
A Hyperlinked Persistent Software Development Environment

Alan Dearle

Department of Computer
Science,

University of Adelaide,
G.P.O. Box 498, Adelaide,

South Australia 5001,
Australia.

al@cs.adelaide.edu.au

Chris Marlin

Discipline of Computer
Science,

Flinders University of
South Australia,

G.P.O. Box 2100,
Adelaide,

South Australia 5001,
Australia.

marlin@cs.flinders.edu.au

Philip Dart

Information Technology
Division,

Defence Science and
Technology Organisation,

P.O. Box 1500,
Salisbury,

South Australia 5108,
Australia.

philip@itd.dsto.oz.au

Introduction

Traditionally, software development environments have been constructed on top of
conventional operating systems using the file store as the only persistent storage facility.
Such an approach forces the programmer to treat these persistent data structures in a
fundamentally different way from other data structures. In a system with orthogonal
persistence [1], any data structure may persist and thus outlive the execution of a
program. Under such circumstances, it is no longer necessary for the programmer to
treat long-term and short-term data structures in different ways. Thus, the introduction of
orthogonal persistence removes many of the discontinuities inherent in most software
systems.

In this paper, we will present our initial ideas on the creation of an integrated environment
for the development of persistent systems. Naturally, this development system will, by
necessity, be resident within the total persistent environment. As such, a persistent object
store provides the basis for the integrated programming environment. The result is an
environment which differs significantly from those which have been developed as an
adjunct to traditional programming practices in a file-based operating system. In this
paper, we present our initial ideas on such an environment. In particular, we focus on
potential uses for hyperlinking in the environment.

A persistent object store

The persistent object store is comprised of a graph of interconnected objects, reachable
from one or more persistent roots. The data in the store may be simple or complex,
including executable programs, source programs, specifications, programmers' notes,
pictures (diagrams), simple values, graphs of sample data and interdependency
information. Clearly, the persistent store subsumes the role of both a file system and an
object library. However, in order to utilise the persistent object store, it is necessary to
impose structure upon it. A store containing many useful objects which cannot be found
would clearly be next to useless.

root

collection of objects

source code

executable code

source code

executable code

document

collection of objects

. . .

data

Figure 1. A persistent store containing software and other objects.

In order to overcome problems of locating useful data, it is necessary to thread the
persistent store with a web of interconnections, as shown in Figure 1. This
interconnection graph contains comments and descriptions of data held at the various
nodes in the graph. The web's main function is to provide regularity over the potentially
chaotic mass of data and corresponds to a hyperlinked database overlaying the persistent
store (c.f. [2]), interconnecting certain key objects in it. With a regular structure, it is
possible to provide high level mechanisms for searching the persistent store to find items
of interest to the user. This task may be viewed as being similar to performing queries
over a traditional database system. It is important to note that efficient database queries
are only possible over a regular structure, and that efficient queries are necessary if the
system is supporting a large development environment.

Navigating the object store

Performing queries to search for particular items of data may be viewed as a special case
of something we call browser technology [3]. In this context, a browser is a program
which traverses a graph performing some action as it goes. We have already
demonstrated the usefulness of browsers for locating and displaying graphs of various
kinds of data. Since the persistent store may potentially contain an infinite number of
different types of objects, a browser must be capable of locating and displaying objects
whose type had not been known when the browser was written.

We propose to apply the browser techniques already developed to the software reuse
problem. In particular, we assert that object browsers may be employed to browse the
hyperlinked database mentioned earlier. In such a system, users will find reusable
software by following the various interconnections and interdependencies contained in
the object store.

Viewing and altering objects in the persistent store

As illustrated in Figure 1 above, the kinds of object discovered by the browser in our
Persistent Integrated Programming Environment (PIPE) will include procedures,
abstract code, simple values and graphs of sample data. These different types of objects
need to be displayed in different ways. Indeed many objects benefit from being
displayed in more than one way, employing the multiple views approach used by Pecan
[7] and MultiView [6]. For example, trees or graphs representing the abstract syntax of a
procedure might be displayed textually and/or in some graphical form.

Program components should be edited in a language-specific manner, but not using the
straight-jacket of a fully-template-based editor. The underlying representation of the
program components should be structured, probably tree-structured, at some level of
abstraction. Thus, selecting some part of a program component amounts to selecting
some subtree. For example, Figure 2 shows a Napier88 [5] program component; part of
the component has been selected by the user. This part corresponds to a complete
subtree in the underlying structured representation of the program component.

