This paper should be referenced as:

Dearle, A. “Constructing Compilers in a Persistent Environment”. In Proc. 2nd
International Workshop on Persistent Object Systems, Appin, Scotland (1987).

Constructing Compilers in a Persistent Environment
Alan Dearle

Computational Science Department
University of St.Andrews
North Haugh
St Andrews
KY16 9SS

Abstract

Traditionally compilers have been described as consisting of separate modules:
the syntax analyseilpxical analyser; code generatetc. However, inpractice
modern compilers are rarely constructed in this manner. This may be because it
is difficult to find the correct levels of abstraction necessary to buslohgiler

from components without losing efficiency.

In this paper a set of modules are described which may be combined in various
ways to provide a wholdamily of compilers. The family of compilers
includes: batch compilers; interactive compilers; filased compilers and
compilers that operate entirely within the persistent environment.

The approach taken ithat of plug-in componentsThe system facilitates
language and architecture experimentspbogviding a framework in which
modules may be interchanged and combined freely.

1. Introduction

Throughoutthe computing community these of modules talivide a complex taskto
easiersubtasks is recognised agjoodthing to do Thetask of compilation is an ideal
application of modular decomposition. In this paper it will be demonstratedaflexible
compilation environment can be createsing modular decomposition within a persistent
environment.

The system described consists of a number of different moelatdsofwhich is specified
by a type signaturéMany differentinstances of particular modules may exsiste by side
in the persistent store. An instance of a compiler is constructedrbposing instances of
the differentcomponents. Compilerthat appear to theser to bequite different, for
example ones that compile different languages, may share much of the same code.

2. Why use a persistent environment?

The decomposition of a compiler into differentb-tasks habeen wellknown for many
years. Typically compilers are described to undergraduate students as consiskaxgalf a
analyser, a syntax analyserc@e generator and so fmdc]. However,thesetheoretical
methods of constructing a compiler are often not stricilpwed in order to gairmore
performance from aystem. ltwill be shownthatusingthe persistenstore no significant
overhead is incurred in space or time in building a flexible, modular system.

Let us firstly examine the space arguments. Many programming languages [pascal,C] allow
libraries of functions to be constructed. These fragments of codéat have been
separately compiled and are thought of as besejul to acommunity ofprogrammers.

When an individual wishes to use one of these functions a binder is emplayegdytdhe

code in the library antlind it into anew program. Thus, if eompiler is constructed by
building library functions evergompiler constructed will have itsvn copy ofthe code.

This is a crude form of softwareuse. In such a systeamly copies of codare being
shared and not instances of modules as in a persistent system.

In a persistent system such as PS-algol [PS-algol] procecagsbestored in atype

secure manner. Programs may link dynamicallgtatically to code in the database simply

by indexing a structurelass. Inthis waydifferent programsnay share instances abde

rather than merely own a copy of the code. This method of building dgsems isnuch

more persistent space efficient than building librariesuattions and using &nker to

obtain copies of theode. Furthermore, abke usage of a library function increases the
greater the benefit from using the persistent store. Clearly the persistent store subsumes the
role of a conventional procedure library.

Let usnow examine the timeverheadsSince PS-algokupports first class procedures,
closures may be stored tine persistent informatiospace.The user finds a procedure by
navigating the persistent graph from a root of persistence. Once a procedure has been found
in the persistenstore it is indistinguishable from ordeclared in the maiprogram. In
otherwords there is no difference between a closure retrieved therdatabase and one
declared locally. This impliethat by using the persistenstore nopenalty is paid for
decomposing large programs into modules - provided that a functional interface is used.

The only time penalty that may be incurredigingthe persistenstore isthe timetaken to
navigate thestore to find an appropriafgocedure. Thi®peration is equivalent to linking
in a conventionasystem.The navigation of the persistegtaphmay be performed at an
earlier timethancall time. Thereforethe user does not necessarhiave to pay thigime
penalty everytime thecode isused. The time atwhich binding is performed will be
discussed later in this paper.

