
Orthogonal Persistence Revisited

Alan Dearle, Graham N.C. Kirby and Ron Morrison

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SX, Scotland
{al, graham, ron}@cs.st-andrews.ac.uk

Abstract. The social and economic importance of large bodies of
programs and data that are potentially long-lived has attracted
much attention in the commercial and research communities. Here
we concentrate on a set of methodologies and technologies called
persistent programming. In particular we review programming
language support for the concept of orthogonal persistence, a
technique for the uniform treatment of objects irrespective of their
types or longevity. While research in persistent programming has
become unfashionable, we show how the concept is beginning to
appear as a major component of modern systems. We relate these
attempts to the original principles of orthogonal persistence and
give a few hints about how the concept may be utilised in the
future.

1 Introduction

The aim of persistent programming is to support the design, construction,
maintenance and operation of long-lived, concurrently accessed and
potentially large bodies of data and programs. When research into
persistent programming began, persistent application systems were
supported by disparate mechanisms, each based upon different
philosophical assumptions and implementation technologies [1]. The mix
of technologies typically included naming, type and binding schemes
combined with different database systems, storage architectures and query
languages.

The incoherence in these technologies increased the cost both
intellectually and mechanically of building persistent application systems.
The complexity distracted the application builder from the task in hand to
concentrate on mastering the multiplicity of programming systems, and
the mappings amongst them, rather than the application being developed.
The plethora of disparate mechanisms was also costly in machine terms, in
that the code for interfacing them, their redundant duplication of facilities
and their contention for resources caused execution overheads. Software
architects and engineers observed that it was often much harder and more
expensive to build and maintain persistent application systems than was
expected, and their evolution was invariably problematic.

Atkinson [2] postulated that, in many cases, the inconsistency was not
fundamental but accidental. The various subsystems were built at different
times when the engineering trade-offs were different. In consequence, they
provided virtually the same services, but inconsistently since they were

designed and developed independently. By contrast, Orthogonal
Persistence provided the total composition of services within one coherent
design, thereby eliminating these accidental disharmonies.

While research in persistent programming has become unfashionable, it
is hard to believe that the situation today has changed much. A recent
(2007) quote from Microsoft illustrates this well:

“Most programs written today manipulate data in one way or
another and often this data is stored in a relational database. Yet
there is a huge divide between modern programming languages
and databases in how they represent and manipulate information.
This impedance mismatch is visible in multiple ways. Most notable
is that programming languages access information in databases
through APIs that require queries to be specified as text strings.
These queries are significant portions of the program logic. Yet
they are opaque to the language, unable to benefit from compile-
time verification and design-time features like IntelliSense.” [3]

Orthogonally persistent object systems support a uniform treatment of
objects irrespective of their types by allowing values of all types to have
whatever longevity is required. The benefits of orthogonal persistence
have been described extensively in the literature [2,4-18]. They can be
summarised as:

• improving programming productivity from simpler semantics;
• avoiding ad hoc arrangements for data translation and long-term data

storage;
• providing protection mechanisms over the whole environment;
• supporting incremental evolution; and
• automatically preserving referential integrity over the entire

computational environment for the whole life-time of an application.

In this paper we review a selection of the many historical approaches to
programming with long-lived data1 and comment on attempts in the
programming language and ODBMS communities to provide various
flavours of persistence. We conclude by hinting at how the concept may
be utilised in the future.

2 Orthogonal Persistence

In most current application systems there are two domains: the
programming language domain and the database domain. The
programming language domain presents a Turing-complete programming
environment that permits computation over data defined using the
programming language type system. In the last twenty years the
predominant programming model has become the object-oriented model,
usually providing typed objects containing state, methods and (usually

1 Space limitations preclude a full survey of the area; notable omissions include

Smalltalk, O2, Galileo, Trellis/Owl, Fibonacci, DBPL and Tycoon.

typed) references to other objects. This model, and the tools which have
evolved to support it, has proven to be highly productive in terms of
creating and maintaining software.

By contrast, the conceptual database domain is largely unchanged:
tables of tuples containing foreign keys identifying tuples in other tables.
This remains the pre-eminent long-term storage architecture.

The cost of the conceptual and technological differences between these
two models became known as the impedance mismatch [19], and was one
of the primary motivations for the work on orthogonal persistence, which
aimed to remove the conceptually unnecessary distinction between short-
term and long-term data [1].

There is a spectrum of possible degrees of integration, as perceived by
programmers, between these formats. At one end of this spectrum data
formats are completely disparate, and there is no automated support for
transformation between them. A programmer has to understand the
semantics of multiple representations and the mappings between them, and
to write code for data transformations that implement these mappings. The
impedance mismatch is strongest at this end of the spectrum. On the other
hand, the low degree of integration yields loose coupling between the
language and storage domains, which in turn facilitates openness in terms
of the persistent data being accessible by routes other than the language.

At the full integration end of the spectrum lies orthogonal persistence,
where no distinction between data formats is visible to the programmer. At
intermediate points in the spectrum, the mapping between the object and
storage domains is partially automated. Typically, the programmer still
has to specify the mappings and understand the relationships between the
multiple representations, but is relieved of the task of writing explicit
translation code.

These differences are crystallised by Fowler, who describes two
different architectural patterns that may be applied to persistent systems
[20]. These are the Active Record and Data Mapper patterns. In the first,
an object in a programming system represents a row in a database relation.
In this pattern the database is wrapped in an object that provides methods
to save, update, delete and find objects. Here there is a one-to-one
mapping between classes or types in the programming language and
relations in the database.

The Data Mapper pattern is more general. It comprises (potentially
multiple) mappers that move data between the storage layers and
maintains the relationships between entities. For example, in an object-
relational system there is one mapper and two layers—the language
system and the relational database. In a distributed system with caching
there might be two mappers maintaining relationships between three
layers—the language, the cache and the database.

The degree of integration dictates the extent to which the application
programmer must be conscious of these patterns. With orthogonal
persistence they are handled entirely by the system. Atkinson and
Morrison identified three Principles of Orthogonal Persistence [21]:

• The Principle of Persistence Independence
The persistence of data is independent of how the program
manipulates the data. That is, the programmer does not have to,

indeed cannot, program to control the movement of data between
long term and short term store. This is performed automatically by
the system.

