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Abstract. The social and economic importance of large bodies of 
programs and data that are potentially long-lived has attracted 
much attention in the commercial and research communities. Here 
we concentrate on a set of methodologies and technologies called 
persistent programming. In particular we review programming 
language support for the concept of orthogonal persistence, a 
technique for the uniform treatment of objects irrespective of their 
types or longevity. While research in persistent programming has 
become unfashionable, we show how the concept is beginning to 
appear as a major component of modern systems. We relate these 
attempts to the original principles of orthogonal persistence and 
give a few hints about how the concept may be utilised in the 
future. 

1 Introduction 

The aim of persistent programming is to support the design, construction, 
maintenance and operation of long-lived, concurrently accessed and 
potentially large bodies of data and programs. When research into 
persistent programming began, persistent application systems were 
supported by disparate mechanisms, each based upon different 
philosophical assumptions and implementation technologies [1]. The mix 
of technologies typically included naming, type and binding schemes 
combined with different database systems, storage architectures and query 
languages. 

The incoherence in these technologies increased the cost both 
intellectually and mechanically of building persistent application systems. 
The complexity distracted the application builder from the task in hand to 
concentrate on mastering the multiplicity of programming systems, and 
the mappings amongst them, rather than the application being developed. 
The plethora of disparate mechanisms was also costly in machine terms, in 
that the code for interfacing them, their redundant duplication of facilities 
and their contention for resources caused execution overheads. Software 
architects and engineers observed that it was often much harder and more 
expensive to build and maintain persistent application systems than was 
expected, and their evolution was invariably problematic. 

Atkinson [2] postulated that, in many cases, the inconsistency was not 
fundamental but accidental. The various subsystems were built at different 
times when the engineering trade-offs were different. In consequence, they 
provided virtually the same services, but inconsistently since they were 



 

designed and developed independently. By contrast, Orthogonal 
Persistence provided the total composition of services within one coherent 
design, thereby eliminating these accidental disharmonies. 

While research in persistent programming has become unfashionable, it 
is hard to believe that the situation today has changed much. A recent 
(2007) quote from Microsoft illustrates this well: 

“Most programs written today manipulate data in one way or 
another and often this data is stored in a relational database. Yet 
there is a huge divide between modern programming languages 
and databases in how they represent and manipulate information. 
This impedance mismatch is visible in multiple ways. Most notable 
is that programming languages access information in databases 
through APIs that require queries to be specified as text strings. 
These queries are significant portions of the program logic. Yet 
they are opaque to the language, unable to benefit from compile-
time verification and design-time features like IntelliSense.” [3] 

Orthogonally persistent object systems support a uniform treatment of 
objects irrespective of their types by allowing values of all types to have 
whatever longevity is required. The benefits of orthogonal persistence 
have been described extensively in the literature [2,4-18]. They can be 
summarised as: 

• improving programming productivity from simpler semantics; 
• avoiding ad hoc arrangements for data translation and long-term data 

storage; 
• providing protection mechanisms over the whole environment; 
• supporting incremental evolution; and 
• automatically preserving referential integrity over the entire 

computational environment for the whole life-time of an application. 

In this paper we review a selection of the many historical approaches to 
programming with long-lived data1 and comment on attempts in the 
programming language and ODBMS communities to provide various 
flavours of persistence. We conclude by hinting at how the concept may 
be utilised in the future. 

2 Orthogonal Persistence 

In most current application systems there are two domains: the 
programming language domain and the database domain. The 
programming language domain presents a Turing-complete programming 
environment that permits computation over data defined using the 
programming language type system. In the last twenty years the 
predominant programming model has become the object-oriented model, 
usually providing typed objects containing state, methods and (usually 

                                                
1 Space limitations preclude a full survey of the area; notable omissions include 

Smalltalk, O2, Galileo, Trellis/Owl, Fibonacci, DBPL and Tycoon. 



 

typed) references to other objects. This model, and the tools which have 
evolved to support it, has proven to be highly productive in terms of 
creating and maintaining software. 

By contrast, the conceptual database domain is largely unchanged: 
tables of tuples containing foreign keys identifying tuples in other tables. 
This remains the pre-eminent long-term storage architecture. 

The cost of the conceptual and technological differences between these 
two models became known as the impedance mismatch [19], and was one 
of the primary motivations for the work on orthogonal persistence, which 
aimed to remove the conceptually unnecessary distinction between short-
term and long-term data [1]. 

There is a spectrum of possible degrees of integration, as perceived by 
programmers, between these formats. At one end of this spectrum data 
formats are completely disparate, and there is no automated support for 
transformation between them. A programmer has to understand the 
semantics of multiple representations and the mappings between them, and 
to write code for data transformations that implement these mappings. The 
impedance mismatch is strongest at this end of the spectrum. On the other 
hand, the low degree of integration yields loose coupling between the 
language and storage domains, which in turn facilitates openness in terms 
of the persistent data being accessible by routes other than the language. 

