industry has
failed to match this explosive growth.

The software crisis of the 1960's [bux69] brought into focus the fact that hardware
development was advancing faster than the ability to produce software. The crisis was
catalysed by the availability of the newly available third generation computer hardware. It
was capable of providing hardware support for sophisticated systems at moderate costs.
However, the production of software systems could not match the demand caused by the
arrival of these systems.

Since the 1960's the problem has not diminished, in fact, software production costs have
increased in the intervening period. This is largely due to the labour intensive nature of
software production. Software cannot be mass produced like cars[weg84]. Unlike cars, no
two pieces of software are identical, since if they are, they are merged into a single
abstraction.

The real costs of software production are now astronomical. It has been estimated [joe83]
that, in America, software production and maintenance now costs 2% of the gross national
product. Therefore even small savings made to the software life cycle will result in a vast
reduction in economic expenditure.

Boehm [boe86] gives four strategies for improving software productivity:

1. Write less code
2. Get the best from people
3. Avoid re-work
4. Develop and use integrated project support environments

Getting the best from people is the domain of managers. The other three topics provide the
thrust for the work documented in this thesis. This view point is retrospective since
Boehm had not given his address when the work was started.

1.1 Writing Less Code

A program satisfying some specification may be produced in less fewer of code if written
in a high level language rather than a low level one. For example, a ten line program
written in Ada may be equivalent to a few hundred lines of assembly code. An IBM
survey [ibm78] found that programmers produce approximately the same number of lines
of code per day no matter what languages are used. This in turn means that the cost of
program is directly proportional to its size. Therefore if a high level language is used to
produce a product fewer programmer days are required to produce it - resulting in lower
costs.

The provision of programming languages with a high degree of compile time type
checking allows errors in programs to be detected early in the software life cycle. Systems
written in languages with strong type systems take longer to write but contain fewer
semantic errors [boe87]. This leads to less time being needed in the testing and debugging
phase of software development and, perhaps most importantly, the resulting code requires
less maintenance.

1

The production of a piece of software is highly labour intensive and its cost is directly
proportional to the amount of programmer time that is required to produce it. It is
therefore essential to find ways of reducing the amount of programmer time required to
produce software. The use of strong type systems is costly in terms of machine time.
Machines must perform more checks to ensure a program is well typed but this results in
less time being spent by the programmer during the potentially expensive debugging
cycle.

The advantages of using very high level languages motivated the U.S. Department of
Defense to adopt Ada [ada83] as a standard language. One of the design aims of Ada was
to provide a language in which the specification of programs was indistinguishable from
their implementation. This has also been the aim of researchers designing so called
executable specification languages [gog82,kre80].

The use of prototyping has been compared with specification techniques in experiments
[boe87]. In these experiments it was found that the use of prototyping resulted in 40% less
code being produced with 40% less effort. Furthermore, the resulting products were easier
to understand and therefore maintain.

Balzer [bal87] stresses the need to be able to evolve prototypes into an operational system
rather than discarding prototypes. This result suggests that the programming systems we
develop should support a smooth transition between prototypes and products.Therefore, an
incremental development facility is required to support prototyping Prototypes are highly
complex, structured objects requiring more sophisticated support tools than a mere text
editor. In general, such incremental development requires an integrated project support
environment (IPSE).

The production of software is an expensive labour intensive activity. Consequently, any
technology that allows a given problem to be solved by writing less code than other
methods will lead to the production of cheaper software. Good candidate technologies are:
strong type systems, high level languages and integrated project support environments.

1.1.1 Language Design

The provision of high level languages leads to a reduction in programmer time spent on a
given problem. A high level programming language should be capable of supporting the
development of a broad spectrum of applications,

1. development of data models
2. generic toolsets
3. object based systems
4. adaptive systems
5. user interfaces

In order to perform these tasks most programming systems depend on a plethora of
different mechanisms, these include:

1. command languages
2. filing systems
3. compilers
4. interpreters
5. linkers
6. symbolic debuggers
7. DBMS sublanguages
8. graphics libraries

The diversity of these mechanisms increases the cost of maintaining even the simplest
software systems. The approach taken in designing PS-algol [ps87] and its successor,

2

Napier [mor88b] is to attempt to provide a language capable of supporting all of the needs
of the application programmer. The resulting simplification should result in an overall
saving throughout the life cycle of the program [atk83].

Simplicity is the cornerstone of programming language design. The addition of new
features without integrating them into an overall framework merely increases the
complexity of the system. This complexity often overloads the programmer beyond his or
her capability. In contrast, a simple language allows the programmer to concentrate on the
inherent problems of the task and not on the mapping between the solution and the
programming vehicle. This view was epitomised by van Wijngarden [vw69] who states,

In order that a language be powerful and elegant it should not contain many
concepts.

This message is restated by van Wijngarden as,

power through simplicity, simplicity though generality

He argues that languages are too complex and that complexity is due, at least in part, to
languages being too restrictive. The PISA [atk86b] languages are designed using three
principles attributed to Landin [lan66], Strachey [stra67], Tennant [ten77] and Morrison
[mor73].

The Principle of Correspondence: the use of names should be consistent within a
system. In particular there should be a one to one correspondence between the
method of introducing names in declarations and parameter lists

The Principle of Abstraction: all major syntactic categories should have
abstractions defined over them. For example, functions are abstractions over
expressions.

The Principle of Data Type Completeness: all data types should be first class
without arbitrary restriction on their use.

The power is derived from the generality of these three principles, the simplicity from the
lack of deviation from them. The ultimate goal is to produce a totally integrated
environment capable of supporting the needs outlined above. In such an environment the
user never has to step outside it for any computational task. Central to this ideology is the
provision of orthogonal persistence, which is discussed below.

1.2 Avoiding Rework

Parnas cites information hiding as one of the most effective ways of avoiding rework
[par79]. If implementation decisions are hidden inside module interfaces, ripple-through
effects may be avoided when changes are made to one part of a system. This approach has
proved extremely effective in eliminating rework during system evolution.

The concept information hiding is central to the object-oriented methodology which is
based on ideas originally developed in Simula [nyg70]. In this paradigm, methods may
produce or modify members of a class of objects. Wegner [weg87] defines object-oriented
languages as having three essential features:

1. the ability to define objects as a set of operations and a state that remembers
the effect of operations;

2. objects may be categorised by type; and

3. there is an inheritance mechanism for defining superclasses and subclasses.

3

The support of objects, which contain both methods (procedures) and instances (data) is
in contrast with the traditional separation of code and data.

1.2.1 Uniform Treatment of Program and Data

In many programming languages such as Algol 60 and Pascal [wir73] procedures may
only be declared, passed as parameters or executed. As Zilles [zil73] and Morris [mor73]
point out, in order to exploit the device to its full potential it is necessary to promote
procedures to full first class data objects. That is, to give them the same civil rights as any
other data object in the language such as being assignable, the result of expressions,
procedures and blocks and being elements of data structures. This is in accordance with
the principle of data type completeness.

The power of first class functions has long been known to lisp [mcc62] programmers, Lisp
was the first programming language to have first class procedures. The technique of
applicative programming depends on the ability to have procedures as first class data
objects.

The main advantage of providing first class procedures as data objects is that there is a
simple and well understood mechanism for system construction. Therefore no special
provision needs to be made for the provision of libraries and loaders. Separate compilation
may also be achieved by running procedures (a compiler) that introduce procedures into
the environment. This technique is discussed fully in chapter 6. The power that may be
extracted from first class functions is fully discussed in [atk84] and [mor85].

The implementation of languages with first class functions provides some problems not
otherwise encountered. Solutions to these problems are fully discussed in chapter 4

1.2.2 Software Reuse

The cheapest way of obtaining software is to reuse code that has already been produced.
The most extreme form of this reuse is purchasing "off the shelf" packages. If software is
to be reused successfully, it is important that mechanisms are provided in the environment
to support reuse. Several questions arise over how this support may be provided, some of
these are:

1. How do you write programs that may be reused?
2. How do you store reusable programs?
3. How do you catalogue reusable programs?
4. How do you find a program to reuse?

The provision of a polymorphic type system may be used to facilitate the writing reusable
software [mor87a]. To support the reuse of software the system must be capable of storing
the polymorphic and other functions that are produced. It is important that the storage of
code preserves the type information associated with it or many of the advantages of using
a strong type system may be lost.

Storing a potentially reuseable piece of code is of little use unless someone else may find
it and reuse it. One of the most effective ways of discovering what code is available to
reuse is by browsing over it. This technique has been used successfully in the design of the
Smalltalk-80 [gold83] system and much its success may be attributed to it. Browsing has
proved to be of utility in browsing strongly typed objects in PS-algol. The PS-algol object
browser is discussed in chapter 7.

1.3 Using Integrated Project Support Environments

If IPSE's make software cheaper to produce it must be ascertained that the definition of an
IPSE is clear. Boehm distinguishes an IPSE from a collection of ad-hoc tools by the

4

amount of gross integration available [boe86]. The tools available in toolkits such as Unix
work in isolation. Tools operate in isolation with no knowledge of other tools or of any
special data structures being used. On the other hand in an IPSE the tools share common
schemata. Each has specialised knowledge of the data being manipulated and tools may
even use other tools in the system. The IPSE operates as a central depository where
objects being manipulated may be found and where schema information is stored.

Systems vary considerably in the amount and nature of integration that they support.
Consider the Macintosh toolset [mac86] and the Unix programming environment [ker79].

The Macintosh toolset has regular sub-systems with well documented interfaces and
conventions. For example, a set of facilities are provided for managing graphics data and
another for managing system events. The application developer may combine these
facilities to produce complex applications with ease. The toolbox functions interface most
smoothly with Pascal programs although they may be used from programs written in other
languages with a little more trouble.

The Unix environment lacks the fine grain system integration of the Macintosh. Libraries
of functions are provided to support various programming activities but do not have the
coherent structure of the Macintosh toolkit. However, Unix provides much more global
integration than the Macintosh. Tools are provided for a variety of tasks, for example,

C specific tools: cc, dbx, lint
documentation tools: spell, troff, wc
configuration management tools: make,SCCS
help tools: apropos,man

These tools may be combined by the extremely powerful mechanism of the pipe. Pipes
allow the output of one process to be connected to the input of another. Programmers may
chain tools together to provide yet more powerful ones.

Unix does provide libraries of functions, typically these libraries provide mechanisms to
support tasks such as mathematical functions and I/O. When a programmer wishes to use
these libraries a linker is employed to resolve addresses. The linker produces a new
program with copies of the library functions bound into the program. This means that if a
function is heavily used many copies of it exist in the system resulting in large modules of
executable code. Furthermore, if a library function is changed for any reason all the code
that uses that function must be relinked. This is an expensive mechanism for supporting
software reuse.

The success of Unix is largely due to the uniform I/O structure of which pipes are a part.
However, with this I/O structure comes one of the weaknesses of Unix. That is the fact
that the data supported by the I/O system is not structured. The character stream is an
extremely low level communication medium. If two tools are to operate on the same
structured data the data must be linearised, passed down a pipe and then reconstructed.
This process is expensive in both CPU time and programmer time since the mappings
involved are often complex. The restrictions imposed by this architecture are one of the
major motivations in moving towards object stores.

The need to map structured data to flat data and vice versa is aggravated in Unix by the
lack of any ability to share data in primary memory. In most Unix systems it is impossible
to share data structures in RAM between different processes. The first level of sharing
data is therefore at the file system level which requires data to be mapped via the I/O
system.

Due to the relative expense of process invocation in Unix, tools tend to be large objects.
The tools are generally written in the language C and invoked from the command
language known as the shell [bou78]. This results in many useful pieces of code being

5

trapped within tools. Reuse in Unix is therefore good at the global level but poor at the
subsystem level.

1.3.1 Public Common Tools Interface

The Public Common Tools Interface (PCTE) is an architecture designed to provide
several important facilities to application developers, these include:

1. Reduce development costs of tools.
2. Facilitate the exchange of software tools.

3. Allow integration of tools in comprehensive, uniform and homogeneous
Software Engineering Environments

The above considerations lead the designers naturally to the realization that a unified
framework is required to support such an architecture. Furthermore, this architecture needs
to be based on powerful mechanisms, especially in the area of object management.
However, one of the criteria placed upon the designers of PCTE was that a smooth
transition must be possible between current programming practices and the use of PCTE.
Therefore, the system had the limitation that initially tools had to operate in the Unix
environment. The limitations of this design decision have already been discussed.
Nevertheless, the realisation that a comprehensive, uniform and homogeneous
environment is needed to support IPSE's is important.

1.3.2 Ada Programming Support Environment

The developers of Ada recognised that in addition to a high level language a programming
support environment was also necessary. Without such an environment, programs written
in a high level language must depend on operating system facilities. This in turn reduces
the portability advantages of using a high level programming language.

Another strong motivation for the provision of a common support environment was the
observation that the size and complexity of support software often exceeds the size of the
embedded system being supported. If the environment is shared between many developers
this high support cost may also be shared resulting in a reduction of the total software cost.

A number of constraints were placed on the design of the APSE Architecture [dod83].
These constraints are similar to the constraints placed upon the design of the Persistent
Abstract Machine although the motivations were slightly different. To achieve portability
the following constraints were made upon the APSE design:

1. All tools must be written in Ada

2. The APSE must be structured in layers, each layer being dependent on only
the subsidiary layer.

3. One layer, the kernel layer, must provide access to a system database and
facilitate communications

1.4 Object Storage

Boehm cites the provision of a project master data base or persistent object base as one of
the important features distinguishing an IPSE from a collection of ad-hoc tools. The need
for a uniform, homogeneous object storage facility is also identified by the PCTE and the
ADA Apse designers.

Programming languages normally have little support for the maintenance of long term
data. The only concession made to this requirement is usually the provision of a file data

6

type. Therefore, the programmer is faced with the task of mapping data onto long term
storage; this is usually provided by the file system or DBMS. The mapping of data
between long and short term storage is expensive, both in terms of programmer design
time and program run time. In 1978, Atkinson [atk78] recognised this problem and
isolated a property of data known as persistence.

Persistence is defined to be the length of time for which data exists and is usable [atk83].
It is therefore an abstraction over a physical property of data; the length of time it is kept.
Traditionally, programming languages partition data into two categories:

1. data whose lifetime does not exceed program invocation
2. data whose lifetime does exceed program invocation

If data falls into the first category, it is managed entirely by the programming language.
Programming language designers have developed many different methods of structuring
this data, these vary from relatively simple objects such as arrays to more complex ones
such as abstract data types.

However, if data falls into the second category it is managed by a file system or a database
management system. Curiously, a completely different set of modelling techniques have
developed to structure long term data. In this category, the methods adopted include
relational [cod70], hierarchical [loc78], network [tay76] and functional data models
[shi81].

These two views of data have certain disadvantages. Firstly, there is usually a considerable
amount of code, typically 30% of the total [ibm78] concerned with transferring data to and
from files or DBMS. A large amount of space and time is taken up by code to perform
translations between the program's form of data and that used for the long term storage of
data. For example, programmers normally have to flatten and rebuild graphs or trees
modelled in the programming language in order to write them out or read them in from a
file system or DBMS. The time inefficiency incurred includes both programmer design
time and the run-time efficiency of the program.

A second more serious disadvantage of maintaining two forms of data is that data type
protection is lost across the mapping. A structure used to aid comprehension in the
programming language domain may not be available in the DBMS or file system.

In persistent programming languages the issue of what data structuring techniques are
required is separated from a concept known as persistence. For example, in a persistent
system, relations could be used as a logical structuring technique without concern with
their long term storage.

In accordance with the rules of Strachey, Landin and Tennant given above, three new rules
for persistent data have been given in [atk83]. They are:

The Principle of Persistence Independence: The persistence of a data object is
independent of how the program manipulates that data object and conversely a
fragment of program is expressed independently of the persistence of data it
manipulates. For example, it should be possible to call a procedure with its
parameters sometimes objects with long term persistence and at other times only
transient.

The Principle of Persistent Data Type Completeness: In line with the principle
of data type completeness all data objects should be allowed the full range of
persistence.

In a persistent system the use of all data is independent of its persistence. This notion of
persistence may be extended to abstract over all the physical properties of data, for

7

example, where it is kept, how long it is kept and in what form it is kept [mor87b]. The
use of the persistence abstraction removes the need to explicitly program for the
differences in the use of long and short term data.

Thus, a programming language that supports persistent data objects provides the
homogeneous object storage facility required in order to construct integrated project
environments. Indeed, the ability of a persistent store to transparently manage the long
term storage of complex data objects makes it an ideal vehicle for building many
applications and indeed, Atkinson's original motivation for investigating persistence was
to support computer aided design (CAD) systems.

The problems in CAD systems are similar to the ones facing the designer of an IPSE. The
most obvious similarity is the need to share potentially large amounts of structured
information which may persist over arbitrary periods of time. This ability of a persistent
store is in marked contrast to the unstructured byte streams supported by Unix. Another
similarity is the inherent complexity of the problem domain. In such systems the
management of long term data often makes a clean design, with the corresponding lower
software maintenance costs, extremely difficult.

The problems associated with scale are often overlooked. Both CAD systems and IPSE's
are large, complex pieces of software. If a system is small it is easy to maintain and
understand. Systems such as those discussed are so large and complex that it is almost
impossible to understand all of them except at the highest levels of abstraction. A
persistent system must therefore provide support for programming in the large as well as
programming in the small.

The persistent store serves as a unified repository of the entities created during the
software development process. A persistent store is therefore an ideal vehicle for the
construction of IPSE's [mor85] and other large systems.

In order to provide the necessary savings in software costs the programming languages
used must be as high level as possible. Persistence should, therefore be an orthogonal
property of data. The language must support the reuse of code. This may be achieved by
the provision of procedures as first class data objects that may be stored in the persistent
store combined with a type system that includes parametric polymorphism. The language
should also provide mechanisms such as abstract data types to allow information hiding.
Incremental system construction and mechanisms to control change must also be
supported if the language is to be used for the construction of large software systems.

Two programming language systems have been used as vehicles to explore the problems
outlined above. Both languages, PS-algol and Napier, treat persistence as an orthogonal
property of data. The following sections introduce the research areas addressed in this
thesis.

1.4.1 Identification of Persistence

There are three main methods for identifying this persistent data:

1. All data persists.
2. Only data explicitly marked persists.
3. All data reachable from one or more roots will persist.

The languages PS-algol [ps87] and Napier [mor88b] both use the third method of
identifying persistent data, the reasons for this are discussed in [bro88]. The
implementation mechanisms behind this are discussed in chapter 4. How persistence
appears at a language level is discussed below.

8

1.4.2 Persistence in PS-algol

In the language PS-algol, persistence is provided by an extendible number of roots known
as databases. Every object reachable from the transitive closure of a database is persistent.

A named database may be opened for reading or writing by a function called
open.database. It is defined as follows

let open.database = proc(string name, password, mode -> pntr)

This says that the procedure open.database takes three parameters of type string. The first
is the name of the database which is to be opened, the scond is the database password. The
third is the mode in which it is to be opened. Acceptable modes are "read" or "write". The
procedure returns a pointer. In PS-algol the datatype pntr is comprised of the infinite
union of all labelled cross product types. By convention databases always point to an
associative structure, implemented within the language, known as a table.

In PS-algol a primitive transaction mechanism is provided called commit. Commit makes
all changes made to the persistent store permanent. If a user operates against the persistent
store and does not call commit no permanent changes are made to the store. Therefore not
calling commit from within a program is equivalent to aborting a transaction. Commit is
an atomic action - that is it either happens or it does not. Commit is defined as follows,

let commit = proc(-> pntr)

The pointer returned by commit is nil if the commit is successful or a pointer to a structure
class, called error.record, containing error information. The class error.record is defined in
PS-algol by writing down the following structure class definition.

structure error.record(string error.fault;
error.explain ;
error.reason)

In practice, this is predefined by PS-algol's prelude code. If a commit fails the fields of
this structure contain the reason for the failure. This includes trying to write to a database
opened in read mode, databases being locked by other users and various system errors
such as running out of disk space.

1.5 The Napier System

The persistent system is itself a large piece of software. The methodologies that apply to
systems constructed within the persistent environment also apply to the construction of
that environment. During the development of the PS-algol system boundaries between
different parts of the system became blurred. This was mostly due to the fact that the
system was a research vehicle and grew in an uncontrolled manner. Development and
research using the PS-algol system eventually became difficult due to this.

Much of the Napier system is similar to the PS-algol system, however, the system has
been re-engineered breaking it into individual modules. Each of the modules in the system
presents a functional interface to other modules in the system and uses the functions
presented at the functional interface of other modules.

For example, in the PS-algol system all the modules in the system knew about the
structure of objects. The compiler needed to know about them in order to plant code, the
interpreter to execute instructions, the garbage collector so it could reclaim space and the
persistent object manager so that objects could be saved. This meant that in order to add a
new data structure to the system all the modules had to be changed. This task was

9

aggravated by the inherent complexity of some modules, in particular, the persistent object
manager.

If the observations of Boehm and Parnas are correct, the modularisation of the persistent
system will result in reduced maintenance costs throughout the software life cycle.
However, this re-engineering process was not performed purely as an exercise in software
cost saving. The Napier system is an experimental one, it is not intended as a complete
commercial implementation. The Napier system must therefore act as a research test
bench on which various experiments may be performed. The modularisation of the system
allows experiments to be carried out in language design, type systems, programming
environments, abstract machine design, garbage collection, compiler design, optimisation
techniques and object management to be performed concurrently.

The Napier system achieves this by providing a framework of plug compatible coherent
subsystems. Each layer in the system is insulated from each other layer in the system by
the functional interface it presents. Components may therefore be freely substituted for
each other provided that the functional interface is met. The experimenter may therefore
set up any mixture of the components that are available. Thus, not only facilitating
experimentation in each of the fields individually but also allowing assessment of the
interaction of different strategies. This architecture may be viewed diagrammatically
below.

High level languages

Heap of Persistent Objects

P.A.I.L.

Stable Storage

Persistent Abstract machine

Code generator

figure 1
layers in the Napier system

1.6 Persistent Information Space Architecture

The PISA architecture may be viewed as being divided into four domains [atk86b]:

1. The Store domain
2. The Language Domain
3. The System Building Domain
4. The Application Domain

10

The Store Domain is at the lowest level in the architecture. The storage architecture in
PISA is stable, that is it is resilient to faults such as hardware failure and power loss. The
store is object oriented in that it supports the storage of autonomous objects. Objects may
reference other objects and in general the store will form a graph structure. It may be
implemented on disparate computing engines, therefore the store domain implements a
distributed stable object store.

The language domain provides the facilities to construct applications in the applications
domain. The languages must support all programming activity including the control of the
programming environment. The major research issues in persistent languages are: finding
type systems rich enough to capture all uses of data, discovering binding mechanisms
suitable for modelling adaptive long lived data and discovering ways of overcoming the
complexity inherent in large systems.

The system building domain supports the construction of the persistent language
environment. The tools currently available in this domain are:

1. Compiler Components
2. Support for compilation and execution merging
3. Support for abstract program graphs
4. Persistent Abstract Machine
5. Demand driven optimisation

The top level in the architecture is the applications domain. The applications domain
provides support for the construction of application programs. This domain includes
generic tools which operate over a range of different types and data. It also provides
adaptive programs that may modify their behaviour to suit data that had not been
constructed when the component was implemented. These adaptive components are
considered to be of importance for large scale data manipulation.

1.7 Thesis Browsing

The thesis is broadly divided into three sections corresponding to the language domain,
the system building domain and the application domain. Chapters two and three discuss
the language domain, four, five, and six discuss the system building domain and chapter
seven discusses an experiment in the application domain.

1.7.1 Language Domain

The Persistent Information Space Architecture (PISA) languages are strongly typed
languages with a high degree of compile time type checking. They are also required to
support their own environment. The requirements for such a class of languages are
investigated in chapters 2 and 3.

The PISA languages provide machine independent raster and vector graphics. Chapter two
describes the support for graphical operations in the PISA languages and discusses the
data types provided and the operations that may be performed on them.

One of the aims of the PISA project was to provide better control of complexity in large
systems, in particular, to support evolution of programs and data. One important aspect of
this is the control of names and bindings within the system. Chapter three addresses these
problems showing how they have been tackled in the past and proposing a new method of
tackling the problem.

1.7.2 System Building Domain

Chapter four introduces the system building domain. This thesis concentrates on three
areas within that domain they are: abstract machine design, intermediate code

11

requirements and compilation system architecture. These are discussed in Chapters four,
five and six respectively.

Chapter four concentrates on the design of the Persistent Abstract Machine (PAM). The
design decisions incorporated in the machine are outlined. Of particular importance is the
modular design of the machine allowing concurrent experiments in several areas without
major reconstruction. For example, the languages supported are independent of the
machine, as is the storage architecture discussed in [bro88]. PAM supports languages with
block level retention. This style of architecture is ideal for supporting object oriented
languages.

Chapter five introduces the Persistent Architecture Intermediate Language (PAIL). The
provision of such a language is an engineering decision in order to support many activities
carried out within PISA. It is shown how PAIL may be used as a protection mechanism, as
an optimisation tool and as a debugging aid.

The architecture is based upon the persistent languages. These languages are supported by
compilers resident in the persistent information space and are therefore written in the
persistent languages. The implementation of this reflexive system is discussed in chapter
six. In it, compilers that may be called as functions from within the persistent environment
are discussed.

1.7.3 Applications Domain

The applications domain comprises all the programs written within the persistent
environment. For example, the compilation architecture discussed in the system building
domain may be considered to be an application program. Another architecture that hovers
between the application domain and the system building domain is the browsing
architecture [dea88] which is discussed in chapter seven. The browser uses the
compilation toolset to incrementally construct programs that operate against arbitrary data
taken from infinite type space of the persistent languages.

1.8 Conclusions

The Napier system is still incomplete, the techniques discussed in this thesis provide the
framework for the construction of a totally integrated environment. The lessons learned
from building the PS-algol system are now being put to good use in this task. The final
chapter provides a slightly speculative view of how these components may be combined to
provide a fully integrated environment.

12

2 Environments

2.1 Introduction

The primary objective of the research of the Persistent Information Space Architecture
(PISA) project is stated, in [atk86b], as:

the exploitation of the opportunity provided by the dramatic shift in the cost of
hardware relative to software, the removal of the incoherence between the various
programming mechanisms and thus, the provision of a better environment for
exploiting new computer systems. Specific technical objectives thus include:

1. Controlling complexity by establishing consistent rules which apply
throughout the design and system, and, by introducing new concepts into
the architecture only very parsimoniously, preferring those new concepts
which encapsulate or abstract existing concepts.

2. Introducing persistent data and separating the issue of what data
structures are best for a program from the issues of identifying and
preserving the data; thereby allowing most file and database data to be
processed using the same language constructs as those used for a
program's local data.

3. Controlling system evolution even though the nature of data including
program is that it's uses are neither parochial nor predictable. In
particular, persistent systems of data and program are to be partially
reconstructable and thus incrementally enhanceable.

In this chapter the language construct, environment, written env will be introduced.
Objects of type env are collections of bindings that have first class data rights. As such
they provide the programmer with a mechanism to control bindings in the system. Such a
mechanism provides a conceptually simple framework for manipulating bindings thus
controlling complexity and system evolution from within a unified language framework.

2.2 Contextual naming

The persistent store is a conceptually unbounded space populated by objects. In such a
space the naming of objects becomes a problem. This may be observed in programming
systems which adopt a simple, flat object naming strategy such as Smalltalk-80 [gold83].
These systems have a single name space in which names may be introduced, resulting in
the use of names being highly restricted by the names that have been previously used.

This problem may be overcome if contextual naming is used. In a contextual naming
scheme names are introduced within some context. Names may be used many times
within a system, one name denoting different things in different contexts. Contexts are
used in everyday life to overcome naming problems, for example, when I say Ron has a
beard to one of my colleagues they know by context to whom I am referring. The same
sentence may mean something different or be meaningless to someone else. For example,
to someone who knows a beardless person called Ron the sentence could be untrue. To a
non-English speaking alien the sentence could contain no meaningful information at all.

Many different contextual naming strategies may be found in the computer systems of the
present day. Some examples of these strategies are:

1. block structure in programming languages;
2. file directories in filing systems; and
3. segments in operating systems.

13

Usually these contextual naming schemes impose a tree structure on naming. For example,
in a block structured programming language the programmer may write,

begin
let a = 7
write a
begin

let a = "hello"
write a
begin

let a = 1.23
write a

end
end
begin

let a = "hi"
write a

end
end

example 1
block structures contexts

This static piece of program may be represented by the following tree:

a = 7

a = "hello"

a = 1.23 a = "hi"

figure 2
A graph of

block structures contexts

Notice that each instance of the clause "write a", displays a different value due to the
imposition of the context tree.

Clearly, this is a special case of the more general case, that of a graph. In general the
persistent object space comprises a graph of objects. The environments which are
discussed in this chapter provide extensible contextual naming on that graph. The
understanding of binding mechanisms and their significance in the persistent environment
is an important consideration in the provision of such contextual naming strategies.
Binding mechanisms are discussed below.

14

2.3 Bindings

Bindings are comprised of a four-tuple [atk85a,mor86a] consisting of:

1. name
2. value
3. type
4. constancy

Thus the constant binding

let a = 7

may be written,

{a,7,int,true}

and the variable binding

let b := "hello mum"

may be written,

{b,"hello mum",string,false}

Bindings may be categorised by the following four properties,

1. whether the binding is to location or value;
2. when the binding is performed;
3. when is type checking performed (if at all); and
4. what scoping is performed.