• The Principle of Data Type Orthogonality
All data objects should be allowed the full range of persistence
irrespective of their type. That is, there are no special cases where
objects of a specific type are not allowed to be persistent.

• The Principle of Persistence Identification
The choice of how to identify and provide persistent objects is
orthogonal to the universe of discourse of the system2.

The application of the three principles yields orthogonal persistence.
Violation of any of these principles increases the complexity that
persistent systems seek to avoid. In the next section we examine these
principles in the context of past and current persistent systems.

3 Languages and Persistence

3.1 First Generation Persistence Mechanisms

In the last twenty to thirty years the mechanisms for mapping between the
two programming language and database data models have improved
considerably. Ironically, this is in part due to technologies that were
developed in the typed persistent world, for example strongly typed
generative and reflective programming.

In the eighties it was common for programmers to explicitly save and
restore programming language objects to the file system. Code was hand-
written and tended to be error-prone and time consuming. Furthermore,
when the data was changed, the code had to adapt, and more code written
to evolve any saved data from previous program incarnations. The need to
write such code explicitly was first eliminated by persistent systems such
as PS-algol (discussed in the next section) and object-oriented databases.

Java serialization goes some way to reducing the programming effort
required to implement object persistence using files, since it allows an
entire closure to be written or read in a single operation. Only instances of
classes that implement the interface java.io.serializable may be serialized.
For example:

2 Experience with persistent programming showed that in systems with

references, the only mechanism for implementation was persistence by
reachability, also known as transitive persistence.

FileInputStream f =
 new FileInputStream("myobject.data");
ObjectInputStream obj_in = new ObjectInputStream(f);
Object obj = obj_in.readObject ();
if (obj instanceof Person) {
 Person p = (Person) obj;
 // Do something with p ...
}

The above program reads an object from the file myobject.data and casts it
to the type Person. One problem with this style of programming is that the
entire closure of an object must be loaded or saved in a single operation.
This can make the operations slow for large object closures, and limits the
size of closure that can be stored to that of main memory—known as the
big inhale in early Smalltalk-80 systems. However, more importantly,
each time a closure is serialized a new copy of the data is made. This
breaks referential integrity since there is no way of matching the identity
of objects from different save/load operations. Another problem with the
mechanism is that since not all Java classes are serializable, some object
closures are not consistently saved and restored.

Serialization does not adhere to the first two principles of orthogonal
persistence. Data is explicitly written to backing store, violating the
principle of independence; only serializable objects may be made
persistent, so the principle of data type orthogonality is also violated.

In contrast, to extract data from a database, the programs manipulating
persistent data had to perform much string processing. Despite this
approach manifesting a high impedance mismatch, it is still common in
today’s PHP programs. For example:

$result = mysql_query("SELECT * FROM Persons");
while($row = mysql_fetch_array($result)) {
 $firstname = $row['FirstName'];
 $secondname = $row['LastName'];
}

In this fragment [22], the database access is explicit—the SQL query is
embedded as a string in the program, and data is extracted from the
database in the form of strings.

The use of strings is also employed in JDBC [23], which provides
database independent connectivity between Java programs and databases.
The JDBC API permits SQL operations to be performed, by providing
three broad classes of operations: establishing connections to a database,
performing queries and processing the results of queries. An example is
shown below:

Connection con = DriverManager.getConnection(
 "jdbc:myDriver:fish", "myLogin", "myPassword");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
 "SELECT name,age FROM Persons");
while (rs.next()) {
 String name = rs.getString("name");
 int age = rs.getInt("age");
 ..
}

The similarities between the JDBC and PHP examples are striking. Both
embed a query in the form of a string in the host program, and both use
string matching to extract data from the result set that is delivered by the
query. Both mechanisms are a long way from the principles of orthogonal
persistence.

3.2 PS-algol

The first language to provide orthogonal persistence was PS-algol [1],
which provided persistence by reachability for all data types supported by
the language. PS-algol adds a small number of functions to S-algol [24],
from which it was derived. These are open.database, close.database,
commit and abort3. A number of functions are also provided to manage
associative stores (hash maps), called tables in PS-algol. These functions
are s.lookup, which retrieves a value associated with a key in a table, and
s.enter, which creates an association between a key and a value in a table.
By convention, a database always contains a pointer to a table at its root.
Databases serve as roots of persistence and can be created dynamically.

Two slightly modified examples from [1] are shown below to give a
flavour of the language. The first example opens a database called
"addr.db" and places a person object into a table associated with the key
"addr.table" found at its root. Note that the person (denoted by p) contains
a reference to an address object. When commit is called, the updated table,
the person and the address objects are written to persistent storage.

structure person(string name, phone; pntr addr)
structure address(int no ; string street, town)
let db = open.database("addr.db", "write")
if db is error.record
 do { write "Can't open database"; abort }
let table = s.lookup("addr.table", db)
let p = person("al", 3250,
 address(76, "North St", "St Andrews"))
s.enter("al", table, p)
commit

The second example opens the same database and retrieves the person
object before writing out their phone number.

3 Note: dots are legal within identifiers in PS-algol and do not denote

dereferencing. Dereferencing is represented by round brackets enclosing a
fieldname. There is no explicit new operator; the use of a structure name serves
as a constructor.

structure person (string name, phone; pntr addr)
let db = open.database("addr.db", "read")
if db is error.record
 do { write "Can't open database"; abort }
let table = s.lookup("addr.table", db)
let p = s.lookup("al", table)
if p = nil then write "Person not known"
else write "phone number: ", p(phone)

As described in [25], “the programmer never explicitly organises data
movement but it occurs automatically when data is used”, a feature shared
with many of the object-relational systems. The paper also states “the
language type rules are strictly enforced” but is not explicit about how this
is achieved, which is a pity, since it is important. PS-algol uses structural
type equivalence rather than the name equivalence so prevalent today.
Using structural type equivalence, two objects or terms are considered to
have compatible types if the types have identical structure. Thus, in the
previous examples, the compatible declarations of person in the two
examples serve to unify the two programs. If the object retrieved from the
database is not of (structural) type person, the deference of the object will
fail.