The previous paragraphs of this sectioompare the persisterstore to conventional
technology but other benefits may be gained by using a persistent inforsioanThese
have beerdiscussed imany other papergrocs,app].The fact that every data type is
allowed the full range of persistence me#mst complex datatructuresmay be created
without concern about storagmeethods. A goodexample ofthis is inthe symbol table
package.The symbol tablesmodel lexographicatcope andcontain both complexype
information and initialising code for declarations. All this information automatigedhgists
because it is reachable from the executable code as will be seeBuatera systeroould
not be contemplated using conventional technology.

3. Construction rules for persistent systems

During the construction of the compiler tool kit a setraies has evolvedThese rules
should be used asparadigmfor constructing systems in a persistent environmEmtse
rules arel/O independence, plug compatibility, binding independence, information hiding
and encapsulation. Each of these will now be examined in detail.

Adherence to the first rule of 1/0O independence is perhaps the most difficasthat no
modules should directly perform 1/O. Instead the input and output of information should go
via a procedural interface. fiiis rule isfollowed, modulesonstructed will have a much
higher degree of usability. To demonstrttes, imagine a lexicaprocedure to parseraal
number. Such a procedungay befound in most compilers. lthat procedure displays an
error message when an error is detected; it cannot thasedokin a window based system
since it will destroythe display. Instead, ithe procedure takes as a parameteeraar
displaying procedure the procedure will be of greater utility.

The second rule of plugompatibility saysthat each modulshould have a well defined
interface and that modules with the same interface may be freely subdttuézathother.

It is this rulethatallows us tocreate avhole family of compilers by specifying interfaces
and by having a number of different instances which conform to those interfaces.

The third rule of system construction, binding independence, is not commonly practised by
programmers in persistegystems. In order for us to understahig rulelet usconsider
two procedures written in PS-algol.

let examplel sproc()
begin
structure container(roc() somethingUseful)
let aContainer = s.lookup("usedByExamplel”,"database")
let usedByA = aContainer(somethingUseful)
usedByA()
end

In this example theprocedure first declares a structure class definition. This introduces a
class along with some selectors and a constructtirelsecondline of the procedure an
object is looked up using the key "usedByExamplel" from a dataladled "database”. In

the procedure we are assumihgt aContainenow points to arobject ofclass container.
Next the procedure is retrievdtbm the object by indexing the structwkass.Lastly the
procedure is appliedNotice thatthis procedure dynamicalljooks upthe database to
retrieve the procedure evetyne it is called. Such araction may be required in a
development system whetbe most recentversion of a procedure from a library is
required. This code is typical of code written by PS-algol programmers.

let example2 sproc(pntr aContainer)

begin
structure container(roc() somethingUseful)
let usedByA = aContainer(somethingUseful)
usedByA()

end

Example2 is similar t@xamplel, it also applies a procedure obtained by dereferencing a
structure of class containetet us now examine the differences between these two
examples.

Examplelhasthe strings "usedByExamplel" and "database" boumd it - leaving the
user with no option but to ugke procedurstored inthe appropriatéable. It alsdeaves
the user ofthe proceduravith no option other than to bind dynamicallytte data every
time it is executed. Irthe second procedure no informatiapart fromthe structureclass
hasbeenboundinto the procedures closure. This allowlse procedure to based in a
number of different ways which we will now examine. If the semantics of theekeshple
were required the user could now write,

let synthsiseExamplel groc()

begin
let aContainer = s.lookup("usedByExamplel”,"database")
example2(aContainer)

end

As in examplel this proceduteoks upthe database everytimbus retrieving the most
recent version of the procedure.