Because a complete subtree must be selected, it is not possible to select only the keyword
"type"; selecting this keyword would indicate that the entire construct highlighted in
Figure 2 is to be selected. However, it is possible to select the keyword "string", since
this corresponds to a complete subtree (although a simple one).

type domicile is structure(name, location : string)

type animal is structure(name : string ;
 home : domicile)

let smallPond = domicile("pond", "Adelaide")

let afrog = animal("tadpole", smallPond)

afrog(name) := "frog"

use PS() with bigPond : domicile in
 afrog(home) := bigPond

in PS() let Kermit = afrog

Figure 2. A Napier 88 program component with part of it selected.

Associated with program components are various kinds of documentation. Some of this
documentation is typically included in the program code as comments, whereas the
remainder may be found in specification documents, user manuals, internal
documentation, and so on. In an ideal integrated programming environment, there is no
need to distinguish between these various kinds of documentation: all can be supported
within the environment. If desired, some of this documentation can be selectively turned
into a printed document (e.g., a specification document describing the system).

Ideally, all documents should be manipulated using a document editor whose
functionality corresponds to a modern word-processor (multiple fonts, flexible paragraph
layout, good drawing facilities, and so on).

Hyperlinking

The key to integration between program components and their associated documentation
is to permit various kinds of hyperlinks between them. The most obvious example is to
permit a link between a subtree in the structured representation of a program component
and some part of the documentation.

Figure 3 shows examples of instances of possible document and program editors as
displayed using the object browser. In the upper left of this figure is an instance of a
document editor which is being used to view/manipulate a specification document called
Force.spec. Below it is another document editor instance; the latter contains a document
entitled Force.doc, which represents documentation on a program component. Finally,
on the righthand side of the figure is an instance of the program editor; this instance
contains a program component called Force.npr.

Document editor: Force.spec

...
The mass of an object is expressed
in kilograms. The resulting
acceleration is expressed in metres
per second per second.

From the laws of Physics, the
force required to accelerate an
object is given by the mass times
the acceleration.
...

+

[

Program editor: Force.npr

...

let mass := readi()

let acceleration := readi()

let force := mass * acceleration

...

+

[
Document editor: Force.doc

...
The variable "mass" represents
the mass of the object and the
variable "acceleration" is used to
store the acceleration. The initial
values of both are read from the
input file.

The force is then calculated
according to the relevant formula.
...

+

[

Figure 3. Document and program editors.

Various kinds of links might usefully be established between parts of the contents of the
three editor instances in Figure 3. For example, links between the specification in
Force.spec and the code in Force.npr serve to indicate the relationship between the
original specification and the code to implement aspects of that specification, and vice
versa. Thus, having selected the definition of "acceleration", as shown in Figure 4, it is
possible to establish a link to the relevant part of the specification (i.e., the second
sentence); this link could then be used later to move from the definition of the variable to
its explanation in the specification. Conversely, if the second sentence in the specification
or some part of it were to be selected, then it should be possible to link this sentence to
the definition of "acceleration". Notice that the parts of the program source text to/from
which the hyperlinks are established correspond to complete subtrees in the underlying
representation.

Document editor: Force.spec

...

The mass of an object is
expressed in kilograms. The
resulting acceleration is
expressed in metres per second
per second.

From the laws of Physics, the
force required to accelerate an
object is given by the mass times
the acceleration.

...

+

[

Program editor: Force.npr

...

let mass := readi()

let acceleration := readi()

let force := mass * acceleration

...

+

[

Document editor: Force.doc

...

The variable "mass" represents
the mass of the object and the
variable "acceleration" is used to
store the acceleration. The initial
values of both are read from the
input file.

The force is then calculated
according to the relevant formula.

...

+

[

Figure 4. Links between specification and source code.

Another useful kind of hyperlink is that between program source code and its internal
documentation – such a link subsumes the role of comments in a traditional
programming language environment. As an example, consider Figure 5, where links
exist between a part of the program component in the program editor and a part of the
internal documentation file. So far, the links have all been one-to-one, but this may not
be so, as illustrated in Figure 6.

Document editor: Force.spec

...

The mass of an object is
expressed in kilograms. The
resulting acceleration is
expressed in metres per second
per second.

From the laws of Physics, the
force required to accelerate an
object is given by the mass times
the acceleration.

...

+

[

Program editor: Force.npr

...

let mass := readi()

let acceleration := readi()

let force := mass * acceleration

...