The type system of PS-algol is more subtle than might appear. Notice
that the second program does not require a declaration of the type address
since that type is never used in the program. It is not necessary since
pointers in PS-algol are typed as pntr, which is an infinite union over all
records. The infinite union facilitates partial and incremental specification
of the structure of the data at the expense of a dynamic check. The
persistent schema need only be specified within a program up to limit of
the pntr objects. When one is encountered in a running program, by
dereference, a dynamic check ensures the data is of the correct type. The
specification within that check need only be to the limit of the subsequent
pntr types.

A second version of PS-algol incorporated procedures as data objects
thereby allowing code and data to be stored in the persistent store.

PS-algol does not support any form of concurrency other than at
database level. This often caused problems since it was possible to
continue to access objects after commit. The addition of explicit syntactic
boundaries to control transactions would have addressed this deficiency.

3.3 Napier88

Napier88 attempted to explore the limits of orthogonal persistence by
incorporating the entire language support environment within a strongly
typed persistent store [12,21,26-30]. The research produced the first
integrated, self-contained, type-safe persistent environment.

The Napier88 system provides orthogonal persistence, a pre-populated
strongly typed stable store, higher-order procedures, parametric
polymorphism, abstract (existential) data types, collections of name-value
bindings, graphical data types, concurrent execution, two infinite union
types for partial specification, and support for reflective programming.
Notable additions over PS-algol include the following:

• the infinite union type any, which facilitates partial and
incremental specification of the structure of the data

• the infinite union type environment, which, in addition to the
above, provides dynamically extensible collections of name/L-
value bindings—and thereby the dynamic construction of
independent name spaces over common data

• parametric polymorphism in a style similar to that later
popularised by Java generics, but with computation over truly
persistent polymorphic values

• existentially quantified abstract data types for data abstraction
• a programming environment, including graphical windowing

library, object browser, program editor and compiler,
implemented entirely as persistent objects within the store

• support for hyper-code, in which program source code may
contain embedded direct references to extant objects

• support for structural reflection, where a running program may
generate new program fragments and integrate these into its own
execution

The integrated persistent environment of Napier88 that supported higher-
order procedures yielded a new programming paradigm, which is only
possible by this means, whereby source programs could include direct
links to values that already exist in the persistent environment. The
programming technique was termed hyper-programming and the
underlying representation hyper-code.

Hyper-code [31] is a representation of an executing system modelled as
an active graph linking source code, existing values and meta-data. It
unifies the concepts of source code, executable code and data, by
providing a single representation (as a combination of text and hyperlinks)
of software throughout its lifecycle. Sharing is represented by multiple
links to the same value. Hyper-code also allows state and shared data, and
thereby closure, to be preserved during evolution.

The combination of structural reflection, the ability of a program to
generate new program fragments and to integrate these into its own
execution, and hyper-code provides the basis for type-safe evolution.
Within the persistent environment, generator programs may stop part of an
executing system (while the rest of the system continues to execute),
inspect its state by introspection, change the part as necessary by
programming or editing the hyper-code representation, recompiling the
new fragment and rebinding it into the executing system.

Unsurprisingly, given their heritage, both PS-algol and Napier88
support all three of the principles of orthogonal persistence.

3.4 Arjuna

The focus of the Arjuna system [32,33] is to support fault-tolerant
distributed applications, based upon persistent objects supporting nested
atomic actions. Atomic actions control sequences of local and remote
operations against abstract datatypes implemented using C++ classes. The
file system is used for long-term storage of objects. To support

recoverability, a snapshot of object state is taken before an object is
modified for the first time within the scope of an atomic action. This
mechanism is also used to support persistence, with the new state of an
object being used to replace its old state at commit time. A state manager
provides operations to save and restore the state of object instances.

Since all persistent classes must extend the base class StateManager,
which provides the mechanisms for persistence and atomic actions, Arjuna
does not adhere to the principle of datatype orthogonality. It does not meet
the requirements of persistence independence, since the programmer must
implement save_state and restore_state operations for all persistent
classes. Finally, for the same reason, it does not support persistence
identification by reachability.

3.5 Persistent Java

Several orthogonally persistent versions of Java have been implemented.
In PJama [34] the programmer uses an API to associate objects with
strings in a persistent map in order to make them persistent. All objects
transitively reachable from the map are automatically made persistent. The
language syntax itself is unchanged; typically persistence can be
introduced to a previously existing application with the addition of a
relatively small amount of code making API calls. The compiler and
standard libraries are also unchanged. The virtual machine is modified, to
move objects to and from a proprietary object store automatically as
required. A version of hyper-code has been prototyped using PJama [35].

The emphasis in ANU-OPJ [36] is on promoting inter-operability, by
avoiding any modifications to the virtual machine. Instead, read and write
barriers are introduced by dynamic byte-code modification. This is
achieved by using a customised class loader, making the approach
compatible with standard compilers and virtual machines. The
programmer’s view of persistence is slightly different from PJama, in that
no persistence API is involved. Instead, all static fields are implicitly
persistent roots. The Shore storage manager [37] provides object storage.

Persistent Java was implemented on the Grasshopper operating system
[38]. Unlike the other persistent Java systems, no modifications were
made to the abstract machine or to the bytecode generated for a particular
application. Instead, orthogonal persistence was achieved by instantiating
the entire Java machine within a persistent address space. In this system,
like the later ANU-OPJ system, static fields were implicitly roots of
persistence.

The three persistent Java systems adhered to the three principles of
orthogonal persistence to varying degrees. PJama followed the PS-algol
persistence model but could not make some types persistent due to
restrictions in the abstract machine. Similarly, ANU-OPJ could not
uniformly perform byte code transformation on some system classes. The
Grasshopper version did adhere to the three principles, by virtue of
making the entire environment persistent.

3.6 OODBs

Object-oriented database systems emerged in the mid 1980s and married
persistence to object-oriented languages [39]. In the early systems, the
language used tended to be an extension of C++. The Exodus System with
its E programming language typified this approach [40].