At the full integration end of the spectrum lies orthogonal persistence, 
where no distinction between data formats is visible to the programmer. At 
intermediate points in the spectrum, the mapping between the object and 
storage domains is partially automated. Typically, the programmer still 
has to specify the mappings and understand the relationships between the 
multiple representations, but is relieved of the task of writing explicit 
translation code. 

These differences are crystallised by Fowler, who describes two 
different architectural patterns that may be applied to persistent systems 
[20]. These are the Active Record and Data Mapper patterns. In the first, 
an object in a programming system represents a row in a database relation. 
In this pattern the database is wrapped in an object that provides methods 
to save, update, delete and find objects. Here there is a one-to-one 
mapping between classes or types in the programming language and 
relations in the database. 

The Data Mapper pattern is more general. It comprises (potentially 
multiple) mappers that move data between the storage layers and 
maintains the relationships between entities. For example, in an object-
relational system there is one mapper and two layers—the language 
system and the relational database. In a distributed system with caching 
there might be two mappers maintaining relationships between three 
layers—the language, the cache and the database. 

The degree of integration dictates the extent to which the application 
programmer must be conscious of these patterns. With orthogonal 
persistence they are handled entirely by the system. Atkinson and 
Morrison identified three Principles of Orthogonal Persistence [21]: 

• The Principle of Persistence Independence 
The persistence of data is independent of how the program 
manipulates the data. That is, the programmer does not have to, 



 

indeed cannot, program to control the movement of data between 
long term and short term store. This is performed automatically by 
the system. 

• The Principle of Data Type Orthogonality 
All data objects should be allowed the full range of persistence 
irrespective of their type. That is, there are no special cases where 
objects of a specific type are not allowed to be persistent. 

• The Principle of Persistence Identification 
The choice of how to identify and provide persistent objects is 
orthogonal to the universe of discourse of the system2. 

The application of the three principles yields orthogonal persistence. 
Violation of any of these principles increases the complexity that 
persistent systems seek to avoid. In the next section we examine these 
principles in the context of past and current persistent systems. 

3 Languages and Persistence 

3.1 First Generation Persistence Mechanisms 

In the last twenty to thirty years the mechanisms for mapping between the 
two programming language and database data models have improved 
considerably. Ironically, this is in part due to technologies that were 
developed in the typed persistent world, for example strongly typed 
generative and reflective programming. 

In the eighties it was common for programmers to explicitly save and 
restore programming language objects to the file system. Code was hand-
written and tended to be error-prone and time consuming. Furthermore, 
when the data was changed, the code had to adapt, and more code written 
to evolve any saved data from previous program incarnations. The need to 
write such code explicitly was first eliminated by persistent systems such 
as PS-algol (discussed in the next section) and object-oriented databases. 

Java serialization goes some way to reducing the programming effort 
required to implement object persistence using files, since it allows an 
entire closure to be written or read in a single operation. Only instances of 
classes that implement the interface java.io.serializable may be serialized. 
For example: 

                                                
2 Experience with persistent programming showed that in systems with 

references, the only mechanism for implementation was persistence by 
reachability, also known as transitive persistence. 



 

FileInputStream f = 
 new FileInputStream("myobject.data"); 
ObjectInputStream obj_in = new ObjectInputStream(f); 
Object obj = obj_in.readObject (); 
if (obj instanceof Person) { 
 Person p = (Person) obj; 
  // Do something with p ... 
} 

The above program reads an object from the file myobject.data and casts it 
to the type Person. One problem with this style of programming is that the 
entire closure of an object must be loaded or saved in a single operation. 
This can make the operations slow for large object closures, and limits the 
size of closure that can be stored to that of main memory—known as the 
big inhale in early Smalltalk-80 systems. However, more importantly, 
each time a closure is serialized a new copy of the data is made. This 
breaks referential integrity since there is no way of matching the identity 
of objects from different save/load operations. Another problem with the 
mechanism is that since not all Java classes are serializable, some object 
closures are not consistently saved and restored. 

Serialization does not adhere to the first two principles of orthogonal 
persistence. Data is explicitly written to backing store, violating the 
principle of independence; only serializable objects may be made 
persistent, so the principle of data type orthogonality is also violated. 

In contrast, to extract data from a database, the programs manipulating 
persistent data had to perform much string processing. Despite this 
approach manifesting a high impedance mismatch, it is still common in 
today’s PHP programs. For example: 

$result = mysql_query("SELECT * FROM Persons"); 
while($row = mysql_fetch_array($result)) { 
 $firstname = $row['FirstName']; 
 $secondname = $row['LastName']; 
} 

In this fragment [22], the database access is explicit—the SQL query is 
embedded as a string in the program, and data is extracted from the 
database in the form of strings. 

The use of strings is also employed in JDBC [23], which provides 
database independent connectivity between Java programs and databases. 
The JDBC API permits SQL operations to be performed, by providing 
three broad classes of operations: establishing connections to a database, 
performing queries and processing the results of queries. An example is 
shown below: 



 

Connection con = DriverManager.getConnection( 
 "jdbc:myDriver:fish", "myLogin", "myPassword"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery( 
 "SELECT name,age FROM Persons"); 
while (rs.next()) { 
 String name = rs.getString("name"); 
 int age = rs.getInt("age"); 
 .. 
} 

The similarities between the JDBC and PHP examples are striking. Both 
embed a query in the form of a string in the host program, and both use 
string matching to extract data from the result set that is delivered by the 
query. Both mechanisms are a long way from the principles of orthogonal 
persistence. 