These categories are examined below.

Bindings may be made either to locations or values. When a binding is made to a location,
it is traditionally known as an L value binding [stra67]. In this kind of binding, the
location does not change although different values may be stored in it. Sometimes,
bindings are made to values which are immutable, this type of binding is known as an R
value binding. Applicative languages such as SASL [tur79] only have this kind of binding.

Bindings may be instantiated statically by the compiler or dynamically by the run time
system. If systems are bound statically many errors may be detected early (at compile
time). Some languages designers consider this safety element so important that their
languages only contain static binding.

However, in order for a dynamic system to evolve a measure of dynamic binding must
exist in the system. If a program is entirely statically bound any change to the program or
data requires the entire system to be recompiled to establish new bindings. This cost is
prohibitively high for large systems. The system must, therefore, accommodate some
dynamic binding in order to accommodate change.

There is a delicate balance between static binding for safety and dynamic binding to
provide for evolution. Both methods of binding are necessary for large scale system
construction and evolution. Consequently, the system must provide for both static and
dynamic binding. In general, one would expect small objects to be statically bound and
large objects to be bound dynamically.

15

Type checking, like the instantiation of bindings, may be performed statically by the
compiler or dynamically by the run time system. Static type checking is generally
performed for one of two reasons; firstly, as an optimisation, checks may be factored out
and types are known, and more efficient code may be produced; secondly, and perhaps
more importantly, as a safety measure. Early type checking detects many erroneous
programs which may cause damage to a system. However, in order to accommodate
change, systems must provide some dynamic typing, in particular, all projections from
union types require a dynamic check.

2.4 Programming in the large

The size of applications that may be constructed using any methodology is limited by the
size of programs we can debug and maintain. When any program reaches a certain size it
is extremely difficult for anyone to understand it. At that point, if not before, the system
must be broken down into separate components, the idea being that each of the
components is of a manageable complexity. Hopefully, someone will be capable of
understanding how these components may be fitted together in order to construct the
required system. This task has become known as "programming in the large".

If programming systems are to be used to support the construction of large systems, they
must provide modular construction facilities. Furthermore, these systems must also
provide easily understood mechanisms for binding modules together. These mechanisms
must be capable of accommodating change.

Software systems are constantly subject to pressures of change. Erroneous systems need to
accommodate change because they require maintenance. Successful software products are
used by people for tasks they were not originally intended to support. Users who like the
basic functionality of a product often bring pressure to bear on designers to support new
tasks which lie outwith the original product specification. Advances or change in hardware
functionality also require change to software products. Often software is ported to a
machine other than the one for which it was first written. It is imperative that software
systems, especially large ones, support incremental change.

2.5 Static Contexts

The block structured tree shown in example 1 is static in nature. That is, the contextual
structure is assembled by the compiler at compile time. Block structure hides information
contained within a block from objects external to that block. Uses of an identifier are
bound to the innermost textually enclosing definition of that identifier. This is known as
static scoping and is in contrast to the dynamic scoping found in Lisp systems [mcc62].

The block structuring paradigm imposes visibility conditions on identifiers. In many
languages, principally in the algol family, block structure and procedural abstraction are
the only mechanisms provided for program structuring. This static imposition of structure
is not sufficiently powerful to support the incremental construction of systems or
incremental change.

The environments of Napier support programming in the large by providing incremental
program construction mechanisms and contextual naming facilities. This problem is
currently being tackled by other researchers. Some of the approaches taken, in the field of
databases and programming languages are discussed below.

2.6 Language Approaches

In the specification language Clear [bur84a], Burstall and Goguen identify the three main
operations on environments as:

16

1. create an empty environment;
2. extend an environment with a name value pair; and
3. find the value associated with a given name.

The operation of adding a new name value pair to an environment is extended to the
addition of a binding quadruple by Atkinson and Morrison in [atk85a]. These operations
may be illustrated by the block structure of the algols. The following examples are in
Napier. A new environment is created in a block structured language by the introduction
of a new block as follows,

begin
end

This is the empty environment containing no bindings. A binding may be introduced into
the environment,

begin
let a = 7

end

The environment now contains the single binding,

{a,7,int,true }

The value associated with a given name is found by looking up that name in the
environment. In Napier, this is achieved by writing down the name of the identifier to
yield the value. In this example, the programmer may write,

begin
let a = 7
a

end

which would yield 7 as the value of the block, the value being determined by the static
scope of the block.

In a later language, Pebble [bur84b,bur84c], Burstall states that programming in the large
will become merely typed functional (applicative) programming. In Pebble, bindings are
treated as first class data objects, where a binding is defined as either a name bound to a
value or a tuple of bindings. However, it is not obvious how applicative languages may
help in the field of incremental system construction since by their very nature they must be
statically bound. For this reason, there will be no further discussion of applicative
languages.

2.6.1 Galileo

The language Galileo [alb85] recognises the need for control of names and values in a
database context. In Galileo, a run time environment is defined to be a mapping from
identifiers to denotable values. Such an environment is obtained by evaluating an
environment expression. For example,

use a := 3 and b := 4 in a + b

yields the value 7. Here, the expression

a := 3 and b := 4

is an environment expression that yields an environment containing the bindings,

17

{a,3,num,true} and {b,4,num,true}

in which the expression a + b may be evaluated.

The above example introduces two of the environment operations provided by Galileo,
namely the introduction of new bindings using ":=" and the combination of environments
using and. Galileo provides other mechanisms that allow the programmer to select single
bindings from environments, recursively introduce names and values and to remove
names from environments.

Galileo provides persistence by having an environment called the global environment that
always persists. The global environment may contain bindings including other
environments. Galilieo is in an interactive system in which every expression entered by
the user is evaluated with respect to an environment, initially the global one. The user may
evaluate expressions with respect to another environment using the command enter. This
command allows the user to traverse the tree of environments that may be found in the
global environment. For example, in Galilieo the following dialogue may be carried out,

use anenv := (a := 3 and b := 4)
! this defines an environment called anenv in the global environment
enter anenv:
! now the current environment is anenv
a + b
! yields 7 as before

The designers of Galileo suggest that environments help the user to develop and test
database schemata incrementally or to express the overall structure in terms of smaller
related parts. They also suggest that they may be used as a modularisation mechanism in a
manner similar to that suggested by Burstall and Goguen in Clear.

2.6.2 Name Spaces

In [atk85a] Atkinson and Morrison introduce name spaces. Name spaces are an
environment mechanism that permit the following:

1. the storage of bindings in a name space;
2. the dynamic use of names from a name space;
3. the static use of names from a name space;
4. the evolution of names available in a name space; and
5. safe exchange of arbitrary data between parts of the system.

A name space is created by the following expression,

ns < identifier list> from
<sequence>
end from

This is best illustrated with an example,

let new = ns a,b from
let a = 7
let aa := a * a
let b := proc(-> int) ; aa

end from

example 2
namespace instantiation

18

Here new has as its value the set of bindings (name space), in the notation used earlier:

{ { a,7,int,true },{ aa,49,int,false },{ b,(proc(-> int) ; aa),proc(-> int),false } }

Notice that unlike the environment expressions of Galileo, namespace is a first class data
object. In order to accommodate change, namespaces provide a mechanism to add new
bindings and to remove old bindings. A new binding may be added to a namespace using
following construct:

extend <namespace expression> with <identifier list> from
<sequence>
end from

This is similar to the instantiation of a name space. Bindings may be dropped from name
spaces by the use of the drop construct,

drop <identifier list> from <namespace expression>

In order to use a name space the user may write,

using <namespace expression> with <signature> compile
<sequence>
end compile

This notation is used to denote dynamic binding to a name space. The expression yields a
value of type namespace. The type of the name space is checked dynamically to ensure
that it satisfies the interface specified in the signature. If the type checking is successful,
the sequence is evaluated in the new environment which is formed by enriching the static
environment with the bindings in the namespace.

Thus, the signature specifies a formal store and the namespace expression provides an
actual store each time the statement is executed. The dynamic binding is thus localised to
the scope of the using .. compile construct.

Namespaces may also be used statically, the notation for this is,

with <namespace> do
<sequence>
end

Here the sequence is statically bound to the namespace. However, despite the static nature
of the binding, the namespace must still be checked to ensure that it contains the bindings
required of it. The reason for this is that the bindings may have been removed from the
namespace using drop. Indeed, an error condition or exception may arise at run time due
to a required binding not being present in the namespace. This is shown in the following
example,

19

let new = ns a from ! define a namespace containing
let a = 7 ! one binding a~7

end from

let useNew = proc() ! define a procedure which
begin ! uses new by binding to it

with new do ! statically and writes out the
write a ! value of a

end
end

drop a from new ! drop the binding from the
useNew() ! namespace, calling the

! procedure will cause an
! exception when a is checked.

example 3
using a namespace

This seems to contradict the idea that the binding is a static one. Careful analysis of the
situation reveals that the problem is in the nature of the binding. The static bind is made to
the namespace itself and not to the bindings contained in the namespace.

2.6.3 Program Editors

Namespaces influenced the work of Buhr and Zarnke [buh87]. They describe a
programming system that allows the manipulation of bindings. However the environments
in their system are not first class data objects and therefore may not be manipulated by the
language. Instead, the user may change environments using a program editor which is
essentially a symbol table browser. The system suffers from the same binding problems as
those encountered with namespaces. Datestamps are used to maintain integrity and
preserve static type checking. When datestamps are found to be in an incorrect time order
the compiler is called to automatically correct the situation.

2.7 Environments

The programming language Napier introduces the concept of an environment in order to
provide support for the control of names and to allow incremental system construction.
This is achieved by providing an extensible mechanism that permits the storage of
bindings. The environments provided in Napier satisfy the three main operations defined
in Clear with the addition of one new operation. The operations on Napier environments
are:

1. create an empty environment;
2. extend an environment with a name value pair;
3. find the value associated with a given name; and
4. remove a binding from an environment.

Environments, written env, are introduced using a predefined function called environment.
It has the following form,

let environment = proc(-> env)

The function environment returns a new empty environment. That is an environment
containing no bindings. In Napier, bindings are always introduced with the word let.
When bindings are declared within a block the programmer may write something like,

20

begin
let a = 7
let b = proc(-> int) ; a

end

example 4
block structure

Similarly, bindings are introduced to environments using the word let. The user must also
specify the environment in which the binding is to be made. The syntax of binding
introduction is therefore,

in <environment-clause> <declaration>

The environment in the environment clause may be statically or dynamically determined.
The programmer may therefore write,

let e = environment()
in e let a = 7

example 5
static use of environments

The environment e contains one binding,

{ a,7,int,true }

In this example, the first let declaration introduces the name e into the static environment
of the program. In the second line the environment to which e is bound is enriched with
the new binding,

{ a,7,int,true }

The static environment of the program remains unchanged. An exception is generated if a
name is added that has already been used to identify another binding in the environment.
The in .. let construct therefore serves the same purpose as the extend and the name space
instantiation of namespaces. The example shown in example 2 above would be written in
Napier as,

let new = environment()
in new let a = 7
use new as a : int in
in new let aa := a * a

example 6
instantiation of environments

Bindings in environments may be manipulated with the use clause. It has the following
syntax,

use <environment clause> as <signature> in <clause>

for example to use the environment defined in example 6 and write out the values
associated with a and aa the programmer would write,

21

use new as a,aa : int in
begin

writeint(a)
writeint(aa)

end

example 7
using values stored in environments

The signature need only specify a partial match on the bindings stored in the environment.
The environment may therefore contain bindings other than the ones specified but must
contain at least the bindings denoted in the signature. If any of the bindings are not present
an exception is raised.

Values may be exported from an environment by returning a value from the clause bound
to the use statement. For example, if the programmer wished to extract the value
associated with a value from the environment the following could be written,

let valueOfa = use new as a : int in a

Bindings may be removed from an environment using the drop construct. This has both
the same same syntax and semantics as namespaces, namely,

drop <identifier> from < environment clause>

This expression removes the binding containing the identifier from the environment
specified in the environment clause. Note that the binding is not deleted, merely removed
from the environment. This distinction is important as will shown below. Another
example, clarifies this,

let new = environment()
! new is an empty environment
in new let a = 7
! new now contains the binding a ~ 7
use new with a : int in
in new let aa := a * a
! new now contains the bindings a ~ 7 and aa ~ 47
drop a from new
! new now contains only the binding aa ~ 49

example 8
dropping values from environments

2.7.1 Type checking

All environments are of type env, this is regardless of what is stored in them. This is in
sharp contrast to the structure type of Napier. Structures are type checked using structural
equivalence. In order to pass them as parameters the user must specify the names and
types of the fields of the structure. Thus, the programmer is provided with a choice of
whether to model using environments which allow flexibility but delay type checking or
structures which are statically strongly type checked.

The type environment is the infinite union of all labelled cross products. The use
statement projects bindings out of the infinite union. The flexible binding mechanism
provided by environments in no way weakens the type system. The program is still
strongly typed, however, it is no longer statically typed. Furthermore, the programmer
must specify the types associated with the bindings that are to be used in an environment.

22

This specification allows the segment of code within the use clause to be statically type
checked with respect to the projection.

The provision of environments and the other infinite union type provided in Napier, any,
allow the programmer to choose to delay some type checking until execution time. Such a
mechanism is extremely important in an otherwise strongly typed persistent environment.
If a point of dynamic type checking is not provided in a statically typed persistent
environment, the user would have to specify the type of the entire persistent store every
time he or she wanted to interact with it. Furthermore, the type of the store is constantly
changing as users add or remove objects of different types from it. The types env and any
allow the user to partially specify the type of the store.

It is expected that programmers will statically bind data structures used within "programs"
and use the environments to structure the information space in the manner that files and
directories are used to structure the stores provided in today's operating systems.

The code within the use clause is statically bound to the bindings projected from the
environment. The following occurs when a use is executed:

1. the bindings are looked up in the environment;

2. the type of the bindings are checked against the signature;

3. if either the types do not match or the bindings are not present an exception
is raised;

4. if an exception is not raised the bindings are introduced into the
environment - this constitutes dynamic binding; and

5. the clause associated with the use is executed with the bindings already
instantiated in the environment. All further uses of the projected values or
locations are statically bound.

Notice that since the projection is from an infinite union, it is always necessary to specify
the types of the bindings that are to be used. The use of a unification algorithm, such as
the one used in ML [har86], will not help here since we must specify all the necessary type
information. This is necessary if strong static type checking is to be retained everywhere
apart from at the time of projection. The mechanism provides the maximum amount of
static type checking whilst retaining the flexibility required for incremental system
evolution.

The need to specify potentially large amounts of type information in order to use an
environment is worrying. Although not visible to the user, type information must be
encoded into the environments so that type checking may be performed at the time of
projection. This information is stored in the implementation of the environment, this
allows a reversal from traditional type checking to be made.

In traditional type checking systems, the user writes down a program associated with type
definitions. The program is then submitted to the compiler which tells the user whether the
program is correct or not. In the system described above, the user may traverse the
information space using a browser, similar to the one described in chapter 7. This browser
may report the types of the objects stored in the environments. If it were used in
conjunction with a callable compiler, like the one described in chapter 6, the user could
interactively construct programs to operate against data held in the information space. In
such an environment the distinction between browsing and compiling becomes blurred,
since different tools in the support system are being combined transparently to provide a
high degree of programmer support.

23

2.7.2 Binding to environments

Recall that in example 3, a difficulty arose concerning the use of using and drop with
namespaces. The problem with namespaces was that the binding was always to the
namespace and not to the bindings stored in the namespace. The example shown below is
semantically equivalent to example 3. As in example 3, it will cause an exception to occur
on the last line.

let new = environment() ! define an environment containing
in new let a = 7 ! one binding a~7

let useNew =
proc() ; use new as a : int in ! define a procedure which writes

write a ! out the value of a

drop a from new ! drop the binding from the
useNew() ! namespace. calling the

! procedure will cause an
! exception when a is checked.

example 9
example 3 revisited

However, using environments this example may be rewritten as,

let new = environment() ! define an environment containing
in new let a = 7 ! one binding a~7

let useNew = ! define a procedure
use new as a : int in ! writes out the

proc() ; write a ! value of a

drop a from new ! drop the binding from the namespace
useNew() ! calling the procedure will cause

! 7 to be written out.

example 10
example 3 with desired semantics

This example will write out the value 7 rather than raising an exception. The difference
between the two examples is in the following lines,

let useNew =
proc() ; use new as a : int in

write a

and,

let useNew =
use new as a : int in

proc() ; write a

In example 10, the use clause is within the procedure body. This means that every time the
procedure is called, the use clause is executed. It then dynamically performs type checking
and checks to ensure that the desired binding is in the environment. When the procedure is
called the binding is no longer in the environment and an exception will be raised.

24

In the second example, the projection out of the environment to yield the binding is
performed only once - before the procedure closure is formed. The binding, {a,7,int,true}
yielded by projection from the environment is then bound into the closure of the
procedure. The value (the binding itself) is never again looked up in the environment, so
the drop operation has no effect on the procedure. It will be shown in the next section that
environments exhibit the same semantics as block structure.

2.7.3 Simulation of scope

The semantics of composition of environments is equivalent to the more familiar block
structure in programming languages, for example in a block structured programming
language such as PS-algol the programmer may write,

let a := 7
begin

let a := 6
write a ! writes out 6
a := 4

end
write a ! writes out 7
a := 32
write a ! writes out 32

example 11
scope and block structure in algol

Similarly, in Napier the programmer may write,

let env1 = environment()
in env1 let a := 7
let env2 = environment()
in env2 let a := 6

use env1 as a : int in
begin

use env2 as a : int in
begin

writei(a) ! writes out 6
a := 4
writei(a) ! writes out 4

end
writei(a) ! writes out 7
a := 32
writei(a) ! writes out 32

end

example 12
scope and block structure using environments

This use of environments in this way will be familiar to programmers who have
programmed in block structured programming languages. It is no accident that
environments should exhibit the same semantics as block structure, it is a consequence of
the language design principle of only introducing a few powerful concepts.

The binding mechanism used in environments is also the same as that used in the block
structure of Napier. In Napier, variable binding is by L-value and constant values are by
R-value. The bindings stored in an environment exhibit the same behaviour - all variable
bindings are to locations and all constant bindings are to values.

25

2.7.4 Binding to the persistent store

The root of persistence in Napier, called ps, is of type env. Any data that is reachable from
ps is persistent. Making any data structure persistent is then simply a matter of binding
that data structure to something reachable from ps. For example, suppose that in a
program a binary tree, for simplicity over integers, has been defined. An instance of such a
tree is then to be made persistent. This may be performed as follows,

rec type Tree is variant(tip : null ;
node : structure(val : int ;left,right : Tree))

let twig = Tree(tip : nil)
let atree = Tree(node : structure(val = 7,

left = twig,
right = twig))

in ps let savetree = atree

example 13
binding to the persistent store

using environments

The final line of this program binds data structure, bound to atree in the local
environment, to savetree in the persistent environment ps. In order to use this data
structure in another program the user may write,

rec type Tree is variant(tip : null ;
node : structure(val : int ;left,right : Tree))

use ps as savetree : Tree in
if savetree is node then
begin

writes("it as a node with value : ")
writei(savetree'node(val))

end
else writes("it was a tip")

example 14
binding to the persistent store

using environments

Notice how the type definition of Tree serves to unify the types across the persistent store
and allows type checking to be performed statically and separately in each of the
programs. The check that the type in the persistent store is the expected one is performed
in the use statement.

In general, the persistent store will form a graph consisting of environments and data
bound to those environments. Such a graph may be viewed as,

26

ps

a b ctrig al

sin cos tan exp log

env

env env

trig

figure 2
the persistent store

as a graph of environments

The graph of environments subsumes the function of traditional file storage replacing it
with a strongly typed data structuring mechanism. This mechanism unlike files, may be
used to store structured data of arbitrary complexity. This ability is stated by Balzer in
[bal86] as being one of the most important features required of new generation operating
systems.

2.7.5 Supporting incremental construction

The use of environments to support incremental system construction has been strongly
stated in this chapter. The way in which this is achieved is examined below. Suppose that
the persistent store is arranged at some time in the manner shown graphically in figure 2.
The user may then carry out the following dialogue through an interactive compiler.

27

! only ps is in scope at the beginning of the session
! first introduce the environment trig into the local environment

let trig = use ps as trig: env in trig

! next declare square in the local environment
! square uses exp from the environment trig.

let square = use trig as exp:proc(int,int -> int) in
proc(a : int -> int) ; exp(a,2)

writei(square(7)) ! test out square

49
! system writes out 49 - satisfied so save it in environment

use ps as al : env in
in al let square := square

example 15
incremental construction of

a program

After the completion of the dialogue the persistent store will be arranged as follows,

ps

a b ctrig al

sin cos tan exp log

env

env env

square

closure for exp
closure for:
proc(a : int -> int) ;
exp(a,2)

figure 3
persistent store
after interaction

Notice that the procedure called square has the location of the procedure exp bound into
its closure. Thus, if the programmer assigned another value to the location exp the
function square would also change. Sometimes this behaviour is undesirable and the
programmer may wish to ensure that future changes to the system cannot affect the
program he or she has constructed. In such a case, the programmer would project out of

28

the environment to yield a value rather than a location. This would allow a static R-value
binding to be made. In such a case example 15 could be rewritten as,

let trig = use ps as trig: env in trig
let exp = use trig as exp:proc(int,int -> int) in exp

let square = proc(a : int -> int) ; exp(a,2)

use ps as al : env in
in al let square := square

example 16
incremental construction of

a program

Here the value stored in the location associated with exp is first projected out of the
environment and is then bound into the closure of the procedure square. If R-value
bindings are used in this way, the procedure closure cannot be affected by changes to the
environment. This style of binding is therefore safer than the L-value binding shown
earlier but the hidden cost is that it cannot be maintained incrementally and rebinding is
necessary to accommodate change.

The store shown in example 3 not only exhibits graph structure in terms of data structures
and environments but also in code. Procedures in a persistent environment, such as the one
described here, also form a graph structure. One procedure may be bound to many
programs. This kind of architecture allows for a higher degree of software reuse [mor87a]
than conventional software architectures.

Example 15 shows that by a short interaction with the system, new definitions may be
incrementally added to it. Similarly, if the programmer wished to change a definition this
could be achieved by assigning to a location within an environment. For example the
programmer may wish to change the implementation of square, defined in example 15.
This may be achieved by the following interaction,

use ps as al : env in
use al as square : proc(int -> int) in

square := proc(a : int -> int) ; a * a

example 17
incremental changing of

a program

2.7.6 An Implementation of Environments

The Persistent Abstract Machine does not support the extension and reduction in the size
of an instance of any data structure. Consequently, environments are not directly
supported by the machine. Instead, environments are constructed within the Napier
system. The implementation of environments is, of course, hidden to the user by the
compiler.

Environments are an infinite union of labelled cross products. The machine provides
support for another union - the data type any. A value of any type may be injected into the
type any which results in an object of type any. For example, the user may write the
following,

29

let anint = 4 ! of type int
let anany := any(anint) ! of type any
anany := any("a string") ! of type any
anany := any(proc(-> int) ; 3) ! of type any

A value of type any may be projected from to yield a value of the type that was originally
injected into it. For example, if the user had declared anany in the example above, the
following expression would project the value out of the union,

project anany onto
int : writes("it was an integer")
string : writes("it was a string")
proc(-> int) : writes("it was a proc(-> int)")
default : writes("it was something else")

Details of the implementation of the type any may be found in the Persistent Abstract
Machine Manual which appears as Appendix 1. Notice that the type rules of the language
may not be broken, but, like the projection out of environments, type checking must be
delayed until run time.

The data type any may be used to provide an implementation of environments. This is
achieved by implementing a mapping from strings to the type any. The way in which this
mapping is implemented is unimportant, for example, it may be implemented by a
balanced binary tree, by a vector or by hash tables. The most efficient implementation will
depend on how users utilise the environment facility, in particular, with respect to the
number of bindings in an environment. This has yet to be measured. The implementation
must provide (at least) the following functional interface,

insert : proc(string, any)
remove : proc(string)
lookup : proc(string -> any)

An implementation of such a system is (almost) already provided within the compilation
environment. The symbol tables supported by PAIL (see chapter 5) are defined as
follows,

rec type symbolTable is variant(Empty : null ;
Table : symTab)

&
SymTab[t] is structure(lookupLocal(string -> t)

lookupRec(string -> t)
InsertEntry(string,t)
EnclosingScope(-> symbolTable)
EnterScope(symbolTable- > symbolTable)
ScanScope(proc(t))

This interface may be parameterised by the type any and extended with the remove
operation to provide the necessary support.

Whenever the user creates a new binding in an environment the value is injected into the
type any. This value may be associated with the appropriate name represented as a string
using the procedure insert .

The remove procedure merely removes the string from the index associated with the
implementation. The location in which the value is stored may be reclaimed by the
garbage collector only if it is rendered inaccessible by the remove operation.

30

When a use clause is executed two different operations take place. Firstly, the name
specified in the use clause must be looked up in the implementation of the environment. If
the name is not present an exception will be raised. If this is successful the value
associated with that name will be returned by the lookup function wrapped in an any.

In order to use a binding in an environment, the user must specify the type of the value
that is being projected. This type may be used to project the value from the any in which it
is stored. If this projection is unsuccessful an exception will be raised, if not the value may
be placed on the stack.

2.8 Conclusions

At the beginning of this chapter, the control of complexity was stated to be one of the aims
of the PISA project. The difficulty in the control of names and the need for controlled
system evolution was cited as a particular area of difficulty.

The introduction of context was demonstrated to be one method of managing complexity.
In particular, block structure in programming languages was a typical method of
controlling the use of names. This technique, and others used to control complexity have
been explored.

The data type environment has been shown to be a flexible method of controlling system
evolution by allowing large systems to be incrementally developed in an interactive
environment. The parallels between block structure and environments have been shown.
This is in line with the principle of parsimoniously introducing new concepts and only
introducing concepts that encapsulate or abstract existing concepts. Finally, a possible
implementation of environments was suggested and shown how it could operate.

31

3 Graphics

3.1 Introduction

A total persistent environment is required to support all programming activity. The
advantages of such an environment is that it relieves the programmer from the burden of
managing the mapping of data from one environment to another. One of the potentially
most expensive activities in this area is in the field of man machine interaction (mmi).
The programming of user interfaces is an inherently complex task. This complexity is
often greatly magnified by having an alien toolset with which to program mmi.

Packages of library functions such as those provided by Ghost [cal77], Suntools [sun86]
and GKS [gks82] often do not interface smoothly with the programming language being
used to program an application. This creates a situation in which the programmer is
manipulating two languages, the application language and the graphics sub system
language. This increases the complexity of the task presented to the programmer.
Complexity is also increased if the graphics objects may not be stored in the same manner
as the objects in the programming language.

Often, graphics systems such as those mentioned above are imperative in nature. That is, it
is only possible to express commands such as,

do this, then this, then this

which may draw a picture. If the picture has to be stored, the programmer must create a
data structure representing the picture and then traverse the structure calling the
appropriate graphics language commands during the traversal. Many applications are
required to run on more than one machine, say an Apple Macintosh and Sun workstation.
In this case, the programmer must repeat this complex task - mapping one onto the
Macintosh graphics toolbox [mac86] and once onto the Sun library, Suntools. This is
made more complex by the number of different pieces of hardware available today - all
offering different facilities.

If the picture is to be saved on backing store, as is often required in CAD packages, a
further representation of it will be required. This is the long term data structure and will
typically either be a byte or record stream in a file system or some relational structure in a
database management system.

Libraries of functions provided by graphics sub systems are often ad-hoc in nature. Some
libraries provide output devices such as windows, others have more complex features such
as the canvases of Suntools. The facilities provided also vary, ranging from simple line
drawings to the esoteric functions such as polyline facility of GKS. Some systems allow
the creation of picture libraries. However, if these libraries of pictures are expressed in a
different language to the application language, it is difficult for the programmer to
manipulate these pictures.

Clearly, what is required is a language for manipulating graphics entities which is
integrated with the application programming language. It must contain simple building
blocks that provide the ability to build abstraction level upon abstraction level in order to
provide the complex user interactions required. It must also be machine independent and
provide the same power for manipulating graphics objects as the other data types. In other
words, graphical objects must have the same civil rights as other data types - that is the
graphical data types must be able to be stored, passed as parameters and have full rights to
persistence.

The graphics facilities of PS-algol were designed on these grounds. It provides orthogonal
persistence and two graphics data types one for manipulating line drawings, the other for

32

manipulating raster graphics. Using these basic building blocks complex event driven
systems [cut86] and graphics database systems with inheritance [ben86] have been
constructed.

3.2 Pictures

The picture drawing facilities in PS-algol are a particular implementation of the Outline
system [mor82b] which allows line drawing in an effectively infinite two dimensional real
space. The Outline system was originally designed and implemented by Professor Ron
Morrison of St Andrews University as an extension to the language S-algol [mor82a].
Outline is itself derived from GPL/1[smi71]. Some of the original outline facilities
provided in this system have since been abandoned - but the spirit of the original system
lives on. The integration of Outline into a persistent language provides the programmer
with more power than was available in the original. Altering the relationship between
different parts of a picture is performed by mathematical transformations which means
that pictures are usually constructed from a number of sub-pictures.