+

[

Document editor: Force.doc

...

The variable "mass" represents
the mass of the object and the
variable "acceleration" is used
to store the acceleration. The
initial values of both are read
from the input file.

The force is then calculated
according to the relevant
formula.

...

+

[

Figure 5. Links between source code and internal documentation.

In Figure 6, the documentation relating to the fact that the initial values of the variables
"mass" and "acceleration" are read from the input file is to be found in the second of the
sentences shown in the lower instance of the document editor. Thus, selecting either of

the initialisation parts of the first two clauses shown in the program editor instance allows
hyperlinks to the relevant documentation to be followed.

Document editor: Force.spec

...

The mass of an object is
expressed in kilograms. The
resulting acceleration is
expressed in metres per second
per second.

From the laws of Physics, the
force required to accelerate an
object is given by the mass times
the acceleration.

...

+

[

Program editor: Force.npr
+

[

Document editor: Force.doc

...

The variable "mass" represents
the mass of the object and the
variable "acceleration" is used to
store the acceleration. The initial
values of both are read from the
input file.

The force is then calculated
according to the relevant formula.

...

+

[

...

let mass := readi()

let acceleration := readi()

let force := mass * acceleration

...

Figure 6. Many-to-one links between source code and internal documentation.

The reverse links (from the sentence in the documentation into the source code) are more
problematic from the point of view of the user interface, since there is no single place to
go as a result of selecting the sentence. Some kind of "iterator" mechanism may be
called for; this would allow the user to cycle through the relevant parts of the program
component's source code. Thus, in the case of Figure 6, the user interface might take the
user to the first "readi()", but there should be some simple means to see that there are
other possibilities and to move on to the next such possibility (and then back to the first

again). Depending on the context, this may be facilitated by merely highlighting all of the
possibilities or by allowing the user to move to the next in the list by a simple keystroke.

Finally, there is value in having hyperlinks between documents. For example, it is
possible to imagine hyperlinks between a specification document and some internal
documentation. This is illustrated in Figure 7, where a phrase in the internal
documentation is linked to a paragraph in the specification document. Other links of this
kind may be useful, such as between the phrase "the mass of the object" in the internal
documentation and the first sentence shown in the upper document editor instance.

Document editor: Force.spec

...

The mass of an object is
expressed in kilograms. The
resulting acceleration is
expressed in metres per second
per second.

From the laws of Physics, the
force required to accelerate an
object is given by the mass times
the acceleration.

...

+

[

Program editor: Force.npr

...

let mass := readi()

let acceleration := readi()

let force := mass * acceleration

...

+

[

Document editor: Force.doc

...

The variable "mass" represents
the mass of the object and the
variable "acceleration" is used
to store the acceleration. The
initial values of both are read
from the input file.

The force is then calculated
according to the relevant
formula.

...

+

[

Figure 7. Links between specification and internal documentation.

It is also be possible to hyperlink various program components. To illustrate the
possibilities in this area, we will be using the example in Figure 8. This shows two
program components (Napier88 procedures called "p1" and "p2", in this case) and their
associated internal documentation.

As illustrated in Figure 8 below, various hyperlinks are possible between a program
component and its corresponding documentation. For example, one would expect a link
between the component "p1" and the whole of its documentation; thus, making the
selection shown in Figure 9 would enable the user to move to the corresponding
documentation, i.e. to the upper left instance in Figure 9. If there were no instance of the
document editor containing the corresponding documentation, one would be created as a
side-effect of this operation.

Document editor: p1.doc
+

[

Program editor: p1.npr

+

[

...

Procedure p1 is intended to ...
This procedure makes use of
procedure p2 to ...

...

...

Procedure p2 performs the
following actions: ...

...

Document editor: p2.doc
+

[

proc p1 (...)

... p2(...) ...

Program editor: p2.npr
+

[

proc p2 (...)

 ...

Figure 8. Two program components and their associated internal documentation.

Document editor: p1.doc
+

[

Program editor: p1.npr
+

[

...

Procedure p1 is intended to ...
This procedure makes use of
procedure p2 to ...

...

...

Procedure p2 performs the
following actions: ...

...

Document editor: p2.doc
+

[

proc p1 (...)

... p2(...) ...

Program editor: p2.npr
+

[

proc p2 (...)

 ...

Figure 9. A link from a program component to its documentation.