3.2 PS-algol 

The first language to provide orthogonal persistence was PS-algol [1], 
which provided persistence by reachability for all data types supported by 
the language. PS-algol adds a small number of functions to S-algol [24], 
from which it was derived. These are open.database, close.database, 
commit and abort3. A number of functions are also provided to manage 
associative stores (hash maps), called tables in PS-algol. These functions 
are s.lookup, which retrieves a value associated with a key in a table, and 
s.enter, which creates an association between a key and a value in a table. 
By convention, a database always contains a pointer to a table at its root. 
Databases serve as roots of persistence and can be created dynamically. 

Two slightly modified examples from [1] are shown below to give a 
flavour of the language. The first example opens a database called 
"addr.db" and places a person object into a table associated with the key 
"addr.table" found at its root. Note that the person (denoted by p) contains 
a reference to an address object. When commit is called, the updated table, 
the person and the address objects are written to persistent storage. 

structure person(string name, phone; pntr addr) 
structure address(int no ; string street, town) 
let db = open.database("addr.db", "write") 
if db is error.record 
 do { write "Can't open database"; abort } 
let table = s.lookup("addr.table", db) 
let p = person("al", 3250, 
             address(76, "North St", "St Andrews")) 
s.enter("al", table, p) 
commit  

The second example opens the same database and retrieves the person 
object before writing out their phone number. 

                                                
3 Note: dots are legal within identifiers in PS-algol and do not denote 

dereferencing. Dereferencing is represented by round brackets enclosing a 
fieldname. There is no explicit new operator; the use of a structure name serves 
as a constructor. 



 

structure person (string name, phone; pntr addr) 
let db = open.database("addr.db", "read") 
if db is error.record 
 do { write "Can't open database"; abort } 
let table = s.lookup("addr.table", db) 
let p = s.lookup("al", table) 
if p = nil then write "Person not known" 
else write "phone number: ", p(phone) 

As described in [25], “the programmer never explicitly organises data 
movement but it occurs automatically when data is used”, a feature shared 
with many of the object-relational systems. The paper also states “the 
language type rules are strictly enforced” but is not explicit about how this 
is achieved, which is a pity, since it is important. PS-algol uses structural 
type equivalence rather than the name equivalence so prevalent today. 
Using structural type equivalence, two objects or terms are considered to 
have compatible types if the types have identical structure. Thus, in the 
previous examples, the compatible declarations of person in the two 
examples serve to unify the two programs. If the object retrieved from the 
database is not of (structural) type person, the deference of the object will 
fail. 

The type system of PS-algol is more subtle than might appear. Notice 
that the second program does not require a declaration of the type address 
since that type is never used in the program. It is not necessary since 
pointers in PS-algol are typed as pntr, which is an infinite union over all 
records. The infinite union facilitates partial and incremental specification 
of the structure of the data at the expense of a dynamic check. The 
persistent schema need only be specified within a program up to limit of 
the pntr objects. When one is encountered in a running program, by 
dereference, a dynamic check ensures the data is of the correct type. The 
specification within that check need only be to the limit of the subsequent 
pntr types. 

A second version of PS-algol incorporated procedures as data objects 
thereby allowing code and data to be stored in the persistent store. 

PS-algol does not support any form of concurrency other than at 
database level. This often caused problems since it was possible to 
continue to access objects after commit. The addition of explicit syntactic 
boundaries to control transactions would have addressed this deficiency. 

3.3 Napier88 

Napier88 attempted to explore the limits of orthogonal persistence by 
incorporating the entire language support environment within a strongly 
typed persistent store [12,21,26-30]. The research produced the first 
integrated, self-contained, type-safe persistent environment. 

The Napier88 system provides orthogonal persistence, a pre-populated 
strongly typed stable store, higher-order procedures, parametric 
polymorphism, abstract (existential) data types, collections of name-value 
bindings, graphical data types, concurrent execution, two infinite union 
types for partial specification, and support for reflective programming. 
Notable additions over PS-algol include the following: 



 

• the infinite union type any, which facilitates partial and 
incremental specification of the structure of the data 

• the infinite union type environment, which, in addition to the 
above, provides dynamically extensible collections of name/L-
value bindings—and thereby the dynamic construction of 
independent name spaces over common data 

• parametric polymorphism in a style similar to that later 
popularised by Java generics, but with computation over truly 
persistent polymorphic values 

• existentially quantified abstract data types for data abstraction 
• a programming environment, including graphical windowing 

library, object browser, program editor and compiler, 
implemented entirely as persistent objects within the store 

• support for hyper-code, in which program source code may 
contain embedded direct references to extant objects 

• support for structural reflection, where a running program may 
generate new program fragments and integrate these into its own 
execution 

The integrated persistent environment of Napier88 that supported higher-
order procedures yielded a new programming paradigm, which is only 
possible by this means, whereby source programs could include direct 
links to values that already exist in the persistent environment. The 
programming technique was termed hyper-programming and the 
underlying representation hyper-code. 