A user may, however, wish datic system with which toexperiment without having
possible changes to other modules affect the experiment. In such astassband would
be required. Thisnay also be writterusing example2 byproducing a procedure with the
function bound into its closure. This can be seen in the following example,

let staticExample =
begin
let aContainer = s.lookup("usedByExamplel”,"database")

proc() ; example2(aContainer) I this is the result
end

In this example the container Isoked up onlyonce. It is onlythe procedure in thénal

line that is exported from the block and assigned to staticExample. The object pointed at by
aContainer is statically encapsulated in shepe ofthe procedure. This is amxample of

block retention.

The procedure synthsiseExamplel lookshgdatabase evetiyne - giving us a dynamic
bind whereashe procedure staticExampleas the structure instance aContainer in its
closure giving us a static bind. In tbempiler toolsegll the modules have been written in
the style of example2 giving theser the option ofcomposing programstatically or
dynamically.

The fourth rule, is that of information hiding. This Hesenknown formany years and is
commonly practiced by users of abstract data types [adt].

The rule thatmodules should bé¢otally encapsulated ibest understood by example.
Consider the following program segment, oagain inPS-algol.The procedureaves an
integer and returns the last integer saved.

let saved =0

let saver =proc(int this ->int)
begin

let temp = saved

saved := this

temp
end

Since the procedure uses shared store it cannot be used by a nudiffereot programs
to save values. This may be overcome by wrapping the procedure in a generator like so,

let saverGen proc(-> proc(int ->int))

begin
let saved :=0 this is encapsulated
proc(int this ->int) I this is the procedure returned
begin
let temp = saved
saved := this
temp
end
end

By this mechanism every procedusgshing to use savemay do so safely byalling
saverGen tmbtain a saver with itewn store. Inthis way proceduremay sharecode

without having to share statdotice that everysaver produced has itsvn copy of the
variablesaved.Although this techniqgu@asbeen wellknown to researchers ersistent
languages for some time it is unfortunately not commonly practiced. In the compiler toolset

all of the modules are encapsulated in a generator so that each instance of a module operates
entirely within its piece of store.

The rules of /O independence, plug compatibility, binding independence, information
hiding and encapsulation have proved to be invaluable in constructing the cdogiker
In the following sections we will see how these rules have been applied, in practice.

4. Persistent Architecture Intermediate Language

The interface between th&ntax analysis module arttie code generation module is
provided by the Persistent Architecture Intermediate Language, PAIL [pail]. PAIL code is a
graph structure comprising of abstract syntax trees contaatiirtge information gleaned

from the syntax analysis phase of compilation. The provision of PAIL makessible to

write language independent codenerators. It also allowsxperiments in language and
language implementation to be carrmat independently and in parallel. By operating on
PAIL code rather than on unstructured source code it also much easier to writeles@lrce
optimisers.Other benefits of PAIL arethat it provides: anaid to partial recompilation,
better run time debugging, high level protection and portable information.

Partial recompilation is much easier due tofte that the PAIL codallows much finer
analysis ofthe program than either tls®urce code othe executableode.Since PAIL is
an abstract view ahe program th@rovision of syntaxdirected editors is also a simple
task.

Also, the PAIL code itself is persistent. It is not consumethbycode generatigphase as
in manysystems.nstead pointers to #re placed in the executable code in fibren of
pointer literals. This meartekatwhen an error occurs duririge execution of the code all
the symbolic and address information contained in the PAIL trees is avallhldeallows
meaningful erromessages to be displayed and symbolic debuggers to dspiggxtual
information to the user.

In addition,the Napier abstrachachine[napier-mc], currently being developeibes not
contain theusual capability based protectiofound in mostobject based architectures
[hydra,cap].Instead this protection is provided at a much hidéezl by the PAILcode.
By forcing all languages, that wish to use the persistent stocentpile intoPAIL, illegal
operations on thetoremay be detected at an early stagel thus savenuch overhead in
the underlying architecture.

A final benefit of having PAIL is that it provides portable information. If code is transferred
betweentwo disparate machines the PAIL code contalishe information necessary to
recreate the code on thew machine. In thigvay, PAIL is a useful tool in a distributed
environment.