In addition, it should be possible to follow links to the documentation for other program
components. For example, the reference to "p2" in the upper right editor in Figure 8
could be used to move to the corresponding part of the the documentation for "p1" or to
the documentation for "p2" itself; both of these possibilities are shown in Figure 10.

Document editor: p1.doc
+

[

Program editor: p1.npr
+

[

...

Procedure p2 performs the
following actions: ...

...

Document editor: p2.doc
+

[

proc p1 (...)

... p2 (...)

...

Program editor: p2.npr
+

[

proc p2 (...)

 ...

...

Procedure p1 is intended to ...
This procedure makes use of
procedure p2 to ...

...

Figure 10. A link from a program component to documentation for more than one
program component.

It should also be possible to establish links between documents relating to different
program components. For example, the documentation for "p1" above refers to "p2"; it
would be useful to be able to use the reference to "p2" in the documentation for "p1" to
be able to move to the documentation for "p2", perhaps invoking an appropriate instance
of the document editor if one does not already exist. This is illustrated in Figure 11.
Conversely, it should be possible to start with the documentation for "p2" and cycle
through the documentation for all the program components which make use of "p2".
Ideally, such links should be established automatically from an analysis of the code
concerned and a knowledge of the binding between program components and their
documentation.

Related to the above discussion of possible links between the documentation
corresponding to different program components is the question of links between
program components. Two kinds of such links can readily be identified: "uses" and
"used-by" links. Both of these should be maintained automatically, rather than inserted
by the user. These two kinds of link are illustrated in Figure 12, which shows a "uses"
link from a reference to "p2" within "p1" to the definition of "p2", and a "used-by" link
from the definition of "p2" to where it is used in "p1". Once again, it should be possible
to cycle through all the places that "p2" is used. As before, following a link may cause
the creation of a new instance of a program editor.

Document editor: p1.doc
+

[

Program editor: p1.npr
+

[

...

Procedure p1 is intended to ...
This procedure makes use of
procedure p2 to ...

...

...

Procedure p2 performs the
following actions: ...

...

Document editor: p2.doc
+

[

proc p1 (...)

... p2(...) ...

Program editor: p2.npr
+

[

proc p2 (...)

 ...

Figure 11. A link between the internal documentation for different program components.

Document editor: p1.doc
+

[

Program editor: p1.npr
+

[

...

Procedure p1 is intended to ...
This procedure makes use of
procedure p2 to ...

...

...

Procedure p2 performs the
following actions: ...

...

Document editor: p2.doc
+

[

proc p1 (...)

... p2 (...) ...

Program editor: p2.npr
+

[

proc p2 (...)

 ...

Figure 12. Links between program components.

Conclusions and future work

The manner in which hyperlinking may be used in a persistent integrated programming
environment has been described. These uses include linking specification and
documentation to the corresponding program source code, and various kinds of links
between related parts of the program source code. There are no doubt many other ways
in which hyperlinking could be used in such a programming environment.

The construction of a persistent integrated programming environment based on the above
ideas is in its early stages. Initially, the thrust has been to concentrate on document and
program editors, and the tools capable of generating them. Independently of this effort,
work has been continuing on browser technology and a programmable Napier object
browser has been completed [4]. Some ideas for hyperlinking between objects in the
persistent object store have also been prototyped. Once a suitable framework of such
facilities has been constructed, this framework will be used in the investigation of
research issues related to the kind of support which is helpful during the construction of
persistent software systems.

References

1. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, P. W. and
Morrison, R. "An Approach to Persistent Programming", The
Computer Journal, vol 26, 4, pp. 360-365, 1983.

2. Bigelow, J. "Hypertext and CASE", IEEE Software, Vol 5, No 2,
March, 1988.

3. Dearle, A. and Brown, A. L. "Safe Browsing in a Strongly Typed
Persistent Environment", The Computer Journal, vol 31, 6, pp. 540-
545, 1988.

4. Farkas, A. "Aberdeen: A Browser allowing Interactive Declarations and
Expressions in Napier88", University of Adelaide, 1991.

5. Morrison, R., Brown, F., Connor, R. and Dearle, A. "The Napier88
Reference Manual", University of St Andrews, PPRR-77-89, 1989.

6. R.A. Altmann, A. N. H. a. C. D. M. "An Integrated Programming
Environment Based on Multiple Concurrent Views", The Australian
Computer Journal, vol 20, 2, 1988.

7. Reiss, S. P. "Graphical program development with PECAN program
development", SIGPLAN Notices, vol 19, 5, pp. 30-41, 1984.