The Object-Oriented Database Manifesto [41], published in 1989, set
out to lay down the ground rules of what was (and what was not) an
object-oriented database. It defined a number of mandatory, optional and
open issues in OODB design. Space prohibits a full exposition of all the
mandatory features (identity, encapsulation, computational completeness,
types or classes, class hierarchies, complex objects, overriding,
overloading and late binding, extensibility, persistence, secondary storage
management, concurrency, recovery and ad-hoc querying); we will
therefore comment on what we consider to be the most important here.

The first of these, identity, is perhaps the biggest differentiating feature
between an OODB and a relational DB. Relational systems impose
identity via primary keys stored as attributes, whereas objects have unique
identities formed when they are created and remaining throughout their
lifetimes irrespective of their states.

The issue of encapsulation is another feature that distinguishes the
relational from the OO world. In a relational system the universe of
discourse is made up of relations containing flat tuples, which may be
queried using a relational language. By contrast, in an OO system an
object has an interface, some state and a procedural component, which
implements the interface and may perform operations on the state.

A last issue with OODB systems is whether code should be stored in
the database; this issue seems to divide the OODB community. Many feel
that putting code in the database has a detrimental effect on performance;
the reasons for this are unclear. If code is not stored in the database, well-
known semantic anomalies can arise. Richardson [42] describes how a
program can populate a database with objects of some type T. Another
program can insert into this data-structure an object of type T’, a subtype
of T. If the original program then accesses the new object and calls
methods that have been over-ridden in T’, it should of course use the code
of the subtype when operations are performed (late binding). However, the
code for T’ may not be in the static environment (in the file system) of the
original program. Indeed, the code may not even exist on the machine on
which the program is written. In this case, when the original program
invokes an operation on the new object a dynamic failure will result.
There are essentially two solutions to this problem: relying on being able
to load code from the file system—which is manifestly unsafe—or placing
code in the database.

The provision of declarative querying was the primary difference
between persistent languages and OODB systems; the latter generally
provided querying whilst the former did not. Whilst pointer chasing can be
more efficient than some operations, notably outer joins, in database
systems, the inability to perform declarative queries over non-resident data
is often cited as the primary reason for the lack of uptake of OODB and
persistent systems. The relatively recent ability to tightly integrate query

languages over objects with a host object-oriented language [3,43] has
addressed much of this criticism.

Another perceived issue with OODB systems is the degree of coupling
exhibited. Data in relational systems is loosely coupled; tuples are
associated solely via primary and foreign key values. This permits
database schemata to be refactored by database administrators
independently of the code base. In an object-relational system there is also
loose coupling between the code and the data. The object-relational
mappings are partial; they specify a degree of compliance required of the
database by the code. Thus database schema changes may not affect the
code in any way. By contrast, this is not true in OODB systems, which are
highly coupled in two respects: the referential integrity of pointers and
type constraints specified in the programming language. Since OODB
systems typically rely on being able to follow the transitive closure of
objects, changes to the code and the database must be made in a consistent
manner.

Most OODB systems are strongly typed and consequently the types of
referends and referees must be type compliant; resulting in the schema and
the code being highly coupled. A last problem perceived with OODB
systems is that it is often difficult to determine the extent of pointers in the
system due to lack of sufficient encapsulation. Consequently changes to
the schema could affect code in arbitrary locations. However, this problem
also applies to relational systems in which there is a mismatch in the
integrity constraints provided by the database and those expected of the
programs that compute over it. Furthermore, in a pure object-oriented
system the integrity of the data may be enforced by encapsulation, which
is not true in relational systems. Clearly modern software engineering
tools could be brought to bear on these problems.

3.7 db4o

db4o [44] is a modern OODB system which may be used with both .NET
and Java, via the provision of separate libraries for the two languages.
db4o requires no mappings between transient and persistent data to be
described by the programmer. Thus the objects stored in the database are
real POJOs with no extra interfaces, extended classes or annotations. The
db4o model is reminiscent of PS-algol. To access the database the
programmer writes code such as that shown below.

ObjectContainer db=Db4o.openFile(Util.DB4OFILENAME);
try {
 Person al = new Person("al", 49);
 db.set(al);
}
finally {
 db.close();
}

The root of the database is a collection (an ObjectSet) of objects. It is
possible to access such a persistent collection using query by example
(QBE), by performing a get operation with either a prototypical object or
an instance of class Class as a parameter. In addition, db4o supports both

native queries and Simple Object Database Access (SODA). Native
queries are constructed using predicates in C# or Java whereas SODA
queries are relatively low level, using strings to select fields from objects.
Once a root object has been accessed its closure may be traversed using
traditional pointer following operations.

However, by default db4o does not load entire closures from persistent
storage. db4o introduces a concept known as activation depth, which
determines how much of an object closure is loaded when a parent object
is loaded. By default, only the first five levels of objects are loaded from
the database. It also includes mechanisms to control activation based on
class, via global settings and transparently. Additionally, objects
referenced from a loaded object can be loaded by explicitly activating
objects as they are loaded.

To update objects stored in the database the programmer has to retrieve
an object and call set with a top-level object as a parameter (as in the
above example). However, like object loading, the entire closure of the
object is not written to persistent storage on commit. Instead, the amount
of closure written to storage is controlled by a concept known as update
depth (the default is 1). Like activation depth it is possible to control
update depth in a variety of ways. These design decisions have clearly
been made for a mixture of implementation and efficiency reasons.

Whenever a container is opened, db4o implicitly starts a new
transaction and an explicit commit occurs before the container is closed. A
rollback operation permits transactions to abort. However, this operation
is the root of a semantic anomaly. Loaded instances of database objects
may be still be accessible yet out-of-sync with the store. To address this
problem db4o provides a refresh operation, which may be applied to
objects. It is unclear how the programmer is supposed to know which
objects require refreshing; again this deviates from the principles of
orthogonal persistence.

The db4o system adheres to the principle of data independence. No
mappings or annotations are required to indicate which types may be made
persistent. Similarly, code may manipulate data independent of its
longevity. The concepts of update and activation depth do impact this
principle since, for example, a method to determine the length of a list
might get the wrong answer if activation depth was not used correctly.
This is seen as desirable by the developers who state that “db4o provides a
mechanism to give the client fine-grained control over how much he wants
to pull out of the database when asking for an object” [45]. This property
seems not to preserve identity. The principle of data type orthogonality is
adhered to, since any user-defined data object can be made persistent
without any additional code, annotations or XML specifications.