Since the system described is persissdinthe PAIL graphsmay also be persistenBAIL
trees are accessible fraime executing code allowing better camj@imisation. It hadeen
suggested in [cgerthat this taskmay be performedbazily possibly automatically. This
would, if possible, bevery difficult in a conventionasystem.The building ofsuch a
system in a persistent environment makes the task both manageable and feasible

5. Compiler Components

The compiler toolsetonsists ofmany componentsThe interface of each component is
well defined so that new versions of any of the components may be @asitgd andised
in a compiler.

A type module is responsibler creating representations of programming langudaja
types.Selectors and procedures for displaying tyaesalso included in thisnodule. All
type checking is also contained in this module. Thus outside ofmthdsile no knowledge
of the representation of the type system is required.

A single module is responsible for noting and reporting all compil&ioors. This module
interfaces with the output module which displays all output tautfeg. Combined with the
input module the output module provides a file independent 1/O interface.

Conventional compiler modules goeovided to fulfill the tasks oflexical analysis, syntax
analysis and code generation. The code genelats not output its resultkrectly to the

file system or persistent store. Instead, it passes its results to one of two mbaeifest

of these is a code planter which outputs the code to the file system. The other, called magic,
turns code into a closure within the system. This is the fixed potheisystem and has to

be written in a lower level of language. This is the only place iPBw@lgol system where

the type system is broken.

6. Compiler Composition

Generators forthe various compiler modules are placed in the persistastbre
independently. Typically, more than one instanceeath module can b®mund in the
persistenstore. In order t@onstruct a particular compiler, these components need to be
joined together. A good analogy is having several jigsaws allgingthe samepattern. A

new jigsawmay be constructed by selecting piefresn differentjigsaws. Providedhat

the pieces are placed in the corrpositions a jigsaw displaying a nepicture may be
created. This may be viewed graphically in figurel.

keyboard/screen handler

N %
ST
error handling O lexical analysis
\ AN J

4 Y O Q Yo)
symbol O ¢

: ype
table O syntax analysis checking

-> PAIL

X S EOR

Code Generation -> PS-code

- J
4 O A\
Magic
-> proc()
\ /
4 i E)
Interpreter
- J

figure 1

In order to use aompiler built fromthe compiler toolset theser needs tavrite a small
program to select the requireabdules.These linking programare simple towrite, very

short and only a few of them have to be writtstost of theusers ofthe current compiler
toolset have never written such a program, relying on existing programs.

The compilation tools have been viewed as aidfeoconstruction of &tal compiler. Of
course,they do not have to based as suchbeing applicable in a number of other
applications including spreadsheets (parserdeatichl analysers) andord processors (
lexical analysers). Partial compilersay also be constructed, for examplegrely as
syntax checkers. Such tools have proved highly useful in the development tzngesage
processors and type checkers.

7. Binding

Compiler components may tundtogether statically or dynamically depending on the
choice of the programmer. In some cases, for example when a new language sgtllem is
being developedhe usermay want the mostrecentversion of aparticular module to be

used. Inthis case,the programmerwould use dynamic binding to combine the
components. On the other hand, one could imagine a situation where a user would require a
staticsystem. Thignay be achieved by statically combiningmponents into aompiler

and then always using that version.

8. A few compilers

Let us now look at some difie useful toolsthat may beconstructed from this technology.
Perhapdhe first tool that should be constructed isc@nventional compiler thatads a
sourcefile compiles the codand putsthe executable code into anotlige. This may be
achieved simply byproviding a module whiclperformsl/O to the file system. Such a
compiler is shown below.