In the Outline system, picture description and picture drawing are separated. Picture
description is supported by the programming language and picture drawing by mapping
the picture to an image or output device. In this manner, pictures are described in a device
independent manner.

In PS-algol, the picture descriptions are represented by the data type picture, written in
language as pic. The simplest picture is a point. For example,

let point = [0.1,2.0]

represents the point with x-coordinate 0.1 and y-coordinate 2.0 in two-space. All the
operations on pictures return a picture as their result. Therefore, arbitrarily complex
pictures may be described by the application of the operations described below.

There are two binary operators on pictures, join '^' and combine '&'. The effect of the join
operator is to yield a picture that is made up of its two operands with a line from the last
point of the first operand to the first point of the second operand. Combine operates in a
similar way without adding the joining line. For example,

let box = [1,1] ^ [2,1] ^ [2,2] ^ [1,2] ^ [1,1]

will produce a unit square with its bottom left hand corner positioned at the point [1,1].
This is illustrated in figure 1.

Points in pictures are implicitly ordered. Join and combine operate on the last point of the
first picture and the first point of the second picture. In the resulting picture, the first point
of the first picture is the first point and the last point of the second picture is the last point.

(note that the axes are put in for reference and are not part of the picture)

33

the box
figure 1

In addition to the binary operators, pictures may also be transformed by shifting, rotating
and scaling.

shift p by x.shift,y.shift

will produce a new picture by adding x.shift to every x-coordinate and y.shift to every y-
coordinate in the picture p. For example,

let new = shift box by -1.5,-1.5

Will initialise the value of the identifier new to be the picture shown in figure 2.

the shifted box
figure 2

Rotation can be achieved by

rotate p by no.of.degrees

34

which will produce a new picture by rotating the picture p no.of.degrees degrees
clockwise about the origin For example,

rotate new by 45

will produce the picture given in figure 3

the rotated box
figure 3

Finally scaling can be obtained by

scale p by x.scaling,y.scaling

which will produce a new picture by multiplying the x and y-coordinates of every point in
the picture p by x.scaling and y.scaling respectively. For example,

scale box by 2,1

yields figure 4

35

the scaled box
figure 4

Text can be included in pictures using the text statement. This takes a string of characters
and a base line and constructs the picture of those characters along the base line. For
example,

text "hello !" from 1,1 to 2,1

yields figure 5.

hello !

some text
figure 5

The characters will always be drawn from the first to last point of the base line.
Consequently, text can be inverted by ending the base line on the left of its starting
position.

Colour may also be specified in a picture but, unlike the other picture operations, the
effect of this will depend on the physical output device used.

36

3.2.1 Storing a Picture in a Database

To show how pictures may be stored and retrieved from the persistent store an example is
given of a program to calculate the unit circle at the origin and store it in the database. In
this example, it is assumed that the database root is a pointer to a data structure for
associative storage and retrieval, supported by PS-algol, called a table. Entries are placed
in the table using the procedure s.enter which takes the associative key, the table, and the
value to be stored. The procedure s.lookup retrieves a value from the given table using the
given key.

structure pic.container(pic a.pic) ! used to store the picture

let db = open.database("a pic","pass","write")
if db is error.record do
begin ! if db points to an error.record the open failed

write "Unable to open database because: ",
db(error.explain),"'n"
abort

end

let circle = ! this block yields a picture describing a unit circle
begin

let no.of.sectors = 10
let angle = 90 / no.of.sectors
let quadrant := [0,1]
let segment := [0,1] ^ rotate [0,1] by angle
for i = 1 to no.of.sectors do
begin

quadrant := quadrant & segment
segment := rotate segment by angle

end
let semi = quadrant & scale quadrant by -1,1
! below is the value of this block expression
semi & scale semi by 1,-1

end

! a structure containing the circle picture is
! associated with the key "circle"
s.enter("circle",db,pic.container(circle))

! the database "a pic" is now updated
if commit() = nil do write "Circle entered in the data base'n"

A program to store a picture of a unit circle in a database.
example 1

The database called "a pic" now contains a table with a key "circle" which has an
associated value of a structure that contains the description of the circle picture. This is
shown pictorially below.

37

circle

circle pic.container
a.pic

table

Pictorial representation of the database "a pic" after the
transaction is committed

figure 6

3.2.2 Retrieving a Picture From a Database

The next example retrieves the picture description from the database and uses it to define
another picture which is the Olympic Games logo.

! this structure will be used to hold pictures kept in this database

structure pic.container(pic a.pic)

let db = open.database("a pic","pass","read")
if db is error.record do
begin

write "Unable to open database because: ",
db(error.explain),"'n"
abort

end

let circle = s.lookup("circle",db)(a.pic)

let olympics = circle &
shift circle by 2.2,0 &
shift circle by -2.2,0 &
shift circle by 1.1,-1 &
shift circle by -1.1,-1 &
text "OLYMPICS" from -1.5,-2 to 1.5,-2

A program to retrieve the circle from
the database and define
an Olympic Games logo.

example 2

The picture olympics now contains the following,

38

OLYMPICS

The Olympic games logo
figure 7

These are the basic support facilities for line drawing. Particular applications packages
built on these facilities, for example, curve fitting or 3-D modelling, may be stored in and
retrieved from the persistent store as pictures themselves or procedures that produce or
manipulate pictures. The choice is made according to the requirements of the application.

3.3 Raster Graphics

In addition to the Outline line drawing system PS-algol also supports raster graphics. The
facilities described in this section were designed and implemented by Professor Ron
Morrsion, Fred Brown and myself in consultation with Professor Malcolm Atkinson
[mor86b]. Two data types are provided for this purpose, a base type pixel and a type
image constructed from pixels.

3.3.1 Pixels

Two pixel literals on and off are provided by the system. In their most degenerate form, a
pixel is one spot which is either on or off. Thus,

let a = on

creates a pixel a with a depth of 1. To form pixels of greater depth, pixels may be
concatenated using the operator '&'. To create a pixel of depth 4, called b, the user could
write,

let b = on & off & off & on

which creates a pixel b with depth 4. Arbitrary pixels expressions are permitted, therefore
expressions such as

b & on & a

are permissible, and would yield a pixel of depth nine.

3.3.2 Images

Images are rectangular objects comprising of pixels with an X and Y dimension to reflect
their size. Images also have depth which determines the number of planes they have. The
depth of an image is determined by the depth of the pixel used in the initialising
expression. To form an image the user could write,

let c = image10 by 5 of on

which creates c with 10 pixels in the X direction and 5 in the Y direction all initially on.
All images, have an origin at the bottom left hand corner which has coordinates 0,0. The
image c is represented pictorially below.

39

c

0,0

9,4

9,0

0,4

(origin)

an image
figure 8

Full 3 dimensional images may be formed by expressions like the following,

let d = image 64 by 32 of on & off & on & off

which would create an image d of depth 4 with 64 pixels in the X direction and 32 in the
Y direction all initialised to the pixel value on & off & on & off. This is illustrated in
figure 8.

d

An image with 4 planes
figure 9

In order to introduce the concept of and operations on images gently, the following
discussion will be restricted to images with a pixel depth of 1. Everything that is stated is
true for images of greater depth.

Images are first class data objects and may be assigned, passed as parameters or returned
as results., for example,

let b = a

will assign the image a to the identifier b. In order to map the operations usual on
bitmapped screens, the assignment does not make a new copy of a but merely copies the
pointer to it. In other words images exhibit pointer semantics.

Three standard functions are provided to interrogate an image to discover its size; they are
X.dim, Y.dim and depth each being of the following type,

proc(image -> int)

40

These functions return the x dimension, the y dimension and the depth of the image
respectively.

3.3.3 Raster-op

PS-algol supports 8 raster operations which may be used as described in the following
BNF.

<void-clause> ::= <raster.op><image-clause>onto<image-clause>
<raster.op> ::= ror|rand|xor|copy|nand|nor|not|xnor

The semantics of these operations may be expressed by representing on and off as true
and false respectively and the following set of rules for combining pixels. The source, the
first operand is represented by S, the destination, the second operand is represented by D.
The symbol ~ represents logical negation.

ror D := S or D
rand D := S and D
xor D := (S and ~ D) or (~S and D)
copy D := S
nand D := ~ (S and D)
nor D := ~ (S or D)
not D := ~ S
xnor D := (S or ~ D) and (~S or D)

Thus,

xor b onto a

performs a raster operation of bitwise combining b and a using the xor rule above and
assigning the result to a. It should be noted that a is altered in situ as would be expected on
a raster device. Both images have origin 0,0 and automatic clipping at the extremities of
the destination image is performed.

3.3.4 Aliasing

The limit operation allows the user to set up windows in images. For example,

let c = limit a to 2 by 3 at 3,1

sets c to be that part of a which starts at 3,1 and has size 2 by 3. c has an origin of 0,0 in
itself and is therefore a window on a. This is illustrated in figure 10 below,

41

a

0,0 (origin of a)

c

0,0 in coordinate space of c (origin of c)
3,1 in coordinate space of a

A limited region of an image
figure 10

Once a limit been taken, the resulting image is indistinguishable from any other in the
system. It may therefore be passed as a parameter or stored. However, when operations
such as raster-op are performed on that image changes will also be propagated to the
image from which the image was limited.

Rastering sections of images onto sections of other images can be performed by
expressions like the following,

xor limit a to 1 by 4 at 6,5 onto
limit b to 3 by 4 at 9,10

Automatic clipping on the edges of the limited regions is performed. If the starting point
of the limited region is omitted, 0,0 is used and if the size of the region omitted, then it is
taken as the maximum possible.Limited regions of limited regions may also be defined

A vertical slice of pixels from an image may also be extracted. This operations is
semantically equivalent to the limit operation but in the third dimension. That is like limit
it yields an alias to part of an image not a new one. For example,

let b = a(1|2)

yields b which is that part of a which has the two depth planes 1 and 2. The depth origin,
like the (x,y) origin in images is normalised to zero.

3.3.5 Colour Mapping

The PS-algol system provides two functions for manipulating the colour map of the
device. The first is,

colour.map(pixel p ; int i)

This functions sets the integer produced by the colour map when pixel p is displayed to be
i.

The second function allows the user to interrogate the colour map

and is,

colour.of(pixel p -> int)

This function returns the integer corresponding to the pixel p in the colour map.

42

An example of the use of images may be seen from the program to draw a chess board and
store it in a database in example 3.

!This structure will be used to hold images in this database

structure image.container(cimage the.image)

write "Please input the basic size of the squares "

let size = readi()

let black = off ; let white = on

!define a black square
let black.square = image size by size of black

let size.8 = size * 8 ; let size.2 = size * 2

!define the chess board image
let chess.board = image size.8 by size.8 of white
for i = 0 to size.8 - 1 by size do
for j = 0 to size.8 - 1 by size do

if i rem size.2 = 0 and j rem size.2 = 0 or
i rem size.2 ~= 0 and j rem size.2 ~= 0 do

copy black.square onto limit chess.board at i,j

let source = open.database("raster.demo","friend","write")
if source is error.record do
begin

write "Error opening database : ",source(error.fault),"'nbye'n"
abort

end

!a structure containing the chess board image is associated
!with the key "chess"
s.enter("chess",source,image.container(chess.board))

let done = commit()
if done is error.record do

write "Sorry - commit failed: ",done(error.fault),"'n"

A program to store a chess board image in a database
example 3

The pictorial representation of the database after the transaction has committed is given in
figure 11.

43

chess

source image.container
the.image

table

Pictorial representation of the chessboard in the database
figure 11

Images may be stored in and retrieved from databases in the same manner as pictures and
thus provide the same facilities for providing libraries of images or procedures that
manipulate images.

3.3.6 Mapping Pictures and Images to Output Devices

The standard identifier screen is an image representing the output screen. Performing a
raster operation onto the image screen alters what is viewed by the user. For example,

xor a onto limit screen to 4 by 5 at 4,7

will raster a onto the defined section of the screen. This will be visible to the user.

The standard identifier cursor is also bound to an image which is mapped to the cursor.
When the user moves the mouse or pointing device this image moves accordingly. The
cursor may be altered in the same manner as any other image. For example, we may say,

copy b onto cursor

The resulting change in the cursor will be visible to the user.

Line drawings may be mapped onto an image using the standard function draw. For
example,

draw(an.image,a.pic,0.0,3.2,1.5,3.9)

will draw the section of the picture a.pic on the image an.image. The picture is clipped by
the region specified by the points (0.0,1.5) and (3.2,3.9) in the picture coordinate space.
Clipping may be performed on the image by specifying a limited area of the image in the
usual manner. Automatic clipping of the line drawing is performed to make it fit the
image.

Drawings may also be mapped onto other devices. A standard function is provided by the
system that allows a draw function for a particular device to be obtained from the
database. The technique of storing abstract data types for devices was first used in an
earler version of PS-algol [mor86c]. Draw functions are provided for tektronix compatible
devices, plotters and various laser printers.

Pictures may be drawn directly onto an image or any part of it. Once the line drawing has
been mapped onto an image, the image may be manipulated by any of the image
operations. Notice that both pictures and images may be mapped onto a screen, allowing
the programmer to choose which paradigm or combination of paradigms is appropriate for
the application.

44

3.3.7 Fonts and menus

From the building blocks many useful functions may be built. One example of this is the
ability of the language to manipulate fonts. Fonts are stored in a database which may be
freely interrogated by the programmer. The layout of the font database is given in figure
12.

B

cou20
fonts

table

can40

...

symbol
fix13

height

descender

info

chars

20

5

"20 point"

vector 1 .. 128 of image

The font database
figure 12

The programmer may not want to have to deal with the fonts database directly so a
standard function written in PS-algol is provided by the system. It is called string.to.tile
and is defined as following,

let string.to.tile = proc(string source,font -> image)

The procedure returns an image containing a representation of the string source in the font
specified by the parameter font. These images can then be used for putting messages on
the screen, on the cursor or as part of pictures being built up.

This facility proved to be so heavily used that it warrented syntactic support in the
language. To support the manipulation of text and images the print statement was added to
the i/o facilities by Livingston [liv87]

Images containing text are often used in conjunction with the pop up menu mechanism
which is also provided by the language. Like string.to.tile, the menu function is not a
primitive feature but is written using the features we have already seen and another
function which allows the programmer to interrogate the pointing device. The menu
function has the following definition,

let menu = proc(image title ;
*image entries, ! vector of images
bool vertical ;
*proc(image,int) actions, ! vector of procedures
-> proc(int,int -> bool)) ! returns a procedure

45

The menu which the user sees will have a title corresponding to the image title and will
have entries corresponding to the vector of images, entries. The function menu returns a
function which when called will put a menu on the screen at the specified position and
allow the user to make a selection from it. If an entry is selected the corresponding
procedure from the vector actions is executed, the entry and position of the entry used to
select it is passed to it as a parameter. If the user does make a selection the procedure will
return true otherwise it will return false. In this way, many of the costly calculations that
need to be made by the menu function need only be done once. This may be prior to the
execution of the main program if the function returned by menu is stored in the persistent
store.

3.4 User Interaction

In order to write a function like the menu function shown above, it is necessary to interact
with the pointing device and cursor.

As the pointing device (usually a mouse) is moved around, the cursor follows it (unless
the standard function which switches off tracking has been called). In order to find out the
position of the cursor, the system provides a standard function called locator. locator has
the following form,

let locator = proc(-> pntr)

it returns a structure of the following type,

structure mouse(int X.pos,Y.pos ; *bool the.buttons)

The fields X.pos and Y.pos give the position of the mouse relative to the standard identifier
screen. The vector of booleans show the current status of the mouse buttons. One of these
structures is returned every time locator is called.

One problem in writing code which interacts with the user via a pointing device and the
keyboard is that it is often necessary to know if the user has typed something or not. In
order to discover this, the system provides a standard function called input.pending. This
function returns a boolean which indicates if there is any input waiting to be read from the
keyboard. This function allows applications to be written in which the user may non
deterministically type or perform a mouse event. A good example of such a program is the
Macintosh editor Macwrite.

If the cursor is to be used as a pointing device the programmer must be able to specify
which pixel in the cursor is the pointing tip. In PS-algol the function cursor.tip provides
this, it has the following type,

let cursor.tip = proc(pntr new.tip -> pntr)

In order that the old tip may be reinstated, this function returns the old cursor tip. In this
way, cursors which look like arrows and cross hairs may be used with the appropriate
pointing tip.

3.5 Implementation

The implementation of such a system is highly dependent on the facilities provided by the
hardware [bro86] and therefore has not been discussed here. However, the abstract
machine must provide support for the graphical objects being manipulated, this support is
described in Appendix 1 and in [ps85].

46

3.6 Conclusions

This chapter has presented the graphics facilities available in one persistent language, PS-
algol. These graphics facilities have proven so successful that thay have included,
unchanged, in the language Napier. The way in which graphics objects may be
manipulated like any other object in the system has been shown. In particular, it is shown
how graphical objects may interact with the persistent store. Such an integration provides
a powerful vehicle with which applications with sophisticated mmi may be provided.

47

4 The System Building Domain

4.1 Introduction

The PISA system building domain supports the construction of the persistent languages
and environment. The major system construction tools in this domain are:

1. The Abstract machine
2. Abstract program graphs
3. Compiler componentry
4. Support for compilation and execution merging
5. Support for optimisations

Much of the support is provided by tools that are constructed within the persistent
environment and therefore supported by the system building domain. At one level, these
tools may be viewed as applications making requirements on the system building domain,
at another level, these tools will be regarded as part of that domain. A good illustration of
this is in the compilation systems, these are written in the persistent languages and,
therefore, use the language and environment support provided by the architecture.
However, at the same time they provide support for other applications using the
architecture.

4.2 History

The abstract machine that supports the language Napier is a refinement of the PS-algol
abstract machine. This machine is, in turn, a modification of the machine that supported
the language S-algol. Some historical perspective helps understand the structure of the
Persistent Abstract Machine.

4.2.1 The S-algol abstract machine

The language S-algol is the predecessor of PS-algol. Although the language is not
persistent some important features of the current Persistent Abstract Machine have their
roots in the S-algol Abstract Machine [mor79,dea85].

The language S-algol may be implemented using conventional stack techniques. However,
the language allows the construction of objects whose size is not known at compile time.
The extent of these objects is different from their scope. Consequently, a heap is used in
addition to a stack to store objects. Pointers to these objects are stored on the execution
stack.

During garbage collection it is necessary to distinguish pointers from scalars. In order to
simplify this process the S-algol abstract machine implements two stacks - one for pointer
items and one for scalars. Stack frames have a pointer from the main stack to the pointer
stack in the mark stack control word to keep the pointer stack frame and the main stack
frames logically together. This is necessary to implement return from procedure calls and
intermediate free variable access.

4.2.1.1 Object management

Heap objects in S-algol abstract machine are all typed - that is the type of the object is
encoded in the headers of objects. Consequently, object management routines in the
machine have to check what type the object is before it can be manipulated. For example,
the machine needs to know that strings contain no pointers and that their length field is in
bytes.

48

The garbage collector in the S-algol machine keeps a free list of unused space and uses a
first fit algorithm for the allocation of space to new objects.

4.2.2 The PS-algol abstract machine

The PS-algol abstract machine is a refinement of the S-algol machine. It needed major
revisions in order to implement first class procedures and persistence.

PS-algol is a block structured language that is well suited to a stack implementation
technique. However the language has procedures that are first class citizens and store
semantics. Therefore, objects in the scope of a block may still be accessed after that block
has returned. This is easily illustrated in a small PS-algol example,

let counter =
begin

let count := 0

proc(-> int)
begin

count := count + 1
count

end
end

example 1
block retention in PS-algol

In this example, the procedure returned as the value of the block yields unique integers,
each the successor of the previous one. In order to do this it uses an encapsulated value,
count. When the block returns, the value of the block, the procedure, is assigned to
counter. This procedure will access count when it is called, consequently the location to
which count is bound must be retained. The class of languages in which this phenomenon
may occur are known as block retention languages.

A conventional stack architecture is not rich enough to support block retention languages.
A stack architecture known as a cactus stack is necessary. Since most programs do not
require block retention it is tempting to use a stack for efficiency and only do something
special when retention occurs. Such a strategy is sometimes called a mixed mode strategy.
The something special could be to allocation of space for frames with retention on a heap.

If a mixed mode strategy is used it is possible for the system to run out of space in two
ways - by running out of heap space and by running out of stack space. Thus the system
can run out of space in one partition whilst unused space exists in the other.

One of the aims of the PISA project is to provide a robust system with stable storage. A
persistent store presents the user with a stable, conceptually infinite object space. Thus, it
is undesirable for a system to stop working by running out of space when free space exists
in the system. Ideally, the system will only stop when all the free space in the system has
been used up - this includes both RAM and disk space.

The solution is to have only one dynamic storage system - the heap. All data objects have
space allocated for them on the heap. In this way, the system will run out of space only
when the heap is full. The PS-algol system does not entirely satisfy this desire as the heap
may become saturated with persistent objects. Persistent objects are not written back to
disk unless a commit occurs. This problem is corrected in the Napier system.

49

4.2.2.1 Frames

A stack of procedure frames is simulated in the heap with each frame being a separate
heap object. Within each frame two stacks are simulated - one for pointers the other for
scalar items. The scalar objects, integers; pixels; reals and booleans, all reside on the main
stack, whereas pointers to images, strings, vectors, structures, closures and files reside on
the pointer stack.

Each frame has a display that points at the static environment of the procedure. The
display may be considered as comprising the bottom of the pointer stack. The display and
dynamic links to other frames are also implemented by pointers to other frames also on the
heap.

In each frame the main stack grows up memory, the pointer stack grows down memory.
This allows all stack addresses to be assigned statically in one pass by the code generator
as an offset from one of two machine registers - the local main stack base and the local
pointer stack base. The compiler must calculate the maximum stack sizes in order to
ensure that the stacks will not collide at execution time.

4.2.2.2 Addressing

The S-algol abstract machine uses procedure level addressing, whereas the PS-algol
machine uses block level addressing. This is a requirement if a language with first class
functions and store semantics is to be supported. This requirement is illustrated in the
following PS-algol example,

let avec = vector 1:: 10 of proc(-> int) ; 1 ! a vector of procedures
for i = 1 to 10 do

avec(i) := proc(-> int) ; i

example 2
a vector of procedures

In this example, a vector of procedures called avec is declared. The procedures in the
vector are all of the type

proc(-> int),

the vector initially has the procedure that returns one assigned to each location in it. In the
for loop, a procedure is assigned to each location in the vector. Each of these procedures
encapsulates one of the values of the control variable i. Thus, the procedure which is
assigned to location i in the vector will also return i when called. The control variables in
each invocation of the loop body must therefore have a different location.

4.2.2.3 Objects

Like the S-algol machine all objects have their type encoded in the format of the object.
The object coding is known by all modules in the system; the garbage collector needs to
have knowledge of the encodings to garbage collect objects, the persistent object manager
to move objects in and out of RAM and even the compiler so that it may plant code for
object literals. This breech of modularity makes it difficult to maintain the system and
perform experiments.

This problem made it difficult to do experiments with the PS-algol system. If a new data
type was introduced into the language, many modules in the system had to be changed
consistently. The code that needed to be changed was written in different languages - the
compilers in PS-algol and the run time system in the implementation language. The

50

volume of code, constructed in different technologies, that needed modification made
change difficult and error prone.

The PS-algol machine allocates space for frames and graphics objects (bitmaps) on the
heap. This extra utilisation of the heap led to performance problems with the free list
method of space allocation used in S-algol. For this reason, the garbage collection
technique was changed to a compacting garbage collector [mor78] and the free list
discarded. This change improved performance dramatically.

4.2.2.4 The Standard Frame

The PS-algol machine supports a standard frame. There is only one standard frame in any
PS-algol system. It provides an environment for all predeclared identifiers in the language
such as cos and sin and literals like pi and maxint.

The compiler is provided with a description of this frame in the form of a file of
declarations known as the standard declarations file. The run time system is responsible
for filling in the locations in the standard frame with the correct values. A set of
instructions is provided in the machine which loads objects from the standard frame onto
the frame of the currently executing procedure.

The standard frame proved to be another difficulty in providing an experimental
framework. The main problem is that different experiments required the addition of
different standard functions - functions written in the implementation language. If a
change is made to the standard declarations file without the correct change being made to
the standard frame, corruption of the whole system is possible.

4.2.2.5 The I/O system

The PS-algol system supports a complex set of I/O instructions which support the buffered
I/O in the language. A large part of the underlying support system is devoted to
implementing buffered I/O. This is partly due to the I/O system of
PS-algol being typed It is also due to instructions that could be written in PS-algol being
written in the implementation language for performance gains.

4.2.2.6 Persistent Object Support

Persistent Object Management in the PS-algol system is provided by a module in the
interpreter called the POMS (Persistent Object Management System). This module is
responsible for implementing a transactionally secure persistent object store.

Originally it was thought that the programmer would use the POMS to support
CAD/CAM style of applications. That is they would read in some data, do some
processing on it and then either save the changes or discard them. To support this the
POMS operates on large disjoint units known as databases. Databases provide a
mechanism for identifying persistent data. Each database has a root. Any data object
reachable from the root will also persist.

The POMS is part of the run time support system, so there may be multiple invocations of
it running on a computer at any time - one for every PS-algol process. Databases are
passive objects on which invocations of the POMS operate. In order to ensure that PS-
algol programs do not interfere with each other a multiple reader/single writer protocol is
imposed on databases. Therefore, a database may only be open for one writer at a time or
many readers (but not both).

In order to ensure that data held in the persistent store is updated in a self consistent
manner it is necessary to impose a protocol for the update of changes. The PS-algol
system provides this by a function called commit. A copy of data touched by a program is

51

loaded into the programs local heap. When a commit is invoked by the program, data that
has been changed is written back to the databases. The commit algorithm guarantees that
either all of the changed objects are written back or none of them. In addition, no objects
are copied back to a database unless it has been opened for writing.

Three functions are provided by PS-algol to interface with the persistent store. The
functions create.database, open.database and commit allow a program to create a new
database, open a database in either read or write mode and invoke the commit algorithm
respectively.

4.2.2.7 Pids and Lons

A persistent object is identified by a persistent identifier known as a pid. A pid is the same
size as a pointer and may be distinguished from a pointer by having its most significant bit
set. A heap pointer is known as a local object number or a lon.

Persistent objects are identified as such by being pointed at by a pid rather than a lon. The
abstract machine cannot process pids therefore pointers must be checked before their use.
If the pointer is a pid, then the POMS must be called upon to translate the pointer into a
lon. Once this translation has been performed the pid is overwritten by the lon

When the POMS is called upon to translate a pid it looks up the appropriate database to
find the object to which the pid points. This object is then copied into local memory and
the local object number returned. In order to prevent pid translation from being repeated
many times a table is kept of all the pids translated during the current interpreter
invocation. This table is known as the PIDLAM (pid - local address map). When a pid is
first used and translated to a lon an entry is put in this table to memorise the address of the
object in local memory. All pid-lon address translations check this table first and only if a
lon is not found does the translation take place.

4.3 The Persistent Abstract Machine

The Persistent Abstract Machine (PAM) supports the execution of programs that are
written in the Persistent Architecture Intermediate Language (PAIL). These programs are
translated from PAIL code into PAM code by the code generation module of the
compilation system. The abstract machine relies on the store domain to provide a
persistent heap of objects.

4.3.1 Design Principles

Module independence has been the guiding principle in designing the system building
domain. Whenever possible the design of one part of the system has been decoupled from
the design of other parts. This lesson has been learned from experiments using the PS-
algol system. In this system, information escapes from one module into another, making
change and maintenance difficult.

This problem is best illustrated in the interface between the language and the persistent
store. In the PS-algol system type information is encoded in the abstract machine
representations of objects. This means, that to introduce a new type into the system,
changes have to be made to the compiler, the abstract machine, the garbage collectors and
the persistent object manager.

The separation of the system into layers or modules is essential for several reasons.
Firstly, the construction of any system is aided when clear boundaries are formed. These
boundaries enforce the demarcation of responsibilities in the system both between
programs and programmers. This modularity leads to a benefit in system maintenance. If
errors or even design flaws can be localised the volume and complexity of code that has to
be changed may be minimised. Secondly, and most importantly in the research field

52

modularity aids experimentation. The Napier system has been constructed in such a way
as to allow experimentation in any of the system construction areas. It is possible to
experiment with persistent object managers, abstract machines, code generators,
compilers, languages and type systems independently.

The system may be viewed diagrammatically as,

Heap of Persistent Objects

Compiler

Stable Storage

Persistent Abstract machine

Code generator

high level languages

PAM code

PAM objects

Heap Objects

PAIL

figure 1
The layered Architecture

In this system any of the modules may be replaced by another implementation with the
same interface, allowing experiments to continue in parallel on all the areas of interest to
the PISA project. The architecture provides the experimental testbed for future
experiments in the PISA project. These experiments will include distributed secure object
stores and concurrency experiments in both the language and system building domains.

It is our task as system designers to find the correct levels of abstraction so that fire walls
are protected; whilst ensuring that these barriers do not adversely effect efficiency. Much
of the design effort in the system building domain has focused on finding these correct
levels of abstraction.