3.8 Java Data Objects

Java Data Objects was released in 2002 [46], providing a storage interface
for Java objects without the necessity to interact with data access
languages such as SQL. Using JDO, Java objects may be stored in a
relational database, an object database, XML file, or any other technology
using the same interface. Since it enables Java programmers to

transparently access underlying data storage without using database-
specific code, it moves considerably towards the goals of persistent
systems. An example of the use of JDO is shown below. Although not
shown in this example, the entire transitive closure of objects is stored in
the database on commit.

PersistenceManagerFactory pmf = JDOHelper.
 getPersistenceManagerFactory(..);
PersistenceManager pm = pmf.getPersistenceManager();
Person p = new Person("Bob Smith", 49);
Transaction tx;
try {
 tx = pm.currentTransaction();
 tx.begin();
 pm.makePersistent(p);
 tx.commit();
} catch (Exception e) { … }

Although this looks very much like the PS-algol examples, much
additional specification is required when using JDO. The relationship
between the Java objects and persistent data is specified using an XML
metadata file. A simple example is shown below, specifying the persistent
class com.xyz.Person. Field modifiers may specify a number of attributes,
including which fields are primary keys, whether fields are persistent or
transient, how fields are to be loaded, and how null values should be
handled.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
 <package name="com.xyz">
 <class name="Person">
 <field name="firstname"
 persistence-modifier="persistent"/>
 …
 </class>
 </package>
</jdo>

The query language provided by JDO, JDO Query Language (JDOQL),
abstracts over the underlying storage technology. A query interface selects
objects from the database irrespective of whether the underlying storage is
based on objects or relations. Queries are passed to the persistence
manager and operate on either class extents or explicit collections.
Filtering is provided by providing Boolean expressions which are applied
to instances.

Query query = pm.newQuery(Person.class, people,
 "name == \"Malcolm Atkinson\"");
Collection result = (Collection) query.execute();
Iterator iter = result.iterator();
while (iter.hasNext()) {
 Person p = (Person) iter.next();

}

JDO succeeds in abstracting over particular underlying storage
technologies. However, in some cases, notably relational databases, the
mapping between language objects and storage level objects must be
described. When an object-relational mapping is used with JDO, the O-R
mappings are described in ORM mapping files.

Persistence of data is independent of the programs manipulating it,
provided that appropriate persistence mappings have been described. The
principle of data type orthogonality is violated, since only those objects
that have a persistent mapping can be made persistent. Furthermore,
system classes and some collection classes may not be made persistent.

3.9 Java Persistence API

The Java Persistence API [47] is intended to operate inside or outside a
J2EE container, creating a persistence model for (plain old) Java objects.
It eliminates much of the complexity required by JDO. For example, the
XML mapping tables are no longer required, and the objects that can be
made persistent are ordinary Java objects rather than having to implement
specified interfaces. In contrast to JDO, which is agnostic to storage
technology, the Java Persistence API is explicitly for use in an object-
relational context.

@Entity
public class Person
 public Person() {}
 @column(name="name")
 public String getName() {}
 @column(name="age")
 public int getAge() {}
}

The @Enitity annotation can be decorated with parameters specifying the
name of the table from which data is drawn; by default this is the name of
the class. Similarly, the column name may be specified using the
@column annotation and identity attribute using @id. This is clearly not a
POJO system, despite being often described as one, since it requires
annotations to be made in the Java classes describing the object-relational
mappings. Object-relational mappings can be arbitrarily complex, and it is
possible to specify that data be drawn from multiple tables using join-
based queries.

Queries are defined using (an extension to) Enterprise JavaBeans query
language (EJB QL) rather than SQL. The difference is subtle but
important: rather than querying over tables in the database, queries are
performed on the beans and the relationships between them. These

relationships are specified using the attributes embedded within the Java
objects.

Using the Java Persistence API the persistence of data is independent of
the programs that manipulate data. Additionally, the programmer does not
have any explicit control over the movement of data between the store and
main memory, thus adhering to the principle of persistence independence.
The principle of data type orthogonality is only partially adhered to, since
only instances of classes that are decorated with an @Entity annotation
may be stored in the persistent store. This explicitly precludes most system
classes from being persistently stored. The principle of persistence
identification is largely adhered, to since the mechanism for identifying
persistent objects is not related to the type system.

Despite not being fully compliant with the principles of orthogonal
persistence, an application programmer can program against persistent
data without the knowledge that the data is persistent. This is very much in
the spirit of the aims of orthogonal persistence.

3.10 LINQ

Microsoft, recognizing the problems of embedding queries into programs
as strings, has created Language-Integrated Query (LINQ) [3]. Unlike the
Java systems described previously, the approach taken by LINQ is to add
general-purpose query facilities that may be applied to all information
sources. Thus being able to query over relational data is merely a special
case of querying. For example, using LINQ it is possible to write a C#
program to query over a collection of persons as follows:

static void doquery(Person[] people) {
 IEnumerable<Address> result = from p in people
 where p.age == 49
 select p.address;
 foreach (Address item in result)
 Console.WriteLine(item.getTown());
}

The query selects all the people from the array whose age is 49 and forms
an enumeration containing their addresses. Note that the query is
integrated with the programming language, making it amenable to static
type checking, optimization and—perhaps more importantly—design tools
such as refactoring tools.

Relational data stored in a database can also be manipulated using a
Visual Studio component called LINQ to SQL, which transparently
translates LINQ queries into SQL for execution by the database engine.
The results are returned in the language level objects defined in the user
program. LINQ tracks the relationships between the language objects and
the database transparently.

Like the Java object-relational mapping solutions, objects may be
labelled with annotations to identify how properties correspond to
database columns. Tool support is provided to assist in the translation
between extant databases and language level object definitions.