Hyper-code [31] is a representation of an executing system modelled as 
an active graph linking source code, existing values and meta-data. It 
unifies the concepts of source code, executable code and data, by 
providing a single representation (as a combination of text and hyperlinks) 
of software throughout its lifecycle. Sharing is represented by multiple 
links to the same value. Hyper-code also allows state and shared data, and 
thereby closure, to be preserved during evolution. 

The combination of structural reflection, the ability of a program to 
generate new program fragments and to integrate these into its own 
execution, and hyper-code provides the basis for type-safe evolution. 
Within the persistent environment, generator programs may stop part of an 
executing system (while the rest of the system continues to execute), 
inspect its state by introspection, change the part as necessary by 
programming or editing the hyper-code representation, recompiling the 
new fragment and rebinding it into the executing system. 

Unsurprisingly, given their heritage, both PS-algol and Napier88 
support all three of the principles of orthogonal persistence. 

3.4 Arjuna 

The focus of the Arjuna system [32,33] is to support fault-tolerant 
distributed applications, based upon persistent objects supporting nested 
atomic actions. Atomic actions control sequences of local and remote 
operations against abstract datatypes implemented using C++ classes. The 
file system is used for long-term storage of objects. To support 



 

recoverability, a snapshot of object state is taken before an object is 
modified for the first time within the scope of an atomic action. This 
mechanism is also used to support persistence, with the new state of an 
object being used to replace its old state at commit time. A state manager 
provides operations to save and restore the state of object instances. 

Since all persistent classes must extend the base class StateManager, 
which provides the mechanisms for persistence and atomic actions, Arjuna 
does not adhere to the principle of datatype orthogonality. It does not meet 
the requirements of persistence independence, since the programmer must 
implement save_state and restore_state operations for all persistent 
classes. Finally, for the same reason, it does not support persistence 
identification by reachability. 

3.5 Persistent Java 

Several orthogonally persistent versions of Java have been implemented. 
In PJama [34] the programmer uses an API to associate objects with 
strings in a persistent map in order to make them persistent. All objects 
transitively reachable from the map are automatically made persistent. The 
language syntax itself is unchanged; typically persistence can be 
introduced to a previously existing application with the addition of a 
relatively small amount of code making API calls. The compiler and 
standard libraries are also unchanged. The virtual machine is modified, to 
move objects to and from a proprietary object store automatically as 
required. A version of hyper-code has been prototyped using PJama [35]. 

The emphasis in ANU-OPJ [36] is on promoting inter-operability, by 
avoiding any modifications to the virtual machine. Instead, read and write 
barriers are introduced by dynamic byte-code modification. This is 
achieved by using a customised class loader, making the approach 
compatible with standard compilers and virtual machines. The 
programmer’s view of persistence is slightly different from PJama, in that 
no persistence API is involved. Instead, all static fields are implicitly 
persistent roots. The Shore storage manager [37] provides object storage. 

Persistent Java was implemented on the Grasshopper operating system 
[38]. Unlike the other persistent Java systems, no modifications were 
made to the abstract machine or to the bytecode generated for a particular 
application. Instead, orthogonal persistence was achieved by instantiating 
the entire Java machine within a persistent address space. In this system, 
like the later ANU-OPJ system, static fields were implicitly roots of 
persistence. 

The three persistent Java systems adhered to the three principles of 
orthogonal persistence to varying degrees. PJama followed the PS-algol 
persistence model but could not make some types persistent due to 
restrictions in the abstract machine. Similarly, ANU-OPJ could not 
uniformly perform byte code transformation on some system classes. The 
Grasshopper version did adhere to the three principles, by virtue of 
making the entire environment persistent. 



 

3.6 OODBs 

Object-oriented database systems emerged in the mid 1980s and married 
persistence to object-oriented languages [39]. In the early systems, the 
language used tended to be an extension of C++. The Exodus System with 
its E programming language typified this approach [40]. 

The Object-Oriented Database Manifesto [41], published in 1989, set 
out to lay down the ground rules of what was (and what was not) an 
object-oriented database. It defined a number of mandatory, optional and 
open issues in OODB design. Space prohibits a full exposition of all the 
mandatory features (identity, encapsulation, computational completeness, 
types or classes, class hierarchies, complex objects, overriding, 
overloading and late binding, extensibility, persistence, secondary storage 
management, concurrency, recovery and ad-hoc querying); we will 
therefore comment on what we consider to be the most important here. 

The first of these, identity, is perhaps the biggest differentiating feature 
between an OODB and a relational DB. Relational systems impose 
identity via primary keys stored as attributes, whereas objects have unique 
identities formed when they are created and remaining throughout their 
lifetimes irrespective of their states. 

The issue of encapsulation is another feature that distinguishes the 
relational from the OO world. In a relational system the universe of 
discourse is made up of relations containing flat tuples, which may be 
queried using a relational language. By contrast, in an OO system an 
object has an interface, some state and a procedural component, which 
implements the interface and may perform operations on the state. 