4.3.2 Heap Objects

The heap is the only dynamic storage system supported by the system. All objects in the
system reside on the heap; simple data objects such as integers, pixels or reals reside
within objects; complex data objects such as images, vectors and frames are single heap
objects.

53

All heap objects have the same format (a word is a 32 bit integer)

word 0 header
word 1 the size in words of the object
word 2..n the pointer fields
word n+1.. the non pointer fields

Word 0 has the following interpretation

bits 8-31 the number of pointer fields in the object
bit 7 if set first byte in a short integer is least significant
bit 6 if set first short in an integer is least significant
bit 5 remote address object flag
bit 4 translated bit - if set a field has been changed to a pid
bit 3 written bit for persistent object manager
bit 2 mark bit for garbage collection
bit 1 constancy bit for validating updates in vectors or

trace bit for use by special return instructions in frames
bit 0 header bit - header or ram address

where bit 0 is the most significant bit of the word.

Thus, all objects are partitioned into pointer and non-pointer fields with the pointer fields
preceding the non-pointer (scalar) fields. This minimises the potentially high cost of
garbage collection and persistent object management in the system. By separating the
pointer and scalar fields, garbage collectors may easily find the number of pointers in an
object and then iteratively process them. This decision has serious implications in the rest
of the machine design. However, this cost is justified by the simplification in object
management which is one of the most expensive tasks performed by the machine. [lob87]

In order to simplify garbage collection, pointers in the architecture only ever point at the
beginning of objects - never into them. This has the effect on the instruction set that the
addresses of many objects are given as an object address and an offset with the object.
This technique is common in segmentation systems.

The object management modules in the system all conform to the basic object convention.
Furthermore, they may only manipulate objects in accordance with the information
contained in their headers. The high level information described below may not be used by
the store level object manipulation code.

4.3.3 PAM Object Formats

The Persistent Abstract Machine imposes higher level conventions on objects. These are
not part of the primitive object format. The store level system utilities do not know or care
about these higher level conventions since they are only concerned with the basic object
format. This allows experimentation in the field of garbage collection, persistent object
management and abstract machine design to be carried out independently.

In order to support infinite unions every object has an associated type description. This is
pointed to by the object's first pointer field and will be in a canonical form constructed by
the compiler. The abstract machine does not have knowledge of how this field is laid out.
Type representations are created by the type checker which is part of the high level
language implementation. The abstract machine merely treats this field as a pointer. How
this pointer is used is discussed later.

Each type of object in the machine is laid out differently, but in accordance with the basic
object format. That is that they carry a header and that pointers come before non-pointers.
Only the instructions that deal with a particular type have knowledge of how that type is

54

arranged internally. For example, unlike the garbage collector, the equal string operation
needs to know the layout of a string.

Each PAM object class will now be discussed.

4.3.3.1 Strings

word 2 a pointer to the type descriptor for a string
word 3 number of characters in the string

word 4.. the characters 1 per byte padded with zeros up to a 4 byte boundary.

4.3.3.2 Files

There are 5 kinds of files that are supported by the Napier abstract machine; disk files,
terminals, mice, tablets and raster displays. Each file kind is represented differently. In all
the file types, the internal file number and associated flag bits are represented as follows:

if raster file bit 8
if tablet bit 9
if mouse bit 10
if terminal bit 11
if disk file bit 12
if closed bit 13
if writable bit 14
if readable bit 15
file number bits 16-31

Disk Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file's name
word 4 an internal file number and associated flag bits
word 5 the current position in the disk file (byte offset from the start)

Terminal Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file's name
word 4 an internal file number and associated flag bits
word 5 the terminal modes currently selected

Mouse and Tablet Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file's name
word 4 an internal file number and associated flag bits
word 5 the X dimension of the tablet, 0 for a mouse
word 6 the Y dimension of the tablet, 0 for a mouse
word 7 the X position, absolute for a tablet, relative for a mouse
word 8 the Y position, absolute for a tablet, relative for a mouse
word 9 + n state of the nth button, numbered from 0

55

Raster Files

word 2 a pointer to the type descriptor for a file
word 3 a pointer to the file's name
word 4 an image representing the raster device's screen
word 5 an image representing the screen's cursor
word 6 an internal file number and associated flag bits
word 7 the X position of the cursor on the screen
word 8 the Y position of the cursor on the screen
word 9 the raster rule used to display the cursor on the screen

(see rasterop)

4.3.3.3 Vectors

word 2 a pointer to the type descriptor for the vector and its elements
word 3..n the elements
word n+1 lower bound
word n+2 upper bound

4.3.3.4 Images

H
E
A
D
E
R

S
I
Z
E

File
Descriptor

X-
O
F
F
S
E
T

Y-
O
F
F
S
E
T

D-
O
F
F
S
E
T

X

D
I

M

@
Bitmap
Vector

Y

D
I

M

D
E
P
T
H

T
Y
P
E

word 2 a pointer to the type descriptor for an image
word 3 pointer to the vector of bitmap vectors

word 4 pointer to the file descriptor (if a cursor or screen of a raster device
otherwise nil)

word 5 X offset into the bitmap vector
word 6 Y offset into the bitmap vector
word 7 depth offset into the bitmap vector
word 8 X dimension of the image
word 9 Y dimension of the image
word 10 depth of the image

The bitmap vector for an image is laid out as follows:

word 2 a pointer to the type descriptor for a vector of integers
word 3 X dimension of the bitmap
word 4 Y dimension of the bitmap
word 5 depth of the bitmap
word 6 number of bits per pixel
word 7 number of pixels per scan line
word 8 offset to start of the image from the start of the object.
word 9..n bits
word n+1 lower bound
word n+2 upper bound

56

4.3.3.5 Structures

word 2 a pointer to the type descriptor for the structure
word 3..n the pointer fields
word n+1.. the non-pointer fields and constancy bitmap

Every structure is assumed to contain a constancy bitmap of one bit per word. It should be
checked whenever a word in a structure is to be updated. However updates to the words
containing the bitmap are not checked to allow the constancy of fields to be altered. For
structure fields of two words only the bit for the first word is used. For a structure of
length L the starting word (S) of the bitmap can be calculated as follows:

S = L - (L + 30) div 32

The word (W) within the bitmap containing the bit for a given field index (I) and the
field's bit (B) within that word can be calculated as follows:

W = I div 32
B = 31 - (I rem 32)

To test if a field is constant bit B in word S + W of the structure is tested. The field is
constant if the bit is set. Note that the bits are numbered in decreasing significance from
bit 0 to bit 31.

4.3.3.6 Code Vectors

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

P
A
I
L

F

T
Y
P
E

A

C
V
E
C

Pointer
Literals

Code

C

T
Y
P
E

F

S
I
Z
E

F

M
S
B

word 2 a pointer to the type descriptor for this code vector (TYPE)
word 3 a pointer to the pail tree for the code vector's procedure (PAIL)
word 4 a pointer to the type descriptor for the frame created when the code

vector's procedure is applied (F TYPE)
word 5 a pointer to an alternative code vector (A CVEC), this has the

same functionality but contains different code, the code may be a
different type

word 6..m any pointers to objects that are used by the code vector's procedure
word m+1..n the code to be executed
word n+1 the type of code, 0 if the code is Napier code (C TYPE)
word n+2 the size of the frame (in words) to be created when the code

vector's procedure is applied (F SIZE)
word n+3 the offset to the main stack (in words) for the frame (F MSB)

Code vectors are used to store object code for procedures and blocks. They must contain
all the information necessary to execute the procedure or block that they represent. The
information includes the size of the frame needed and the main stack offset. Debugging
information is included in the code vector in the form of the type of the code the vector
implements. This is held as a symbol table holding all the address information for the
declarations made in the procedure or block. An abstract form of the source code is also
held in the code vector in the form of an abstract syntax tree, allowing the source code to
be reproduced at run time.

57

PAM code vectors provide an alternative code vector field. This field may have a code
vector of native machine code assigned to it. The assignment may be performed at
compile time or at some later time as an optimisation. It is possible to perform the
assignment lazily [car87] since code vectors reside in the persistent store and because
PAM code vectors contain a pointer to the source of the block or procedure in the form of
a PAIL tree.

PAM code must be preserved in this optimisation since code vectors may be executed on
different processors in a heterogeneous environment. The abstract machine code definition
provides a machine independent program representation. This code may be viewed as an
optimised version of the PAIL code.

Code vectors in PAM contain pointer literals. These pointers reference the compile time
type representations of objects that may be created at run time. These may be used by the
type checking procedure found in the root object. The pointers also store the PAIL source
code for the procedure. In this way the source code is bound to the executable code,
allowing better diagnostic information to be produced.

4.3.3.7 Stack Frames

Each procedure and block activation is implemented on the heap by a stack frame. In
addition to house keeping information, each frame contains two stacks, a pointer stack and
a scalar stack shown below,

D
I
S
P
L
A
Y

L
L

R
A

M
S
P

Pointer

Stack

Main

Stack

D

L
I
N
K

C

V
E
C

S

L
I
N
K

C

P
A
I
L

H
E
A
D
E
R

S
I
Z
E

T
Y
P
E

word 2 a pointer to the type descriptor for this frame, it includes a symbol table
for this frame (TYPE)

word 3 the dynamic link (D LINK)
word 4 a pointer to the code vector for the frame's procedure (C VEC)
word 5 the static link for the frame's procedure (S LINK)
word 6 a pointer to the pail currently being executed (C PAIL)
word 7..l the display for the frame's procedure (DISPLAY)
word l+1..m the pointer stack frame's procedure
word m+1..n the main stack frame's procedure
word n+1 the frame's lexical level (LL), the number of entries in the

display
word n+2 the return address for the frame's procedure (RA), an offset (in

bytes) from the start of the procedure's code vector
word n+3 the saved offset (in words) of the LMSP from the LFB (MSP)

Frames are allocated on the heap and therefore must conform to the basic heap format
which dictates that pointer and scalar fields must be partitioned. The machine, like the PS-
algol machine, simulates two stacks - a pointer stack and a scalar (main) stack. However,
in this machine the pointer fields must precede the scalar fields. The code generators
calculate the maximum sizes of these stacks allowing space for all intermediate values in
addition to locations which have identifiers bound to them. This information is contained
in the code vector. Scalar objects all reside on the main stack; these are integers, pixels,
reals and booleans. Pointers to heap objects exist on the pointer stack; they are images,
strings, vectors, structures, closures, files, abstract data types, variants and unions. The
bottom of the pointer stack implements a display of pointers to the environment.

58

In PAM, both stacks both grow in the same direction. All addressing is base and offset
addressing relative to one register - the local frame base. This scheme makes addressing
simpler at the expense of complexity in the code generator. In the code generator no scaler
stack addresses may be allocated until the number of pointers in the frame is known. This
requires either the code generator to back patch main stack addresses at the end of a block
or do another pass allocating addresses.

The technique of making the machine simple at the expense of the code generators has
been followed whereever practical. Calculations made in the code generator are made
once - at code generation time rather than many times during procedure invocation.
Therefore, there is good reason for making the machine as simple as possible from a
performance point of view. Another reason for shifting complexity from the machine to
the code generators, is that the code generators are implemented in a high level language,
whereas the machine is implemented in a low level language or even silicon. This upward
movement makes maintenance much more manageable.

4.3.3.8 Abstract data types

word 2 a pointer to the type descriptor
word 3..n the remaining pointer fields
word n+1.m the nonpointer fields
word m.. the type keys for the witness types and constancy bitmap

Note that all fields of witness types are implemented as polymorphic objects. Therefore
each is assigned space for a double length scalar and double length pointer object. This
allows the calculation of field addresses to be performed statically. The dynamic type
information of the witness types is stored in the last scalar fields of the object. The
implementation of A.D.T.'s is described fully in section 5.3.10.

4.3.3.9 The Root Object

In the PS-algol machine the standard frame became a major obstacle to change. Revisions
of the standard frame meant that programs compiled with the old version were no longer
executable because offsets into the old frame had been hard wired into the code.

Many of the functions in the PS-algol standard frame were not primitive machine
instructions. One example of this is the lwb function which returns the lower bound of a
vector. This function is implemented in the machine implementation language in the PS-
algol system.

In PAM, most of the functions which were implemented in implementation language in
the PS-algol machine have been replaced with short sequences of abstract machine code
These functions are known as primitive instructions. Functions, like lwb, may easily be
implemented in this way, resulting in a simpler underlying machine.

Not all functions may be implemented in this way. Some functions like sin are true
primitive machine operations. These have been implemented as abstract machine
instructions in the Persistent Abstract Machine. Using these techniques we have removed
the need for a standard frame. A fixed point is still needed in the machine -this is provided
by the root object. The root object provides a set of known addresses in PAM. There is
one root object per machine invocation. It contains literal values such as nil, pi, nullimage
and maxint.

A pointer to a vector of single character strings is included in the root object. This was an
optimisation first used in the S-algol abstract machine to lessen heap fragmentation and
speed up string manipulation.

59

The root object also contains some procedures used by the machine. These include the
startup procedure which is run when the machine is invoked. A type checking procedure
that checks if two type representations are the same is also stored here.

A pointer to a vector of error processing procedures that are called when hard errors occur
in the machine and a pointer to the vector of event handlers are also included in the root
object. These procedures are ordinary procedures written in Napier. A set of special
functions, written in PAIL, are provided for assigning values and retrieving values from
these locations.

word 2 the pointer literal nil
word 3 the code vector for the startup procedure
word 4 the static link for the startup procedure
word 5 the logical root of persistence
word 6 the file literal nullfile
word 7 the string literal ""
word 8 a pointer to the vector of all 128 single character strings
word 9 the image literal nullimage
word 10 the code vector for the error processing procedure
word 11 the static link for the error processing procedure
word 12 a pointer to the vector of event handling procedures
word 13 a pointer to the vector of error handling procedures
word 14 a pointer to the vector of open files
word 15 a pointer to the frame of the currently executing procedure
word 16 the code vector for the type checking procedure
word 17 the static link for the type checking procedure
word 18 a pointer location for use in comparing variants, nil if not in use
word 19 a pointer location for use in comparing variants, nil if not in use
word 20 a pointer location for use in comparing variants, nil if not in use
word 21 a pointer location for use in comparing variants, nil if not in use
word 22 the error number for the last I/O instruction executed
word 23 the integer literal maxint
word 24,25 the real literal maxreal
word 26,27 the real literal pi
word 28,29 the real literal epsilon

4.3.4 Stable Storage

Stable storage in the persistent abstract machine is provided by the object management
module. This module is a module within the abstract machine and implements the heap.
The heap is the top layer of a hierarchy of levels that implements the persistent store. The
heap interface consists of eight functions. These are the only functions which deal with
object management and operate on basic object formats. That is, they can only determine
the size of objects and how many pointers they have.

The interface functions to the heap are:

1. Initialise_Heap
2. Shutdown_Heap
3. Create_Object
4. Destroy_Object
5. Illegal_Address
6. Root_Object
7. Stabilise_Heap
8. Garbage_Collect

The functions Initialise_Heap and Shutdown_Heap are used to initialise and shutdown the
persistent store.

60

Create_Object is the only mechanism provided in the system for object creation. All high
level functions that create objects therefore use this function.

The function Root_Object returns a pointer to the root object. Illegal_Address is the
function that translates pids into lons, both these functions have already been discussed.

The function Destroy_Object is provided as an optimisation tool. In certain cases the code
generator can detect statically when an object is no longer reachable. This system may be
used to release space used by these objects. This function is particularly useful for
optimising recursive function calls. The usual way of reclaiming space is by calling the
garbage collector. This is usually called when a Create_Object fails.

The function Stabilise_Heap causes all new and changed objects to be copied to stable
storage. This also causes the store to checkpoint itself causing the store to move into a
stable state. A fatal failure in the system such as power loss causes any data changed or
modified since the last stabilise to be lost, but data changed or modified before the last
stabilise will be retained. Stabilise_Heap is an atomic operation.

4.3.5 The Instruction Set

PAM code is a byte-code instruction set comprising of instructions with between zero and
four parameters which may be either bytes, short integers, words or double words.

Objects are represented on stacks by different numbers of stack elements. Therefore, some
instructions need to be parameterised by stack size. However, some instructions need to
perform different code depending on the object type. Therefore, instructions have two
styles of instruction modes, being parameterised either by stack size or by type.

For example, the load instruction performs the operation of loading an object onto one of
the stacks. There are six modes of this instruction. These are:

wload - main stack 1 word
dwload - main stack 2 words
pload - pointer stack 1 word
dpload - pointer stack 2 words
wpload - main stack 1 word & pointer stack 1 word
dwdpload - main stack 2 words & pointer stack 2 words

Although the abstract machine does not have any knowledge of the languages' type
system, some instructions do need to be parameterised by implementation type. For
example, the less than instruction has three typed modes:

lt.i less than integer
lt.r less than real
lt.s less than string

These instructions operate on the top of either the main stack or the pointer stack
depending on the type of the arguments.

4.3.6 Types

The Persistent Abstract Machine has no knowledge of the type systems of the languages
that it supports. This allows system building domain to be decoupled from the language
domain, and illustrates another example of the modularity of the system. However, the
machine does store type representations supplied by the high level system and call
functions that manipulate these representations.

61

For the purpose of the discussion below, it is necessary to know that the compilation
system builds graph structures representing high level types. The building of graphs rather
than having a simpler representation is necessary in order to support the recursive and
unbounded nature of the languages supported by the machine - in particular the Napier
type system.

4.3.7 Support for Infinite Unions

The languages supported by PAM have infinite unions in their type systems. In the case of
Napier, two infinite unions are supported; env and any. For the purpose of this discussion,
only any is discussed here. A value of any type may be injected into the type any in
Napier. The result of the injection has type any. This is shown by an example,

let astring = "a string " ! has type string
let anany := any(astring) ! has type any
let aproc = proc(x : int -> int) ; x ! has type proc(int -> int)
anany := any(aproc) ! still has type any

example 3
use of any

Here, the identifier anany has type any, furthermore the value stored in anany may take
any value. Values of type any are stored on the pointer stack. If the value is a scalar or a
double length object, it must be wrapped in a container. In other words, a pointer (or the
value in the scalar case) must be stored in a heap object. This container has the type of the
original object as its type in the object type field. This technique insures that the type of an
any may always be found in the type field of the object which represents it.

When a value is projected out of an any, the expected type of the projection must be
specified. This is best illustrated by an example. Suppose that the above lines of code have
been executed. The projection in Napier is as follows

project anany as this onto
string : writes("It was a string")
int : writes("It was an integer")
proc(int -> int) : writes("It was a proc(int -> int)")
default : writes("Don't know what it is")

example 4
projection from any

Unions require that some type checking be done at the time of projection i.e. at run time.
This is a particular problem for infinite unions since we are forced to check the graph
representations of the types dynamically since the members of the union cannot be
enumerated.

A solution to this problem has been known for some time. It involves ensuring that all
type representations used are identical. That is, they are the same instance of the same
graph. This could be achieved by having a type server in the persistent store that hands out
unique type representations. Doing this allows the run time type check to be simply
pointer equality. However, this solution was not considered to be a good one, since major
problems may arise in a distributed environment.

Another solution would be to write the graph checker in the implementation language i.e.
have the checker as an abstract machine op-code. This solution requires unbounded space,
since a stack is needed to check graph structures. This solution has no intrinsic problems,
however, simultaneously maintaining both a low and high level implementation is
expensive in terms of software engineering costs.

62

The best solution is to use the same type checker (written in Napier) that the compiler
uses to check the graphs. The problems which arise here are the linking of the Napier code
into the machine and the writing of the type checker.

The Napier type checker must be written in a subset of Napier without the use of infinite
unions, this establishes a fixed point in the type checking system. Given that this may be
achieved, the code needs to be located somewhere that the run time system can find it.

A set of fixed locations exist in the system in the form of the root object. A special
function, written in pail, is provided which will take the type equality function as a
parameter and put it into the root object. When the runtime system needs to check the
equality of two types, it may call this function with the type representation graphs as
parameters. Since the type checking system is itself written in Napier, the use of
unbounded space does not present a problem because space may be allocated from the
heap.

4.3.8 Implementation of Variants

The Napier language supports a tagged variant type. Any object may be a member of a
variant and any object may be a member of more than one variant at a time. This is a more
general variant type than is provided in other languages [har86,mat85] and causes some
implementation problems. These problems will be illustrated by example (in Napier)

type air is variant(balloon : structure(speed : int) ;
plane : structure(speed : int))

type transport is variant(train : structure(speed : int) ;
plane : structure(speed : int))

let concorde = structure(speed = 5000) ! of type structure(speed:int)
let anair = air(plane : concorde) ! of type air
let atransport = transport(plane : concorde) ! of type transport

example 5
use of variants

Here the object bound to the identifier concorde is injected into two variant types; air and
transport. This means that the tag information needed for projection may not be stored
with the object. Instead, it must be stored with the location associated with the variant, in
other words with reference to the object.

The second example is illustrates that any type may be in a variant,

type afewshapes is variant(aproc : proc(int) ;
anint : int ;
astring : string ;
areal : real)

example 6
a difficult variant

to implement

In this second example, the type described is a variant of four different types. The types of
the objects in this variant are all implemented in PAM by objects of different sizes. To
make matters worse, the objects may also reside on different stacks as in this case.

Equality is the final problem with variants, suppose we have the above type defined and
we have two objects of type afewshapes. The desired semantics for variant equality is that

63

the objects must be in the same branch of the variant and they must be equal. Since
equality is a type dependent operation, the real type must be stored with the object.

In PAM variants are implemented as a double word object consisting of one scalar and
one pointer. The scalar field contains an encoding of the type and the variant branch. This
allows projection to be performed by comparing this word with a supplied tag. Variant
branches are sorted into name order and enumerated. The type encoding is a five bit code
which indicates the type of the variant branch. In order to do this, the machine only needs
to be able to differentiate between double and single length objects and strings. Thus,
encoding removes the need for the potentially expensive graph checking needed in the
infinite union case.

4.3.9 Polymorphism

A function is said to be polymorphic if it can accept arguments of more than one type; for
example, the identity function, shown in example 7 accepts parameters of any data type.
Two forms of polymorphism exist, known as universal polymorphism and ad-hoc
polymorphism.

let id = proc[t](x : t -> t) ; x

example 7
the identity function

When ad-hoc polymorphism is employed the type of code that is executed depends on the
type of the argument. For example, in PS-algol,

write "hello"

involves different code from

write 5.

In contrast, the essence of universal polymorphism is that the same code is executed
regardless of the types of the arguments. Two different forms of universal polymorphism
exist, parametric polymorphism and inclusion polymorphism [card85]. In parametric
polymorphism a polymorphic function has an implicit or explicit type parameter, which
determines the type of the argument for each application of that function. In inclusion
polymorphism an object may be viewed as belonging to many different classes which
need not be disjoint. Cardelli and Wegner point out that the two forms of universal
polymorphism are not disjoint but are sufficiently different to deserve different names.

The function shown in example 7 is said to be quantified by the type t. In the language
Napier, procedures may be quantified by any number of types, giving the programmer
power to abstract over many types.

The parametric polymorphism provided in Napier is explicit. That is, quantifiers must
always be specified when a polymorphic function is defined. Similarly, functions must be
specialised to some concrete type before they are applied. No type inferencing is
performed by the type checker. For example, the identity function shown in example 7
may be specialised to the integer identity function by writing,

id[int]

or to the string identity function, by writing,

id[string].

64

Each specialisation of a polymorphic function creates a new procedure closure instance.
The closure comprises the code for the polymorphic function and the new environment. A
single instance of a polymorphic procedure may be specialised to many different non
polymorphic procedure instances. This is important in a persistent environment where
many users may wish to use a single polymorphic procedure.

In Napier, polymorphic procedures have full civil rights in both their specialised and
unspecialised form. Therefore the integer identity function, shown above, may be passed
as a parameter or returned by a function. If it is assigned to a location, as follows,

let idint = id[int]

he function bound to idint is indistinguishable from the function

let idint = proc(x : int -> int) ; x

Before examining possible implementation strategies, some of the potential problem areas
will be examined, they are:

1. first class procedures;
2. passing parameters;
3. returning values; and
4. structure creation.

4.3.9.1 First Class procedures

If procedures are first class citizens in a programming language, on application it is
generally impossible to statically determine which closure is being used. Consequently,
polymorphic procedures must be indistinguishable from ordinary procedures.

4.3.9.2 Parameter Passing

Parameters passed to procedures must behave normally whether they have been declared
as polymorphic or not. Four different cases must be considered, they are:

1. ordinary values passed to ordinary procedures;
2. polymorphic values passed to ordinary procedures;
3. polymorphic values passed to polymorphic procedures; and
4. ordinary values passed to polymorphic procedures.

Examples of each of these cases are given below.

let id = proc(x : int -> int) ; x
id(3)

example 8
ordinary parameters with

ordinary procedure

Example 8 shows a normal procedure definition and call. The formal parameter x is of
concrete type (integer) as is the actual parameter, 3. In example 9, the identity function
shown above is passed to procedure p as a parameter. In the body of function p, y is called
with the quantified object, x, as a parameter. The call shown in the second line results in
the procedure id being called. P is supplied with a concrete instance (3) of the formal
quantified parameter, x.

65

let p = proc[t](x : t ; y : proc(t -> t) -> t) ; y(x)

p[int](3,id)

example 9
a polymorphic type

as a parameter
to a non polymorphic procedure

Example 10 shows a polymorphic procedure that has another procedure defined within its
scope. Notice that the function r is a polymorphic procedure but is not explicitly
quantified by any type. The type of r depends on the type to which q is specialised.
Furthermore, the formal parameter of r, z, is defined as being of the quantified type t and
the procedure is always applied with a value, x, of the same type.

let q = proc[t](x : t -> t)
begin

let r = proc(z : t -> t) ; z
r(x)

end

example 10
a polymorphic type

as a parameter
to a polymorphic procedure

The case illustrated in example 11 has already been seen in the other examples but is
included for completeness. Here, a polymorphic procedure, s, is applied with a actual
parameter of a concrete type.

let s = proc[t](x : t-> t) ; x
s[int](3)

example 11
ordinary parameters with

ordinary procedure

4.3.9.3 Returning values

Values returned by polymorphic procedures must also be carefully considered.
Polymorphic procedures may return:

1. ordinary values;
2. polymorphic values; or
3. objects which encapsulate polymorphic values.

The first two cases are straight forward. Polymorphic procedures that return polymorphic
values have already been seen. The function s shown in example 11 is of this kind.
Example 12 shows an equality function.It returns a non polymorphic value (a boolean)
indicating if the two objects are identical.

let identical = proc[t](a,b : t -> bool) ; a = b

example 12
polymorphic function

returning non polymorphic value

66

Objects that encapsulate polymorphic values must be treated with caution, the potentially
most difficult area is in returning structured objects. These are discussed below.

4.3.9.4 Structure Creation

Consider the following procedure,

let p = proc[t](x : t -> structure(y : t ; z : string) ; struct(x,"hello")

example 13
polymorphic function

returning a structured object

it returns a structure containing an object of polymorphic type t and a string. If structure
classes are normalised, as they are in the Persistent Abstract Machine, some special action
must be taken, since the offsets of y and z are not known statically.

4.3.9.5 Implementation Approaches

Burstall and Lampson in the language Pebble [bur84b] define universal polymorphic
languages to be ones in which the same code is executed regardless of the type of the
argument, and that different types of data have uniform representation. In their paper they
excuse this operational definition on the grounds that a sound mathematical basis is
lacking, although they refer to a mathematical definition by Reynolds [rey83]. It is not
clear from the dialogue, if uniform representation is intended to apply to the conceptual or
implementation level.

At the implementation level uniform representation is a restrictive and highly inefficient
form of parametric polymorphism. The potential problem areas outlined above present no
problems if uniformly sized objects are used. However, this restriction makes it
impossible to implement double length objects such as real numbers. This explains the
lack of floating point objects from the language ML [har86], which uses this
implementation method.

Recall that in order to simplify garbage collection, the Persistent Abstract Machine
separates pointers from non-pointers. This design decision conflicts with the uniform
object strategy proposed by Burstall and Lampson. In order to satisfy the requirement of
having uniform objects either all objects would have to be implemented as references or
another object management strategy would have to be developed. Neither of these options
are acceptable in terms of machine efficiency.

Another method of implementing polymorphic languages is to used a tagged architecture
[org73] The provision of tagged objects allows the same code to be executed irrespective
of object types. Type dependent operations may interrogate object tags to determine the
types on which they operate. However, objects of different sizes still present a problem.
Hardware implementations of tagged architectures are relatively rare and software
simulations of them are inefficient.

4.3.9.6 P.A.M. Implementation of Polymorphism

The implementation of polymorphism utilises the block retention architecture of the
Persistent Abstract Machine. The technique used is a hybrid solution. In order to gain high
performance, tagging is only performed when necessary. Instead of tagging individual
objects, tags are held in procedure closures at known addresses.

The compiler cannot statically determine which procedure is being specialised. However,
it can plant code to perform some operation on whatever closure is on the stack at

67

specialisation time. Therefore, when the identity function shown in example 7 is compiled
the code produced by the code generator is for the following function,

let idgen = proc(key : int -> proc(x : poly -> poly))
proc(x : poly -> poly) ; x

It is this function that is applied when the procedure is specialised. An integer encoding of
the type is supplied as a parameter. This encoding is encapsulated in the frame of the
function bound to idgen.