4 Taking Stock

A selection of approaches to programming with persistent data have been
outlined. They differ in a number of key attributes, including:

• data-centric or program-centric
• degree of adherence to the principles of orthogonal persistence
• degree of impedance mismatch
• storage technology employed
• whether object identity is automatically preserved
• whether code is stored with data
• support for declarative queries over non-resident data
• support for transactions

Space precludes a full analysis of the various approaches with respect to
all of these aspects, but we suggest that the most fundamental is the
overall system philosophy. In a data-centric approach it is assumed that
pre-existing persistent data is a given, and the issue is how to program
over that data. In a program-centric approach, code comes first, and the
issue is to provide persistence of program data between executions.

In a data-centric approach the existing data is likely to be large and
long-lived, and openness of the data—avoiding lock-in to proprietary
technology—is likely to be important. Relational databases have
overwhelming advantages in this sector: mature technology resulting from
long-term investment in scalability and optimization; widely available
expertise; and standard interfaces promoting inter-operability. Approaches
in this category include low-level database APIs such as JDBC, and the
various object-relational mapping technologies. The constraints imposed
by the requirement to inter-operate with existing data—and to cope with
changes to both data and meta-data made via other routes to the data—
mean that none of these approaches achieve data type orthogonality, and
that all involve a significant impedance mismatch. The ORM systems
require the programmer to understand and specify the mapping between
multiple representations, while low-level APIs also require conversion
code to be written.

Designers of program-centric persistence technologies are less
constrained in their choice of storage format since they may legitimately
assume that the persistent data will be solely accessed via the language
infrastructure. The systems that adhere to the principles of orthogonal
persistence have all used proprietary closed storage formats. There is no
obvious technical reason why this is a necessary choice, although it may
well maximise scope for achieving good performance. This may have
been one factor behind the lack of commercial adoption of the various
successful research prototypes. To invest in significant use of any closed
storage system requires a very high level of trust in the long-term viability
of the technology and the processes that support it. Other obvious limiting
factors are the relatively limited scalability of those systems in terms of
size and query performance, inevitable given the resources available.

Object-relational systems have been highly successful, now dominating
the field in large applications. It is clear, however, that significant
impedance mismatch problems remain. Although the modern programmer
is less likely to have to program the transfer of objects to and from long-

term storage, they must still deal with a bewildering level of complexity in
specifying mappings between objects and relations. The recent emergence
of conceptually simpler approaches such as db4o is a sign that significant
demand remains for the benefits pursued in the original investigations of
orthogonal persistence.

It is perhaps also worth reflecting on the current usefulness of the
principles of orthogonal persistence, a quarter century after they were first
proposed. The principle of persistence independence suggests that data
manipulation should be coded in exactly the same way for transient and
persistent data, and that the programmer should not have to control data
movement between transient and persistent storage. So long as the
language is sufficiently rich that all desired data manipulation can be
expressed conveniently, there seems no obvious argument against this
principle. Of course, adherence to it incurs some implementation effort,
hence not all approaches do so.

The principle of data type orthogonality suggests that all objects should
be permitted the full range of persistence. Again, as a desirable feature this
seems uncontroversial. Again, it raises significant implementation
difficulties, leading to few systems achieving full adherence. Even those
that claim full orthogonality have tended to have difficulty with objects
that depend on external state, such as file descriptors, GUI elements,
network channels etc.

The principle of persistence identification has had a more chequered
history. The wording of its definition earlier is taken from [21]. In the
earlier [1], however, which first proposed principles of orthogonal
persistence, the principle is listed but not named. In hindsight, it now
seems unclear what, precisely, is mandated by this principle that is not
already covered by the principle of persistence independence. This appears
to have been recognised in more recent discussion, in which it has been
replaced by the more concrete principles of transitive persistence [34] and
persistence by reachability [48]. We may perhaps conclude that a more
useful general principle might be that it should be possible to identify
persistent objects in a convenient way. If doing so via the type system is
forbidden by the principle of data type orthogonality, and identifying each
object individually is ruled out as too arduous, then persistence by
reachability is the only obvious solution.

5 Future Directions

Orthogonally persistent systems will not replace object-relational systems
in the foreseeable future. We may, however, speculate on niche areas in
which the principles of orthogonal persistence might be usefully carried
forward. One possibility is the development of a program-centric approach
in which fully orthogonal persistence is implemented using a relational
database as the storage engine. This would address the ‘closed data
format’ criticism potentially levelled at previous implementations, since
read-only access to the data could be permitted at the relational level.

Another potential avenue for development is to target emerging
application styles such as cloud applications. The development of such

applications could be significantly simplified by a system supporting
programming over resilient distributed objects in a transparent manner,
abstracting over replication and physical location in the same way that
orthogonal persistence abstracts over storage hierarchy [49].

Another avenue for investigation is how the unique features of
orthogonally persistent systems may be exploited to improve current
software development technology [18]. For example, the integration of
first-class code and data within a persistent store that enforces referential
integrity makes the hyper-code paradigm possible. This could be extended
with more sophisticated support for application system evolution,
analogous to refactoring tools provided by modern IDEs [50]. Hyper-code
allows source code to be reliably associated with all code objects. Thus,
whereas refactoring tools currently operate separately on a code base or on
a database, refactoring within a persistent environment could be applied
uniformly to data and the code that operates on it. Evolutionary code could
reflect over all of the data bound into the code-base being evolved, as well
as the structure of the code-base itself. Arbitrary evolution (or refactoring)
of a running application could be performed with complete confidence that
all code and data affected by a change could be located and evolved in
turn consistently. This would be possible even for data that in
conventional systems would be encapsulated within closures and thus
inaccessible to evolution code.

6 Conclusions

Orthogonal persistence was proposed to address the impedance mismatch
problem. This problem has been with us for 20-30 years and refuses to go
away. It has recently been described as the Vietnam of Computer Science
[51]. Far from being resolved, the impedance mismatch is perhaps getting
worse. We now have impedance mismatch across the multiple subsystems
concerned with data replication, cache-coherency and distribution. In
many of today’s enterprise systems the programmer must, by necessity,
not only manage mappings from the language to the database but also
from the language to the Memcached [52] or DBCache [53] layers, and
from those layers to the database. Thus, when we consider the impedance
mismatch problem in our systems it is important to recognise that the
object-relational mapping is not the only mapping that must be considered.
Even if non-relational storage is used, for example Amazon S3 [54],
mapping between layers is required. The essential issues are who creates
the mappings and how efficiently they can be maintained.