A last issue with OODB systems is whether code should be stored in 
the database; this issue seems to divide the OODB community. Many feel 
that putting code in the database has a detrimental effect on performance; 
the reasons for this are unclear. If code is not stored in the database, well-
known semantic anomalies can arise. Richardson [42] describes how a 
program can populate a database with objects of some type T. Another 
program can insert into this data-structure an object of type T’, a subtype 
of T. If the original program then accesses the new object and calls 
methods that have been over-ridden in T’, it should of course use the code 
of the subtype when operations are performed (late binding). However, the 
code for T’ may not be in the static environment (in the file system) of the 
original program. Indeed, the code may not even exist on the machine on 
which the program is written. In this case, when the original program 
invokes an operation on the new object a dynamic failure will result. 
There are essentially two solutions to this problem: relying on being able 
to load code from the file system—which is manifestly unsafe—or placing 
code in the database. 

The provision of declarative querying was the primary difference 
between persistent languages and OODB systems; the latter generally 
provided querying whilst the former did not. Whilst pointer chasing can be 
more efficient than some operations, notably outer joins, in database 
systems, the inability to perform declarative queries over non-resident data 
is often cited as the primary reason for the lack of uptake of OODB and 
persistent systems. The relatively recent ability to tightly integrate query 



 

languages over objects with a host object-oriented language [3,43] has 
addressed much of this criticism. 

Another perceived issue with OODB systems is the degree of coupling 
exhibited. Data in relational systems is loosely coupled; tuples are 
associated solely via primary and foreign key values. This permits 
database schemata to be refactored by database administrators 
independently of the code base. In an object-relational system there is also 
loose coupling between the code and the data. The object-relational 
mappings are partial; they specify a degree of compliance required of the 
database by the code. Thus database schema changes may not affect the 
code in any way. By contrast, this is not true in OODB systems, which are 
highly coupled in two respects: the referential integrity of pointers and 
type constraints specified in the programming language. Since OODB 
systems typically rely on being able to follow the transitive closure of 
objects, changes to the code and the database must be made in a consistent 
manner. 

Most OODB systems are strongly typed and consequently the types of 
referends and referees must be type compliant; resulting in the schema and 
the code being highly coupled. A last problem perceived with OODB 
systems is that it is often difficult to determine the extent of pointers in the 
system due to lack of sufficient encapsulation. Consequently changes to 
the schema could affect code in arbitrary locations. However, this problem 
also applies to relational systems in which there is a mismatch in the 
integrity constraints provided by the database and those expected of the 
programs that compute over it. Furthermore, in a pure object-oriented 
system the integrity of the data may be enforced by encapsulation, which 
is not true in relational systems. Clearly modern software engineering 
tools could be brought to bear on these problems. 

3.7 db4o 

db4o [44] is a modern OODB system which may be used with both .NET 
and Java, via the provision of separate libraries for the two languages. 
db4o requires no mappings between transient and persistent data to be 
described by the programmer. Thus the objects stored in the database are 
real POJOs with no extra interfaces, extended classes or annotations. The 
db4o model is reminiscent of PS-algol. To access the database the 
programmer writes code such as that shown below. 

ObjectContainer db=Db4o.openFile(Util.DB4OFILENAME); 
try { 
 Person al = new Person("al", 49); 
 db.set(al); 
} 
finally { 
 db.close(); 
} 

The root of the database is a collection (an ObjectSet) of objects. It is 
possible to access such a persistent collection using query by example 
(QBE), by performing a get operation with either a prototypical object or 
an instance of class Class as a parameter. In addition, db4o supports both 



 

native queries and Simple Object Database Access (SODA). Native 
queries are constructed using predicates in C# or Java whereas SODA 
queries are relatively low level, using strings to select fields from objects. 
Once a root object has been accessed its closure may be traversed using 
traditional pointer following operations. 

However, by default db4o does not load entire closures from persistent 
storage. db4o introduces a concept known as activation depth, which 
determines how much of an object closure is loaded when a parent object 
is loaded. By default, only the first five levels of objects are loaded from 
the database. It also includes mechanisms to control activation based on 
class, via global settings and transparently. Additionally, objects 
referenced from a loaded object can be loaded by explicitly activating 
objects as they are loaded. 

To update objects stored in the database the programmer has to retrieve 
an object and call set with a top-level object as a parameter (as in the 
above example). However, like object loading, the entire closure of the 
object is not written to persistent storage on commit. Instead, the amount 
of closure written to storage is controlled by a concept known as update 
depth (the default is 1). Like activation depth it is possible to control 
update depth in a variety of ways. These design decisions have clearly 
been made for a mixture of implementation and efficiency reasons. 

Whenever a container is opened, db4o implicitly starts a new 
transaction and an explicit commit occurs before the container is closed. A 
rollback operation permits transactions to abort. However, this operation 
is the root of a semantic anomaly. Loaded instances of database objects 
may be still be accessible yet out-of-sync with the store. To address this 
problem db4o provides a refresh operation, which may be applied to 
objects. It is unclear how the programmer is supposed to know which 
objects require refreshing; again this deviates from the principles of 
orthogonal persistence. 