The integer key that is planted is known as the dynamic tag of the polymorphic objects.
When the specialised function is executed, the encapsulated values in the static
environment may be interrogated to discover the dynamic tag of the polymorphic objects
being manipulated.

A distinction is drawn between language level and machine level types. The type checker
in the Napier compiler represents types as graphs. These graphs may not be checked
quickly enough to produce an efficient abstract machine. This is because the information
contained in them is too general. Therefore, the notion of dynamic tag is introduced into
the abstract machine. The dynamic tag of objects is the only notion of type in the
Persistent Abstract Machine. It allows pointers to be distinguished from non-pointers, the
size of the stack object and whether the object is a string to be determined.

This information is sufficient to ensure that the same code run is for polymorphic
procedures irrespective of the specialised type, without having to enforce the restriction of
uniform object sizes.

A five bit encoding is used for dynamic tags, the bits have the following significance:

bit 0 set if the object is a single word scalar object
bit 1 set if the object is a double word scalar object
bit 2 set if the object is a string
bit 3 set if the object is a single word pointer object
bit 4 set if the object is a double word pointer object

This results in the following encoding for the dynamic tags of Napier objects:

object bit pattern integer code

integer,pixel or boolean 00001 1
real 00010 2
string 01100 12
vector, structure,
abstract data type,
file, image 01000 8
procedure 10000 16
variant 01001 9

In the Persistent Abstract Machine all polymorphic operations take the address of dynamic
tag as a parameter. The address of the dynamic tag may always be determined statically
even although the polymorphic type may not. The dynamic tag is held in the frame of the
generating function, within the static scope of the polymorphic function.

The Persistent Abstract Machine does not enforce uniform object sizes. However, in order
to ensure an efficient implementation it is necessary to statically calculate the stack
addresses of objects. This allows base and offset addressing to be performed. In order to
achieve this within polymorphic procedures all objects of quantified type are allocated two
words on the scalar stack and two words on the pointer stack. At most, two words of this

68

space will be used, the rest being filled in with dummy values. At first, this strategy may
appear expensive, but, space is only allocated on stacks and extra heap objects are never
created.

The Persistent Abstract Machine supports operations that manipulate these double length
objects. These operations are given in the Persistent Abstract Machine reference manual
which is supplied as Appendix 1.

Since polymorphic procedures are indistinguishable from ordinary procedures all
parameter passing and return must manipulate ordinary objects. That is, the double scalar,
double pointer objects are never passed as parameters or returned as results. Consequently,
polymorphic procedures must perform house keeping operations when they are called,
when they call other procedures, when they return values and when structures are created.
Each of these cases is dealt with below.

When a polymorphic procedure is applied the calling procedure will have initialised the
parameters in the polymorphic procedures frame. Each of the parameters that have been
declared as being of quantified type in the polymorphic procedure must be turned into a
double length scalar and pointer stack object. An instruction called expandPoly performs
this operation. Like all the polymorphic operations in the Persistent Abstract Machine, this
operation refers to the dynamic tag information to determine its course of action. Once this
has been performed, all polymorphic values are treated as double length objects within the
scope of the procedure.

When a polymorphic procedure calls another procedure the reverse of the above process
must be performed. Parameters must be passed in there concrete form. Therefore, an
operation called contractPoly retracts the objects on the stack frame. This operation
essentially removes the dummy values from the stack. Some optimisation is possible when
polymorphic procedures call other polymorphic procedures as in example 10 above.
However, analysis of these situations is sometimes complex. Consequently these
optimisations are not currently performed.

Values are always returned by polymorphic procedures in their concrete form. Therefore,
if a polymorphic value is being returned by a procedure, the contractPoly instruction is
used to translate a double stack object into its concrete representation.

Structure creation is perhaps the most difficult of the polymorphic operations to deal with.
The procedure shown in example 14,

let p = proc[t](x : t -> structure(a : int ; b : string ; c : t)
struct(3,"hello",x)

example 14
polymorphic function
creating a structure

creates a structure containing three values, a string, an integer and a polymorphic object x.
This presents special problems in the Persistent Abstract Machine because structures are
normalised into alphabetical order with pointers proceeding non pointer objects. If the
procedure p is specialised so that the quantified type t is an integer then the field c will
precede field b, however, if t is another string then field b will precede field c.
Consequently, it is impossible to statically determine the address of fields b and c.

The abstract machine must therefore calculate the addresses of these fields at run time.
This calculation could be implemented by a sequence of instructions, but, since the
abstract machine is interpreted, it is implemented by a single PAM instruction called
polystructaddress which takes the number of fields in the structure as a parameter.

69

The statically known size of the structure is loaded onto the main stack followed by the
known number of pointers and two words for each field in the structure. Each pair of
words is initialised to contain 0 and the dynamic tag of the field. Executing
polystructaddress replaces these values with the pointer and non-pointer address of the
fields respectively. The algorithm used during this calculation may be found in Appendix
1.

4.3.10 Abstract Data Types

Napier has a powerful abstract data type (adt) construct based on the existential types of
Plotkin and Mitchell [mit85]. It allows an adt. to be manipulated without being able to find
out its implementation or representation. The problems that arise in implementing adts are
similar to those encountered implementing parametric polymorphism. Before examining
the solutions to these problems some examples are given to illuminate them.

In Napier, adts are described by type. For example, an abstract type may be defined as
follows,

type number is abstype[i](value : i ;
increment : proc(i -> i) ;
display : proc(i))

example 14
the definition of an
abstract data type

The type i is known as the witness type. Once an abstract type has been created, it is
impossible to discover what this type is in reality. The type defined has three fields: a
value field of the witness type i; an increment field which is a function from i to i; and a
display field which is a procedure that takes an i as a parameter.

In an analagous manner to the creation of structures, the name of the type is used to create
an instance of an abstract data type. Example 15 shows the creation of an instance of the
type number, in this case the witness type is integer.

let adt1 = number[int](1 ;
proc(x : int-> int) ; x + 1 ;
proc(x : int) ; writei(x))

example 15
the creation of

an abstract object

Similarly, another instance of the same type, number, could be created, with string as the
witness type. The implementation shown in example 16 uses tabular (base 1) arithmetic.

let adt2 = number[string]("1" ;
proc(x :string-> string) ; x ++ "1" ;
proc(x : string) ; writei(length(x)))

example 16
the creation of

another abstract object

The two objects denoted by adt1 and adt2 both have the same type, that is,

70

abstype[i](value : i ;
increment : proc(i -> i) ;
display : proc(i)

or number for short. They are assignment compatable, may be passed as parameters in
place of each other and so on. Furthermore, the two implementations are indistinguishable
since they exhibit the same operational semantics.

The types described are truly abstract, they exhibit the same semantics yet have totally
different implementations. Obviously, disaster would ensue if a witness types from one
implementation were supplied to a function from another. Consequently, Napier utilises a
scoping mechanism to ensure that this may never happen. Witness types may roam free of
abstract data types only within a restricted scope.

In example 17, below, a function called useabs is defined. It takes an instance of the
abstract data type number as a parameter. In the body of the function, a value of witness
type is extracted from the abstract type, as is the display and increment proedures. These
are extracted to avoid repeated dereferencing of the object. The function display is called
to show the value of anumber. The value anumber is then incremented using the
increment function. The value of the function is again displayed before the value
incremented is finally assigned to the loaction value in the abstract type.

let useabs = proc(anum : number)
use anum as this in
begin

let anumber = this(value)
let display = this(display)
let increment = this(increment)
display(anumber)
let incremented = increment(anumber)
display(incremented)
this(value) := incremented

end

example 17
a procedure that uses

an abstract object

The function defined in example 17 may be supplied with the objects adt1 or adt2 as
parameters since these are both of type number. The fact that the implementations of adt1
and adt2 are different does not matter; it is this implementation that has been abstracted
over. In both cases, the first call of display will write "1" and the second call will write
"2". In both cases, the abstract value "2" is assigned to the field value in the abstract type.

The key to the protection mechanism is the renaming that is performed.The object bound
to the identifier adt2 is bound to the identifier this. The location denoted by this is
constant. Furthermore, the scope of this is limited to the block associated with the use
clause.This is the only way in which abstract objects may be dereferenced ensuring safety.

This mechanism may seem unnecessarily restrictive. However, it is necessary if static type
checking is to performed on abstract data types.

4.3.10.1 Potential Problem Areas

The first potential problem area is in abstract data type creation. In order to produce an
efficient implementation it is desirable for addresses to be calculated statically whenever
possible. When the fields of objects may be of different sizes, as is the case with abstract
types, this is clearly a problem.

71

The use of abstract data types also creates problems. Notice that in example 17 the
compiler can not determine statically which implementation of the abstract type is being
used. The objects referred to anumber and incremented may be of different sizes and
reside on different stacks. This is the same problem as that encountered with parametric
polymoirphism.

4.3.10.2 P.A.M. Implementation of abstract data types

The mechanisms used to implement parametric polymorphism may also serve to
implement abstract data types. Since abstract data types are first class data objects in
Napier, they may be passed around freely and placed in the persistent store. Therefore, the
technique of holding dynamic tag information in procedure closures is not sufficient to
implement abstract data types. However, the tags may be carried around in the object that
implements the abstact type. Furthermore, it is possible to calculate the addresses of the
tags statically.

It is desirable to be able to calculate not just the addresses of the tags, but the addresses of
all the fields of an abstract data type. Clearly, since the objects may be of differenrt sizes,
and may be pointer or non pointer types this creates a problem. The solution is to use the
double scalar, double pointer technique discussed in the previous section in connection
with polymorphic objects.

Abstract data types in Napier are implemented as structures with each field of witness type
being allocated two addresses, one for the pointer type and one for the non-pointer type.
The last fields in the structure contain the dynamic tags for the witnesses followed by the
constancy bitmap found in all structures. This technique allows all the addresses to be
calculated statically.

When a use clause is executed the dynamic tags are extracted from the abstract data type.
These are placed on the execution stack and the block associated with the use clause
executed. Once the dynamic tags have been placed on the stack the situation is
implementationally identical to the situation found in polymorphic procedures. The fields
in the abstract type may be dereferenced in order to extract or assign values using the poly
subscript instructions already provided to support parametric polymorphism.

4.3.11 Debugging Support

The predecessors of PAM, the S-algol and PS-algol abstract machines both have an
instruction called line number. This instruction takes as a parameter an integer
representing the line number of the current instruction sequence. When this instruction is
executed the parameter is saved in a register. Thus, the line on which an error occurs may
be displayed. This scheme may be extended so that when a procedure call is executed the
line number of the current line is saved in the calling frame and a new line number stored
in the register. Therefore, a complete calling sequence may be reported by traversing the
dynamic chain.

In an environment where only one source program is running, this technique works well.
However, in PS-algol, the use of first class functions and separate compilation means that
line numbers do not uniquely identify lines of source code. Consequently, a more
sophisticated mechanism is required, and the Persistent Abstract Machine is designed
accordingly.

When PAIL code is generated a literal pointer instruction is planted in the code stream.
This instruction operates in a similar manner to the new line instruction but places a
pointer to some abstract source from the code stream into a location in the currently active
frame. This links the source code with the currently running procedure. When an error
occurs it is possible to display the source code of where the error has occurred to the user.

72

Since the source is stored in the currently active frame the dynamic call chain may be
displayed to the user. The abstract code PAIL contains context information so that the
static environment may also be shown.

PAIL code is decorated by the compiler with address information of the identifiers in the
current procedure. This information is all that is required to allow the user to browse over
the name-value bindings stored in the frame. When and how this may be done remains
unresolved.

If a programmer has encapsulated information within an abstract data type it is safe to
assume that data was intended to be hidden. If a fault occurs in that abstract data type,
should a debugging system be allowed to examine the contents of that abstract data type?
It is not clear what the answer to this question is. On one hand there is a practical
argument that says if data which may have been expensive to gather is held in an
erroneous program there should be some mechanism to retrieve that data. On the other
hand there is the purist view that says that if data has been encapsulated any discovery of
hidden types is a breach of type security and hence modularity.

4.4 Conclusions

This chapter has described the important features of the Persistent Abstract Machine. The
predecessors of the current machine have been examined briefly. The good parts of
machines predecessors have been retained or modified in the new machine and the bad
parts discarded. It is only through implementations that it is possible to make this
distinction between good and bad.

The Persistent Abstract Machine is an implementation vehicle for language and system
experimentation. As such it has been designed with modularity in mind and therefore does
not contain any language specific support. Instead, it supports a wide range of typed
algorithmic languages. Most importantly, the machine is independent of the type system
of the languages which it supports. It is also independent of the persistent object
management system that supports it, allowing experimentation in this field to continue
independent of abstract machine design. This decoupling will aid our future experiments.

Perhaps the most important part of the machine is the way in which it implements
polymorphism. The machine implements universal polymorphism over objects of different
sizes in an efficient manner. The scheme used to support polymorphism may be extended
without modification to support a powerful notion of abstract types. It is thought that this
mechanism may also be used to support inclusion polymorphism. This will be the subject
of further investigation.

73

5 Abstract Program Graphs

5.1 Introduction

During the compilation process a compiler collects and collates a vast amount of
information about a program. This information is gleaned from the program source and
from a few rules that have been programmed into the compiler itself. All the information
gathered by the compiler is therefore contained in the original source program. The
internal form of the information created by the compiler is a convenient form for the
compiler to manipulate. The program source has been designed for use by human beings.

The information gathered by compilers is varied in nature. Much of the information is
concerned with the use of names: such as where is a name introduced; where is it used;
what type is associated with a name; what values are associated with a name and so on.
The compiler also holds context sensitive information, that is, information that cannot be
extracted from the source without knowledge of the semantics of the programming
language. The use of names is context sensitive since it is only by context that the
compiler or human reader can tell which name is being referred to.

The traditional view of the compilation process is that compilers are gathering information
so that a semantically equivalent form of the source may be created by the compiler. This
form is usually represented in a lower level language such as assembly language or
abstract machine code.

5.2 Traditional Compilation Systems

Once the compiler has achieved its goal and created another form of the program all the
information that has been gathered by the compiler is usually discarded. The reason for
this is probably due to technological problems such as efficiency considerations. For
example, in a traditional system the compiler reads in a source file and produces another
file usually containing assembly language. Both the source and the result of the
compilation are linear streams of information suitable for storage in a file.

This is in sharp contrast to the highly structured information created within the compiler.
Generally, this information may be a graph structure containing symbol tables of name
information, perhaps lexicographically scoped and abstract syntax graphs denoting
operations on data.

Traditional architectures provide support for manipulating complex data structures in
RAM but do not provide support for saving these data structures on disk. In such a system
it is cheaper to reconstruct information from the source file rather than attempting the
saving and restoration of structured abstract information.

Most operating systems do not provide any binding mechanism between files. This makes
it almost impossible to bind the source to the executable version of a program. Thus, when
presented with an executable program the user has to trust that it will do what he or she
expects. Preferably, the source would be tightly bound to the executable program so that a
user could check that the procedure source corresponded to the program intended.

A number of consequences arise from this. Perhaps the worst is the poor diagnostic
information given by these systems. A typical Unix error message is:

segmentation violation - core dumped

The user may examine the core file produced by the system but this is of little help unless
the program has been compiled with the debugging options set on the compiler and the

74

user has the source of the program. Often the user is left to guess what the error was and
where it occurred.

Another problem with discarding information gathered by the compiler is that some
optimisations are not possible. A class of optimisations, known as peephole optimisations,
may be performed on executable code. To do these optimisations no knowledge is needed
of the source code. A much larger class of optimisations require information contained in
the source program. A convenient form of this information is contained in the data
structure created and discarded by the compiler.

5.3 Persistent Systems

In persistent systems any data may persist for as long as it is reachable. This data may
include structured data such as the abstract program graphs constructed by the compiler. In
a persistent system, it is possible to save the abstract program graphs created by a
compiler. This is also possible in a conventional architecture it is, however, neither
practical nor convenient. The abstract representation of the program may be bound to the
executable form produced by the compiler tying a representation of the program source to
the executable code.

Since the information stored in a persistent system is potentially long lived a canonical
form of the abstract data graphs is required. This form may then be manipulated not just
by the compilers in the system but by the optimisers and the diagnostic and utility
programs in the system, for example, by syntax directed editors. In the Persistent
Information Space Architecture (PISA) this canonical form is provided by the Persistent
Architecture Intermediate Language, known as PAIL.

5.4 Persistent Architecture Intermediate Language

Abstract program graphs are not a fundamental requirement of system construction. It is
possible to compile languages directly, perhaps using multiple passes, into a lower level
code. Diagnostic information may be provided from the source rather than structured
information. However, the provision of an abstract form of programs is an efficient and
convenient way of representing programs more suited to manipulation by a program than
by human being. The decision to have PAIL in the system is therefore an engineering
decision and not a necessity.

The compilation system uses PAIL to store structured information about a program. PAIL
graphs are much more structured than source code programs. This allows information to
be gleaned from them much more readily. For example, it is easy to find where objects are
declared and where they are used from the PAIL graph. It is essential that this kind of
information is easily obtainable if good optimisers are to be written.

If diagnostics are to be produced by a compiler or run time system, complete information
is required. However, only the source of the original program has any meaning to the user.
Therefore the original source must be reproducible from the intermediate form. This is an
important consideration when performing optimisations. Poor diagnostic information in
systems often results when an optimising compiler is used. Thus, the source program is
always reproducible from a PAIL program.

5.4.1 PAIL graphs

PAIL is not a textual language, that is, it does not have a concrete textual linear syntax.
PAIL consists of a number of structure classes or types. A valid PAIL program comprises
a collection of instances of these classes linked together to form a graph structure. Any
valid PS-algol or Napier program may be represented by a PAIL graph.

75

PAIL comprises of thirteen semantic classes, described below. These classes support all
aspects of computation supported by PISA.

1. Basic tree structure
2. Symbol table entries
3. Control
4. Assignment
5. Store Allocation
6. Indexing
7. Aliasing
8. Scoping
9. Store to Store operations
10. Literals
11. Application
12. Comments
13. Optimisations

These classes are described fully elsewhere [dear87]. To give the reader a flavour of PAIL
some of the more important PAIL classes are described below using the Napier type
system.

5.4.1.1 Basic tree structure

The basic unit node in a PAIL tree is a node of type tree:

rec type tree[t] is structure(Type : TYPE,
Code : t,
Parent : Parent[t])

&
parent[t] is variant(Empty : null ;

Tree : tree[t])

This structure class is used to hold type information, abstract code and context information
together. The field Type holds an encoding of the type of the subgraph referred to by
Code. Types are represented by abstract types that are created by the type checker. The
typing of graphs is crucial to the integrity of the system and to the production of efficient
code. The field Code refers to an arbitrary piece of PAIL code. Since PAIL is a graph
structure, a PAIL program may share common sub structures. However, PAIL may also
have tree structure imposed on it. By following the Code fields of tree nodes from the
root, a tree will be traversed that includes every tree node in the PAIL graph. The field
Parent is a reference to the node immediately above the current node in this tree. This
allows an entire PAIL graph to be reached from a leaf node in the tree providing
contextual information.

5.4.1.2 Symbol tables

The class link below is used to hold information on names that have been declared. The
fields manifest, retained and primitive are used by code optimisers. Manifest is set if the
value is constant and known at compile time. Retained is set if the value is referred to by a
value that escapes the current scope, that is if block retention is required. The field
Primitive is true if the value is implemented by the architecture.

76

type link is structure(Name : string ;
Type : TYPE ;
Initial : PAIL ;
Manifest,
Retained,
Primitive :
Constant : bool
Addr : location)

&
location is variant(New : null ;

Stack : StackPos)
&

StackPos is structure(Frame,MSoffset,PSoffset : int)

Links are stored in symbol tables. Symbol tables are implemented as structures with the
following type description:

rec type symbolTable is variant(Empty : null ;
Table : symTab)

&
SymTab is structure(lookupLocal(string -> link)

lookupRec(string -> link)
InsertEntry(string,link)
EnclosingScope(-> symbolTable)
EnterScope(symbolTable- > symbolTable)
ScanScope(proc(link))

All contextual information is stored in symbol tables. The lookup functions allow names
to be looked up in the current scope or in lexicographically nested scopes. Declarations are
made in a scope level using the insertEntry procedure. The EnterScope procedure allows
new scopes to be created at any scope level. The enclosing scope may be retrieved using
the EnclosingScope procedure. A final procedure ScanScope is provided which applies the
function supplied as a parameter to every link in a symbol table.

5.4.1.3 Control

The PAIL classes in this section all influence program flow control. There are constructs
here that allow sequencing, choice, repetition and exceptions to be expressed, and and or
are also included in this section since they are not strict in their second argument and thus,
also affect flow control.

5.4.1.4 Assignment

type assign is structure(Lhs : link ; Rhs : tree[PAIL])

This class denotes assignment. All assignments in the system are represented using this
class. The field Lhs is a link denoting a location in the system.

77

source: E1 := E2

PAIL code:

code for E2type of E2

E1

Lhs

assign

Rhs

tree
Type Code Parent

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

figure 1
PAIL for an assignment

5.4.1.5 Store Allocation

PAIL provides mechanisms to construct all the higher order objects in the system. This
includes structures, vectors, abstract data types and images. One class is provided that
represents the construction of each of these types.

Also included here is the class that denotes declarations. The example below shows how
the PAIL code forms a graph allowing important information to be reached by more than
one route. In general, the declaration will be part of the body of some scope level. That
scope level will be represented by a symbolTable described above. The link for the
declaration will be inserted in the symbol table using an InsertEntry procedure and will
therefore be reachable from both the symbol table representing the current scope and the
declaration. Thus, from a symbol table it is possible to find all the declarations made in
that scope. Although this kind of information is contained in the source code it is tedious
to extract.

type Decl is variant(simple : SimpleDecl ;
recursive : RecDecl)

&
SimpleDecl is structure(Exp : PAIL ; Symbol : link)

&
RecDecl is list[Decl]

source: let I = E

78

PAIL code:

Exp

SimpleDecl
Symbol

code for E

"I"

type of I

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

figure 2
PAIL representing a declaration

5.4.1.6 Indexing

The classes in this section allow objects to be indexed. Many different objects may be
indexed in PAIL including structure, vectors, images, pixels and strings. Two indexing
operations are provided these denote the indexing of objects to produce values and
locations. Locations are yielded when a value is assigned to part of an object.

5.4.1.7 Scoping

Two mechanisms exist in PISA to introduce a new scope level, these are by the
introduction of a new block or procedure literal. These are echoed in PAIL by the two
classes, block and ProcDesc. The first of these modeling block entry and exit the second
procedure declarations. Examples of these classes are shown below:

type block is structure(Symbols : symbolTable ;
Blockbody : PAIL)

source: begin E end

PAIL code:

Symbols

block
Blockbody

E
Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

SymbolTable

figure 3
block structure

79

type ProcDesc is structure(Resultype : TYPE
Parameters : cons[link]
Body : tree
Symbols : symbolTable)

source: proc(E1,E2 -> E3) ; E4

PAIL code:

Resultype

ProcDesc
Parameters Body Symbols

E3

Type

tree
Code Parent

Code for E4Type of E4

cons
hd tl

E1 E2

SymbolTable

cons
hd tl

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

figure 4
procedure definition in PAIL

5.4.2 Support for system building

Since PAIL code is part of a persistent system it is potentially persistent. This means that
rather than merely be an intermediate form used in the compilation system it may support
many activities performed within the PISA system building domain. PAIL provides
support in the following categories:

1. Code generation
2. Debugging
3. Optimisation
4. Syntax Directed Editing
5. Distribution
6. Protection

80

Each of these are discussed below.

5.4.2.1 Code Generation

Code generators in PISA take as a parameter PAIL code and produce executable code in
some lower level language. During this process code generators may decorate PAIL trees
with additional information. For example, during code generation the run time stacks are
simulated allowing the address of identifiers to be calculated. This information is added to
the address.info field of links whenever a declaration is encountered in the PAIL graph.
PAIL aids the code generation process where multiple passes are required over data. An
example of this is in the rec let construct of Napier,

rec let a = proc(-> string) ; b() &
let b := proc(-> string) ; c &
let c := "hello"

In order to generate code for such a construct, it is necessary first to traverse that PAIL
graph calculating the addresses of all the declarations. Once this has been achieved the
code for the constructs may be generated. This code will, in general, involve the use of the
locations whose addresses have been calculated during the first pass.

The provision of PAIL also aids the generation of efficient code. An example of where
this is useful is in the code generation of polymorphic functions with type declarations in
them. The following Napier example illustrates this,

let aproc = proc[t](x : t -> structure(a : int ; b : t))
begin

type tricky is structure(a : int ; b : t)
tricky(3,x)

end

This program declares a procedure, called aproc, quantified by a type t. Within the
procedure body a structure class called tricky is declared. This structure has two fields, a
and b, being of type integer the quantified type t respectively. The procedure creates a
structure of type tricky. This structure contains the literal 3 and the polymorphic value x
that is supplied as a parameter to the procedure. The structure created is returned by the
procedure. In Napier polymorphic procedures are always specialised before they are used,
for example writing,

aproc[string]

specialises the procedure to a procedure of type,

proc(string -> structure(a : int ; b : string))

and writing,

aproc[real]

specialises the procedure to one of type,

proc(real -> structure(a : int ; b : real))

In each one of these cases the addresses of the fields a and b are different (see chapter on
PAM). As a consequence, code must be planted to dynamically calculate the addresses of
a and b. This calculation would normally be planted in the code at the position
corresponding to the position of the type declaration. However, this is not the most
efficient place to perform the calculations. All the information necessary is known when

81

the procedure is being specialised. The calculations could therefore be performed at
specialisation time, once, rather than potentially many times during each call of the
procedure. This technique is sometimes known as hoisting and is commonly practiced by
writers of applicative systems.

The provision of PAIL allows the necessary PAIL code to be referenced at a position in
the code corresponding to specialisation. The code generator will calculate address
information when it first traverses the type declaration in the specialisation code. When
the code is reached a second time, in the procedure body, the address fields of the link
structures will have already been decorated and no further code will be generated.

5.4.2.2 Debugging

Good diagnostic information is extremely important in any system. When an error occurs
the user wants to know what happened and why. In order to do this several pieces of
information are required. The first of these is what piece of code was running when the
error occurred. This is especially important in a persistent system where it is possible to
write seamless systems [mor85] in which the flow of control may transparently move from
one compilation unit to another.

The second piece of information the user will require is the state of the machine when the
error occurred. The state of the machine includes the values in locations and the dynamic
call sequence leading up to the error.

In many systems, when an error occurs, the user is provided with a symbolic debugger
which allows debris to be examined. Sometimes, even this is not possible unless the
program has been compiled with flags set on the compiler. Newer systems recently
appearing on the Apple Macintosh [thi86a,thi86b] provide an integrated environment that
allows the writing, development and testing of programs. However, these systems only
allow relatively small programs to be developed. In the Napier system we wish to provide
good diagnostic information all the time - not just whilst the program is an experimental
phase.

Diagnostic information is supported in the Napier system by PAIL. PAIL code contains all
the information contained in the original source program. This information is augmented
by the code generators which decorate PAIL code with address information. Thus, once
the PAIL code has been code generated it contains all the information required by a
diagnostic program.

References to the PAIL code are planted in code vectors containing the abstract machine
code (see chapter 4). This binds the PAIL code and the abstract machine code together.
When the code is executed a reference to the PAIL code is loaded into the currently active
frame. This PAIL code includes the symbol tables discussed above and therefore contains
the address information for the frame. When an error occurs it is possible to reconstruct
the source code from the PAIL code allowing the user to examine what code was running
when the error occurred. The symbol tables provide the necessary address information so
that the diagnostic program may display the values bound to locations in the frame.

The frames on the dynamic call chain also contain pointers to the PAIL code for their
source. This allows the diagnostic program to display the calling sequence to the user.
Values in the static scope of procedures may be accessed via the display held in each
frame. The address of these values may also be determined by the address information
bound to the PAIL code.

5.4.2.3 Optimisation

PAIL may be used to assist program optimisation at various times throughout the program
life cycle. The first of these is compile time. Many programmers add extra declarations to

82

programs for clarity of reading. These declarations do not necessarily map onto a location
at run time. The best example of this is manifest constants. The programmer may write
something like the following program segment,

let debug = false
 ...
if debug
then something
else somethingelse

The pail for this construct is as follows,

Cond

If
Then Else

Exp

SimpleDecl

Symbol

false

"debug"
bool

literal
true

true

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

Sequence
this

next

Sequence
this

next

something something else

figure 5
unoptimised PAIL

Here, the result of the test for debug being true is always known statically i.e. at compile
time. There is no reason to compile the code for the something else clause since it can
never be reached. Likewise, the code for the test does not have to be planted at compile
time nor executed at run time. Finally, no location associated with debug needs to be
created. This technique is known as constant folding.

The detection of manifest constants may be performed statically in a single pass over the
data. However if the code is compiled into the following program segment,

Sequence
this

next

something

figure 6
optimised code

83

and an error occurs, the user cannot be shown the original code that he or she wrote. This
leads to poor diagnostic messages being produced by the system. Poor diagnostic
messages are often associated with optimising compilers and is a symptom of compilers
discarding information. PAIL provides an optimisation node of the following type,

type optimised is structure(Optimised,NonOptimised : PAIL
Info : string)

The field Optimised contains optimised code semantically equivalent to the original PAIL
code contained in the NonOptimised branch. This class allows the original information
contained in the program to be retained whilst providing improved code sequences that the
code generators may follow.