In [19] Maier stated that one of the major problems of OO systems was
the lack of integration between bulk operations and the programming
language. In this domain good progress has been made in the last few
years. LINQ makes great strides in providing a single (sub-) language that
operates over objects regardless of their longevity.

The solutions to providing persistence in programming systems have
been many, and the road has been long and winding. However, there has
been a clear trend towards the ideals of orthogonal persistence. The state
of the art has finally moved away from strings containing embedded

queries with explicit coercions to values in the programming language
space.

In the 1980s orthogonal persistence focussed on the differences
between long- and short-term storage. As described above, this is just one
of many mappings that an application builder needs to be concerned with;
there are many subsystems that require mappings to be maintained,
including caching, networks, virtualized hosts, distributed storage, and
replication. Furthermore, we are moving towards a world in which
applications are self-organising and autonomic. Such autonomic systems
are likely to be concerned with data clustering, machine utilisation and the
ability to distribute computation and storage. Lastly the scale of
application systems is likely to vary enormously from small persistent
applications on devices such as iPhones through to extremely large ones to
address the scientific challenges of tomorrow. In such a world it seems
unlikely that the intellectual burden of managing a plethora of complex
mappings can be left in the human domain.

7 Acknowledgements

Our experience in the design and implementation of persistence systems
has benefitted from interaction with so many people that it would be
invidious to mention a recently remembered subset. Malcolm Atkinson
deserves mention as the inventor of the persistence concept and we would
like to thank the community that populated the Persistent Object Systems
(POS) and Database Programming Language (DBPL) Workshops where
much of this work was reported and digested.

8 References

1. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P., Morrison,
R.: An Approach to Persistent Programming. Computer Journal, 26,4:360-365
(1983)

2. Atkinson, M.P.: Programming Languages and Databases. In: 4th International
Conference on Very Large Databases, West Berlin, Germany. pp. 408-419.
IEEE Computer Society Press (1978)

3. Kulkarni, D., Bolognese, L., Warren, M., Hejlsberg, A., George, K.: LINQ to
SQL: .NET Language-Integrated Query for Relational Data.
http://msdn.microsoft.com/en-gb/library/bb425822.aspx (2007)

4. Atkinson, M. P., Chisholm, K. J., Cockshott, W. P.: PS-Algol: An Algol with
a Persistent Heap. ACM SIGPLAN Notices, 17,7:24-31 (1982)

5. Atkinson, M.P., & Morrison, R.: Persistent First Class Procedures are enough.
In: 4th Conference on Foundations of Software Technology and Theoretical
Computer Science, Bangalore, India. pp. 223-240. Springer-Verlag (1984)

6. Atkinson, M. P., & Morrison, R.: Procedures as Persistent Data Objects.
ACM Transactions on Programming Languages and Systems, 7,4:539-559
(1985)

7. Morrison, R., Brown, A. L., Bailey, P. J., Davie, A. J. T., Dearle, A.: A
Persistent Graphics Facility for the ICL Perq. Software - Practice and
Experience, 16,4:351-367 (1986)

8. Morrison, R., Brown, A. L., Carrick, R., Connor, R. C. H., Dearle, A.,
Atkinson, M. P.: Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment. Software Engineering Journal,
2,6:199-204 (1987)

9. Atkinson, M. P., & Buneman, O. P.: Types and Persistence in Database
Programming Languages. ACM Computing Surveys, 19,2:105-190 (1987)

10. Atkinson, M. P., Buneman, O. P., Morrison, R.: Binding and Type Checking
in Database Programming Languages. Computer Journal, 31,2:99-109 (1988)

11. Dearle, A., & Brown, A. L.: Safe Browsing in a Strongly Typed Persistent
Environment. Computer Journal, 31,6:540-544 (1988)

12. Brown, A.L.: Persistent Object Stores. PhD Thesis, University of St Andrews.
http://www.cs.st-andrews.ac.uk/files/publications/download/Bro89.pdf (1989)

13. Connor, R.C.H., Brown, A.B., Cutts, Q.I., Dearle, A., Morrison, R.,
Rosenberg, J.: Type Equivalence Checking in Persistent Object Systems. In:
Implementing Persistent Object Bases, Principles and Practice: 4th
International Workshop on Persistent Object Systems (POS4), Martha’s
Vineyard, USA. pp. 151-164. Morgan Kaufmann (1990)

14. Cooper, R.L.: On the Utilisation of Persistent Programming Environments.
PhD Thesis, University of Glasgow (1990)

15. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An Object Data Model with
Roles. In: 19th International Conference on Very Large Data Bases, Dublin,
Ireland. pp. 39-51. Morgan Kaufmann (1993)

16. Connor, R.C.H., Morrison, R., Atkinson, M.P., Matthes, F., Schmidt, J.:
Programming in Persistent Higher-Order Languages. In: European Systems
Architecture Conference (Euro-ARCH'93), Munich, Germany. pp. 288-300.
Springer-Verlag (1993)

17. Morrison, R., Connor, R. C. H., Cutts, Q. I., Kirby, G. N. C., Stemple, D.:
Mechanisms for Controlling Evolution in Persistent Object Systems. Journal
of Microprocessors and Microprogramming, 17,3:173-181 (1993)

18. Morrison, R., Connor, R. C. H., Cutts, Q. I., Dunstan, V. S., Kirby, G. N. C.:
Exploiting Persistent Linkage in Software Engineering Environments.
Computer Journal, 38,1:1-16 (1995)

19. Maier, D.: Representing Database Programs as Objects. In: 1st International
Workshop on Database Programming Languages, Roscoff, France. pp. 377-
386. ACM Press / Addison-Wesley (1987)

20. Fowler, M.: Patterns of Enterprise Application Architecture. The Addison-
Wesley Signature Series. Addison Wesley (2002)

21. Atkinson, M. P., & Morrison, R.: Orthogonally Persistent Object Systems.
VLDB Journal, 4,3:319-401 (1995)

22. W3Schools: PHP MySQL Select.
http://www.w3schools.com/PHP/php_mysql_select.asp (2009)

23. Sun Microsystems: JDBC Overview. http://java.sun.com/products/jdbc/
(1998)

24. Morrison, R.: S-Algol: A Simple Algol for Teaching. BCS Computer
Bulletin, 2,31:17, 20 (1982)

25. Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P., Morrison, R.:
PS-Algol: A Language for Persistent Programming. In: 10th Australian
National Computer Conference, Melbourne, Australia. pp. 70-79 (1983)