The db4o system adheres to the principle of data independence. No 
mappings or annotations are required to indicate which types may be made 
persistent. Similarly, code may manipulate data independent of its 
longevity. The concepts of update and activation depth do impact this 
principle since, for example, a method to determine the length of a list 
might get the wrong answer if activation depth was not used correctly. 
This is seen as desirable by the developers who state that “db4o provides a 
mechanism to give the client fine-grained control over how much he wants 
to pull out of the database when asking for an object” [45]. This property 
seems not to preserve identity. The principle of data type orthogonality is 
adhered to, since any user-defined data object can be made persistent 
without any additional code, annotations or XML specifications. 

3.8 Java Data Objects 

Java Data Objects was released in 2002 [46], providing a storage interface 
for Java objects without the necessity to interact with data access 
languages such as SQL. Using JDO, Java objects may be stored in a 
relational database, an object database, XML file, or any other technology 
using the same interface. Since it enables Java programmers to 



 

transparently access underlying data storage without using database-
specific code, it moves considerably towards the goals of persistent 
systems. An example of the use of JDO is shown below. Although not 
shown in this example, the entire transitive closure of objects is stored in 
the database on commit. 

PersistenceManagerFactory pmf = JDOHelper. 
 getPersistenceManagerFactory(..); 
PersistenceManager pm = pmf.getPersistenceManager(); 
Person p = new Person("Bob Smith", 49 ); 
Transaction tx; 
try { 
  tx = pm.currentTransaction(); 
  tx.begin(); 
  pm.makePersistent(p); 
  tx.commit(); 
} catch (Exception e) { … } 

Although this looks very much like the PS-algol examples, much 
additional specification is required when using JDO. The relationship 
between the Java objects and persistent data is specified using an XML 
metadata file. A simple example is shown below, specifying the persistent 
class com.xyz.Person. Field modifiers may specify a number of attributes, 
including which fields are primary keys, whether fields are persistent or 
transient, how fields are to be loaded, and how null values should be 
handled. 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE jdo SYSTEM "jdo.dtd"> 
<jdo> 
 <package name="com.xyz"> 
  <class name="Person"> 
   <field name="firstname" 
   persistence-modifier="persistent"/> 
   … 
  </class> 
 </package> 
</jdo> 

The query language provided by JDO, JDO Query Language (JDOQL), 
abstracts over the underlying storage technology. A query interface selects 
objects from the database irrespective of whether the underlying storage is 
based on objects or relations. Queries are passed to the persistence 
manager and operate on either class extents or explicit collections. 
Filtering is provided by providing Boolean expressions which are applied 
to instances. 



 

Query query = pm.newQuery(Person.class, people, 
 "name == \"Malcolm Atkinson\""); 
Collection result = (Collection) query.execute(); 
Iterator iter = result.iterator(); 
while ( iter.hasNext() ) { 
 Person p = (Person) iter.next(); 
 .... 
} 

JDO succeeds in abstracting over particular underlying storage 
technologies. However, in some cases, notably relational databases, the 
mapping between language objects and storage level objects must be 
described. When an object-relational mapping is used with JDO, the O-R 
mappings are described in ORM mapping files. 

Persistence of data is independent of the programs manipulating it, 
provided that appropriate persistence mappings have been described. The 
principle of data type orthogonality is violated, since only those objects 
that have a persistent mapping can be made persistent. Furthermore, 
system classes and some collection classes may not be made persistent. 

3.9 Java Persistence API 

The Java Persistence API [47] is intended to operate inside or outside a 
J2EE container, creating a persistence model for (plain old) Java objects. 
It eliminates much of the complexity required by JDO. For example, the 
XML mapping tables are no longer required, and the objects that can be 
made persistent are ordinary Java objects rather than having to implement 
specified interfaces. In contrast to JDO, which is agnostic to storage 
technology, the Java Persistence API is explicitly for use in an object-
relational context. 

@Entity 
public class Person 
 public Person() {} 
 @column( name="name" ) 
 public String getName() {} 
 @column( name="age" ) 
 public int getAge() {} 
} 

The @Enitity annotation can be decorated with parameters specifying the 
name of the table from which data is drawn; by default this is the name of 
the class. Similarly, the column name may be specified using the 
@column annotation and identity attribute using @id. This is clearly not a 
POJO system, despite being often described as one, since it requires 
annotations to be made in the Java classes describing the object-relational 
mappings. Object-relational mappings can be arbitrarily complex, and it is 
possible to specify that data be drawn from multiple tables using join-
based queries. 

Queries are defined using (an extension to) Enterprise JavaBeans query 
language (EJB QL) rather than SQL. The difference is subtle but 
important: rather than querying over tables in the database, queries are 
performed on the beans and the relationships between them. These 



 

relationships are specified using the attributes embedded within the Java 
objects. 