The optimised PAIL for the above clause is as follows,

Cond

If
Then Else

Exp

SimpleDecl

Symbol

false

"debug"
bool

literal
true

true

Name

link

Manifest

Initial

Type

Retained

Primitive
Const
Addr

Sequence
this

next

Sequence
this

next

something
something else

NonOptimised

Optimised
Optimised Info

figure 7
optimised PAIL code

Some compile time optimisations cannot be performed in a single pass. In these cases,
PAIL provides a framework on which to hang optimised sequences of code. One example
of this is the hoisting technique discussed above.

PAIL code also provides support for late optimisation. PAIL code is referenced by
Persistent Abstract Machine code. This allows optimisations to be made to the machine
code very late. It has been suggested by Carrick and Munro in [car87] that this
optimisation could be performed lazily by the system during quiescent periods. Late code
optimisation could also be performed by a background process with the optimisation only
being performed on frequently used pieces of code. In this way, the system could tune

84

itself dynamically depending on usage. This technique is only practical if complete source
information is available at run time.

5.4.2.4 Syntax Directed Editing

PAIL is the abstract syntax for the languages supported by the Persistent Abstract
Machine. The discussion above has centred on traditional compilers transforming source
code into PAIL code. However, PAIL may be produced by programs other than compilers.
In particular, it may be produced by syntax directed editors.

Syntax directed editors are tools which assist programmers to construct valid syntactic
programs. They do this by providing the user with templates. Each template corresponds
to one construct in the abstract syntax of the language. For example the user may be
presented with the following template,

if <clause:bool> then <clause:T> else <clause:T>

representing an if clause in the language. The parts in italics are known as stubs and may
be selected by the user and expanded into some concrete syntax. The syntax directed
editor ensures that the user many only assign valid clauses to these stubs. In some syntax
directed editors this is limited only to syntax checking in others such as the Cornell
Program Synthesiser [tei81] type checking is also performed on the clauses substituted for
stubs.

Templates like the one shown above may be mapped directly onto the abstract syntax of a
language. For example, the construct above maps directly onto the PAIL choice construct,

type If is structure(Choice : PAIL ; Then,Else : tree[PAIL])

The following PAIL data structure may be constructed by a syntax directed editor for the
program,

if E1 then E2 else E3

Cond

If
Then Else

Code for E1

Type

tree
Code Parent

Code for E3Type of E3

Type

tree
Code Parent

Code for E2Type of E2

figure 8
if .. then .. else

represented in PAIL

85

Similarly, all the constructs in the Napier language may be mapped onto PAIL constructs.
PAIL forms the ideal data structure on which to base a syntax directed editor for the PISA
languages. This is expected to be the subject of future research.

5.4.2.5 Distribution

In a distributed persistent environment objects may be transparently moved from one
machine to another. The principle of orthogonal persistence implies that users do not
know where or how their data is stored. In other words, data is manipulated independently
of the storage mechanism. In a distributed network of non-homogeneous machines this has
serious consequences for the design of the architecture. Since the architecture supports
procedures as first class data objects one of the objects that may be moved from machine
to machine is code. This code must be capable of being executed on any of the machines
in the network. If native code on one machine is moved to a different machine this clearly
is not possible.

There is a need for a machine independent network language that describes procedures.
PISA provides two of these. The first of these is Persistent Abstract Machine code. This
code may be executed on any machine that has a PAM implementation. This code is not
optimal since, in general, it will need to be interpreted. For this reason, a location exists
within a PAM code vector to which alternative code vectors may be assigned. As an
optimisation, native code vectors for any of the machines in the network may be assigned
here. This location may be a reference to a vector of alternative code vectors if more than
one alternative is required. In order to compile optimal native code for a machine, a
second higher level representation of the procedure is required. PAIL provides a high
level, machine independent description of procedures.

5.4.2.6 Protection

Protection of data from corruption and misuse is important in any system, however, it is
especially important in a persistent system. The data on which a persistent program
operates is not merely local data loaded into RAM. It may be long lived data that has been
expensive to collect, this data is equivalent to data stored in a conventional database. It is
essential that this data may not be corrupted by erroneous programs or malice.

The most common method employed to protect data, is the use of capabilities
[nee74,wul74]. A capability gives a program the ability to perform some operations on a
collection of data. The data may be viewed as a segment or object. The capability may
then be considered as an access mechanism for a particular object. That is, it gives the
program the ability to operate on data within a particular segment or object. The kind of
operation the program may perform on the segment depends on the type of the capability.
Capabilities come in different flavours such as read or write capabilities. A program
cannot read some data within an object without a read capability for that object.

In capability based systems the protection of capabilities themselves becomes crucial.
Some protection must exist in the system to ensure that capabilities are not forged either
accidentally or deliberately by programs. The results in the protection mechanism having
to be protected, resulting in considerable complexity in the architecture.

When a program attempts to perform some operation on an object the capability that the
program has must be checked. The more complicated the protection regime provided by
the system, the more complicated and therefore expensive this checking will be. This
expense is extremely costly in terms of program execution time. Research performed on
the Cambridge Capability Machine [nee74] estimated that 1000 operations were necessary
between capability checks to obtain acceptable performance. This is required in order to
keep the cost of context switching small in comparison with the amount of computation
that is performed in a context.

86

In order to achieve this efficiency target, compilers are required to compile checks away
by that coalescing small objects into larger ones. In this way, one capability may protect
many small objects. If this is possible many objects may be accessed with only one
capability check. However, this may only be achieved if objects can be grouped statically.
Whilst this is true for some objects such as code vectors, it is not generally true, many
objects are bound dynamically and must therefore have separate capabilities. This is an
intrinsic problem of capability systems and cannot be overcome.

Another common solution to the protection problem is for each process within the system
to have its own address space. Each process may only access data within this address
space. The machine architecture prevents processes from accessing any data outside their
own address space, protecting other data from misuse or corruption. This solution is
common in modern operating systems like Unix.

The problems with each process having its own address space is twofold. Firstly, process
creation is an extremely expensive operation. This expense has lead to the name
heavyweight processes being adopted for this solution. Secondly, and more seriously, this
solution complicates the sharing of objects between processes.

The protection of data from corruption is only necessary if the executing code cannot be
guaranteed to operate safely. Code that has been produced by low level languages such as
C or assembler may violate data. A simple example of this is shown in the following
segment of C code,

disaster()
{

*int a = 0 ;
while(++a) *a = (int) a;

}

This procedure will overwrite all the addresses in the address space with their own
address. If such programs are prevented from occurring the protection mechanisms
described above may be discarded. This allows processes to share one address space
without fear of objects being corrupted by rogue processes.

In PISA, the protection of data is achieved by a high level protection mechanism, this is
provided by PAIL. All programs that wish to access the persistent store must be compiled
into PAIL. PAIL is the lowest level at which access to the store is provided. The integrity
of a PAIL program is checked by the code generator. If the program attempts some illegal
operation on data the program will not be accepted by the code generator.

Not all languages may be mapped into PAIL, for example, languages that are not typed
such as C or assembly language. The restriction of only allowing languages that may be
compiled into PAIL into the architecture may seem restrictive but this is more than
compensated for by the simplification of the underlying architecture.

5.5 Conclusions

PAIL is not an intrinsic requirement of the system, it is provided for engineering reasons.
It has been shown how the provision of PAIL may support many different activities within
the persistent architecture. These activities are wide ranging and include code generation,
debugging, optimisation, syntax directed editing, distribution and protection.

87

6 The Compilation Environment

6.1 Introduction

The languages in PISA are supported by the system building domain. In turn, this domain
is largely written in the PISA languages. This chapter will describe the most reflexive
layer in the architecture - the compilation environment. The compilers in the system are
written in and compile the PISA languages. Their construction heavily utilises the
facilities available within the persistent environment.

The compilation system described consists of a number of different modules each of
which are specified by a type signature. Many different instances of particular modules
may exist side by side in the persistent store. Each implementation of a module may
present a different user interface to the outside world. An instance of a compiler may be
constructed by composing instances of the different components. Compilers that appear to
the user to be quite different, for example, that compile different languages, may share
much of the same code.

The system is a complete software architecture for the creation and construction of
compilers. The paradigm used is that of a tool set comprising of many different
components each satisfying an interface specification. The components are all plug-
compatible with the architecture framework. That is any instance of a module may be
replaced by any other satisfying the same interface. Components may be mixed and
matched to build a compiler of any flavour required.

Components are all inwardly compatible, that is they present the same interface to the
compiler architecture. However, they may present completely different interfaces to
components outside the compiler architecture. This is achieved by wrapping all
components in generator functions.

6.2 Advantages of using a persistent environment

The decomposition of a compiler into different sub-tasks has been well known for many
years. Typically, compilers are described to undergraduate students as consisting of a
lexical analyser, a syntax analyser, a code generator and so on [dav81]. However, these
theoretical methods of constructing a compiler are often not strictly followed in order to
gain improved performance. It will be shown that using a persistent store no significant
overhead is incurred in space or time in building a flexible, modular system.

The space arguments will be examined first. Many programming languages [wir73,ker78]
allow libraries of functions to be constructed. These are fragments of code that have been
separately compiled and are thought of as being useful to a community of programmers.
When an individual wishes to use one of these functions a binder is employed to copy the
code in the library and bind it into a new program. Thus, if a compiler is constructed by
building library functions every compiler constructed will have its own copy of the code.
This is a crude form of software reuse. In such a system only copies of code are being
shared and not instances of modules as in a persistent system.

In a persistent system, such as PS-algol [ps87], procedures may be stored in a type secure
manner. Programs may link dynamically or statically to code in the database simply by
indexing a structure class. In this way different programs may share instances of code
rather than merely own a copy of the code. This method of building large systems is much
more persistent space efficient than building libraries of functions and using a linker to
obtain copies of the code. Furthermore, as the usage of a library function increases the
greater the benefit from using the persistent store, since in a library system more and more
copies will exist in the system but in the persistent system only one version of the code

88

will ever exist. Clearly, the persistent store subsumes the role of a conventional procedure
library [atk85b,mor85]. The time overheads of using such a system will now be explored.

Since PS-algol supports first class procedures, closures may be stored in the persistent
information space. The user finds a procedure by navigating the persistent graph from a
root of persistence. Once a procedure has been found in the persistent store it is
indistinguishable from one declared in the main program. In other words, there is no
difference between a closure retrieved from the persistent store and one declared locally.
This implies that by using the persistent store no penalty is paid for decomposing large
programs into modules - provided that a functional interface is used.

One time penalty that may be incurred in using the persistent store is the time taken to
navigate the store to find the appropriate procedure. This operation is equivalent to linking
in a conventional system. The navigation of the persistent graph may be performed at
many different times. If the navigation is performed at a time earlier time than call time,
the user does not have to pay this time penalty every time the code is used. The time at
which binding is performed is discussed later.

The previous paragraphs compare the persistent store to conventional technology but other
benefits may be gained by using a persistent information space.

Complex data structures may be created without concern of how to map them onto a linear
secondary storage medium. A good example of this, is the symbol table package discussed
in the chapter on PAIL. The symbol tables model lexicographical scope and contain both
complex type information and initialising code for declarations. All this information
automatically persists because it is reachable from the executable code. If such a system
was constructed using conventional software technology it would be extremely complex.
A further benefit of using a persistent system, is the ability to control the way modules are
bound together. This is discussed fully later.

6.3 Architecture Composition Rules

During the construction of the compiler tool kit a set of rules evolved. These rules may be
considered to be a paradigm for constructing systems in a persistent environment. The
rules are:

1. I/O independence
2. plug compatibility
3. binding independence
4. information hiding
5. encapsulation.

Each of these is examined below.

6.3.1 I/O independence

The rule of I/O independence states that only one module should directly perform I/O. The
input and output of information should be routed via single input and output modules. If
this rule is followed, modules constructed will have a much higher degree of usability. To
demonstrate this, imagine a lexical procedure to parse a real number. Such a procedure
may be found in most compilers. Typically, if the procedure encounters an error it will
display an error message. The use of the procedure is therefore limited to applications
where the displaying of an error message is permissable. The procedure could not, for
example, be used in a desk top calculator since it would destroy the display. If the
procedure takes an error displaying procedure as a parameter it will be of greater utility,
since an appropriate error procedure may be supplied by each application using the
procedure. Careful control of the hidden interface of a module, not just the published

89

apparent interface creates an environment in which more reuse is possible and therefore
one in which software is cheaper to produce.

6.3.2 Plug Compatibility

The second rule of plug compatibility states that each module should have a well defined
interface and that modules with the same interface may be freely substituted for each
other. It is this rule that allows us to create a whole family of compilers by specifying
interfaces and by having a number of different instances which conform to those
interfaces. Generators for the various compiler modules are placed in the persistent store
independently. Typically, more than one instance of each module can be found in the
persistent store. In order to construct a particular compiler, these components need to be
joined together. A good analogy is having several jigsaws all cut using the same pattern. A
new jigsaw may be constructed by selecting pieces from different jigsaws. Provided that
the pieces are placed in the correct positions, a jigsaw displaying a new picture may be
created. One configuration of the architecture may be viewed pictorially in figure 1.

90

error handling

keyboard/screen handler

syntax analysis
-> PAIL

symbol
table

Code Generation -> PS-code

type
checking

lexical analysis

Interpreter

Magic
-> proc()

figure 1

91

The compiler tool set consists of many components. The interface of each component is
well defined so that new versions of any of the components may be easily created and
used in a compiler. The modules that comprise the components of the Napier compiler
discussed below.

The modules provided within the architectural framework include: input and output
modules; error handlers, lexical analysers, syntax analysers, type checkers, code
generators and symbol table packages.

The input and output modules are responsible for providing an abstraction over the file
system or persistent storage facility. These modules essentially implement a functional
interface to input and output streams. Thus, by substituting the input and output modules,
one compiler may operate against the file system whilst an otherwise identical compiler
may operate within the persistent environment.

This is a good example of how, using functional abstraction a module may exhibit
different interfaces. The procedures supplied to the compiler tool kit must be of a certain
type to satisfy the interface requirements. However, here we require one procedure to take
a file as a parameter and the other to take say a string as a parameter. This may be
achieved by encapsulating the required procedure in a generator function and partially
applying it. For example, in this case we may have two generators hat return functions of
the required type which have either a filename or the string bound into their environments.
The generators are of different types, but that is not important since it is only the generated
functions that must satisfy the architectural requirements The technique of using generator
functions is discussed later in this chapter.

A single module is responsible for noting and reporting all compilation errors. This
module interfaces with the output module which displays all output to the user.

The lexical analyser interacts with the input module to deliver a stream of tokens to the
syntax analyser. The lexical analyser is parameterised by the terminal symbols of the
grammar, the syntax analyser is parsing. This ensures that efficiency is preserved whilst
maintaining module independence.

The syntax analyser does not interface with the primitive input or output systems. Instead,
the most basic input is provided by the lexical analyser The interface between the syntax
analysis module and the code generation module is provided by the Persistent Architecture
Intermediate Language, PAIL [dea87]. Thus, the syntax analyser does not interface with
the output system .

A type module is responsible for creating representations of programming language data
types. A set of constructors and selectors are provided to create and decompose complex
data types. The ability to perform type checking is also provided by this modules. To do
this, the module provides predicates to test things, such as, equality of types. The
implementation of the type system is completely contained within this module. Outside
this module, nothing has knowledge of how types are implemented.

The code generators in the system accept PAIL from syntax analysers or other tools such
as syntax directed editors. The provision of PAIL makes it possible to write language
independent code generators. It also allows experiments in language design and language
implementation to be carried out independently and in parallel. This is only possible
because the machine has been decoupled from the language. The code generator does not
output its results directly to the file system or persistent store. Instead, is produces a vector
of integers containing PAM code. The PAM code is processed by one of two modules.
The first of these is a code planter which outputs the code to the file system. The other,
called magic, turns code into a closure within the system. This is the fixed point in the
system and has to be written in a lower level of language, it is discussed later.

92

The compilation components, described above, are viewed as aids to the construction of a
total compiler. Of course, they do not have to be used as such, being applicable in a
number of other applications including spreadsheets (parsers and lexical analysers) and
word processors (lexical analysers). Partial compilers may also be constructed, for
example, merely as syntax checkers. Such tools have proved highly useful in the
development of new language processors and type checkers.

6.3.3 Binding Independence

The third rule of system construction, binding independence, is not commonly practised
by programmers in persistent systems. In order for us to understand this rule let us
consider two procedures, written in PS-algol.

let example1 = proc()
begin

structure container(proc() somethingUseful)
let aContainer = s.lookup("usedByExample1","database")
let usedByA = aContainer(somethingUseful)
usedByA()

end

example 1

In this example the procedure first declares a structure type. This introduces a class along
with some selectors and a constructor. In the second line of the procedure an object is
looked up, using the key "usedByExample1", from a database called "database".
Databases in PS-algol provide a persistent root. They have an associative lookup table
attached to them by convention. The s.lookup function returns a pointer to the object
associated with the named parameter. In the procedure, we are assuming that aContainer
points to an object of class container defined in the first line. The procedure stored in the
object is retrieved by indexing the structure. Lastly the procedure is applied. Notice that
this procedure dynamically looks up the database to retrieve the procedure every time it is
called. Such an action may be required in a development system where the most recent
version of a procedure from a library is required. This code is typical of code written by
PS-algol programmers.

let example2 = proc(pntr aContainer)
begin

structure container(proc() somethingUseful)
let usedByA = aContainer(somethingUseful)
usedByA()

end

example 2

example2 is similar to example1, it also applies a procedure obtained by dereferencing a
structure of class container. There are a number of important differences between
example1 and example2. These are examined below.

example1 has the strings "usedByExample1" and "database" bound into it - leaving the
user with no option but to use the procedure stored in the appropriate table. It also leaves
the user of the procedure, with no option other than to bind dynamically to the data every
time it is executed. In the second procedure no information, apart from the structure class,
has been bound into the procedures' closure. This allows the procedure to be used in a
number of different ways which will now be examined. If the semantics of the first
example were required the user could write,

93

let synthsiseExample1 = proc()
begin

let aContainer = s.lookup("usedByExample1","database")
example2(aContainer)

end

example 3

As in example1, this procedure looks up the database every time, thus retrieving the most
recent version of the procedure.

A user may, however, wish a static system with which to experiment without having
possible changes to other modules affect the experiment. In such a case a static bind is
required. This may also be written using example2 by producing a new procedure with the
original function bound into its closure. This is illustrated in example 4,

let staticExample =
begin

let aContainer = s.lookup("usedByExample1","database")

proc() ; example2(aContainer) ! this is the result
end

example 4

In this example, the container is looked up only once.The procedure in the final line is
exported as the result of the block and bound to the identifier staticExample. The object
pointed at by aContainer is statically encapsulated in the scope of the procedure. This is
another example of the power of block retention.

The procedure synthsiseExample1 looks up the database every time - giving us a dynamic
bind whereas the procedure staticExample has the structure instance aContainer in its
closure, giving a static bind. In the compiler architecture all the modules have been written
in the style of example2 giving the user the option of composing programs statically or
dynamically. This is illustrated with examples later

6.3.4 Information Hiding

The fourth rule, is that of information hiding. This has been known for many years and is
commonly practiced by users of abstract data types [lis74].

The rule that modules should be totally encapsulated is best understood by example.
Consider the following program segment, once again in PS-algol. The procedure saves an
integer and returns the last integer saved.

let saved := 0

let saver = proc(int this -> int)
begin

let temp = saved
saved := this
temp

end

example 5

94

If two processes were to use such a procedure concurrently, the outcome would be
nondeterministic. This potential problem may be overcome by encapsulation. One way of
doing this is by wrapping the procedure in a generator as in example 6.

let saverGen = proc(-> proc(int -> int))
begin

let saved := 0 ! this is encapsulated

proc(int this -> int) ! this is the procedure returned
begin

let temp = saved
saved := this
temp

end
end

example 6

As a result of this mechanism every procedure wishing to use saver, may do so safely by
calling saverGen to obtain a saver with its own store. In this way, procedures may share
code without having to share state. Notice that every saver produced has its own copy of
the variable saved. Although this technique has been well known to researchers in
persistent languages for some time it is, unfortunately, not commonly practiced. In the
compiler tool set all of the modules are encapsulated in a generator so that each instance of
a module operates entirely within its piece of store.

The rules of I/O independence, plug compatibility, binding independence, information
hiding and encapsulation have proved to be invaluable in constructing the compiler tool
kit. In the following sections we will see how these rules have been applied in practice.

6.4 Compiler Composition

Below a compiler constructed from components is shown. The components are provided
as parameters. The compiler is a conventional file based compiler, it reads input from one
file and produces another file containing executable code, providing that the compilation
was successful. It reports the compilation errors if it was not.

95

let compiler = proc(input ! the types of these
errors ! parameters are not given
types ! for brevity
lex ! these are all the generator
syntaxGen ! functions.
codeGen
planter
environment
filename)

begin
let source = input(filename) ! get an input pack
let syntax = syntaxGen(options(), ! compiler options

source, ! the input pack
errors, ! error reporting module
types, ! the type checker
lex) ! lexical ananyser

let local.env = environment(Create.scope)(environment)

let this.code = syntax(local.env) ! syntax analysis
! this code is either an error.pack or PAIL
if this.code is error.pack ! check errors
then write "**** Compilation fails ****'n",

"No of errors = ",this.code(No.errors)(),"'n"
else
begin

write "***** Compilation Succeeds *****'n"
let c.file = codeGen(this.code,global.env) ! code generation
planter(code.f.name(file.name),c.file) ! output code to file

end
end

example 7

The compiler, shown above, is a typical compiler that may be found in the PISA system.
The simplicity of this complete compiler, is due to the fact that it operates by taking as
parameters the plug in components provided by the architecture. First - an input module is
generated by applying a generator function with a filename as a parameter. This is in turn
supplied as a parameter with other generator functions to the syntax analyser generator.
The syntax analyser generator is applied to provide a syntax analyser, with the
components supplied as parameters to the generator bound into it. When this function is
applied with an environment, the program is parsed and some output is generated. This is
then tested to find out if the compilation was successful. If it was unsuccessful an error
message is displayed and the compilation is terminated. If not, code is generated by the
code generator, which is then passed to the planter which outputs the code to the file
system.

Compiler components may be bound together statically or dynamically depending on the
choice of the programmer. In some cases, for example when a new language system is still
being developed, the user may want the most recent version of a particular module to be
used. In this case, the programmer would use dynamic binding to combine the components
as follows.

96

let dynamiccompiler = proc(string filename)
begin

let input = s.lookup("input",comp.db)(Input.gen)
let errors = s.lookup("error",comp.db)(Error.gen)()
let types = s.lookup("types",comp.db)(Type.gen)()
let lex = s.lookup("lex",comp.db)
let sa = s.lookup("sa",comp.db)
let cgen = s.lookup("cgen",comp.db)
let planter = s.lookup("planter",comp.db)(Planter.gen)()
let global.env = s.lookup("global.symbol.table",comp.db)

compiler(input,errors,types,lex,sa
cgen,planter,global.env,filename) ! call compiler in fig 7

end

example 8

At other times, a static system is required. This may be achieved by statically combining
components into a compiler. This is shown in example 9,

let staticcompiler =
begin

let input = s.lookup("input",comp.db)(Input.gen)
let errors = s.lookup("error",comp.db)(Error.gen)()
let types = s.lookup("types",comp.db)(Type.gen)()
let lex = s.lookup("lex",comp.db)
let sa = s.lookup("sa",comp.db)
let cgen = s.lookup("cgen",comp.db)
let planter = s.lookup("planter",comp.db)(Planter.gen)()
let global.env = s.lookup("global.symbol.table",comp.db)

proc(string filename) ! this is the result of the block
begin

compiler(input,errors,types,lex,s ! call the
cgen,planter,global.env,filename) ! compiler above

end
end

example 9

Often, both of the binding mechanisms shown above are required in the same system. An
example of this is when a compiler under development is released for others to use. A
release compiler would consist of the modules bound statically together, as shown in
example 9. Changes made to database modules cannot affect this release version, since it
has a copy of the code bound into its closure. In the same system a development compiler
like the one in example 8 may exist. In this compiler changes made to the persistent store
will affect the compilers execution immediately.

The need for control over binding is of major importance in a persistent environment. The
insight gained here, provided the motivation for the design and implementation of
environments discussed in chapter 2.

6.5 First Class Compilers

The compilers we have seen so far all accept input from and return output to the file
system. The PISA architecture, is totally self contained with no reliance on the external
operating system. It must, therefore, support all programming activities. To this end, a

97

mechanism is required to introduce compiled programs into the current environment.
Doing this introduces a new set of problems to type checking and machine design.

The first problem which must be overcome with compilers that introduce new programs
into the system is assigning a type to the compiler. Since there are an infinite number of
valid programs, the compiler must produce a value that is a member of an infinite union.
The bindings to members of unions are dynamic bindings, this fits well with our
requirements for typing the compiler. PS-algol contains one infinite union called pntr. It
is the infinite union of all labelled cross products. The newer language, Napier, provides
two infinite unions any, the infinite union of all types, and env the infinite union of
labelled cross products. These allow a type to be prescribed to a compiler of this kind.

A compiler that introduces the compiled code into the environment is provided in the PS-
algol system as a standard function. It is defined as follows,

let compiler = proc(cstring filename,
cpntr proc.holder
-> pntr)

This compiler, takes as a parameter, the name of a file containing source code. Using the
compiler tool set, the source could be contained in a string or any other data type. The
compiler is also supplied with a pointer to a structure. The class of this structure indicates
the expected type of the compiled code. If the code contained in the file is of this type and
the compilation is successful the compiler will place the result of the compilation in a field
of the structure and return a pointer to it. Otherwise an error structure is returned. An
example clarifies this,

Suppose that the file XXX contains the following string,

"let aprocedure = proc() ; write "hello" ?"

The user may call the compiler, from another program, as follows,

structure procontainer(proc() aprocedure)

let dummy = proc() ; {}
let holder = procontainer(dummy)
let compiled = compiler("XXX",holder)
if compiled is procontainer do

compiled(aprocedure)()

example 10

The first line of the program declares a structure class capable of storing a void procedure.
A structure of this class is passed to the compiler as a parameter. If the compilation of the
program in file XXX is successful; a procedure containing the code described in the file
XXX will be assigned to the field aprocedure of the structure. The success of the
compilation is tested using the is predicate in the fifth line. If it is, the procedure is
extracted from the structure and applied. This example will therefore write "hello".

During a compilation the compiler, written in one of the PISA languages must turn a
sequence of bytes representing a code vector into a procedure in the language. In the
compiler tool set a module called magic turns a vector of op-codes into a procedure. This
capability must be carefully protected in the system. The magic module has the following
type in the PS-algol compiler,

98

structure PScode(*int Code.vec;
*string String.vec ;
*pntr Proc.vec ;
int Ms.size,Ps.size)

let magic = proc(pntr PScode -> proc())

This procedure takes as parameters, a vector of integers containing byte codes and some
house keeping information, produced by the code generator and returns a procedure.

In order to coerce the function produced by magic into a procedure of any type a function
called coerce.proc is used. It has the following type,

let coerce.proc = proc(proc() Proc ;
cpntr result
-> pntr)

Once the compiler has checked the integrity of the source code produced and created a
closure using magic it uses this procedure to put the closure into the structure provided.
The two functions, magic and coerce.proc implement the functionality described in
example 10. Both these functions are written in low level code since they cannot be
written in PS-algol. The compiler provided as a standard function in PS-algol system only
compiles procedures. A better system would compile code to produce objects of any type.
This ability is provided in the Napier system.

The more sophisticated type system provided in Napier makes it easier to type the
compiler. There is no need to declare a structure type in order to introduce a new type into
the system, instead the type any is used. The Napier compiler with the same functionality
as the PS-algol compiler described above has the following definition,

let compiler = proc(source : file -> any)

The user may project from the any using a project clause. The example above with the
same file XXX would be written,

let compiled = compiler("XXX",holder)
project compiled as choice onto
proc() : choice(aprocedure)()
default : {}

example 11

This example is less cumbersome than the corresponding PS-algol example. The project
statement does case analysis on the type that has been injected into the any. The renaming
of the value being projected is a mechanism to provide a constant binding on which to
project. A file or any other source medium containing the source of any data type may be
compiled using this compiler.

Compilers that introduce values into the system are known as callable compilers, since
they may be called from within the persistent environment. Such compilers have proved to
be of great utility in providing a richer programming environment; whilst maintaining a
strict type regime. Callable compilers have been used to provide an object browser
[dea88b] discussed in the next chapter and an adaptive relational database implementation
[coop87].

99

6.6 Interactive Compilers

A Callable Compiler which reads from the users console and immediately executes the
code produced is known as a compile and go compiler. Such a compiler may be used in a
way which resembles a shell [bou78,joy80]. This shell is of much greater power due to the
support of a full programming language. Compile and go environments have been
provided for applicative languages, like SASL, and so called A.I. languages such as LISP,
for a number of years. These environments allow programs to be developed only using
one language without the need for a command language. A compile and go environment to
support the PISA languages introduces new problems discussed below.

To clarify, the aim is to provide a system in which the following dialogue is possible
interactively,

user> let a = 3
system> <nothing>
user> let b = 7
system> <nothing>
user> write(a * b)
system> 21

example 12

The global naming of data is one of the problems originally intended to be tackled by
PISA. Global naming is provided in PS-algol by the named databases in the system, and in
Napier, by the provision of a persistent root. Only the Napier case will be considered here
for simplicity. The persistent root, called ps, is the only global name provided in the
system.