[rxkkkkkrkkikix Get Modules from persistent store ****xxtkkkkax

! See appendix for a full type description of these modules.

let input = s.lookup("input",comp.db)(Input.gen)(file.name) I'an input.pack
let errors = s.lookup("error",comp.db)(Error.gen)() earor.pack
let PS.types = s.lookup("PS.types",comp.db) ' a PS.types
let types = s.lookup("types",comp.db)(Type.gen)(errors,PS.types) type thecker
let lex = s.lookup("lex",comp.db) l alex.gen
let sa = s.lookup("sa",comp.db)(Sa.gen)(options(),input,errors,

PS.types,types,lex) ! proc(env -> PAIL)
let cgen = s.lookup("cgen”,comp.db)(Cgen.gen)(PS.types)
let planter = s.lookup("planter",comp.db)(Planter.gen)() I a code file planter
let global.env = s.lookup("global.symbol.table",comp.db) I global symbol table
let local.env = global.env(Create.scope)(global.env) I a new symbol.table
let this.code = sa(local.env) ! do syntax analysis
if this.codes error.pack check errors

thenwrite "**** Compilation fails ****'n",
"No of errors = " this.code(No.errors)(),"n"

else
begin
let c.file = cgen(this.code,global.env) ! dode generation
planter(code.f.name(file.name),c.file) ! put code out to a file
end

?

The work necessary to translate data in one formataii of another is a problem in any
system. It is perhapsiore acute in @ersistent environment where programnraey use
any datastructure to hold persistent informatiorhe ability toconstruct an arbitrary /O
module for the compileavoids this problem entirelyzor example an interactive compiler
thatreads and writes tthe users consolenay be created bgubstitutingthe file handling
module with one that reads and writes to the terminal.

A compilerwhich operateentirely within the persistent environment may dveated by
replacing the 1/0 module with one thaiads from giece ofpersistent data. the module
that places the compiled code in a file is replaced bytlmi¢urnsthe code into @losure,
we create a compiler that is completely containgtthin the persistenenvironment. The
benefits of having a compiler that is a procedure in the persistent store, knoval&ble
Compiler, is well known to persistent programmei@nd is discussed elsewhere
[dbs,browse].

A Callable Compiler which reads from the users console and immediately executes the code
produced provides aompile and go environment which resembles a sfsilcsh]. Of
course, thishell is of much greatgvower since ithasthe backing a full programming
language behind it.

9. Conclusion

We have seen that by combining instances of modules with slightly different functionality a
rich set of tools may be provided. These modules may be hogather in differentvays

to provide an environment suitalfler experimentation oproduction.The use of a high

level intermediate language has also been explored and its benefits discussed.

The compiler toolset discussed in this paper has been implemem8dalyol. The current

tools available builtfrom the components includeallable compilers, batch compilers,
interactive compilers and persistent information compilers. Currently syntax analysers exist
for PS-algol andhe language Napignapier], currently struggling through itgfancy. A
compiler is also currently being developedcampile the applicative languagdéope+
[hope+]. A compiler for an Object-Oriented language is also planndtidarearfuture, as

is theexpansion othe compiler toolkitwith toolsthat automatically generagmme of the
modules described in this paper from specifications.

10. Thanks for the fish...

I would like to thank Ron Morrison for hiselp during thisvork. Much of this work has
been built from his original, beautifully simple compiler for S-algol [S-algol].

References
[rdc] Davie A.J.T. & Morrison R. "Recursive Descent Compiling”,Ellis Horwood, (1981).
[pascal] Wirth N., "The Programming language Pascal”, Acta Informatica 1, 1 (1971).

[C] KernighanB.W. & Ritchie D.M., "The C programming language", Prentice-Hall,
(1978).

[PS-algol] "The PS-algdReference Manudburth edition”, Universities of Glasgow and
St.Andrews PPRR-12 (1987).

[adt] Liskov B. & Zilles S.N., "Programming with abstractatatypes”, ACM SIGPLAN
Notices 9,4 (1974).

[procs] Atkinson M.P. and Morrison R., "Procedures as persistedfta objects"”,
ACM.TOPLAS 7,4 (1985).