26. Morrison, R., Connor, R. C. H., Kirby, G. N. C. et al.: The Napier88
Persistent Programming Language and Environment. In: M. P. Atkinson and
R. Welland (eds.): Fully Integrated Data Environments. Springerpp. 98-154
(1999)

27. Dearle, A.: On the Construction of Persistent Programming Environments.
PhD Thesis, University of St Andrews. http://www.cs.st-
andrews.ac.uk/files/publications/download/Dea88.pdf (1988)

28. Connor, R.C.H.: Types and Polymorphism in Persistent Programming
Systems. PhD Thesis, University of St Andrews. http://www.cs.st-
andrews.ac.uk/files/publications/download/Con90.pdf (1990)

29. Cutts, Q.I.: Delivering the Benefits of Persistence to System Construction and
Execution. PhD Thesis, University of St Andrews. http://www.cs.st-
andrews.ac.uk/files/publications/download/Cut92.pdf (1992)

30. Kirby, G.N.C.: Reflection and Hyper-Programming in Persistent
Programming Systems. PhD Thesis, University of St Andrews.
http://www.cs.st-andrews.ac.uk/files/publications/download/Kir92b.pdf
(1992)

31. Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M.,
Morrison, R.: Persistent Hyper-Programs. In: Persistent Object Systems: 5th
International Workshop on Persistent Object Systems (POS5), San Miniato,
Italy. Workshops in Computing pp. 86-106. Springer-Verlag (1992)

32. Parrington, G. D., Shrivastava, S. K., Wheater, S. M., Little, M. C.: The
Design and Implementation of Arjuna. USENIX Computing Systems Journal,
8,3:255-308 (1995)

33. Shrivastava, S., Dixon, G. N., Parrington, G.: An Overview of the Arjuna
Distributed Programming System. IEEE Software, :66-73 (1991)

34. Atkinson, M. P., Daynes, L., Jordan, M. J., Printezis, T., Spence, S.: An
Orthogonally Persistent JavaTM. ACM SIGMOD Record, 25,4:1-10 (1996)

35. Zirintsis, E., Dunstan, V.S., Kirby, G.N.C., Morrison, R.: Hyper-
Programming in Java. In: 8th International Workshop on Persistent Object
Systems (POS8), Tiburon, California. pp. 370-382. Morgan Kaufmann (1999)

36. Marquez, A., Zigman, J. N., Blackburn, S. M.: Fast Portable Orthogonally
Persistent Java. Software - Practice and Experience, Special Issue on
Persistent Object Systems, 30,4:449-479 (2000)

37. Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuliffe, M.,
Naughton, J.F., Schuh, D.T., Solomon, M.H.: Shoring Up Persistent
Applications. In: ACM SIGMOD International Conference on Management
of Data, Minneapolis, MN, USA. pp. 383-394 (1994)

38. Dearle, A., Hulse, D., Farkas, A.: Operating System Support for Java. In: 1st
International Workshop on Persistence for Java, Drymen, Scotland. (1996)

39. Dittrich, K., & Dayal, U. (eds.): Proceedings of the 1986 International
Workshop on Object-Oriented Database Systems, Pacific Grove, California,
USA. IEEE Computer Society Press, Los Alamitos, CA, USA (1986)

40. Carey, M.: The Exodus Extensible DBMS Project: An Overview. In: S. B.
Zdonik and D. Maier (eds.): Readings in Object-Oriented Database Systems.
Morgan Kaufman, San Mateo, California (1990)

41. Atkinson, M.P., Bancilhon, F., DeWitt, D.J., Dittrich, K., Maier, D., Zdonik,
S.B.: The Object-Oriented Database Manifesto. In: 1st International
Conference on Deductive and Object-Oriented Databases, Kyoto, Japan. pp.
223-240. Elsevier Science Publishers (1989)

42. Richardson, J. E., Carey, M. J., Schuh, D. T.: The Design of the E
Programming Language. ACM Transactions on Programming Languages and
Systems, 15,3:494-534 (1993)

43. Cook, W.R., & Rosenberger, C.: Native Queries for Persistent Objects: A
Design White Paper. .
http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-
23-05.pdf (2006)

44. Versant Corporation: Db4o :: Native Java & .NET Open Source Object
Database. http://www.db4o.com/ (2009)

45. Versant Corporation: Db4o Tutorial.
http://www.db4o.com/about/productinformation/resources/db4o-6.3-tutorial-
java.pdf (2009)

46. Java Community Process: Java Data Objects (JDO) Specification.
http://www.jcp.org/en/jsr/detail?id=12 (2004)

47. Sun Microsystems: Java Persistence API.
http://java.sun.com/javaee/technologies/persistence.jsp (2008)

48. Jordan, M.J., & Atkinson, M.P.: Orthogonal Persistence for the Java
Platform: Specification and Rationale. Report TR-2000-94. Sun
Microsystems Inc (2000)

49. Dearle, A., Kirby, G.N.C., Norcross, S.J., McCarthy, A.J.: A Peer-to-Peer
Middleware Framework for Resilient Persistent Programming. Report
CS/06/1. http://www.cs.st-andrews.ac.uk/files/publications/
download/DKN+06a.pdf. University of St Andrews (2006)

50. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:
Improving the Design of Existing Code. Object Technology Series. Addison
Wesley (1999)

51. Neward, T.: Interoperability Happens - the Vietnam of Computer Science.
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Scienc
e.aspx (2006)

52. Danga Interactive: Memcached: A Distributed Memory Object Caching
System. http://www.danga.com/memcached/ (2009)

53. Altinel, M., Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Lindsay,
B.G., Woo, H., Brown, L.: DBCache: Database Caching for Web Application
Servers. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin. pp. 612-612.
ACM (2002)

54. Amazon: Amazon Simple Storage Service (Amazon S3).
http://aws.amazon.com/s3/ (2009)