The compiler must be called every time the user enters a clause. In practice the user must
specify a terminator to indicate to the system that he or she wishes the entered text to be
processed by the system. If the terminator was a full stop character the interaction above
would look as follows,

user> let a = 3.
system> <nothing>
user> let b = 7.
system> <nothing>
user> write(a * b.)
system> 21

example 13

In such a system, every clause entered by the user is a separate compilation. Therefore, no
global naming is available on a compilation unit basis. The only global naming is via the
persistent root ps. It would be extremely tedious for the user to always have to specify the
full path to the data. Such a system is shown below,

100

user> let new = environment() ! create an environment
in new let a = 3 ! put binding <a:3> in it
in ps let new = new. ! put environment in ps

system> <nothing>
user> use ps as new : env in ! specify where the env is

in new let b = 7. ! add binding <b:7> to it
system> <nothing>
user> use ps as new : env in ! specify where the env is

use new as a,b : int in ! project bindings from env
write(a * b.) ! write out the added value

system> 21

example 14

This kind of interaction with a system would persuade the user that interactive systems
were not for him or her. However, the interactive system may transparently perform the
activities shown above. An environment is used to support top level bindings in the
interactive system. It serves the same purpose as the environment called new above.
Whenever a user makes a top level declaration in the system, it is transformed into a
declaration in this environment. All other declarations, for example declarations within
blocks or procedures are unchanged. This environment provides us, with the unbounded
space we require to support declarations in an interactive system.

The interactive system must record all declarations made in the top level environment.
When an unresolved name is found in the interactive compilation system, the name is
checked in the outermost environment. If the name is in the environment and has the
appropriate type, the value associated with that name is used in the code produced. In this
way, the top level declarations are transparently simulated using environments. This
allows dialogues like the one shown in example 13 to be supported.

There is a small time cost associated with looking up values in environments and
performing type checking. However, the time cost is small in comparison to the real time
domain of the user. The retrieval of values from environments, and the addition of
bindings to environments is only required for top level user definitions. All other
declarations, including those made within top level definitions, will have space allocated
for them in the usual manner

6.7 Conclusions

By combining instances of modules with slightly different functionality a rich set of tools
may be provided. These modules may be bound together in different ways to provide an
environment suitable for experimentation or production.

The compiler toolset has been implemented in PS-algol. The current tools available built
from the components include callable compilers, batch compilers, interactive compilers
and persistent information compilers. Currently, syntax analysers exist for PS-algol,
Napier and Hope+ [per87,mcn87].

101

7 Browsing

7.1 Introduction

A mechanism to display data structures is often required in database and programming
language systems. Usually this requirement is satisfied by a tool known as a browser.
Browsers are used extensively to traverse through the data structures found in database
systems, often to gain insight into the behaviour of a complex and highly dynamic system.
They are also of great use in debugging and, if powerful enough, can be used to repair
erroneous data structures which may contain valuable information.

Browsers which operate on programming language data structures are equally useful for
the same reasons. Unfortunately, they are seldom provided as programming language
support tools. In a persistent environment, the data structures of the programming
language and the long term data structures are the same. In such an environment, browsing
tools have been observed to be especially useful. The chapter describes one method of
constructing of such a tool.

In most powerful programming and database systems there are a potentially infinite
number of types which may occur in the system. This presents a problem when writing a
program to browse over them. In general, one cannot write a static program to anticipate
all of the types that may occur without resorting to some magic or a second level of
interpretation. Object-oriented programming languages [gold83,bob81] with a few
exceptions [sch85] avoid this problem by resorting to a combination of conventions and
dynamic typing. For example, one solution to this problem would be for every instance of
a class to have a print method. This is not a safe solution to the problem since a print
method may be overwritten by a method which performs a completely different function.

In a persistent programming language PS-algol [ps87], it is possible to write a browsing
program which displays the language's own data structures. This may be achieved without
resorting to conventions, having built-in functions or using second level interpretation.
Using a mechanism in the language, the program is, however, allowed to discover the
types of objects. The technique demonstrated utilises a compiler which is a first class
citizen in the language environment. This kind of compiler is discussed in the chapter 6.

PS-algol has powerful raster and vector graphics facilities which are an integral part of the
language, these are discussed chapter 3. Only one graphics procedure, the menu function is
used in the browser, this is discussed below for completeness.

7.2 Graphics

The menu function, like many of the predefined functions, is written in PS-algol. The
procedure menu generates another procedure which interacts with the user by displaying a
menu on a bit mapped screen at the coordinates supplied as a parameter. This menu will
have title title and entries taken from the vector of strings called entries. When the user
makes a selection from the menu the corresponding procedure from the vector of
procedures actions will be called. menu is defined as follows:

let menu = proc(string title ;
*string entries ;
*proc() actions
-> proc(int,int))

7.3 A Simple Browser

When presented with a pointer to an instance of a structure class such as:

102

structure x(int a ; string b ; pntr c)

the browser will present the user with a menu like the one in Figure 1 which allows the
user to examine the values of a and b and allow the pointer c to be browsed. The entry
with the stars allows the user to return to the previously examined data structure (if any).

x

a:int

b:string

c:pntr

* * * *

figure 1

A PS-algol program to draw the menu shown in Figure 1 may look like the program
below:

let traversex = proc(pntr p)
begin

structure x(int a ; string b ; pntr c) ! declare the structure class
! which this proc displays

let return = proc() ; {} ! a do nothing procedure

let strings = @1 of string ["a:int", ! declare a vector of strings
"b:string", ! with lower bound 1
"c:pntr" , ! for the menu entries
"****"]

! Next declare a vector of procedures - the menu actions

let procs = @1 of proc() [proc() ; write p(a), ! display the int a
proc() ; write p(b), ! display the string b
proc() ; Trav(p(c)) , ! browse the pntr c
return ! return-do nothing

]

let this.menu = menu("x", ! the title
strings, ! the entries - a vector of strings
procs) ! the actions - a vector of procs

if p is x
then this.menu(20,20) ! display menu at 20,20
else Error() ! take some error action

end

example 1

The procedure traversex will display any structure of class :

x(int a ; string b ; pntr c)

103

but will fail with any other structure class. If x is a member of some finite union , this
procedure could be generalised to handle any of the members of that union. However, if x
is a member of an infinite union, such as the PS-algol type pntr, all the structure classes
that the procedure may encounter can never be statically anticipated. The procedure Trav
which is called from the menu is faced with this problem since the member of the infinite
union to which c refers is unknown.

If a mechanism existed to discover what class a pointer is pointing at then a procedure of
the appropriate type could be selected and called in order to display that instance. One way
of engineering this in PS-algol would be to maintain a table containing procedures indexed
by the appropriate class. This table could be indexed by the structure class that the
procedure could display. Notice that although the procedures in this table operate on
different classes their interface is the same; that is they are all of type:

proc(pntr)

In PS-algol a predefined function class.identifier is provided which allows the structure
class that a pointer is pointing at to be discovered. It returns a string representation of the
class and is defined as follows:

let class.identifier = proc(pntr p -> string)

For example, if the following program is executed,

structure x(int a ; string b ; pntr c)
let p = x(7,"abc",nil)
write class.identifier(p)

the string,

x(int a
string b
pntr c
)

would be written out.

Suppose that a table called trav.table has been created which contains associations
between class identifier strings and pointers to structures of class,

structure trav.pack(proc(pntr) trav)

which contain a procedure to display an instance of the appropriate class. This may be
viewed pictorially in figure 2.

104

trav.procs

procedure to traverse
objects of class x(int a ...

complex(real i,j) procedure to traverse
objects of class
complex(real i,j)

table

etc...

x(int a ;
string b ;
pntr c
)

...

figure 2

A generic Trav procedure capable of traversing any data structure may be written using
the technique described above like so,

let Trav = proc(pntr p)
begin

structure trav.pack(proc(pntr) trav)

let class = class.identifier(p)
let look = s.lookup(class,trav.table)
if look is trav.pack then look(trav)(p)

else Error()
end

example 2

This browsing procedure can now display and browse over any class whose display
procedure is contained in the table. The procedures in the table look like the procedure
shown in example 1. Notice that new procedures may be added to this table without
altering this program.

It would be preferable if the traverser program could do better than simply report an error
when a new structure class is found - but what options are open to it? The procedure could
prompt the user of the browser to write a procedure which traverses the new structure
class. If the procedure displayed the structure class of the new structure to the user, all the
information needed to write such a procedure would be available. This procedure would
need to be edited, compiled, debugged and entered into the trav.table table (equivalent of
linking) by the user. This process is tedious and repetitive since the same procedure must
be written each time with small variations. If the user were traversing a graph in a
development environment this problem would be heightened since the user may be
changing the structure classes frequently as a design was refined.

7.4 A First Class Compiler

A better solution to the problem is for the traversal procedure to write the procedure to
traverse over the new class. It has all the information necessary to construct a procedure to
display the new class. However, it must be able to compile and link the new code into the
running program. In order do this another function is required in persistent environment -
the compiler. The callable compiler is discussed in the previous chapter.

In order to simplify the following discussion it is assumed that the PS-algol callable
compiler is of the following form,

105

let compiler = proc(string source; pntr p-> pntr)

The compiler is passed the source code to be compiled. It is also passed a pointer to a
structure class which should have a field of the same type as the compiled code. If the
procedure is type compatible with the structure class, and the compilation is successful,
the compiler will put the compiled procedure into that structure instance and return a
pointer to it, otherwise it will return a pointer to an error structure.

7.5 Binding

The traverser procedure traversex needs to access the generic pointer traversing program
Trav, in order that the pointer fields in the structure may be traversed. This may be
achieved without resorting to the use of globals by wrapping up the procedure inside a
generator procedure. This would take the procedure Trav as a parameter like so:

let traverser.gen = proc(proc(pntr) Trav -> proc(pntr))
begin

proc(pntr p)
! procedure body as traversex in example 1 above

end

example 3

Therefore a procedure of the following type must be compiled,

proc(proc(pntr) -> proc(pntr)),

like that in example 3 which returns a procedure capable of displaying a structure of a
particular class.

Using a first class compiler, it is possible to write a procedure, mk.trav.proc, that generates
a traversal procedure for a class when supplied with a representation of that class. This
procedure returns a pointer to a structure class that contains a procedure like traverser.gen
described above,

let mk.trav.proc = proc(string class -> pntr)
begin

let last := "" ! last character read
let pos := 0 ! index into class string

let next.ch = proc(-> string)
begin

pos := pos + 1 ! takes a sub string length 1
class(pos|1) ! from string class at position pos

end

let lex = proc(-> string) ! gets next lexeme from
begin ! the class identifier string

let str := ""
repeat

last := next.ch()
while last ~= "(" and

last ~= ")" and
last ~= " "

do str := str ++ last ! ++ is concatenation
str ! return str

end

106

let strings := "let strings = @1 of string [" ! build string vector
let procs := "let procs = @1 of proc() [" ! build procs vector
let title := lex() ! build menu title
let name := "structure " ++ title ++ "(" ! build class name

repeat
begin

let type = lex() ! "'n" is the newline character
let field = lex()
name := name ++ type ++ " " ++ field ++ " ; "
strings := strings ++ field++ ":" ++ type ++ ",'n"
procs := procs ++ if type ="pntr"

then "proc() ; Trav(p("++ field++")),'n"
else "proc() ; write p(" ++ field++ "),'n"

end
while last ~= ")"

name := name ++ ")'n" ! list part of structure name
strings := strings ++ "'"****'"]'n" ! last entry of strings vector
procs := procs ++ "proc() ; {}]'n" ! last entry of procedures vector
! next create string containing program representation

let prog := "proc(proc(pntr) Trav -> proc(pntr))'n" ++
"proc(pntr p)'nbegin'n" ++
name ++ strings ++ procs ++

 "let this.menu = menu(",title,",strings,procs)'n" ++
"if p is " ++ title ++ " then this.menu(20,20) else Error()'n" ++
end'n"

structure gen(proc(proc(pntr) -> proc(pntr)) maker)
let S = gen(proc(proc(pntr) t -> proc(pntr)) ; nullproc)

compiler(prog,S) ! return the result of compilation that is
end ! S containing the required procedure

example 4

The procedure Trav can now be refined to use this procedure. Whenever a class is found
for which no traversal procedure exists in the trav.procs table mk.trav.proc will be called
to create a traversal procedure. The generator procedure is then extracted from the
structure and called with the generic pointer traverser (Trav itself) as a parameter. The
resulting procedure can then be stored in the table and finally called to traverse the
structure that caused the procedure to be generated. The Trav procedure will therefore
look something like this,

107

let Trav = proc(pntr p)
begin

structure gen(proc(proc(pntr) ->proc(pntr)) maker)
structure trav.pack(proc(pntr) trav)

let key = class.identifier(p) ! get class of instance
let traverser. := s.lookup(key,trav.procs) ! look for display procedure
if traverser is trav.pack ! found one so
then traverser(trav)(p) ! call it with p as a parameter
else
begin

let package = mk.trav.proc(key) ! create a display package
let T = package(maker) ! get generator from package
let bound = T(Trav) ! generate a display proc
traverser := trav.pack(bound) ! re-package display procedure
s.enter(key,trav.procs,traverser) ! and put it into the table
bound(p) ! finally call it

end
end

example 5

The browser is now complete. The traversal procedure Trav maintains and uses the
trav.procs table which is used to store the procedures that display particular classes.
Whenever a display procedure cannot be found by Trav, the procedure mk.trav.proc is
called to generate the necessary compiled code. This code may need to have access to the
Trav procedure, therefore, the mktrav.proc procedure returns a display generating
procedure which is passed to Trav as a parameter. This step is equivalent to linking in a
conventional system. The newly generated procedure is then put into the table so that it
can be called to display subsequent instances of that structure class.

7.6 Fire Walls

The language type rules have not broken in the browsing program. However, the
discovery of the structure class types using the class.identifier procedure has been
permitted. The procedure closure has remained sacrosanct and has provided a fire-wall
through which this program cannot penetrate. Nevertheless, the need to see inside a
closure or, indeed, an activation does arise, for example, when a symbolic debugger is
used. The need to see inside such objects also arises when a system is in need of repair.
This is seen as being equivalent to the hardware engineer placing probes on a board to
identify faults within it. The scheme described does not handle such cases which are
clearly in need of more investigation. It is thought that different levels of object
interpretation may be needed in this case.

7.7 Performance

The alternatives approaches to the above scheme will now be considered. The first is to
halt the system with an error message when a structure class for which no traversal
procedure exists is found. The user would then have to write,compile,debug and enter into
the table a procedure to traverse the object. The solution outlined in above is several
orders of magnitude faster than this. The second alternative would be to write the browser
in a lower level language - not a viable compromise in terms of software engineering
costs.

The procedure shown in example 1 to traverse the class,

structure x(int a ; string b ; pntr c)

108

takes the browser 4.5 seconds of user time to write, compile, enter into the trav.procs table
and display the menu on a SUN 3/260.If the procedure is already in the table, the
combined time required for look up and display time takes less than a sixtieth of a second.

7.8 Persistence

In a conventional programming system the scheme described would be very expensive.
The traversal program would have to recreate the traversal procedures in every invocation.
In a persistent programming language the table trav.procs may reside in the persistent
store and therefore any changes made to the tables will exist as long as they are accessible.
Consequently the traverser program never has to recompile traversal procedures. The
program in effect learns about new data structures. It does so in a lazy manner, as it only
learns how to display the classes that it is actually required to display. This may be viewed
pictorially in figure 3.

root of persistence

Persistent
Store

compiler

browser

fontstrav.procs

figure 3

7.9 Browser Software Architecture

As the browser evolved it became apparent that it was more important than merely a
method of traversing data structures. What had evolved was a new software architecture.
The important features of the architecture are:

1. strong (static) type checking
2. late (dynamic) demand driven binding
3. dynamically linking of code
4. adaptive in nature.

These features are discussed below.

The browser is built entirely using the mechanisms provided by the PS-algol language.
The language is statically type checked, apart from the projection out of the infinite union
pntr, where dynamic type checking is employed. The procedures written by the browser

109

are type checked by the callable compiler and only syntactically correct programs are
admitted into the architecture.

The binding of procedures to the architecture is performed extremely late. Indeed,
procedures that traverse a particular class are not even written unless required. The storage
of procedures in an extensible data structure with dynamic lookup on class is necessary in
order to permit the flexibility required. The kind of binding performed here is the weakest
possible in a strongly typed system.

The procedures written by the browser and compiled by the callable compiler are
dynamically linked into running code. The linking is performed when the procedure which
is returned from the callable compiler is entered into the table.

The system is adaptive in nature. The browser can traverse any data structure composed
from any of the infinite number of types in the system. These types do not have to have
been declared at the time the browser was written. The system adapts itself to operate on
new data structures as required.

Two brief examples, showing how this architecture has been exploited in the fields of
bootstrapping and databases, are discussed below.

7.10 Browsers as a bootstrapping tool

Code files for the Persistent Abstract Machine consist of a heap of objects prefixed by five
words of header information. In order to bootstrap the system, such a file must be created
by the bootstrap compiler. The problem is the mapping of the complex graph structure,
which comprises a Persistent Abstract Machine heap, onto the file system. This task is
normally carried out by the POMS, but in the bootstrap system the compiler is written in
PS-algol and no Persistent Abstract Machine code is running.

The problem may be solved by a similar solution to that used in the browser. A set of rules
exists for the creation of valid objects. The object management system must keep maintain
not one but two tables. The first is similar to the one maintained by the browser - that is a
table of output procedures for each object class encountered. The second maintains an
address mapping table. This maps object pointers in the address space of the bootstrap
compiler to addresses within the code file. The first table may be persistent but the second
table is recreated with the production of every heap.

This solution allows the object formats to be easily changed since they are controlled by
the browsing program. No programmer time is required in the production of a heap
containing a different set of object classes. Therefore, the decision of which objects are in
the heap is inexpensive. The production of a virtual image using this technique is much
cheaper than hand building a virtual image or even writing a program to produce a custom
made one.

7.11 Adaptive Databases

The technology used in the browser has also been used in the production of a relational
database system [coop87]. Traditionally, databases are implemented by creating a
canonical relation structure [cod70]. Relations introduced by the programmer of the
system are then mapped onto this canonical representation. Relations then require a level
of secondary interpretation at run time.

The database system constructed by Cooper uses the techniques first invented in the PS-
algol object browser. When a user of the database system defines a new class of relation
the system generates a set of creation and selector functions for a data structure. The
programs are compiled using the callable compiler and entered into a table. Whenever the
relation is accessed the appropriate selector functions are used. In this way each data

110

structure is stored in the most appropriate manner for that relation without the need for
secondary interpretation of the data structures. Furthermore the expensive task of
programming the movement of objects to and from backing store is performed by the
POMS.

7.12 Conclusions

It has been illustrated how a browser may be written in a closed strongly typed
environment. This has been achieved without having to use dynamic typing, or make the
requirement that every data structure has to have a printString method as in the Smalltalk-
80 system. In the system described the programmer may still write a display procedure
manually thus specializing the programs default action as in the Smalltalk case. It is also
possible to have different display formats for objects by having more than one display
table.

The program is allowed to discover the type of objects, even when the type of an object
may have been deliberately hidden by the programmer. This raises the issue of who should
be able to break these fire walls? The browser needs to be able to see inside objects if it is
to be used as a debugger but the programmer may not want the contents of say, an abstract
type discovered.

The architecture developed in the browser has been explored and two further examples of
how the architecture may be exploited have been given.

111

8 Conclusions

This thesis presents research into the design and construction of persistent programming
systems. This work has been performed as part of the Persistent Information Space
Architecture (PISA) project [ack86b].

The main areas in which research has been performed are :

1. programming language design ;
2. programming language implementation ;
3. compiler construction ;
4. abstract program graphs ; and
5. adaptive object browsers.

8.1 Programming Language Design

The importance of good programming language notations cannot be overstated. The
provision of a good notation permits the programmer to concentrate on the complexities of
a given task rather than the mapping of that task onto a particular language. Research into
programming languages has been explored using the persistent languages PS-algol and
Napier.

The main areas explored in the language domain are:

1. machine independent graphics ;
2. environments ; and
3. polymorphism.

8.1.1 Graphics

When the work documented in this thesis was started, PS-algol had no raster graphics. It
did not therefore provide any means of utilising the power of the graphics facilities
provided on the then new ICL Perq computers [icl83]. Several experimental language
implementations [mor86c,mor86b] were constructed in order to discover how graphics
facilities could be integrated with a high level language.

The integration of graphics facilities into a high level language permits sophisticated
machine independent user interfaces to be constructed. Graphics objects are language
objects with full civil rights, this means that they may be be stored in the persistent store
and manipulated by procedures. For example, the persistent object browser makes use of
the menus provided by the graphics facilities. Menus are held within procedure closures in
the persistent store, allowing them to be rapidly displayed when required.

The PS-algol graphics facilities have been used to build the front ends to a number of
sophisticated applications including a windowing system [cut87] and an object oriented
database with inheritance [ben87].

8.1.2 Environments

Much of the work has involved discovering what special problems arise in persistent
systems. One of the problems that emerged early during the research was the need to
control complexity in large systems. Indeed, the problems of building large systems have
been known for many years.

The way in which objects are bound together in a large system is especially important.
During the development of the browser a design flaw was discovered and the knowledge
that the browser had gained had to be discarded. This was necessary because of the way

112

that the system had been bound together. In this case, too much static binding had been
used which did not permit enough change.

This kind of problem lead to the conclusion by myself and others [atk85a] that control
over binding mechanisms is extremely important in large persistent information spaces.
The datatype environment was introduced in order to provide a mechanism that would
allow incremental system construction and change within a large system.

The environment datatype is a simple mechanism with clean semantics that are easy to
understand. Environments provide a way of smoothly integrating the programming
language with the programming environment. They also provide a structuring mechanism
over the name space which is similar to the structure imposed by directories on a file
system. Problems still remain in this area, in particular, how functions like ls in Unix may
be expressed in a strongly typed system [atk87].

8.1.3 Polymorphism

The cheapest way to build a software system is to construct from components already
written [brk86]. In order to achieve this, a type system is required that is powerful enough
to describe all the objects in a system. Polymorphism provides the mechanism for
abstracting over types. However, the search for an all powerful type system is not an end
in itself. One mechanism, the type system, may be used for checking the legal composition
of objects makes the system simpler with the attendant cost benefits.

8.2 Abstract Machine Design

To design programming languages and not implement them is pointless, yet this often
happens. It is only through implementations that engineering lessons are learned.
Sometimes paper designs cannot be realised by current implementation technologies and
the design has to be revised - this is part of the design process. Much has been learned
from implementing PS-algol, the first persistent programming language. Without the
implementations of PS-algol, the language Napier would not have evolved. Many
important, though small, advances have been made during the research into machine
support :

1. modularisation ;
2. uniform object formats ; and
3. efficient implementation of non uniform parametric polymorphism.

8.2.1 Modularisation

The Persistent Abstract Machine, like all the components of the Napier system, is
constructed in a modular fashion. Each layer in the machine presents a well defined
interface. This has two main benefits: the first is in maintenance costs, the second is as a
research vehicle.

Parnas cites information hiding as one of the most effective ways of avoiding rework
[par79]. The PS-algol machine has proven expensive to maintain. This is partly due to its
size and partly due to its complexity. Much of this complexity has arisen in this machine
due to its nature - that of a research vehicle.

The Napier support environment is also a large, complex piece of software, as such
requires maintenance. It is hoped, that the modular design of the architecture will result in
lower costs in the future. More importantly the modular design of the architecture allows
experimentation into language implementations to be performed independently. For
example, it is possible to change the persistent object management strategy without
changing the Persistent Abstract Machine. This will allow the interactions between
different parts of the system to be explored.

113

8.2.2 Uniform Object Format

One of the biggest advances in the Persistent Abstract Machine is a simple one. The
abstract machine has no knowledge of the type systems of the languages that it
implements. One result of this is that the machine has a uniform object format. The heap is
the only dynamic storage system supported by the system. Objects are partitioned into
pointer and non-pointer fields, minimising the potentially high cost of garbage collection
and persistent object management.

8.2.3 Parametric Polymorphism

The parametric polymorphism provided by Napier has a large impact on the machine
design. One consequence of polymorphism is that the compiler cannot tell statically how
big a polymorphic object is or whether it is a pointer type or not.

An efficient implementation of first class polymorphic procedures has been achieved
without adversely affecting the performance of non-polymorphic ones. The
implementation is novel in that it implements parametric polymorphism for non-uniformly
sized objects. The technique makes use of the block retention architecture provided by the
Persistent Abstract Machine. The technique may be extended without modification to
support a powerful notion of abstract types. It is thought that this mechanism may also be
used to support inclusion polymorphism.

8.3 Compiler construction

During the development of the Napier language many benefits have emerged from using
the persistent store as a compiler construction vehicle. The most obvious benefits are:

1. modularisation ;
2. provision of PAIL ;
3. optimisation ; and
4. callable compilers.

8.3.1 Modularisation

The compilation system comprises many different modules. Like much of the persistent
system it is written using the persistent languages that it supports. The modules provided
in the compilation system provide the language implementor with a toolset. Using this
toolset many different compilers may be constructed cheaply. These compilers may
compile different languages or provide different interfaces to a compiler for a single
language. The compiler toolset therefore provides an architecture that is highly flexible
and given to software reuse.

8.3.2 PAIL

Much of the language implementation depends on the Persistent Architecture Intermediate
Language - PAIL. The provision of this level in the system is not an intrinsic requirement
but rather an engineering decision. PAIL provides support for many of the activities
performed within the persistent architecture. In particular, PAIL acts as a protection
mechanism, an optimisation aid and a debugging aid. PAIL also provides an abstraction
level between layers in the compilation system.

8.3.3 Optimisations

The provision of PAIL permits a certain class of code optimisations to be made. Some of
the optimisations performed are common; these include optimisations such as manifest
elimination and constant folding. A complex optimisation strategy is used to produce an

114

efficient implementation of parametric polymorphism. During the compilation of
polymorphic functions, code is hoisted to lexicographically previous blocks.

8.3.4 Callable Compilers

One class of compiler that may be constructed using the compiler toolset is the so called
callable compiler. A callable compiler may be passed program source in some form and
returns an executable version of it. In order that this kind of compiler is useful it has to be
a first class data object in the persistent universe. The dynamic introduction of code into a
running system introduces problems in a strongly typed environment, however, these are
easily overcome. This mechanism is extremely important if the persistent information
space is required to be a self-contained closed universe. The provision of a callable
compiler means that no linker or loader is required in the system. There is also no need to
provide an explicit language mechanism for separate compilation.

Many classes of applications can benefit from the provision compiler that is a first class
data object. One of these applications is the persistent object browser. The object browser
[dear88b] uses most of the facilities provided by the architecture including the graphics
and a callable compiler.

8.4 Adaptive Object Browsers

The persistent object browser introduces a new software architecture that permits adaptive
programs to be constructed incrementally. This is achieved by constructing new programs,
compiling them and calling them from a running process. Constructed programs are
memorised by storing them in the closure of the browser. This is only a viable prospect
due to the provision of the persistent store. The architecture has been successfully applied
to the construction of adaptive databases and bootstrap compilers.

8.5 Future Research

At the time of writing the total Napier system is incomplete. The design of the language
and the machine to support it is finished and an implementation of the compilation system,
the Persistent Abstract Machine and the persistent storage manager is complete. The
implementation of processes has only just begun therefore the system may only be used by
a single user at any time. Currently, the Persistent Abstract Machine does not support
distributed object stores although provision for this has been made in the store design
[bro88].

Much of the thrust of this thesis has been concerned with the construction of an integrated
programming environment. To conclude, let us examine how the parts of the system
discussed in this document may be unified and utilised. This is the only part of the work
discussed that has not been implemented, as such it is partly speculative.

Users of the Napier programming environment will never have to use the facilities
provided by an operating system, file system or database management system. The
programming environment is a self-contained world containing all the facilities necessary
to support application development. The environment will be provided by applications
written in Napier. It will therefore be tailorable by applications programmers. It is
important that some facilities should be judiciously protected from misuse in order to
protect the environment. The most important example of this is the ability of the compiler
to turn a byte stream into a closure.

8.5.1 Windows

When the user sits down at a workstation to interact with the Napier system he or she will
be faced with a window based environment. A prototype window-based environment for
the persistent information space has been implemented by Cutts and Kirby [cut87]. The

115

implementation of this system relies heavily on the graphics facilities provided by the
language.

It is important that the windowing system should preserve the user dialogue. In other
words, a window should provide an approximation to an infinite buffer that contains
everything written on the screen by both the user and the system. This may support
complex dialogues.when combined with the cut and paste facility epitomised by editors
available on the Apple Macintosh.

The Napier environment is required to support the development of applications. For this to
be successful the system must allow the user to gain access to all the information stored
about applications. It should not be necessary for program developers to remember
information about applications. For example, the system must be capable of showing the
user what types are being used to model aspects of applications. If this is displayed on the
users screen there is no reason why the user should have to type the information back into
the system and the system re-parse it. Instead, the user should be able to select displayed
information and say "yes that is correct I want to use it".