[app] Atkinson M.P., Bailey P.J., Chisholm K.J., Cockshott Vafd MorrisonR., "An
approach to persistent programming”, Computer Journal 26,4 (1983).

[pail] Dearle A., "A PersistentArchitecture Intermediatd.anguage”, Universities of
Glasgow and St.Andrews PPRR-35 (1987).

[napier-mc] Dearle A. (ed), "The Napier Abstract Machine", UniversitieSlafgow and
St.Andrews PPRR, In preparation.

[hydra] Wulf W.A. et al., "Hydra:The Kernel of a Multiprocessor Operatiystem",
CACM 17,6 (1974).

[cap] NeedhanR.M. & WalkerR.D., "Protection andProcessManagement in the CAP
Computer”, International Workshop on Protection in OperatingSystems, INRIA,
Rocquencourt, (1974).

[cgen] Carrick R. & MunroD., "Execution Strategies in Persiste8istems”, Proc
Workshop on Persister@bject Systems:There Design Implementation atdkse, Appin
Scotland, (1987).

[dbs] Cooper R.L.,AtkinsonM.P., Dearle A. & Abderrahamane A:Constructing
DatabaseSystems in a Persistent Environment”, PxdDB 1987, Brighton England,
(1987).

[browse] Dearle A., Brown A.L., "Safe Browsing in a StronglylTyped Persistent
Environment", to appear in The Computer Journal (1988).

[sh] Bourne S.R., "An Introduction to the Unix Shell", Bell Laboratories, (1978).

[csh] Joy W., "An Introduction to the CShell", University of California, Berkeley,
(1980).

[napier] MorrisonR., "The Napier Reference Manual”, Universities Gfasgow and
St.Andrews PPRR, In preparation.

[hope+] Perry N. "Hope+",Imperial College Internal RepotC/FPR/LANG/2.5.1/7
(1987).

[S-algol] Morrison R.,"S-algol: a simple algol”, Computer Bulletin [1/31 (1982).

Appendix - Interfaces

This appendix describes the module interfaces in the PAIL system.
PS-algol Types

structure PS.types(pntr Global.INT,Global.CINT,Global.REAL,Global. CREAL,
Global.BOOL,Global.CBOOL,Global.PNTR,Global.CPNTR,
Global.STRING,Global.CSTRING,Global.FILE,Global.CFILE,
Global.PIXEL,Global.CPIXEL,Global.IMAGE,Global.CIMAGE,
Global.PIC,Global.CPIC,Global.VOID,Global. ANY,
Global.vector.type,Global.proc.type,Global.image.type,
Global.structure.type,Global.const.type,
Global.var.type,Global.field.type ;
proc(cpntr -> pntr) Mk.vector.type,Mk.image.type,MKk.var.type,
Mk.const.type ;
proc(pntr,pntr -> pntr) Mk.proc.type,Mk.field.type ;
proc(string,pntr,pntr ,int,int -> pntr) Mk.structure.type ;
proc(pntr -> string) Display.type,Reconstruct.source.type ;
proc(pntr,pntr -> bool) Eq,Eql,Eq2 ;
proc(pntr -> pntr) Elms,Args,Result,Decl.fields,Fields,Fieldof,Fieldt ;
proc(pntr -> string) Tm ;
proc(pntr ->int) Total,Pntrs ;
proc(pntr -> pntr) Var.or.const,Strip.type ;
proc(pntr -> bool) Pointer)

This structure contains all the base types for PS-algol. It also contains the necessary selectors anc
constructors needefbr the higherorder types.This module iscompletely applicative and
therefore only contains the applicative type equality functions. Type comparing procedures which
may cause errors are in another module whgbsthe equalityfunctions contained in thisne.

Outside this module nothing need know the representations used for the types. Only one of these
modules should exist in the PAIL system at a time.

Code generation

This module contains a code generator generator. The code generator in the initial version of the
PAIL system generates PS-abstract machine code.