Using the Java Persistence API the persistence of data is independent of 
the programs that manipulate data. Additionally, the programmer does not 
have any explicit control over the movement of data between the store and 
main memory, thus adhering to the principle of persistence independence. 
The principle of data type orthogonality is only partially adhered to, since 
only instances of classes that are decorated with an @Entity annotation 
may be stored in the persistent store. This explicitly precludes most system 
classes from being persistently stored. The principle of persistence 
identification is largely adhered, to since the mechanism for identifying 
persistent objects is not related to the type system. 

Despite not being fully compliant with the principles of orthogonal 
persistence, an application programmer can program against persistent 
data without the knowledge that the data is persistent. This is very much in 
the spirit of the aims of orthogonal persistence. 

3.10 LINQ 

Microsoft, recognizing the problems of embedding queries into programs 
as strings, has created Language-Integrated Query (LINQ) [3]. Unlike the 
Java systems described previously, the approach taken by LINQ is to add 
general-purpose query facilities that may be applied to all information 
sources. Thus being able to query over relational data is merely a special 
case of querying. For example, using LINQ it is possible to write a C# 
program to query over a collection of persons as follows: 

static void doquery( Person[] people ) { 
    IEnumerable<Address> result = from p in people 
                                  where p.age == 49 
                                  select p.address; 
    foreach (Address item in result) 
      Console.WriteLine(item.getTown()); 
} 

The query selects all the people from the array whose age is 49 and forms 
an enumeration containing their addresses. Note that the query is 
integrated with the programming language, making it amenable to static 
type checking, optimization and—perhaps more importantly—design tools 
such as refactoring tools. 

Relational data stored in a database can also be manipulated using a 
Visual Studio component called LINQ to SQL, which transparently 
translates LINQ queries into SQL for execution by the database engine. 
The results are returned in the language level objects defined in the user 
program. LINQ tracks the relationships between the language objects and 
the database transparently. 

Like the Java object-relational mapping solutions, objects may be 
labelled with annotations to identify how properties correspond to 
database columns. Tool support is provided to assist in the translation 
between extant databases and language level object definitions. 



 

4 Taking Stock 

A selection of approaches to programming with persistent data have been 
outlined. They differ in a number of key attributes, including: 

• data-centric or program-centric 
• degree of adherence to the principles of orthogonal persistence 
• degree of impedance mismatch 
• storage technology employed 
• whether object identity is automatically preserved 
• whether code is stored with data 
• support for declarative queries over non-resident data 
• support for transactions 

Space precludes a full analysis of the various approaches with respect to 
all of these aspects, but we suggest that the most fundamental is the 
overall system philosophy. In a data-centric approach it is assumed that 
pre-existing persistent data is a given, and the issue is how to program 
over that data. In a program-centric approach, code comes first, and the 
issue is to provide persistence of program data between executions. 

In a data-centric approach the existing data is likely to be large and 
long-lived, and openness of the data—avoiding lock-in to proprietary 
technology—is likely to be important. Relational databases have 
overwhelming advantages in this sector: mature technology resulting from 
long-term investment in scalability and optimization; widely available 
expertise; and standard interfaces promoting inter-operability. Approaches 
in this category include low-level database APIs such as JDBC, and the 
various object-relational mapping technologies. The constraints imposed 
by the requirement to inter-operate with existing data—and to cope with 
changes to both data and meta-data made via other routes to the data—
mean that none of these approaches achieve data type orthogonality, and 
that all involve a significant impedance mismatch. The ORM systems 
require the programmer to understand and specify the mapping between 
multiple representations, while low-level APIs also require conversion 
code to be written. 

Designers of program-centric persistence technologies are less 
constrained in their choice of storage format since they may legitimately 
assume that the persistent data will be solely accessed via the language 
infrastructure. The systems that adhere to the principles of orthogonal 
persistence have all used proprietary closed storage formats. There is no 
obvious technical reason why this is a necessary choice, although it may 
well maximise scope for achieving good performance. This may have 
been one factor behind the lack of commercial adoption of the various 
successful research prototypes. To invest in significant use of any closed 
storage system requires a very high level of trust in the long-term viability 
of the technology and the processes that support it. Other obvious limiting 
factors are the relatively limited scalability of those systems in terms of 
size and query performance, inevitable given the resources available. 

Object-relational systems have been highly successful, now dominating 
the field in large applications. It is clear, however, that significant 
impedance mismatch problems remain. Although the modern programmer 
is less likely to have to program the transfer of objects to and from long-



 

term storage, they must still deal with a bewildering level of complexity in 
specifying mappings between objects and relations. The recent emergence 
of conceptually simpler approaches such as db4o is a sign that significant 
demand remains for the benefits pursued in the original investigations of 
orthogonal persistence. 

It is perhaps also worth reflecting on the current usefulness of the 
principles of orthogonal persistence, a quarter century after they were first 
proposed. The principle of persistence independence suggests that data 
manipulation should be coded in exactly the same way for transient and 
persistent data, and that the programmer should not have to control data 
movement between transient and persistent storage. So long as the 
language is sufficiently rich that all desired data manipulation can be 
expressed conveniently, there seems no obvious argument against this 
principle. Of course, adherence to it incurs some implementation effort, 
hence not all approaches do so. 