8.5.2 Browsing Information Graphs

The persistent information space forms a graph structure emanating from a single root
called ps, which has type env. The graph comprises of environments and objects
constructed using Napier. This graph structure may be examined using a browser similar
to that described in chapter 7. The use of a browser allows the user to discover what
objects populate the information space. In particular, the application writer may wish to
locate procedures stored in environments that may be reused in the application he or she is
developing.

The system will not provide a command language other than the Napier language. Of
course, other languages will be provided, for example the window dialogue interaction
language. However, these are not supported by a syntactic form. Instead they rely on the
use of a mouse and interaction with light buttons and dialogue boxes.

In some of the windows in the system an interactive compiler that will execute
instructions immediately will be available. Such a compiler may also be used to browse
the persistent information space by executing statements that operate against environments
and perhaps calling a browser. In such an environment there is little distinction between
browsing and interactive compilation.

Browsing a complex information space is equivalent to browsing a hypertext graph. It is
expected that techniques developed to traverse hypertext graphs may be of utility in
traversing the information space and program graphs.

It is expected that the unit of change in the system will be very small. The provision of
interactive compilers and environments will encourage the incremental development of
systems from prototype through to complete applications.

In a truly integrated environment the use of the word "program" and the word "procedure"
are indistinguishable. Procedures may be viewed at one level as complete programs, may
be viewed at another as tools contributing to a larger application. This is in marked
contrast to traditional systems such as the Unix environment where a program is a
markedly different entity from a procedure. Procedures may use other procedures in the
information base. The provision of environments and the binding mechanisms over them
will encourage the reuse of code.

In the Napier system the value of a procedure will always have its source code bound into
it. This will result in simpler management of code since there will be no need to remember

116

which source belongs with which executable code. A polymorphic function, called source
will be provided to yield the source of any procedure.

Once a programmer has obtained the source of a procedure it may be edited using tools
provided by the windowing environment. It may then be recompiled, using a callable
compiler. If the resulting code is of the same type it may be assigned to the location in the
environment from where it came. If it is not, it may have a new location created for it.

The source code that is bound into the executable version is in the form of a PAIL graph.
The information contained in the PAIL graph will allow sophisticated tools to be
developed that operate against program source. For example, program editors may be
constructed that provide the user with much better facilities than found in simple text
editors.

8.5.3 Debugging

The Napier system has had debugging support built into its design from the first stages.
This is essential if good debugging information is to be provided. Attempting to retro-fit
debugging support to the PS-algol system proved to be almost impossible. The integration
of source and executable code is the key to good debugging information. The machine
keeps a note of the source code being executed in a manner similar to the maintenance of a
code pointer. The source position information is stored in closures when procedure calls
are made so that an activation record may be displayed.

The debugging system will be constructed as a self contained module in a similar manner
to the compiler. Entry points to this module will be placed in the exception handlers so
that when an error occurs the debugging system will be called interactively. The debugger
may then call an editor and the compiler in order to present the user with a smooth
transition from one tool to another.

8.6 Finally

This thesis presents research into the world of persistent programming systems. Hopefully,
orthogonal persistence will become common in the computer systems of the future. If not,
so be it, the lessons learned in constructing the PS-algol and Napier programming systems
will live on in systems as yet figments of the imagination.

117

Appendix 1
Persistent Architecture Intermediate Languge

Napier Definition

!*************************** PAIL Structures *****************************

rec type list[t] is variant(tip : null ;
cons : cell[t])

&
cell[t] is structure(hd : t ; tl : list[t])

type pair[t] is structure(fst,snd : t)

rec type PAIL is
variant(Empty : null ;

Control : Control ;
Assign : structure(Lhs : Typed[index] ; Rhs : tree) ;
Alias : structure(Subject,Origin,Length : PAIL) ;
Overwrite : structure(Rule : string ; Source,Destination : PAIL) ;
Application : structure(Function : PAIL ;

Arguments : list[PAIL]) ;
Comment : structure(Code : PAIL ; Comment : string) ;
Optimisation : structure(Optimised,NonOptimised : PAIL ;

Info : string) ;
NamedAddress : link ;
Literal : lit ;
Cons : Constructor ;
Indx : Index ;
Scoping : Scope ;
Exception : Exception)

&
!************************* Basic Tree Structure **************************

tree[t] is structure(Type : TYPE ; Code : t ; Parent : Parent[t])
&

Parent[t] is variant(Empty : null ;
Tree : tree[t])

&
!******************************* Types *********************************

Typed[t] is variant(Link : link ;
Tree : tree[t])

&
TypeDescriptor is structure(TheType : TYPE ;

Descriptor : TypeConstructor)
&

TypeConsParam is structure(Type : TypeDescriptor ;
ParameterList : list[TypeDescriptor])

&

TypeConsVec is structure(Elements : TypeDescriptor)
&

TypeConsStruct is structure(Fields : list[link] ;

118

total,pntrs : Offset ; bitmap : *int)
&

TypeConsProc is structure(quantifiers,parameters,result : TypeDescriptor)
&

TypeConsAbstract is structure(Witnesses : list[TypeDescriptor] ;
Abstype : TypeDescriptor)

&

TypeConstructor is variant(Parameterised : TypeConsParam ;
Vector : TypeConsVec ;
Structure : TypeConsStruct ;
Proc : TypeConsProc ;
Abstract : TypeConsAbstract)

&

baseTypeContainer is structure(BaseType : string)
&

StoredType is structure(Type : TYPE)
&

TypeDecl is structure(Type : TYPE)
&

TypeRecDecl is structure(Types : list[TypeDecl])
&

Parameterise is structure(Parameterised : TypeDescriptor ;
TypeParameters : list[TypeDescriptor])

&

Specialise is structure(Source : PAIL ;
TypeList : list[TypeDescriptor])

!*************************** Symbol Table *****************************

&
stackUse is structure(Cvec.indirect : structure(Cvec : *int) ; Caddr : int)

&
stackPos is structure(Frame,MSoffset,PSoffset : int ; Uses : list[stackUse])

&
heapPos is structure(MSoffset,PSoffset : int)

&

location is variant(New : null
Stack : stackPos ;
Env : stackPos ;
Heap : heapPos)

&

Offset is variant(static : int ; dynamic : link)
&

link is structure(Name : string ;
Type : TYPE ;
Initial : PAIL ;
Manifest,
Retained,

119

Primitive,
Const : bool ;
Addr : location)

&

SymbolTable is
variant(Empty : null ;

Table : structure(Create : proc(SymbolTable -> SymbolTable) ;
InsertEntry : proc(string,link) ;
LookupLoc : proc(string -> link) ;
LookupRec : proc(string -> link) ;
Enclosing : proc(-> SymbolTable) ;
Scan : proc(proc(string,link))))

&

!******************************* literals *********************************

lit is variant(Boolean : bool ;
File : file ;
Int : int ;
Real : real ;
Pixel : pixel ;
String : string)

!*************************** Control *****************************
&

CaseChoice is structure(Patterns : list[PAIL] ; Action : PAIL)
&

Control is
variant(And : structure(And1,And2 : PAIL) ;

Or : structure(Or1,Or2 : PAIL) ;
Sequence : structure(This,Next : PAIL) ;
If : structure(Cond : PAIL ; Then,Else : tree) ;
Loop : structure(Repeat,Cond,Do : PAIL) ;
For : structure(Symbols : SymbolTable ;

Iterator,Start,Stop,Step,Do : PAIL) ;
Case : structure(Switch : PAIL ;

Branches : list[CaseChoice] ; Default : PAIL))
&

assign is structure(Lhs : link ; Rhs : tree)

!************************** Constructors *****************************
&

initialiser is structure(field : link ; value : PAIL)
&

SimpleDecl is structure(Exp : PAIL ; Symbol : link)
&

RecDecl is structure(Decls : list[Decl])
&

Decl is variant(simple : SimpleDecl ;
recursive : RecDecl)

&

120

Constructor is
variant(MakeVector : structure(Start : PAIL ; Elements : list[PAIL]) ;

MakeStructure : structure(Type : TYPE ;
initial : list[initialiser] ;

Constructor : TypeDescriptor) ;
Declaration : Decl ;
MakeImage : structure(XDim,YDim,Initial : PAIL) ;
EnvExtend : structure(Source : PAIL ; Decl : Decl) ;
MakeAbstract : structure(Decl : link ;

speclist : list[TypeDescriptor]) ;
Constructor : PAIL))

&

121

!**************************** Indexing ******************************

Index is
variant(Subs : variant(value : structure(Subject,

Origin,
Length : tree[PAIL) ;

address : structure(Subject,
Origin,
Length : tree[PAIL])) ;

EnvProject : structure(Source : PAIL ;
Signature : list[link] ; Body : PAIL) ;

UseAbstract : structure(Source : PAIL ; Signature : link ;
Body : PAIL))

!*************************** Scoping *****************************
&

Scope is variant(Block : structure(Symbols : SymbolTable ;

Block.body : PAIL) ;
ProcDesc : structure(Resultype : TYPE ;

Parameters : list[link]) ;
Body : PAIL ;
Symbols : SymbolTable))

!***************************** Exceptions ******************************
&

Exception is variant(Catch : structure(Handler : PAIL ; Code : PAIL) ;
Raise : structure(Event : PAIL))

122

References

[ada83] The Programming Language Ada Reference Manual. ANSI/MIL-std-1815a-
1983. Lecture notes in Computer Science, Springer Verlag (1983).

[alb85] Albano A., Cardelli L. & Orsini R. Galilieo: A Strongly Typed, Interactive
Conceptual Language. ACM TODS 10,2 pp 230-260 (1985).

[atk78] Atkinson M.P. Programming Languages and Databases. Proc VLDB pp 408-
419 (1978).

[atk83] Atkinson M.P. Bailey P.J., Chisholm K.J. Cockshott W.P. & Morrison R. An
Approach to Persistent Programming. The Computer Journal (1983). 26,4 pp
360-365 (1983).

[atk84] Atkinson M.P. & Morrison R. First class functions are enough. Foundations of
Software Technology and Theoretical Computer Science. Lecture Notes in
Computer Science 181, Springer Verlag (1984).

[atk85a] Atkinson M.P. & Morrison R. Types, bindings and parameters. Proceedings of
the 1st Appin workshop on persistent object systems. Universities of Glasgow
and St Andrews PPRR-16 (1985).

[atk85b] Atkinson M.P. and Morrison R. Procedures as persistent data objects.
ACM.TOPLAS 7,4 (1985).

[atk86a] Atkinson M.P. & Morrsion R. Integrated Persistent Programming Systems.
Proc. Hawaii International Conference on System Sciences. (1986).

[atk86b] Atkinson M.P., Lucking J., Morrsion R. & Pratten G. Persistent Information
Space Architecture Club Rules, Universities of Glasgow and St Andrews
PPRR 47 (1986).

[atk87] Atkinson M.P. & Morrison R. Polymorphism, Type checking and Lables in a
Persistent Object Store. Proceedings of the 2nd Appin workshop on persistent
object systems. Universities of Glasgow and St Andrews PPRR-44 (1987).

[bal86] Baltzer R. Living in the next generation operating systems. Proceedings of the
IFIP 10th World Computer Congress, pp 283-291 (1986).

[ben87] Benson P.J., D'Souza E.B., Rennie I.J. & Waddell S.J. An Implementation of
multiple inheritence in a persistent environment. Universities of Glasgow and
St Andrews PPRR 49 (1987).

[bob81] Bobrow D. G. and Stefik M. The Loops manual. Tech Rep.KB-VLSI-81-13,
Knowledge Systems Area. Xerox Palo Alto Research Centre (1981).

[boe84] Boehm B., Gray T.E & Seewaldt T. Prototypings vs. specification: A multi-
project Experiment. IEEE Transactions on Software Engineering. May,1984
pp 133-145 (1984).

[boe86] Boehm B. Understanding and Controlling Software Costs. Proceedings of the
IFIP 10th World Computer Congress, pp 703-714 (1986)

[bou78] Bourne S.R. An Introduction to the Unix Shell. Bell Laboratories, (1978).

123

[brk86] Brooks F.P. No Silver Bullet - Essence and Accidents of Sorftware
Engineering. Proceedings of the IFIP 10th World Computer Congress, pp
1069-1076 (1986).

[bro86] Brown A.L. & Dearle A. Implementation issues in Persistent Graphics.
University Computing 8,2 (1986).

[bro88] Brown A.L. Ph.D. Thesis - Persistent Object Stores. University of St Andrews
(1988)

[bur84a] Burstall and Goguen J.A. The Semantics of Clear, A specification language.
Springer-Verlag 86, pp 292-332 (1984).

[bur84b] Burstall R. & Lampson B. A Kernal Language for Abstract Data Types and
Modules. Proc. International Symposium on Semantics of Datatypes. Springer-
Verlag (1984).

[bur84c] Burstall R. Programming with Modules as Typed Functional Programming.
Proc. International Conference on 5th Generation Computer Systems. Tokyo.
(1984).

[buh87] Buhr P.A. & Zarnke C.R. Persistence in an Environment for a Statically-Typed
Programming language. Proc. International Conference on Persistent Object
Systems. Universities of Glasgow & St Andrews PPRR 44, pp 317-336 (1987).

[bux69] Buxton J. & Randell B. (eds.) Software Engineering Techniques. Proc. Nata
Conference. Rome (1969).

[cal77] Calderbank V.J & Prior A.J. The Ghost graphical output system. Culham
Laboratory Report (1977).

[car85] Cardelli L. & Wegner P. On Understanding Types, Data Anstraction and
Polymorphism. Technical Report CS-85-14, Brown University (1985).

[car87] Carrick R. & Munro D. Execution Strategies in Persistent Systems. Proc
Workshop on Persistent Object Systems: There Design Implementation and
Use, Appin Scotland, (1987).

[cod70] Codd E.F. A relational model for large shared databases. Comm. ACM 13,6 pp
377-387 (1970).

[coop87] Cooper R.L.,Atkinson M.P., Dearle A. & Abderrahamane A. Constructing
Database Systems in a Persistent Environment. Proc VLDB 1987, Brighton
England, (1987).

[cut87] Cutts Q. & Kirby G. An Event Driven Software Architecture. Universities of
Glasgow and St Andrews PPRR 48 (1987).

[dev81] Davie A.J.T & Morrsion R. Recursive Descent Compiling. Ellis Horwood
(1981).

[dea85] Dearle A. A new abstract machine for S-algol. University of St.Andrews
cs/85/1 (1985).

[dea87] Dearle A. A Persistent Architecture Intermediate Language. Universities of
Glasgow and St.Andrews PPRR-35 (1987).

124

[dea88a] Dearle A. (ed). The Persistent Abstract Machine. University of St.Andrews,
In preparation.

[dea88b] Dearle A., Brown A.L. Safe Browsing in a Strongly Typed Persistent
Environment. to appear in The Computer Journal (1988).

[dav81] Davie A.J.T. & Morrison R. Recursive Descent Compiling. Ellis Horwood,
(1981).

[dod83] KIT/KITIA CAIS Working Group for the Ada Joint Program Office. Common
APSE Interface Set. Version 1.1, Ada Joint Program Office (1983).

[gog82] Goguen J.A. Rapid Prototyping in the OBJ Executable Specification
Language. Proc. Rapid Prototyping Workshop, Colombia, Maryland (1982).

[gold83] Goldberg A. & Robson D. Smalltalk-80: The language and its Implementation.
Addison Wesley (1983).

[gks82] Information Processing - Graphical Kernel System - Function Description:
GKS version 7.2. ISO/TC97/SC5/WG2 N 163. (1982).

[har86] Harper R., MacQueen D. and Milner R. Standard ML. Edinburgh University
Technical Report ECS-LFCS-86-2 University of Edinburgh (1986).

[hoa74] Hoare C.A.R. Monitors : an operating system structuring concept. Comm.
ACM 17,10 pp 549-557 (1974).

[hoa78] Hoare C.A.R. Communicating Sequential Processes. Comm ACM 21,8 (1978).

[ibm78] IBM Report on the contents of a sample of programs surveyed. IBM Research
Centre San Jose, California (1978).

[icl83] Introduction to PERQ. International Computers Ltd. RP10103 (1983)

[joe83] Jones T.C. Demographic and Technical Trends in the Computing Industry.
Software Productivity Research Inc. (1983).

[joy80] Joy W., "An Introduction to the C Shell", University of California, Berkeley,
(1980).

[ker78] Kernighan B.W. & Ritchie D.M., "The C programming language", Prentice-
Hall, (1978).

[ker79] Kerighan B.W. & Marshey J.R., The Unix programming environment.
Software Practice and experience. 9,1 (1979).

[kra85] Krablin G.L. Building Flexible Multilevel Transactions in a Distributed
Persistent Environment. Proceedings Appin Workshop August 1985. PPRR 16
Universities of Glasgow and St.Andrews.

[kre80] Kreig-Bruckner B.& Luckham D.C. Anna: Towards a language for annotating
Ada programs. ACM Sigplan Notices 15,11 pp 128-138 (1980).

[lan66] Landin P.J. The next 700 programming languages. Comm ACM 9,3 pp157-
403 (1966).

[lis74] Liskov B.H. & Zilles S.N., "Programming with abstract data types", ACM
SIGPLAN Notices 9,4 (1974).

125

[lis77] Listkov B.H. et al. Absraction Mechanisms in CLU. Comm. ACM 20,8 pp
564-576 (1977).

[lis83] Liskov B.H. et al. The Argus manual. Techical Report Memo 39 (1983)
M.I.T.

[liv87] Livingstone J. Graphical Manipulation in Programming Languages: Some
Experiments. M.Sc. Thesis. University of Glasgow (1987).

[lob87] Loboz Z. PS-algol Abstract Machine Monitoring Universities of Glasgow and
St Andrews PPRR 37 (1987).

[loc78] Lochovsky F.H. & Tsichritizis. Hierarchical database management systems.
ACM Computer Surveys 8,1 pp 105-123 (1978).

[mac86] Inside Macintosh. Apple Computer Inc. Addison Wesley, (1986).

[mat85] Matthews D. The Poly Manual. Technical Report 63. University of Cambridge
Computer Laboratory (1985).

[mcc62] McCarthy J. et al. Lisp Programmers manual. MIT press, Cambridge Mass
(1962).

[mcn87] McNally D.J. Implementation in the Staple Project. University of St.Andrews
cs/87/2 (1987).

[mit85] Mitchell J.C. & Plotkin G.D. Abstract Types have Existential type.
Proceedings POPL (1985).

[mor73] Morris J.H. Protection in programming languages. Comm. ACM 16,1 pp 15-21
(1973).

[mor78] Morris F.L. A time and space efficient garbage collection algorithm. CACM
21,8 pp 662-665 (1978).

[mor79] Morrison R. Ph.D. Thesis - On the development of algol, University of St
Andrews (1979)

[mor82a] Morrison R.,"S-algol: a simple algol", Computer Bulletin II/31 (1982).

[mor82b] Morrison, R. Low cost computer graphics for micro computers. Software,
Practice & Experience 12, 8 (1982), pp 767-776.

[mor85] Morrison R., Bailey P.J., Brown A.L., Dearle A. & Atkinson M.P. The
Persistent Store as an enabling technology for Integrated Support
Environments, Proc. 8th International Conference on Software Engineering. pp
166-172 (1985).

[mor86a] Morrison R., Dearle A. & Atkinson M.P., Flexible Incremental Bindings in a
Persistent Object Store, Universities of Glasgow and St Andrews PPRR 38
(1986).

[mor86b] Morrison R., Brown A.L., Dearle A. & Atkinson M.P. An Integrated Graphics
Programming Environment. Computer Graphics Forum 5,2 (1986).

[mor86c] Morrison R., Brown A.L., Bailey P.J., Davie A.J.T. & Dearle A. A persistent
graphics facility for the ICL Perq. Software Practice and Experience 14,3
(1986).

126

[mor87a] Morrison R., Brown A.L., Connor R. & Dearle A. Polymorphism, Persistence
and Software Reuse in a Strongly Typed Object Oriented Environment.
Universities of Glasgow & St Andrews PPRR 32, (1987)

[mor87b] Morrison R., Brown A.L., Carrick R., Connor R. & Dearle A. Polymorphic
Persistent Processes. Universities of Glasgow and St Andrews PPRR 39
(1987).

[mor88a] Morrsion R., Process Implementation in Napier. Private Communication, Feb
1988.

[mor88b] Morrison R., Brown A.L., Carrick R., Connor R. & Dearle A., "The Napier
Reference Manual", Universities of St.Andrews, In preparation.

[mor88c] Morrison R., Brown A.L., Carrick R., Connor R. & Dearle A. On the
integration of Object-Oriented and Process-Oriented compuitation in Persistent
Environments. Universities of Glasgow and St Andrews PPRR 57 (1988).

[naur63] Naur P. et al. Revised report on the algorithmic language Algol 60. Comm.
ACM 6,1 pp1-17 (1963).

[nee74] Needham R.M. & Walker R.D., "Protection and Process Management in the
CAP Computer", International Workshop on Protection in Operating Systems,
INRIA, Rocquencourt, (1974).

[nyg70] Nygaard, K., The Simula-67 Common Base Language. Norwegan Computer
Centre, Oslo. S-22, (1970).

[org73] Organick E.I., Computer System Organisation: The B5700/B6700 Series,
Academic Press, New York (1973).

[par79] Parnas D.L. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering. March, 1979 pp 128-137 (1979)

[per87] Perry N. "Hope+", Imperial College Internal Report IC/FPR/LANG/2.5.1/7
(1987).

[ps85] PS-algol Abstract Machine Manual. University of Glasgow and St Andrews
PPRR11-85 (1985).

[ps87] "The PS-algol Reference Manual fourth edition", Universities of Glasgow and
St.Andrews PPRR-12 (1987).

[rey83] Reynolds J. Types abstraction and Polymorphism. Information Processing.
North Holland (1983).

[sch85] Schaffert C.,Cooper T. and Wilpolt C. Trellis Object Based Environment. DEC
TR-372, Digital Eastern Research Lab (1985).

[shi81] Shipman D.W. The functional Data Model and the data language DAPLEX.
ACM TODS 2,3 pp 247-261 (1981).

[smi71] Smith, D.N. GPL/1 - A PL/1 extension for computer graphics. AFIPS SJCC
(1971), pp 511-528.

[stra67] Strachey C. Fundamental concepts in programming languages. Oxford
University Press, Oxford (1967).

127

[sun86] Sunview Programmers Guide. Sun microsystems Inc. (1986).

[tay76] Taylor R.C. & Frank R.L. CODASYL database management systems. ACM
Computing Surveys 8,1 pp 67-103 (1976).

[tei81] Teitelbaum T. & Reps T. The Cornell Program Synthesiser: A Syntax Directed
Programming Environment. Comm ACM 24,9 pp 563 - 573 (1981).

[ten77] Tennant R.D. Language Design Methods based on semantic principles. Acta
Informatica 8 pp 97-112 (1977).

[thi86a] Lightspeed C Users Manual. Think Technology (1986).

[thi86b] Lightspeed Pascal Users Manual. Think Technology (1986).

[tur79] Turner, D.A. SASL language manual. University of St.Andrews CS/79/3
(1979).

[vw69] van Wijngarden, A. et al. Report on the algorithmic language Algol 68.
Numerische Mathematik 14,1 pp 79-218 (1969).

[weg84] Wegner P. Capital Intensive Software Technology. IEEE Software 1,3 pp 7 -
46 (1984).

[weg87] Wegner P. Dimensions of object-based language design. Proc. Object-Oriented
Programming Systems Languages and Applications..pp 168-182 (1987).

[wir73] Wirth N. The programming language Pascal. Acta Informatica 1,1 pp 35-63
(1973).

[wul74] Wulf W.A. et al., "Hydra: The Kernel of a Multiprocessor Operating System",
CACM 17,6 (1974).

[zil73] Zilles S.N. Procedural Encapsulation: a linguistic protection technique. ACM
Sigplan Notices 8,9 (1973).

128

	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Writing Less Code
	1.1.1 Language Design

	1.2 Avoiding Rework
	1.2.1 Uniform Treatment of Program and Data
	1.2.2 Software Reuse

	1.3 Using Integrated Project Support Environments
	1.3.1 Public Common Tools Interface
	1.3.2 Ada Programming Support Environment

	1.4 Object Storage
	1.4.1 Identification of Persistence
	1.4.2 Persistence in PS-algol

	1.5 The Napier System
	1.6 Persistent Information Space Architecture
	1.7 Thesis Browsing
	1.7.1 Language Domain
	1.7.2 System Building Domain
	1.7.3 Applications Domain

	1.8 Conclusions

	2 Environments
	2.1 Introduction
	2.2 Contextual naming
	2.3 Bindings
	2.4 Programming in the large
	2.5 Static Contexts
	2.6 Language Approaches
	2.6.1 Galileo
	2.6.2 Name Spaces
	2.6.3 Program Editors

	2.7 Environments
	2.7.1 Type checking
	2.7.2 Binding to environments
	2.7.3 Simulation of scope
	2.7.4 Binding to the persistent store
	2.7.5 Supporting incremental construction
	2.7.6 An Implementation of Environments

	2.8 Conclusions

	3 Graphics
	3.1 Introduction
	3.2 Pictures
	3.2.1 Storing a Picture in a Database
	3.2.2 Retrieving a Picture From a Database

	3.3 Raster Graphics
	3.3.1 Pixels
	3.3.2 Images
	3.3.3 Raster-op
	3.3.4 Aliasing
	3.3.5 Colour Mapping
	3.3.6 Mapping Pictures and Images to Output Devices
	3.3.7 Fonts and menus

	3.4 User Interaction
	3.5 Implementation
	3.6 Conclusions

	4 The System Building Domain
	4.1 Introduction
	4.2 History
	4.2.1 The S-algol abstract machine
	4.2.1.1 Object management

	4.2.2 The PS-algol abstract machine
	4.2.2.1 Frames
	4.2.2.2 Addressing
	4.2.2.3 Objects
	4.2.2.4 The Standard Frame
	4.2.2.5 The I/O system
	4.2.2.6 Persistent Object Support
	4.2.2.7 Pids and Lons

	4.3 The Persistent Abstract Machine
	4.3.1 Design Principles
	4.3.2 Heap Objects
	4.3.3 PAM Object Formats
	4.3.3.1 Strings
	4.3.3.2 Files
	4.3.3.3 Vectors
	4.3.3.4 Images
	4.3.3.5 Structures
	4.3.3.6 Code Vectors
	4.3.3.7 Stack Frames
	4.3.3.8 Abstract data types
	4.3.3.9 The Root Object

	4.3.4 Stable Storage
	4.3.5 The Instruction Set
	4.3.6 Types
	4.3.7 Support for Infinite Unions
	4.3.8 Implementation of Variants
	4.3.9 Polymorphism
	4.3.9.1 First Class procedures
	4.3.9.2 Parameter Passing
	4.3.9.3 Returning values
	4.3.9.4 Structure Creation
	4.3.9.5 Implementation Approaches
	4.3.9.6 P.A.M. Implementation of Polymorphism

	4.3.10 Abstract Data Types
	4.3.10.1 Potential Problem Areas
	4.3.10.2 P.A.M. Implementation of abstract data types

	4.3.11 Debugging Support

	4.4 Conclusions

	5 Abstract Program Graphs
	5.1 Introduction
	5.2 Traditional Compilation Systems
	5.3 Persistent Systems
	5.4 Persistent Architecture Intermediate Language
	5.4.1 PAIL graphs
	5.4.1.1 Basic tree structure
	5.4.1.2 Symbol tables
	5.4.1.3 Control
	5.4.1.4 Assignment
	5.4.1.5 Store Allocation
	5.4.1.6 Indexing
	5.4.1.7 Scoping

	5.4.2 Support for system building
	5.4.2.1 Code Generation
	5.4.2.2 Debugging
	5.4.2.3 Optimisation
	5.4.2.4 Syntax Directed Editing
	5.4.2.5 Distribution
	5.4.2.6 Protection

	5.5 Conclusions

	6 The Compilation Environment
	6.1 Introduction
	6.2 Advantages of using a persistent environment
	6.3 Architecture Composition Rules
	6.3.1 I/O independence
	6.3.2 Plug Compatibility
	6.3.3 Binding Independence
	6.3.4 Information Hiding

	6.4 Compiler Composition
	6.5 First Class Compilers
	6.6 Interactive Compilers
	6.7 Conclusions

	7 Browsing
	7.1 Introduction
	7.2 Graphics
	7.3 A Simple Browser
	7.4 A First Class Compiler
	7.5 Binding
	7.6 Fire Walls
	7.7 Performance
	7.8 Persistence
	7.9 Browser Software Architecture
	7.10 Browsers as a bootstrapping tool
	7.11 Adaptive Databases
	7.12 Conclusions

	8 Conclusions
	8.1 Programming Language Design
	8.1.1 Graphics
	8.1.2 Environments
	8.1.3 Polymorphism

	8.2 Abstract Machine Design
	8.2.1 Modularisation
	8.2.2 Uniform Object Format
	8.2.3 Parametric Polymorphism

	8.3 Compiler construction
	8.3.1 Modularisation
	8.3.2 PAIL
	8.3.3 Optimisations
	8.3.4 Callable Compilers

	8.4 Adaptive Object Browsers
	8.5 Future Research
	8.5.1 Windows
	8.5.2 Browsing Information Graphs
	8.5.3 Debugging

	8.6 Finally

	Appendix 1
	References