Cgen.gen proc(PS.types -proc(PAIL,symbol.table -> PS.Code))

structure PS.Code(*int Code.vec ;
*string String.vec ;
*pntr Proc.vec ;
bool Valid.String.vec,Valid.Proc.vec ;
int Ms.size,Ps.size)

Magic
This module takes code from the code generator and manipulates it to form a PS-algol procedure.

Magic =proc(PS.code ->»proc())

Input

This module provides file independent input for the lexical analysis module.
input.gen =proc(string filename -> input.pack)

structure input.pack(proc(->int) Readi.dev,Read.byte.dev ;
proc(-> string) Read.dev,Peek.dev,Reads.dev,Read.a.line.dev ;
proc(->bool) Readb.dev,Eoi.dev ;
proc(->real) Readr.dev ;
proc(string -> string) Read.name.dev)
where
each of the functions does the same as the PS-algol function of similar name.

Errors

This module is responsible for noting and reporting all compilation errors.

Error.gen sproc(-> error.pack)

structure error.pack(proc(string) Inc.pos ;
proc(->int) No.errors ;
proc(->bool) Line.error ;
proc() Display.errors,Next.line,Reset.errors ;
proc(*string) Err.mess ;
proc(string) Err.messl)
where
Inc.pos increments the current line position with the input string.
No.errors reports the total number of errors since the last reset.
Line.error reports if there is an error on the current line.
Display.errors displays the current line and any errors on it.
Next.line instructs this module that the current input line has finished - this need
only be called if Display.errors has not.
Reset.errors resets the module counters to zero.
Err.mess notes some error messages in the module.
Err.messl notes a single error message in the module.

Symbol Table

This module implements the symbol tables

structure symbol.table(proc(pntr ->pntr) Create.scope ;
proc(string,pntr) Insert.entry ;
proc(string-> pntr) Lookup.local,Lookup.rec ;
proc(-> pntr) Enclosing.scope ;
proc(proc(string,pntr)) Scan.scope)
where
Create.scope returns a symbol.table
Insert.entry inserts an entry in the symbol table
Lookup.local looks up a name in the local symbol table
Lookup.local looks up a name recursively in the local symbol
Enclosing.scope returns the parent symbol table

Scan.scope applies the function to every entry in the table.

Lexical analysis

This module contains a lexical analyser generator.

structure lex.generator(proc(*string,** string,pntr ,pntr
-> proc(->pntr)) Lex.gen)

Lex.gen = proc(compiler.options
reserved.words.vector
input.pack
error.pack
-> Next.symbol)
lex.gen returns a next.symbol procedureof the following type:
next.symbol proc(-> pntr)
and next.symbol returns one of these:

structure language.symboktring the.symb)
structure literal.symbol(pntr the.literal)
structure identifier.symbol(string the.name)

Code planter

This module is responsible for putting code generated by the code generatdiilénto the file
system.

Planter =proc(filename,PS.code)

Syntax analysis

This module contains a syntax analyser generator.

Sa.gen proc(options,
input.pack,
error.pack
PStypes,
check.types,
lex.generator
-> proc(symbol.table -> PAIL or error.pack))

Type checking

This module does all the non-applicative type checking - that is type checking which may cause a
type error to occur.

Type.gen =proc(error.pack,PStypes -> check.types)

structure check.types(proc(pntr) Bad.type ;
proc(pntr ,pntr) Bad.types,Match ;
proc(pntr-> pntr) Int.real)
where
Bad.type reports a type mis-match.
Bad.types reports two types not matching.
Match checks that two types are the same.
Int.real checks that a type is a number.

	Abstract
	1. Introduction
	2. Why use a persistent environment?
	3. Construction rules for persistent systems
	4. Persistent Architecture Intermediate Language
	5. Compiler Components
	6. Compiler Composition
	7. Binding
	8. A few compilers
	9. Conclusion
	10. Thanks for the fish...
	References
	Appendix - Interfaces