The principle of data type orthogonality suggests that all objects should 
be permitted the full range of persistence. Again, as a desirable feature this 
seems uncontroversial. Again, it raises significant implementation 
difficulties, leading to few systems achieving full adherence. Even those 
that claim full orthogonality have tended to have difficulty with objects 
that depend on external state, such as file descriptors, GUI elements, 
network channels etc. 

The principle of persistence identification has had a more chequered 
history. The wording of its definition earlier is taken from [21]. In the 
earlier [1], however, which first proposed principles of orthogonal 
persistence, the principle is listed but not named. In hindsight, it now 
seems unclear what, precisely, is mandated by this principle that is not 
already covered by the principle of persistence independence. This appears 
to have been recognised in more recent discussion, in which it has been 
replaced by the more concrete principles of transitive persistence [34] and 
persistence by reachability [48]. We may perhaps conclude that a more 
useful general principle might be that it should be possible to identify 
persistent objects in a convenient way. If doing so via the type system is 
forbidden by the principle of data type orthogonality, and identifying each 
object individually is ruled out as too arduous, then persistence by 
reachability is the only obvious solution. 

5 Future Directions 

Orthogonally persistent systems will not replace object-relational systems 
in the foreseeable future. We may, however, speculate on niche areas in 
which the principles of orthogonal persistence might be usefully carried 
forward. One possibility is the development of a program-centric approach 
in which fully orthogonal persistence is implemented using a relational 
database as the storage engine. This would address the ‘closed data 
format’ criticism potentially levelled at previous implementations, since 
read-only access to the data could be permitted at the relational level. 

Another potential avenue for development is to target emerging 
application styles such as cloud applications. The development of such 



 

applications could be significantly simplified by a system supporting 
programming over resilient distributed objects in a transparent manner, 
abstracting over replication and physical location in the same way that 
orthogonal persistence abstracts over storage hierarchy [49]. 

Another avenue for investigation is how the unique features of 
orthogonally persistent systems may be exploited to improve current 
software development technology [18]. For example, the integration of 
first-class code and data within a persistent store that enforces referential 
integrity makes the hyper-code paradigm possible. This could be extended 
with more sophisticated support for application system evolution, 
analogous to refactoring tools provided by modern IDEs [50]. Hyper-code 
allows source code to be reliably associated with all code objects. Thus, 
whereas refactoring tools currently operate separately on a code base or on 
a database, refactoring within a persistent environment could be applied 
uniformly to data and the code that operates on it. Evolutionary code could 
reflect over all of the data bound into the code-base being evolved, as well 
as the structure of the code-base itself. Arbitrary evolution (or refactoring) 
of a running application could be performed with complete confidence that 
all code and data affected by a change could be located and evolved in 
turn consistently. This would be possible even for data that in 
conventional systems would be encapsulated within closures and thus 
inaccessible to evolution code. 

6 Conclusions 

Orthogonal persistence was proposed to address the impedance mismatch 
problem. This problem has been with us for 20-30 years and refuses to go 
away. It has recently been described as the Vietnam of Computer Science 
[51]. Far from being resolved, the impedance mismatch is perhaps getting 
worse. We now have impedance mismatch across the multiple subsystems 
concerned with data replication, cache-coherency and distribution. In 
many of today’s enterprise systems the programmer must, by necessity, 
not only manage mappings from the language to the database but also 
from the language to the Memcached [52] or DBCache [53] layers, and 
from those layers to the database. Thus, when we consider the impedance 
mismatch problem in our systems it is important to recognise that the 
object-relational mapping is not the only mapping that must be considered. 
Even if non-relational storage is used, for example Amazon S3 [54], 
mapping between layers is required. The essential issues are who creates 
the mappings and how efficiently they can be maintained. 

In [19] Maier stated that one of the major problems of OO systems was 
the lack of integration between bulk operations and the programming 
language. In this domain good progress has been made in the last few 
years. LINQ makes great strides in providing a single (sub-) language that 
operates over objects regardless of their longevity. 

The solutions to providing persistence in programming systems have 
been many, and the road has been long and winding. However, there has 
been a clear trend towards the ideals of orthogonal persistence. The state 
of the art has finally moved away from strings containing embedded 



 

queries with explicit coercions to values in the programming language 
space. 

In the 1980s orthogonal persistence focussed on the differences 
between long- and short-term storage. As described above, this is just one 
of many mappings that an application builder needs to be concerned with; 
there are many subsystems that require mappings to be maintained, 
including caching, networks, virtualized hosts, distributed storage, and 
replication. Furthermore, we are moving towards a world in which 
applications are self-organising and autonomic. Such autonomic systems 
are likely to be concerned with data clustering, machine utilisation and the 
ability to distribute computation and storage. Lastly the scale of 
application systems is likely to vary enormously from small persistent 
applications on devices such as iPhones through to extremely large ones to 
address the scientific challenges of tomorrow. In such a world it seems 
unlikely that the intellectual burden of managing a plethora of complex 
mappings can be left in the human domain. 
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